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Erich Kähler’s top three geometric structures:

(Smooth category, M manifold)

Riemannian metric
g ∈ Γ(Sym2TM)
positive definite

flat (as G -structures)

Complex structure
J ∈ End(TM)
J2 = − Id
NijJ = 0

Symplectic structure
ω ∈ Ω2(M)
ωm volume
dω = 0︸ ︷︷ ︸

Only possible on even dimensions n = 2m!

In odd dimensions n = 2m + 1 (coKähler’s top three):

Riemannian metric

(same)

Normal almost contact
J ∈ End(TM)

σ ∈ Ω1(M),Y ∈ X(M)
J2 = − Id+σ⊗Y , ιY σ = 1
NijJ̃ = 0 (for J̃ on M × R)

Cosymplectic structure
ω ∈ Ω2(M)
σ ∈ Ω1(M)

σ ∧ ωm volume
dω = 0, dσ = 0
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How this slide looks from far enough:

...geometric structures”

symmetric endomorphism skew-symmetric

even

odd

“Differential forms as a unifying force for...

→ Can we do anything about complex ?
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Complex structures have a triple life

J ∈ End(TM), J2 = − Id and NijJ = 0

L ⊂ TCM, L ∩ L = {0}, Γ(L) Lie-involutive.
(the +i-eigenbundle of J)

K ⊂ ∧•T ∗
CM (canonical bundle of J) whose

local sections ζ ∈ Γ(K \ {0}) satisfy:
• ζ decomposable
• ζ ∧ ζ̄ volume
• dζ = ∂̄f ∧ζ for some f
(think of ζ = dz1 ∧ . . . ∧ dzm)

On S2 = C ∪ {∞},

dz on C,
d(1/z) on C∗ ∪ {∞}

differ on C∗ by
dz = −z2d(1/z)

→ Can we unify ω and K in some sense?
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A recipe for generalized geometry (à la Hitchin, Gualtieri...)

Quadratic form on TM ⊕ T ∗M given by Q(X + α) = α(X )

ClC(TM ⊕ T ∗M)-module structure on ∧•T ∗
CM

(X + α) · ρ = ιXρ+ α ∧ ρ
(∧•T ∗

CM ≃ the spinor representation)

Pure spinors are pointwise ∼ eB+iωθ1 ∧ . . . ∧ θr
(↔ Ann(ρ) ⊆ TCM ⊕ T ∗

CM Lagrangian) B, ω ∈ ∧2, θj ∈ ∧1
C

Chevalley pairing on spinors (ρ, ψ) = (ρT ∧ ψ)top
(∧topT ∗

CM-valued) +
Weakening of dρ = 0 → dρ = v · ρ for v = X + α
(or of dζ = ∂̄f ∧ ζ) ↕

Γ(Annφ) involutive for Dorfman bracket
[X + α,Y + β] = [X ,Y ] + LXβ − ιY dα

*...Cavalcanti, Alekseev-Bursztyn-Meinrenken’09... and, before, Liu-Weinstein-Xu’97, Courant’90, Chevalley’54!
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Complex and symplectic pure: ρ ∼ eB+iω ∧ θ1 ∧ . . . ∧ θr
pairing: (ρ, ψ) = (ρT ∧ ψ)top

integrable: dρ = v · ρ

For complex ζ:
ζ decomposable
ζ ∧ ζ̄ volume
dζ = ∂̄f ∧ ζ

that is,
ζ ∈ Ω•

C pure
(ζ, ζ) volume
dζ = v · ζ

For symplectic ω:

e iω ∈ Ω•
C pure

(e iω, e iω) ∼ ωm volume
de iω = 0 = 0 · ρ

Definition: a generalized complex structure is locally given by:

ρ ∈ Ω•
C pure

(ρ, ρ) ∼ volume
dρ = v · ρ

shape
non-degeneracy
integrability

(the local forms coincide pointwise up to C∗)
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shape
non-degeneracy
integrability

(the local forms coincide pointwise up to C∗)



The type and another example the example

Pointwise: symplectic subspace
with r -dim complex transversal.

Definition of type: r .
ρ = dz1 ∧ . . . ∧ dzm (type m)
ρ = e iω = 1 + iω + . . . (type 0)

ρ ∼ eB+iω ∧ θ1 ∧ . . . ∧ θr
(ρ, ρ) = (ρT ∧ ρ)top vol

dρ = v · ρ

On R4 ∼= C2, with complex coordinates (z ,w),

ρ = z + dz ∧ dw ∈ Ω•
C(R4)

Pure: z ̸= 0, ρ ∼ 1 + dz∧dw
z = e

dz∧dw
z , pure of type 0

z = 0, ρ = dz ∧ dw , pure of type 2

(ρ, ρ) = dw ∧ dz ∧ dz ∧ dw ∼ volume

dρ = dz = (− ∂
∂w + 0) · ρ
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Some considerations
ρ ∼ eB+iω ∧ θ1 ∧ . . . ∧ θr

(ρ, ρ) = vol
dρ = v · ρ

• eB∧ is a symmetry for B closed (a B-field). E.g., eB+iω ∼= e iω

GDiff(M) = Diff(M)⋉ Ω2
cl(M) (generalized diffeomorphisms)

• Constraint: generalized complex → almost complex → even dimensions

• ρ has a parity, ρ = ρ0 + ρ2 + . . . or ρ = ρ1 + ρ3 + . . .

