Differential forms as a unifying force for geometric structures

Differential geometry seminar

Instituto de Matemática Pura e Aplicada

Rio de Janeiro, 8th April 2025

(Smooth category, *M* manifold)

Riemannian metric $g \in \Gamma(Sym^2 TM)$ positive definite flat (as *G*-structures)

(Smooth category, *M* manifold)

Riemannian metric $g \in \Gamma(Sym^2 TM)$ positive definite flat (as *G*-structures) Complex structure $J \in \text{End}(TM)$ $J^2 = - \text{Id}$ $\text{Nij}_J = 0$

(Smooth category, M manifold)

Riemannian metric $g \in \Gamma(Sym^2 TM)$ positive definite flat (as *G*-structures)

Complex structure $J \in \text{End}(TM)$ $J^2 = - \text{Id}$ $\text{Nij}_J = 0$ Symplectic structure

 $\omega \in \Omega^2(M)$ $\omega^m \text{ volume}$ $d\omega = 0$

(Smooth category, *M* manifold)

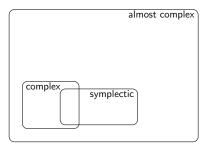
Riemannian metric $g \in \Gamma(\text{Sym}^2 TM)$ positive definite flat (as G-structures) Complex structure Symplectic structure $J \in \text{End}(TM)$ $\omega \in \Omega^2(M)$ $l^2 = - Id$ ω^m volume Nii i = 0 $d\omega = 0$

Only possible on even dimensions n = 2m!

(Smooth category, M manifold)

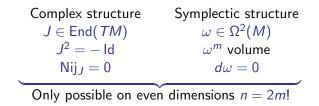
Riemannian metric $g \in \Gamma(Sym^2 TM)$ positive definite flat (as *G*-structures) Complex structureSymplectic structure $J \in \operatorname{End}(TM)$ $\omega \in \Omega^2(M)$ $J^2 = -\operatorname{Id}$ ω^m volume $\operatorname{Nij}_J = 0$ $d\omega = 0$

Only possible on even dimensions n = 2m!



(Smooth category, *M* manifold)

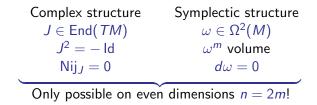
Riemannian metric $g \in \Gamma(Sym^2 TM)$ positive definite flat (as *G*-structures)



In odd dimensions n = 2m + 1 (coKähler's top three):

(Smooth category, *M* manifold)

Riemannian metric $g \in \Gamma(Sym^2 TM)$ positive definite flat (as *G*-structures)



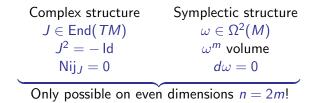
In odd dimensions n = 2m + 1 (coKähler's top three):

Riemannian metric

(same)

(Smooth category, *M* manifold)

Riemannian metric $g \in \Gamma(Sym^2 TM)$ positive definite flat (as *G*-structures)



In odd dimensions n = 2m + 1 (coKähler's top three):

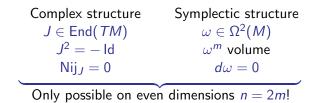
Riemannian metric

(same)

etric Normal almost contact $J \in \operatorname{End}(TM)$ $\sigma \in \Omega^{1}(M), Y \in \mathfrak{X}(M)$ $J^{2} = -\operatorname{Id} + \sigma \otimes Y, \iota_{Y}\sigma = 1$ Nij $_{\tilde{I}} = 0$ (for \tilde{J} on $M \times \mathbb{R}$)

(Smooth category, *M* manifold)

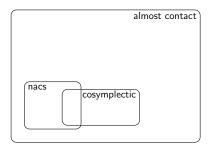
Riemannian metric $g \in \Gamma(Sym^2 TM)$ positive definite flat (as *G*-structures)



In odd dimensions n = 2m + 1 (coKähler's top three):

Riemannian metricNormal almost contactCosymplectic structure $J \in \operatorname{End}(TM)$ $\omega \in \Omega^2(M)$ (same) $\sigma \in \Omega^1(M), Y \in \mathfrak{X}(M)$ $\sigma \in \Omega^1(M)$ $J^2 = -\operatorname{Id} + \sigma \otimes Y, \iota_Y \sigma = 1$ $\sigma \wedge \omega^m$ volume $\operatorname{Nij}_{\widetilde{J}} = 0$ (for \widetilde{J} on $M \times \mathbb{R}$) $d\omega = 0, \ d\sigma = 0$

(Smooth category, *M* manifold)



In odd dimensions n = 2m + 1 (coKähler's top three):

Riemannian metric

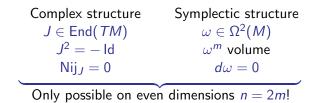
(same)

Normal almost contactCosymplectic structure $J \in \operatorname{End}(TM)$ $\omega \in \Omega^2(M)$ $\sigma \in \Omega^1(M), Y \in \mathfrak{X}(M)$ $\sigma \in \Omega^1(M)$

 $\begin{aligned} J^2 &= -\operatorname{Id} + \sigma \otimes Y, \iota_Y \sigma = 1 & \sigma \wedge \omega^m \text{ volume} \\ \operatorname{Nij}_{\tilde{J}} &= 0 \text{ (for } \tilde{J} \text{ on } M \times \mathbb{R}) & d\omega = 0, \ d\sigma = 0 \end{aligned}$

(Smooth category, *M* manifold)

Riemannian metric $g \in \Gamma(Sym^2 TM)$ positive definite flat (as *G*-structures)



In odd dimensions n = 2m + 1 (coKähler's top three):

Riemannian metricNormal almost contactCosymplectic structure $J \in \operatorname{End}(TM)$ $\omega \in \Omega^2(M)$ (same) $\sigma \in \Omega^1(M), Y \in \mathfrak{X}(M)$ $\sigma \in \Omega^1(M)$ $J^2 = -\operatorname{Id} + \sigma \otimes Y, \iota_Y \sigma = 1$ $\sigma \wedge \omega^m$ volume $\operatorname{Nij}_{\widetilde{J}} = 0$ (for \widetilde{J} on $M \times \mathbb{R}$) $d\omega = 0, \ d\sigma = 0$

...geometric structures"

	symmetric	endomorphism	skew-symmetric
even			
odd			

...geometric structures"

	symmetric	endomorphism	skew-symmetric
even			
odd			

"Differential forms as a unifying force for...

