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“ Differential forms as a unifying force for...

— Can we do anything about complex ?
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Complex structures have a triple life
J € End(TM), J?> = —1d and Nij; =0 On % = CU {0},

Lc TeM, LnL= {0}, I'(L) Lie-involutive.

(the +i-eigenbundle of J) \ 1

K C A®*TEM (canonical bundle of J) whose

local sections ¢ € ['(K \ {0}) satisfy: dz on C,
e ( decomposable d(1/z) on C* U {oo}
e ( A volume
e d¢ = Of A for some f differ on C* by
(think of ¢ = dzi A ... A dzi) dz = —z°d(1/z)

— Can we unify w and K in some sense?
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Cle(TM @ T*M)-module structure on A® TEM
(X+a)-p=ixptaip
(A®TEM =~ the spinor representation)

Pure spinors are pointwise ~ eB1<g; A .. A6,
(+» Ann(p) C TcM & TEM Lagrangian) B,w € A2, 0 € AL

Chevalley pairing on spinors (p,9)) = (p7 A %) top
(APP TEM-valued) _|_

Weakening of dp =0 = dp=v-pforv=X+a«

(or of d¢ = Of A () )
'(Ann ¢) involutive for Dorfman bracket
X +a,Y + 8] = [X, Y] + LxB - 1yda

*...Cavalcanti, Alekseev-Bursztyn-Meinrenken'09... and, before, Liu-Weinstein-Xu'97, Courant’90, Chevalley'54!
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Complex and symplectic

For complex (: that is,

¢ decomposable ¢ € Qg pure
¢ A ¢ volume (¢, ¢) volume
d¢ =0f NC dt=v-C

pure: pNeB““’/\Hl/\.../\G,

pairing: (p,v) = (p" A )op
integrable: dp=v-p

For symplectic w:
Eal= QF. pure
(e, i) ~ w™ volume
de'”=0=0-p

Definition: a generalized complex structure is locally given by:

p € Qf pure
(p,p) ~ volume
dp=v-p

shape

non-degeneracy
integrability

(the local forms coincide pointwise up to C*)
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Some considerations )
p~ el NN NG,

(p.p) = vol
dp=v-p

iw

eB A is a symmetry for B closed (a B-field). E.g., e e
GDiff (M) = Diff(M) x Q2,(M) (generalized diffeomorphisms)

B+iw o~

Constraint: generalized complex — almost complex — even dimensions
e p has a parity, p=po+p2+... or p=p1+p3+...

e Type may change! We focus on stable: generically pg # 0 & when
po(p) =0, dpo(p) #0,s0 {pe M : po(p) =0} codim-2 submanifold.

Type-change only possible for dim M > 4.



Within generalized complex structures

symplectic

complex

The interior of the curve is B-equivalent to symplectic structures.

Examples coming from hyperKahler or holomorphic symplectic structures.
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Idea: a different generalized geometry, B,-geometry
A generalized complex structure is locally given by:

p € ¢ pure
(p,p) volume
dp=v-p

A B,-generalized complex structure is locally given by:

p € Qp pure
(p.p) volume
dp=v-p

L := Annp is a complex Dirac structure (lagrangian+Dorfman involutive) of
(the Courant algebroid) TM & 1 @ T*M such that L N L= {0}.

Example: any usual generalized complex is B,-generalized.
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e Cosymplectic structure: w € le, o€ Qi, such that o A w™ volume

p=e "t —14tistiv—0cAw...

e Normal almost contact structure: J € End(TM), Y € X(M), o € Q1
p= el A (=(+ (*1)ml'0' AC (with ¢ =~ (m,0)-form)
Where is Y7 In the integrability dp = v - p! We must have v =Y + ...

e Type-change example: on C x R with coordinates (z, t),

p=z+dz+idzAdt
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Some B,-considerations _ _
p = eNTTNBFC NG AL NG,

(p,p) = vol
dp=v-p

e eBA and e*7A are symmetries for B and A closed (B and A fields).
GDiff(M) = Diff(M) x Qifl(M) (generalized diffeomorphisms)

e B,-generalized complex — almost complex/contact — any dimension
e p has NO parity, p=pot+pr+p+tpz+...

v Type may change! We focus on stable: generically po # 0 & when
po(p) =0, dpo(p) #0,s0 {p e M : po(p) =0} codim-2 submanifold.

e Type change already possible for dim M =23 .. ..
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Main result

Mixing well:
e family of geometric generalized surgeries (topologically Dehn twists)

e open-book decomposition with connected binding, Moser's argument,
transitiviy of symplectomorphisms, Dacorogna-Moser theorem

Theorem (Porti,R.)

Any closed oriented 3-manifold admits a Bs-generalized complex structure,
which is moreover stable.

New geometric structures on 3-manifolds:
surgery and generalized geometry

arXiv:2402.12471
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Local normal models in even dimensions
Complex: dz; A ... A dzn,

Symplectic: w =dp1 Adg1 + ...+ dpm A dgm
Proposition (Cavalcanti-Gualtieri'18)

Around the change of type, stable generalized complex structures look like
(z1 + dz1 A dzp) N €'




Local normal models in even dimensions
Complex: dz; A ... A dz, Symplectic: w =dp1 Adg1 + ...+ dpm A dgm

Proposition (Cavalcanti-Gualtieri'18)

Around the change of type, stable generalized complex structures look like
(z1 + dz1 A dzp) N €'

Local models in odd dimensions? (Say, 3, p = po + p1 + p2 + p3)
Definition (Porti-R.)

Around type change, take v a meridian curve and T a concentric torus.

1 1
Ai=— [ f = ¥ .
i £l = [ Geato)
Local invariant: A Semilocal invariant (compact case): arg(u)

Example: z + Adz + pdz A dt

Condition Im(Az) # 0.  Prop: stable type-change never a single circle
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A type-change example

S2 x St
A, it € C* such that
Im(Am) # O:

On C x St,
p=2z+ Adz+ pdz A dt.

On (C* U {o0}) x St,
p=L1-X\d (1) —pd()ndt

They differ by z2 on C* x S*.

What is the meaning of \ and ;?
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Meaning of invariants (work in progress)

Have in mind z + \dz + pdz A dt on S% x S*:

A = £1 is related to open-book decompositions,

A = %/ contains examples of genus 1 Heegaard splitting,

A # +1, 4/ gives spiralling tori.

arg(p) gives an invariant related to symplectic structure of leaves?
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Meaning of invariants (work in progress)

Just as Dirac and generalized complex structures give a smooth structure
to foliations and geometric structures on and transverse to them...

...B3-generalized complex structures do it for open-book decompositions,
genus 1 Heegard splittings and related foliations (\ tells which!).
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Take-home message: B, -generalized complex structures

symmetric | endomorphism | skew-symmetric

even
odd

p € Qf pure shape
(p,p) volume non-degeneracy
dp=v-p integrability

Bn-generalized complex

#3CP2 1 #3(S2 x 8h)

symplectic] |

cosymplectic
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Complaints department:

symmetric | endomorphism | skew-symmetric

even
odd

It all comes from one choice:

Quadratic form on TM & T*M given by Q(X + «) = a(X)
that is,
symmetric pairing (X +a, Y + ) = 3(3(X) + a(Y))

But we could have done:

skew-symmetric pairing (X +a, Y + 8) = 3(3(X) — a(Y))



Beyond the canonical symmetric
pairing in generalized geometry

Roberto Rubio
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