• Type may change! We focus on stable: generically ρ0 ̸= 0 & when
ρ0(p) = 0, dρ0(p) ̸= 0, so {p ∈ M : ρ0(p) = 0} codim-2 submanifold.

• Type-change only possible for dimM ≥ 4.
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Within generalized complex structures

symplectic

complex

The interior of the curve is B-equivalent to symplectic structures.

Examples coming from hyperKähler or holomorphic symplectic structures.
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generalized complex

almost complex

?
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Can we go beyond generalized complex structures ?:
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A natural variation of the recipe

Quadratic form on TM ⊕ T ∗M given by Q(X + α) = α(X )

ClC(TM ⊕ T ∗M)-module structure on ∧•T ∗
CM

(X + α) · ρ = ιXρ+ α ∧ ρ
(∧•T ∗

CM ≃ the spinor representation)

Pure spinors are pointwise ∼ eB+iωθ1 ∧ . . . ∧ θr
(↔ Ann(ρ) Lagrangian) B, ω ∈ ∧2, θj ∈ ∧1

C

Chevalley pairing on spinors (ρ, ψ) = (ρT ∧ ψ)top
(∧topT ∗

CM-valued) +
Weakening of dρ = 0 → dφ = v · φ for v = X + α

(or of dζ = ∂̄f ∧ ζ) ↕
Γ(Annφ) involutive for Dorfman bracket
[X + α,Y + β] = [X ,Y ] + LXβ − ιY dα



A natural variation of the recipe, 1 = M × R
Quadratic form on TM ⊕ 1⊕ T ∗M given by Q(X+f + α) = α(X )+f 2

ClC(TM ⊕ 1⊕ T ∗M)-module structure on ∧•T ∗
CM

(X+f + α) · ρ = ιXρ+f τρ+ α ∧ ρ
(∧•T ∗

CM ≃ the spinor representation)

Pure spinors are pointwise ∼ eB+iωθ1 ∧ . . . ∧ θr
(↔ Ann(ρ) Lagrangian) B, ω ∈ ∧2, θj ∈ ∧1

C

Chevalley pairing on spinors (ρ, ψ) = (ρT ∧ ψ)top
(∧topT ∗

CM-valued) +
Weakening of dρ = 0 → dφ = v · φ for v = X + α

(or of dζ = ∂̄f ∧ ζ) ↕
Γ(Annφ) involutive for Dorfman bracket
[X + α,Y + β] = [X ,Y ] + LXβ − ιY dα

τρ = τ(ρ+ + ρ−) = ρ+ − ρ−
α(X )+f 2 induces a pairing of signature (n+1, n), Lie type Bn.
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C

Chevalley pairing on spinors (ρ, ψ)
(∧topT ∗

CM-valued) +
Weakening of dρ = 0 → dφ = v · φ for v = X + f + α

(or of dζ = ∂̄f ∧ ζ) ↕
Γ(Annφ) involutive for Dorfman bracket

[X + f + α,Y + g + β] = [X ,Y ] + LX (g + β)− ιY d(f + α) + 2gdf

τρ = τ(ρ+ + ρ−) = ρ+ − ρ−
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Idea: a different generalized geometry

A generalized complex structure is locally given by:

ρ ∈ Ω•
C pure

(ρ, ρ) volume
dρ = v · ρ

A Bn-generalized complex structure is locally given by:

ρ ∈ Ω•
C pure

(ρ, ρ) volume
dρ = v · ρ

L := Ann ρ is a complex Dirac structure (lagrangian+Dorfman involutive) of

(the Courant algebroid) TM ⊕ 1⊕ T∗M such that L ∩ L = {0}.

Example: any usual generalized complex is Bn-generalized.



Idea: a different generalized geometry, Bn-geometry

A generalized complex structure is locally given by:

ρ ∈ Ω•
C pure

(ρ, ρ) volume
dρ = v · ρ

A Bn-generalized complex structure is locally given by:

ρ ∈ Ω•
C pure

(ρ, ρ) volume
dρ = v · ρ

L := Ann ρ is a complex Dirac structure (lagrangian+Dorfman involutive) of

(the Courant algebroid) TM ⊕ 1⊕ T∗M such that L ∩ L = {0}.

Example: any usual generalized complex is Bn-generalized.



Idea: a different generalized geometry, Bn-geometry

A generalized complex structure is locally given by:

ρ ∈ Ω•
C pure

(ρ, ρ) volume
dρ = v · ρ

A Bn-generalized complex structure is locally given by:

ρ ∈ Ω•
C pure

(ρ, ρ) volume
dρ = v · ρ

L := Ann ρ is a complex Dirac structure (lagrangian+Dorfman involutive) of

(the Courant algebroid) TM ⊕ 1⊕ T∗M such that L ∩ L = {0}.

Example: any usual generalized complex is Bn-generalized.