...geometric structures"

	symmetric	endomorphism	skew-symmetric
even			
odd			

" **Differential forms** as a unifying force for...

...geometric structures"

	symmetric	endomorphism	skew-symmetric
even			
odd			

" **Differential forms** as a unifying force for...

 \rightarrow Can we do anything about complex ?

 $J \in \text{End}(TM), J^2 = - \text{Id and } Nij_J = 0$

 $J \in \text{End}(TM)$, $J^2 = - \text{Id}$ and $Nij_J = 0$

 $L \subset T_{\mathbb{C}}M$, $L \cap \overline{L} = \{0\}$, $\Gamma(L)$ Lie-involutive. (the +i-eigenbundle of J)

 $J \in \text{End}(TM)$, $J^2 = - \text{Id}$ and $Nij_J = 0$

 $L \subset T_{\mathbb{C}}M$, $L \cap \overline{L} = \{0\}$, $\Gamma(L)$ Lie-involutive. (the +i-eigenbundle of J)

 $K \subset \wedge^{\bullet} T^*_{\mathbb{C}} M$ (canonical bundle of *J*) whose **local** sections $\zeta \in \Gamma(K \setminus \{0\})$ satisfy:

- ζ decomposable
- $\zeta \wedge \overline{\zeta}$ volume
- $d\zeta = \bar{\partial}f \wedge \zeta$ for some f(think of $\zeta = dz_1 \wedge \ldots \wedge dz_m$)

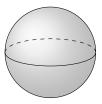
 $J \in \text{End}(TM)$, $J^2 = - \text{Id}$ and $Nij_J = 0$

 $L \subset T_{\mathbb{C}}M$, $L \cap \overline{L} = \{0\}$, $\Gamma(L)$ Lie-involutive. (the +i-eigenbundle of J)

 $K \subset \wedge^{\bullet} T^*_{\mathbb{C}} M$ (canonical bundle of *J*) whose **local** sections $\zeta \in \Gamma(K \setminus \{0\})$ satisfy:

- ζ decomposable
- $\zeta \wedge \overline{\zeta}$ volume

• $d\zeta = \bar{\partial}f \wedge \zeta$ for some f(think of $\zeta = dz_1 \wedge \ldots \wedge dz_m$) On $S^2 = \mathbb{C} \cup \{\infty\}$,



 $dz ext{ on } \mathbb{C}, \ d(1/z) ext{ on } \mathbb{C}^* \cup \{\infty\}$

differ on \mathbb{C}^* by $dz = -z^2 d(1/z)$

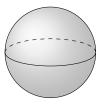
 $J \in \text{End}(TM)$, $J^2 = - \text{Id}$ and $Nij_J = 0$

 $L \subset T_{\mathbb{C}}M$, $L \cap \overline{L} = \{0\}$, $\Gamma(L)$ Lie-involutive. (the +i-eigenbundle of J)

 $K \subset \wedge^{\bullet} T^*_{\mathbb{C}} M$ (canonical bundle of *J*) whose **local** sections $\zeta \in \Gamma(K \setminus \{0\})$ satisfy:

- ζ decomposable
- $\zeta \wedge \overline{\zeta}$ volume
- $d\zeta = \bar{\partial}f \wedge \zeta$ for some f(think of $\zeta = dz_1 \wedge \ldots \wedge dz_m$)

On $\mathrm{S}^2=\mathbb{C}\cup\{\infty\}$,



 $dz ext{ on } \mathbb{C}, \ d(1/z) ext{ on } \mathbb{C}^* \cup \{\infty\}$

differ on \mathbb{C}^* by $dz = -z^2 d(1/z)$

\rightarrow Can we unify ω and K in some sense?

A recipe for generalized geometry (à la Hitchin, Gualtieri...)

*...Cavalcanti, Alekseev-Bursztyn-Meinrenken'09... and, before, Liu-Weinstein-Xu'97, Courant'90, Chevalley'54!

*...Cavalcanti, Alekseev-Bursztyn-Meinrenken'09... and, before, Liu-Weinstein-Xu'97, Courant'90, Chevalley'54!

 $Cl_{\mathbb{C}}(TM \oplus T^*M)\text{-module structure on } \wedge^{\bullet}T^*_{\mathbb{C}}M$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$ $(\wedge^{\bullet}T^*_{\mathbb{C}}M \simeq \text{the spinor representation})$

*...Cavalcanti, Alekseev-Bursztyn-Meinrenken'09... and, before, Liu-Weinstein-Xu'97, Courant'90, Chevalley'54!

 $Cl_{\mathbb{C}}(TM \oplus T^*M)\text{-module structure on } \wedge^{\bullet}T^*_{\mathbb{C}}M$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$ $(\wedge^{\bullet}T^*_{\mathbb{C}}M \simeq \text{the spinor representation})$

Pure spinors are pointwise $\sim e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$ ($\leftrightarrow \operatorname{Ann}(\rho) \subseteq T_{\mathbb{C}}M \oplus T_{\mathbb{C}}^*M$ Lagrangian) $B, \omega \in \wedge^2, \ \theta_j \in \wedge_{\mathbb{C}}^1$

^{*...}Cavalcanti, Alekseev-Bursztyn-Meinrenken'09... and, before, Liu-Weinstein-Xu'97, Courant'90, Chevalley'54!

 $Cl_{\mathbb{C}}(TM \oplus T^*M)\text{-module structure on } \wedge^{\bullet}T^*_{\mathbb{C}}M$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$ $(\wedge^{\bullet}T^*_{\mathbb{C}}M \simeq \text{the spinor representation})$

Pure spinors are pointwise $\sim e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$ ($\leftrightarrow \operatorname{Ann}(\rho) \subseteq T_{\mathbb{C}}M \oplus T_{\mathbb{C}}^*M$ Lagrangian) $B, \omega \in \wedge^2, \ \theta_j \in \wedge_{\mathbb{C}}^1$

Chevalley pairing on spinors $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ $(\wedge^{top} T^*_{\mathbb{C}} M$ -valued)

 $Cl_{\mathbb{C}}(TM \oplus T^*M)\text{-module structure on } \wedge^{\bullet}T^*_{\mathbb{C}}M$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$ $(\wedge^{\bullet}T^*_{\mathbb{C}}M \simeq \text{the spinor representation})$

Pure spinors are pointwise $\sim e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$ ($\leftrightarrow \operatorname{Ann}(\rho) \subseteq T_{\mathbb{C}}M \oplus T_{\mathbb{C}}^*M$ Lagrangian) $B, \omega \in \wedge^2, \ \theta_j \in \wedge_{\mathbb{C}}^1$

Chevalley pairing on spinors $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ $(\wedge^{top} T^*_{\mathbb{C}} M$ -valued)

Weakening of $d\rho = 0 \rightarrow d\rho = v \cdot \rho$ for $v = X + \alpha$ (or of $d\zeta = \bar{\partial}f \wedge \zeta$) \uparrow $\Gamma(\operatorname{Ann} \varphi)$ involutive for **Dorfman bracket** $[X + \alpha, Y + \beta] = [X, Y] + L_X \beta - \iota_Y d\alpha$

^{*...}Cavalcanti, Alekseev-Bursztyn-Meinrenken'09... and, before, Liu-Weinstein-Xu'97, Courant'90, Chevalley'54!

pure: $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ pairing: $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ integrable: $d\rho = \mathbf{v} \cdot \rho$

pure: $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ pairing: $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ integrable: $d\rho = \mathbf{v} \cdot \rho$

For complex ζ : ζ decomposable $\zeta \wedge \overline{\zeta}$ volume $d\zeta = \overline{\partial}f \wedge \zeta$

pure: $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ pairing: $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ integrable: $d\rho = \mathbf{v} \cdot \rho$

For complex ζ : ζ decomposable $\zeta \in \Omega^{\bullet}_{\mathbb{C}}$ pure $\zeta \wedge \overline{\zeta}$ volume $(\zeta, \overline{\zeta})$ volume $d\zeta = \bar{\partial}f \wedge \zeta \qquad \quad d\zeta = \mathbf{v} \cdot \zeta$

that is.

pure: $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ pairing: $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ integrable: $d\rho = \mathbf{v} \cdot \rho$

For complex ζ : ζ decomposable $\zeta \in \Omega^{\bullet}_{\mathbb{C}}$ pure $\zeta \wedge \overline{\zeta}$ volume $(\zeta, \overline{\zeta})$ volume $d\zeta = \bar{\partial}f \wedge \zeta \qquad \quad d\zeta = \mathbf{v} \cdot \zeta$

that is.

For symplectic ω :

pure: $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ pairing: $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ integrable: $d\rho = \mathbf{v} \cdot \rho$

For complex ζ : ζ decomposable $\zeta \in \Omega^{\bullet}_{\mathbb{C}}$ pure $\zeta \wedge \overline{\zeta}$ volume $(\zeta, \overline{\zeta})$ volume $d\zeta = \bar{\partial}f \wedge \zeta \qquad \quad d\zeta = \mathbf{v} \cdot \zeta$

that is.

For symplectic ω : $e^{i\omega}\in\Omega^ullet_{\mathbb C}$ pure $(e^{i\omega}, \overline{e^{i\omega}}) \sim \omega^m$ volume $de^{i\omega} = 0 = 0 \cdot \rho$

pure: $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ pairing: $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ integrable: $d\rho = \mathbf{v} \cdot \rho$

For complex ζ : ζ decomposable $\zeta \in \Omega^{ullet}_{\mathbb{C}}$ pure $\zeta \wedge \overline{\zeta}$ volume $(\zeta, \overline{\zeta})$ volume $d\zeta = \bar{\partial}f \wedge \zeta \qquad \quad d\zeta = \mathbf{v} \cdot \zeta$

that is.

For symplectic
$$\omega$$
:
 $e^{i\omega} \in \Omega^{\bullet}_{\mathbb{C}}$ pure
 $(e^{i\omega}, \overline{e^{i\omega}}) \sim \omega^m$ volume
 $de^{i\omega} = 0 = 0 \cdot \rho$

Definition: a **generalized complex structure** is locally given by:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}}$ pure $(\rho, \overline{\rho}) \sim \text{volume}$ $d\rho = \mathbf{v} \cdot \rho$

Complex and symplectic

pure: $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ pairing: $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ integrable: $d\rho = \mathbf{v} \cdot \rho$

For complex ζ : ζ decomposable $\zeta \in \Omega^{ullet}_{\mathbb{C}}$ pure $\zeta \wedge \overline{\zeta}$ volume $(\zeta, \overline{\zeta})$ volume $d\zeta = \bar{\partial}f \wedge \zeta \qquad \quad d\zeta = \mathbf{v} \cdot \zeta$

that is.

For symplectic ω : $e^{i\omega} \in \Omega^{ullet}_{\mathbb{C}}$ pure $(e^{i\omega}, \overline{e^{i\omega}}) \sim \omega^m$ volume $de^{i\omega} = 0 = 0 \cdot \rho$

Definition: a generalized complex structure is locally given by:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}}$ pure shape $(\rho, \overline{\rho}) \sim \text{volume}$ non-degeneracy $d\rho = \mathbf{v} \cdot \rho$ integrability

(the local forms coincide pointwise up to \mathbb{C}^*)

Pointwise: symplectic subspace with *r*-dim complex transversal. Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*)

 $\rho = e^{i\omega} = 1 + i\omega + \dots$ (type 0)

 $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ $(\rho, \overline{\rho}) = (\rho^T \wedge \overline{\rho})_{top} \text{ vol}$ $d\rho = \mathbf{v} \cdot \rho$

Pointwise: symplectic subspace with *r*-dim complex transversal. Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0) $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ $(\rho, \overline{\rho}) = (\rho^T \wedge \overline{\rho})_{top} \text{ vol}$ $d\rho = \mathbf{v} \cdot \rho$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

$$ho = z + dz \wedge dw \in \Omega^{ullet}_{\mathbb{C}}(\mathbb{R}^4)$$

Pointwise: symplectic subspace with *r*-dim complex transversal. Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0) $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ $(\rho, \overline{\rho}) = (\rho^T \wedge \overline{\rho})_{top} \text{ vol}$ $d\rho = \mathbf{v} \cdot \rho$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

$$ho=z+dz\wedge dw\in \Omega^ullet_{\mathbb C}(\mathbb R^4)$$

Pure: $z \neq 0$, $\rho \sim 1 + \frac{dz \wedge dw}{z} = e^{\frac{dz \wedge dw}{z}}$, pure of type 0

Pointwise: symplectic subspace with *r*-dim complex transversal. Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0) $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ $(\rho, \overline{\rho}) = (\rho^T \wedge \overline{\rho})_{top} \text{ vol}$ $d\rho = \mathbf{v} \cdot \rho$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

$$ho=z+dz\wedge dw\in \Omega^ullet_\mathbb{C}(\mathbb{R}^4)$$

Pure: $z \neq 0$, $\rho \sim 1 + \frac{dz \wedge dw}{z} = e^{\frac{dz \wedge dw}{z}}$, pure of type 0 z = 0, $\rho = dz \wedge dw$, pure of type 2