Idea: a different generalized geometry, Bn-geometry

A generalized complex structure is locally given by:

ρ ∈ Ω•
C pure

(ρ, ρ) volume
dρ = v · ρ

A Bn-generalized complex structure is locally given by:

ρ ∈ Ω•
C pure

(ρ, ρ) volume
dρ = v · ρ

L := Ann ρ is a complex Dirac structure (lagrangian+Dorfman involutive) of

(the Courant algebroid) TM ⊕ 1⊕ T∗M such that L ∩ L = {0}.

Example: any usual generalized complex is Bn-generalized.



But they also exist in odd dimensions

• Cosymplectic structure: ω ∈ Ω2
cl , σ ∈ Ω1

cl such that σ ∧ ωm volume

ρ = e iσ+iω = 1 + iσ + iω − σ ∧ ω . . .

• Normal almost contact structure: J ∈ End(TM), Y ∈ X(M), σ ∈ Ω1

ρ = e iσ ∧ ζ = ζ + (−1)miσ ∧ ζ (with ζ ≈ (m, 0)-form)

Where is Y ? In the integrability dρ = v · ρ! We must have v = Y + ...

• Type-change example: on C× R with coordinates (z , t),

ρ = z + dz + i dz ∧ dt
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So far from the distance:

symmetric endomorphism skew-symmetric

even

odd

Do Bn-generalized complex structures reach further ?:



Some considerations
ρ = eB+iω ∧ θ1 ∧ . . . ∧ θr

(ρ, ρ) = vol
dρ = v · ρ

• eB∧ is a symmetry for B closed (a B-field).
GDiff(M) = Diff(M)⋉ Ω2

cl(M) (generalized diffeomorphisms)

• Constraint: generalized complex → almost complex → even dimensions

• ρ has a parity, ρ = ρ0 + ρ2 + . . . or ρ=ρ1 + ρ3 + . . .

• Type may change! We focus on stable: generically ρ0 ̸= 0 & when
ρ0(p) = 0, dρ0(p) ̸= 0, so {p ∈ M : ρ0(p) = 0} codim-2 submanifold.

• Type-change only possible for dimM ≥ 4.
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ρ0(p) = 0, dρ0(p) ̸= 0, so {p ∈ M : ρ0(p) = 0} codim-2 submanifold.

• Type-change only possible for dimM ≥ 4.
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Main result

Mixing well:

• family of geometric generalized surgeries (topologically Dehn twists)

• open-book decomposition with connected binding, Moser’s argument,
transitiviy of symplectomorphisms, Dacorogna-Moser theorem

Theorem (Porti,R.)

Any closed oriented 3-manifold admits a B3-generalized complex structure,
which is moreover stable.

New geometric structures on 3-manifolds:
surgery and generalized geometry

arXiv:2402.12471
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Local normal models in even dimensions
Complex: dz1 ∧ . . . ∧ dzm Symplectic: ω = dp1 ∧ dq1 + . . .+ dpm ∧ dqm

Proposition (Cavalcanti-Gualtieri’18)

Around the change of type, stable generalized complex structures look like
(z1 + dz1 ∧ dz2) ∧ e iω

Local models in odd dimensions? (Say, 3, ρ = ρ0 + ρ1 + ρ2 + ρ3)

Definition (Porti-R.)

Around type change, take γ a meridian curve and T a concentric torus.

λ :=
1

2πi

∫
γ
ι∗(ρ1/ρ0), µ :=

1

4π2i

∫
T
ι∗(ρ2/ρ0).

Local invariant: λ Semilocal invariant (compact case): arg(µ)

Example: z + λdz + µdz ∧ dt

Condition Im(λµ) ̸= 0. Prop: stable type-change never a single circle
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A type-change example

S2 × S1,
λ, µ ∈ C× such that

Im(λµ) ̸= 0:

On C× S1,
ρ = z + λdz + µdz ∧ dt.

On (C∗ ∪ {∞})× S1,
ρ = 1

z − λd
(
1
z

)
− µ d

(
1
z

)
∧ dt.

They differ by z2 on C∗ × S1.

What is the meaning of λ and µ?
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Meaning of invariants (work in progress)

Have in mind z + λdz + µdz ∧ dt on S2 × S1:

λ = ±1 is related to open-book decompositions,

λ = ±i contains examples of genus 1 Heegaard splitting,

λ ̸= ±1,±i gives spiralling tori.

arg(µ) gives an invariant related to symplectic structure of leaves?
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Meaning of invariants (work in progress)

Just as Dirac and generalized complex structures give a smooth structure
to foliations and geometric structures on and transverse to them...

...B3-generalized complex structures do it for open-book decompositions,
genus 1 Heegard splittings and related foliations (λ tells which!).
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Complaints department:

symmetric endomorphism skew-symmetric

even

odd

It all comes from one choice:

Quadratic form on TM ⊕ T ∗M given by Q(X + α) = α(X )
that is,

symmetric pairing ⟨X + α,Y + β⟩ = 1
2(β(X ) + α(Y ))

But we could have done:

skew-symmetric pairing ⟨X + α,Y + β⟩ = 1
2(β(X )− α(Y ))
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