Pointwise: symplectic subspace with *r*-dim complex transversal. Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0) $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ $(\rho, \overline{\rho}) = (\rho^T \wedge \overline{\rho})_{top} \text{ vol}$ $d\rho = \mathbf{v} \cdot \rho$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

$$ho=z+dz\wedge dw\in \Omega^ullet_\mathbb{C}(\mathbb{R}^4)$$

Pure: $z \neq 0$, $\rho \sim 1 + \frac{dz \wedge dw}{z} = e^{\frac{dz \wedge dw}{z}}$, pure of type 0 z = 0, $\rho = dz \wedge dw$, pure of type 2

 $(
ho,\overline{
ho}) = dw \wedge dz \wedge d\overline{z} \wedge d\overline{w} \sim \mathsf{volume}$

Pointwise: symplectic subspace with *r*-dim complex transversal. Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0) $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ $(\rho, \overline{\rho}) = (\rho^T \wedge \overline{\rho})_{top} \text{ vol}$ $d\rho = \mathbf{v} \cdot \rho$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

$$ho=z+dz\wedge dw\in \Omega^ullet_\mathbb{C}(\mathbb{R}^4)$$

Pure: $z \neq 0$, $\rho \sim 1 + \frac{dz \wedge dw}{z} = e^{\frac{dz \wedge dw}{z}}$, pure of type 0 z = 0, $\rho = dz \wedge dw$, pure of type 2

 $(
ho,\overline{
ho}) = dw \wedge dz \wedge d\overline{z} \wedge d\overline{w} \sim \mathsf{volume}$

$$d\rho = dz = \left(-\frac{\partial}{\partial w} + 0\right) \cdot \rho$$

 $\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ $(\rho, \overline{\rho}) = \mathsf{vol}$ $d\rho = \mathsf{v} \cdot \rho$

$$\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \operatorname{vol} \\ d\rho = v \cdot \rho$$

• $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (generalized diffeomorphisms)

$$\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \operatorname{vol} d\rho = v \cdot \rho$$

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (generalized diffeomorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions

$$\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \mathsf{vol}$$
$$d\rho = \mathsf{v} \cdot \rho$$

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (generalized diffeomorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho = \rho_1 + \rho_3 + \dots$

$$\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \operatorname{vol} d\rho = \mathbf{v} \cdot \rho$$

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (generalized diffeomorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho = \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable**: generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$, so $\{p \in M : \rho_0(p) = 0\}$ codim-2 submanifold.

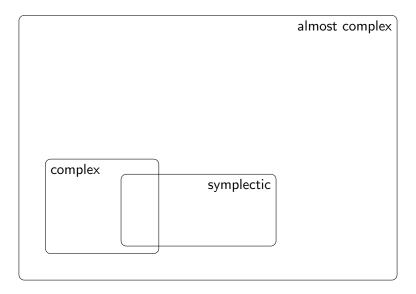
$$\rho \sim e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \mathsf{vol}$$
$$d\rho = \mathsf{v} \cdot \rho$$

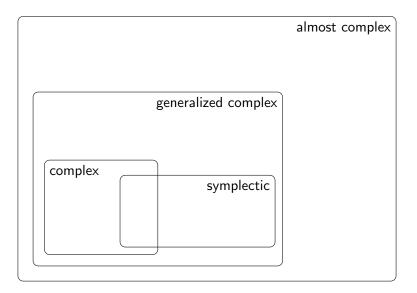
- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (generalized diffeomorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho = \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable**: generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$, so $\{p \in M : \rho_0(p) = 0\}$ codim-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

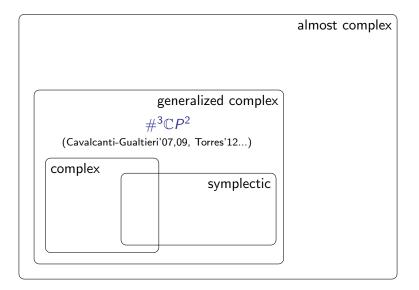
Within generalized complex structures

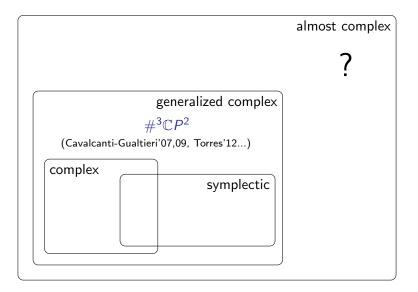
The interior of the curve is *B*-equivalent to symplectic structures.

Examples coming from hyperKähler or holomorphic symplectic structures.









So far:

	symmetric	endomorphism	skew-symmetric
even			
odd			

	symmetric	endomorphism	skew-symmetric	
even				
odd				

	symmetric	endomorphism	skew-symmetric	
even				
odd				

Can we go beyond generalized complex structures ?:

A natural variation of the recipe

Quadratic form on $TM \oplus T^*M$ given by $Q(X + \alpha) = \alpha(X)$

 $Cl_{\mathbb{C}}(TM \oplus T^*M)\text{-module structure on } \wedge^{\bullet}T^*_{\mathbb{C}}M$ $(X + \alpha) \cdot \rho = \iota_X\rho + \alpha \wedge \rho$ $(\wedge^{\bullet}T^*_{\mathbb{C}}M \simeq \text{the spinor representation})$

Pure spinors are pointwise $\sim e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$ ($\leftrightarrow \operatorname{Ann}(\rho)$ Lagrangian) $B, \omega \in \wedge^2, \ \theta_j \in \wedge^1_{\mathbb{C}}$

Chevalley pairing on spinors $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ $(\wedge^{top} T^*_{\mathbb{C}} M$ -valued)

Weakening of $d\rho = 0 \rightarrow d\varphi = \mathbf{v} \cdot \varphi$ for $\mathbf{v} = X + \alpha$ (or of $d\zeta = \bar{\partial}f \wedge \zeta$) \uparrow $\Gamma(\operatorname{Ann} \varphi)$ involutive for **Dorfman bracket** $[X + \alpha, Y + \beta] = [X, Y] + L_X\beta - \iota_Y d\alpha$

Quadratic form on $TM \oplus 1 \oplus T^*M$ given by $Q(X+f+\alpha) = \alpha(X)+f^2$

 $Cl_{\mathbb{C}}(TM \oplus 1 \oplus T^*M) \text{-module structure on } \wedge^{\bullet} T^*_{\mathbb{C}}M$ $(X+f+\alpha) \cdot \rho = \iota_X \rho + f\tau\rho + \alpha \wedge \rho$ $(\wedge^{\bullet} T^*_{\mathbb{C}}M \simeq \text{the spinor representation})$

Pure spinors are pointwise $\sim e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$ ($\leftrightarrow \operatorname{Ann}(\rho)$ Lagrangian) $B, \omega \in \wedge^2, \ \theta_j \in \wedge^1_{\mathbb{C}}$

Chevalley pairing on spinors $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ $(\wedge^{top} T^*_{\mathbb{C}} M$ -valued)

Weakening of $d\rho = 0 \rightarrow d\varphi = v \cdot \varphi$ for $v = X + \alpha$ (or of $d\zeta = \bar{\partial}f \wedge \zeta$) \uparrow $\Gamma(\operatorname{Ann} \varphi)$ involutive for **Dorfman bracket** $[X + \alpha, Y + \beta] = [X, Y] + L_X\beta - \iota_Y d\alpha$

 $au
ho = au (
ho_+ +
ho_-) =
ho_+ -
ho_$ $lpha (X) + f^2$ induces a pairing of signature (n+1, n), Lie type B_n .

Quadratic form on $TM \oplus 1 \oplus T^*M$ given by $Q(X+f+\alpha) = \alpha(X)+f^2$

 $Cl_{\mathbb{C}}(TM \oplus 1 \oplus T^*M) \text{-module structure on } \wedge^{\bullet} T^*_{\mathbb{C}}M$ $(X+f+\alpha) \cdot \rho = \iota_X \rho + f\tau\rho + \alpha \wedge \rho$ $(\wedge^{\bullet} T^*_{\mathbb{C}}M \simeq \text{the spinor representation})$

Pure spinors are pointwise $\sim e^{A+i\sigma}e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$ ($\leftrightarrow \operatorname{Ann}(\rho)$ Lagrangian) $B, \omega \in \wedge^2$, $A, \sigma \in \wedge^1, \theta_j \in \wedge^1_{\mathbb{C}}$

Chevalley pairing on spinors $(\rho, \psi) = (\rho^T \wedge \psi)_{top}$ $(\wedge^{top} T^*_{\mathbb{C}} M$ -valued)

Weakening of $d\rho = 0 \rightarrow d\varphi = v \cdot \varphi$ for $v = X + \alpha$ (or of $d\zeta = \overline{\partial}f \wedge \zeta$) \uparrow $\Gamma(\operatorname{Ann} \varphi)$ involutive for **Dorfman bracket** $[X + \alpha, Y + \beta] = [X, Y] + L_X\beta - \iota_Y d\alpha$

 $au
ho = au (
ho_+ +
ho_-) =
ho_+ -
ho_$ $lpha (X) + f^2$ induces a pairing of signature (n+1, n), Lie type B_n .

Quadratic form on $TM \oplus 1 \oplus T^*M$ given by $Q(X+f+\alpha) = \alpha(X)+f^2$

 $Cl_{\mathbb{C}}(TM \oplus 1 \oplus T^*M) \text{-module structure on } \wedge^{\bullet} T^*_{\mathbb{C}}M$ $(X+f+\alpha) \cdot \rho = \iota_X \rho + f\tau\rho + \alpha \wedge \rho$ $(\wedge^{\bullet} T^*_{\mathbb{C}}M \simeq \text{the spinor representation})$

Pure spinors are pointwise $\sim e^{A+i\sigma}e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$ ($\leftrightarrow \operatorname{Ann}(\rho)$ Lagrangian) $B, \omega \in \wedge^2$, $A, \sigma \in \wedge^1, \theta_j \in \wedge_{\mathbb{C}}^1$

Chevalley pairing on spinors (ρ, ψ) $(\wedge^{top} T^*_{\mathbb{C}} M$ -valued)

Weakening of $d\rho = 0 \rightarrow d\varphi = \mathbf{v} \cdot \varphi$ for $\mathbf{v} = X + \alpha$ (or of $d\zeta = \overline{\partial}f \wedge \zeta$) \uparrow $\Gamma(\operatorname{Ann} \varphi)$ involutive for **Dorfman bracket** $[X + \alpha, Y + \beta] = [X, Y] + L_X\beta - \iota_Y d\alpha$

 $au
ho = au (
ho_+ +
ho_-) =
ho_+ -
ho_$ $lpha (X) + f^2$ induces a pairing of signature (n+1, n), Lie type B_n .

Quadratic form on $TM \oplus 1 \oplus T^*M$ given by $Q(X+f+\alpha) = \alpha(X)+f^2$

 $Cl_{\mathbb{C}}(TM \oplus 1 \oplus T^*M) \text{-module structure on } \wedge^{\bullet} T^*_{\mathbb{C}}M$ $(X+f+\alpha) \cdot \rho = \iota_X \rho + f\tau\rho + \alpha \wedge \rho$ $(\wedge^{\bullet} T^*_{\mathbb{C}}M \simeq \text{the spinor representation})$

Pure spinors are pointwise $\sim e^{A+i\sigma}e^{B+i\omega}\theta_1 \wedge \ldots \wedge \theta_r$ ($\leftrightarrow \operatorname{Ann}(\rho)$ Lagrangian) $B, \omega \in \wedge^2$, $A, \sigma \in \wedge^1, \theta_j \in \wedge^1_{\mathbb{C}}$

Chevalley pairing on spinors (ρ, ψ) $(\wedge^{top} T^*_{\mathbb{C}} M$ -valued)

Weakening of $d\rho = 0 \rightarrow d\varphi = \mathbf{v} \cdot \varphi$ for $\mathbf{v} = X + f + \alpha$ (or of $d\zeta = \bar{\partial}f \wedge \zeta$) \uparrow $\Gamma(\operatorname{Ann} \varphi)$ involutive for **Dorfman bracket** $[X + f + \alpha, Y + g + \beta] = [X, Y] + L_X(g + \beta) - \iota_Y d(f + \alpha) + 2gdf$ $\tau \rho = \tau(\rho_+ + \rho_-) = \rho_+ - \rho_ \alpha(X) + f^2$ induces a pairing of signature (n+1, n), Lie type B_n .

Idea: a different generalized geometry

A generalized complex structure is locally given by:

 $\begin{array}{l} \rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure} \\ (\rho, \overline{\rho}) \text{ volume} \\ d\rho = \mathbf{v} \cdot \rho \end{array}$

Idea: a different generalized geometry, B_n -geometry

A generalized complex structure is locally given by:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure}$ $(\rho, \overline{\rho}) \text{ volume}$ $d\rho = \mathbf{v} \cdot \rho$

A B_n -generalized complex structure is locally given by:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure}$ $(\rho, \overline{\rho}) \text{ volume}$ $d\rho = v \cdot \rho$

Idea: a different generalized geometry, B_n -geometry

A generalized complex structure is locally given by:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure}$ $(\rho, \overline{\rho}) \text{ volume}$ $d\rho = \mathbf{v} \cdot \rho$

A B_n -generalized complex structure is locally given by:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure}$ $(\rho, \overline{\rho}) \text{ volume}$ $d\rho = v \cdot \rho$

 $L := \operatorname{Ann} \rho$ is a complex Dirac structure (lagrangian+Dorfman involutive) of (the Courant algebroid) $TM \oplus 1 \oplus T^*M$ such that $L \cap \overline{L} = \{0\}$. **Idea**: a different generalized geometry, B_n -geometry

A generalized complex structure is locally given by:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure}$ $(\rho, \overline{\rho}) \text{ volume}$ $d\rho = \mathbf{v} \cdot \rho$

A B_n -generalized complex structure is locally given by:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure}$ $(\rho, \overline{\rho}) \text{ volume}$ $d\rho = v \cdot \rho$

 $L := \operatorname{Ann} \rho$ is a complex Dirac structure (lagrangian+Dorfman involutive) of (the Courant algebroid) $TM \oplus 1 \oplus T^*M$ such that $L \cap \overline{L} = \{0\}$.

Example: any usual generalized complex is B_n-generalized.

• Cosymplectic structure: $\omega \in \Omega^2_{cl}$, $\sigma \in \Omega^1_{cl}$ such that $\sigma \wedge \omega^m$ volume

$$\rho = e^{i\sigma + i\omega} = 1 + i\sigma + i\omega - \sigma \wedge \omega \dots$$

• Cosymplectic structure: $\omega \in \Omega^2_{cl}$, $\sigma \in \Omega^1_{cl}$ such that $\sigma \wedge \omega^m$ volume $\rho = e^{i\sigma + i\omega} = 1 + i\sigma + i\omega - \sigma \wedge \omega \dots$

• Normal almost contact structure: $J \in End(TM)$, $Y \in \mathfrak{X}(M)$, $\sigma \in \Omega^1$

- Cosymplectic structure: $\omega \in \Omega^2_{cl}$, $\sigma \in \Omega^1_{cl}$ such that $\sigma \wedge \omega^m$ volume $\rho = e^{i\sigma + i\omega} = 1 + i\sigma + i\omega - \sigma \wedge \omega \dots$
- Normal almost contact structure: $J \in End(TM)$, $Y \in \mathfrak{X}(M)$, $\sigma \in \Omega^1$

 $ho = e^{i\sigma} \wedge \zeta = \zeta + (-1)^m i\sigma \wedge \zeta$ (with $\zeta \approx (m, 0)$ -form)

Where is Y?

- Cosymplectic structure: $\omega \in \Omega^2_{cl}$, $\sigma \in \Omega^1_{cl}$ such that $\sigma \wedge \omega^m$ volume $\rho = e^{i\sigma + i\omega} = 1 + i\sigma + i\omega - \sigma \wedge \omega \dots$
- Normal almost contact structure: $J \in End(TM)$, $Y \in \mathfrak{X}(M)$, $\sigma \in \Omega^1$

$$ho = e^{i\sigma} \wedge \zeta = \zeta + (-1)^m i\sigma \wedge \zeta$$
 (with $\zeta pprox (m, 0)$ -form)

Where is Y? In the integrability $d\rho = v \cdot \rho!$ We must have v = Y + ...

But they also exist in odd dimensions

- Cosymplectic structure: $\omega \in \Omega^2_{cl}$, $\sigma \in \Omega^1_{cl}$ such that $\sigma \wedge \omega^m$ volume $\rho = e^{i\sigma + i\omega} = 1 + i\sigma + i\omega - \sigma \wedge \omega \dots$
- Normal almost contact structure: $J \in \text{End}(TM)$, $Y \in \mathfrak{X}(M)$, $\sigma \in \Omega^1$ $\rho = e^{i\sigma} \wedge \zeta = \zeta + (-1)^m i\sigma \wedge \zeta$ (with $\zeta \approx (m, 0)$ -form)

Where is Y? In the integrability $d\rho = v \cdot \rho!$ We must have v = Y + ...

• **Type-change example**: on $\mathbb{C} \times \mathbb{R}$ with coordinates (z, t),

 $\rho = z + dz + i dz \wedge dt$

So far from the distance:

So far from the distance:

	symmetric	endomorphism	skew-symmetric	
even				
odd				



So far from the distance:

	symmetric	endomorphism	skew-symmetric	
even				
odd				

$$\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \operatorname{vol}$$
$$d\rho = v \cdot \rho$$

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (generalized diffeomorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho_= \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable**: generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$, so $\{p \in M : \rho_0(p) = 0\}$ codim-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

$$\rho = e^{(A+i\sigma)\tau} \wedge e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \mathsf{vol}$$
$$d\rho = \mathsf{v} \cdot \rho$$

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (generalized diffeomorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho_= \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable**: generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$, so $\{p \in M : \rho_0(p) = 0\}$ codim-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

$$\rho = e^{(A+i\sigma)\tau} \wedge e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \mathsf{vol}$$
$$d\rho = \mathbf{v} \cdot \rho$$

- $e^B \wedge$ and $e^{A_T} \wedge$ are symmetries for B and A closed (B and A fields). $\text{GDiff}(M) = \text{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M)$ (generalized diffeomorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho_= \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable**: generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$, so $\{p \in M : \rho_0(p) = 0\}$ codim-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

$$\rho = e^{(A+i\sigma)\tau} \wedge e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \mathsf{vol}$$
$$d\rho = \mathbf{v} \cdot \rho$$

- $e^B \wedge$ and $e^{A_T} \wedge$ are symmetries for B and A closed (B and A fields). $\text{GDiff}(M) = \text{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M)$ (generalized diffeomorphisms)
- B_n -generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho_= \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable**: generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$, so $\{p \in M : \rho_0(p) = 0\}$ codim-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

$$\rho = e^{(A+i\sigma)\tau} \wedge e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \mathsf{vol}$$
$$d\rho = \mathsf{v} \cdot \rho$$

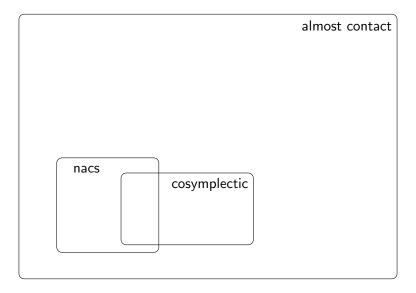
- $e^B \wedge$ and $e^{A_T} \wedge$ are symmetries for B and A closed (B and A fields). $\text{GDiff}(M) = \text{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M)$ (generalized diffeomorphisms)
- B_n -generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\rho = \rho_0 + \rho_1 + \rho_2 + \rho_3 + \dots$
- Type may change! We focus on **stable**: generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$, so $\{p \in M : \rho_0(p) = 0\}$ codim-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

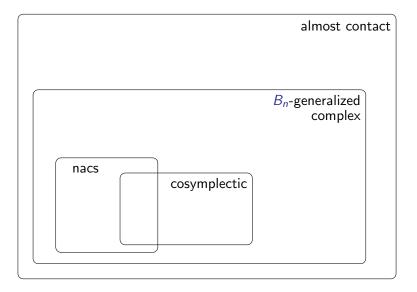
$$\rho = e^{(A+i\sigma)\tau} \wedge e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \mathsf{vol}$$
$$d\rho = \mathsf{v} \cdot \rho$$

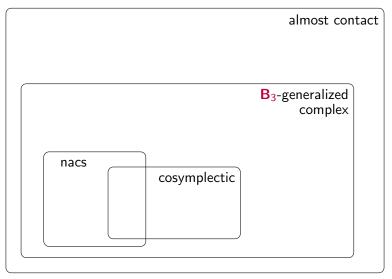
- $e^B \wedge$ and $e^{A_T} \wedge$ are symmetries for B and A closed (B and A fields). $\text{GDiff}(M) = \text{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M)$ (generalized diffeomorphisms)
- B_n -generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\rho = \rho_0 + \rho_1 + \rho_2 + \rho_3 + \dots$
- ✓ Type may change! We focus on **stable**: generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$, so { $p \in M : \rho_0(p) = 0$ } codim-2 submanifold.
 - Type-change only possible for dim $M \ge 4$.

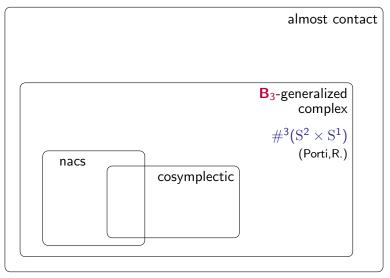
$$\rho = e^{(A+i\sigma)\tau} \wedge e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$(\rho, \overline{\rho}) = \mathsf{vol}$$
$$d\rho = \mathsf{v} \cdot \rho$$

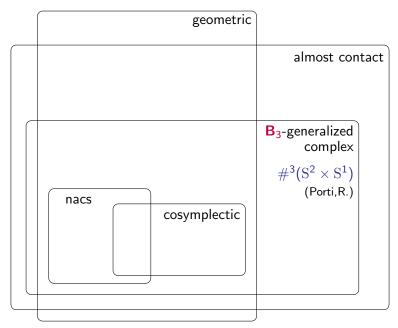
- $e^B \wedge$ and $e^{A_T} \wedge$ are symmetries for B and A closed (B and A fields). $\text{GDiff}(M) = \text{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M)$ (generalized diffeomorphisms)
- B_n -generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\rho = \rho_0 + \rho_1 + \rho_2 + \rho_3 + \dots$
- ✓ Type may change! We focus on **stable**: generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$, so { $p \in M : \rho_0(p) = 0$ } codim-2 submanifold.
- Type change already possible for dim M = 2, 3....

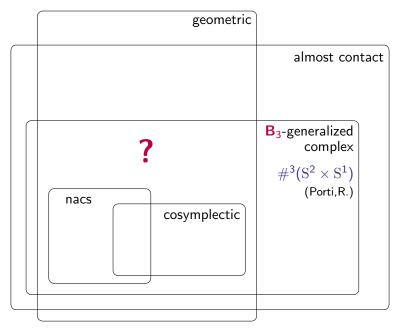












Main result

Mixing well:

- family of geometric generalized surgeries (topologically Dehn twists)
- open-book decomposition with connected binding, Moser's argument, transitiviy of symplectomorphisms, Dacorogna-Moser theorem

Main result

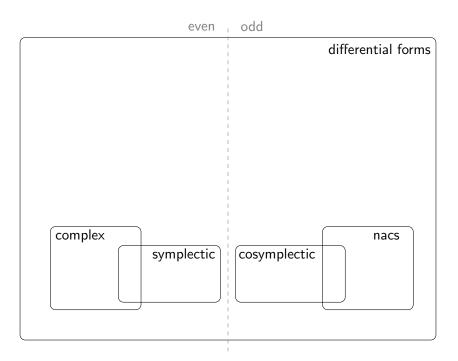
Mixing well:

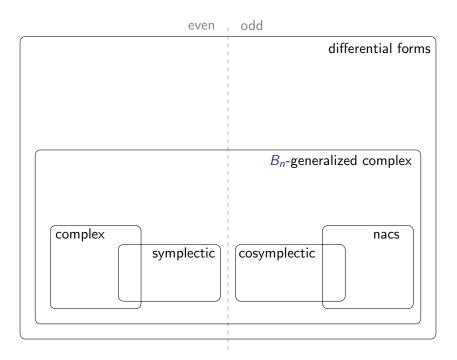
- family of geometric generalized surgeries (topologically Dehn twists)
- open-book decomposition with connected binding, Moser's argument, transitiviy of symplectomorphisms, Dacorogna-Moser theorem

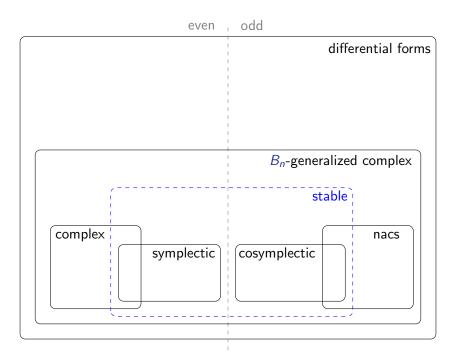
Theorem (Porti,R.)

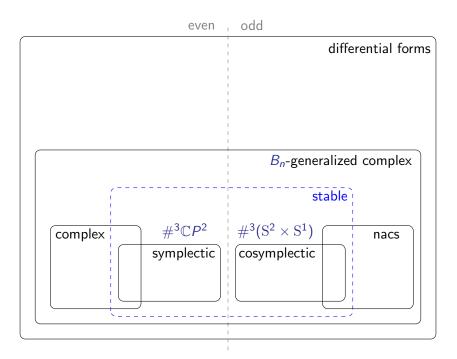
Any closed oriented 3-manifold admits a B_3 -generalized complex structure, which is moreover stable.

New geometric structures on 3-manifolds: surgery and generalized geometry arXiv:2402.12471









Local normal models in even dimensions

Complex: $dz_1 \wedge \ldots \wedge dz_m$ Symplectic: $\omega = dp_1 \wedge dq_1 + \ldots + dp_m \wedge dq_m$

Proposition (Cavalcanti-Gualtieri'18)

Around the change of type, stable generalized complex structures look like $(z_1 + dz_1 \wedge dz_2) \wedge e^{i\omega}$

Local normal models in even dimensions

Complex: $dz_1 \wedge \ldots \wedge dz_m$ Symplectic: $\omega = dp_1 \wedge dq_1 + \ldots + dp_m \wedge dq_m$

Proposition (Cavalcanti-Gualtieri'18)

Around the change of type, stable generalized complex structures look like $(z_1 + dz_1 \wedge dz_2) \wedge e^{i\omega}$

Local models in odd dimensions? (Say, 3, $\rho = \rho_0 + \rho_1 + \rho_2 + \rho_3$)

Definition (Porti-R.)

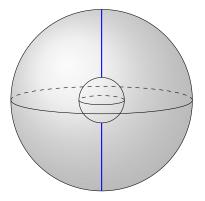
Around type change, take γ a meridian curve and ${\cal T}$ a concentric torus.

$$\lambda := rac{1}{2\pi i} \int_{\gamma} \iota^*(
ho_1/
ho_0), \qquad \qquad \mu := rac{1}{4\pi^2 i} \int_{\mathcal{T}} \iota^*(
ho_2/
ho_0).$$

Local invariant: λ **Semilocal invariant** (compact case): $arg(\mu)$

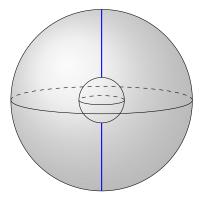
Example: $z + \lambda dz + \mu dz \wedge dt$

Condition $Im(\lambda \overline{\mu}) \neq 0$. **Prop**: stable type-change never a single circle



 $S^2 \times S^1$, $\lambda, \mu \in \mathbb{C}^{\times}$ such that $\operatorname{Im}(\lambda \overline{\mu}) \neq 0$:

On $\mathbb{C} \times S^1$, $\rho = z + \lambda dz + \mu dz \wedge dt$.

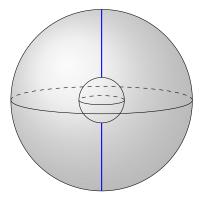


 $S^2 \times S^1$, $\lambda, \mu \in \mathbb{C}^{\times}$ such that $\operatorname{Im}(\lambda \overline{\mu}) \neq 0$:

On $\mathbb{C} \times S^1$, $\rho = z + \lambda dz + \mu dz \wedge dt$.

On
$$(\mathbb{C}^* \cup \{\infty\}) \times S^1$$
,
 $p = \frac{1}{z} - \lambda d(\frac{1}{z}) - \mu d(\frac{1}{z}) \wedge dt$.

They differ by z^2 on $\mathbb{C}^* \times \mathrm{S}^1$.



 $S^2 \times S^1$, $\lambda, \mu \in \mathbb{C}^{\times}$ such that $\operatorname{Im}(\lambda \overline{\mu}) \neq 0$:

On $\mathbb{C} \times S^1$, $\rho = z + \lambda dz + \mu dz \wedge dt$.

On
$$(\mathbb{C}^* \cup \{\infty\}) \times S^1$$
,
 $p = \frac{1}{z} - \lambda d(\frac{1}{z}) - \mu d(\frac{1}{z}) \wedge dt$.

They differ by z^2 on $\mathbb{C}^* \times \mathrm{S}^1$.

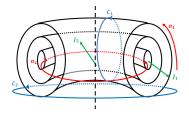
What is the meaning of λ and μ ?

Have in mind $z + \lambda dz + \mu dz \wedge dt$ on $S^2 \times S^1$:

Have in mind $z + \lambda dz + \mu dz \wedge dt$ on $S^2 \times S^1$:

 $\lambda=\pm 1$ is related to open-book decompositions,

Have in mind $z + \lambda dz + \mu dz \wedge dt$ on $S^2 \times S^1$:



- $\lambda=\pm 1$ is related to open-book decompositions,
- $\lambda=\pm i$ contains examples of genus 1 Heegaard splitting,

Have in mind $z + \lambda dz + \mu dz \wedge dt$ on $S^2 \times S^1$:

- $\lambda = \pm 1$ is related to open-book decompositions,
- $\lambda = \pm i$ contains examples of genus 1 Heegaard splitting,
- $\lambda \neq \pm 1, \pm i$ gives spiralling tori.

Have in mind $z + \lambda dz + \mu dz \wedge dt$ on $S^2 \times S^1$:

- $\lambda=\pm 1$ is related to open-book decompositions,
- $\lambda = \pm i$ contains examples of genus 1 Heegaard splitting,
- $\lambda \neq \pm 1, \pm i$ gives spiralling tori.

 $arg(\mu)$ gives an invariant related to symplectic structure of leaves?

Just as Dirac and generalized complex structures give a smooth structure to foliations and geometric structures on and transverse to them...

Meaning of invariants (work in progress)

Just as Dirac and generalized complex structures give a smooth structure to foliations and geometric structures on and transverse to them...

... B_3 -generalized complex structures do it for open-book decompositions, genus 1 Heegard splittings and related foliations (λ tells which!).

	symmetric	endomorphism	skew-symmetric	
even				
odd				

	symmetric	endomorphism	skew-symmetric	
even				
odd				

 $\begin{array}{l} \rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure} \\ (\rho, \overline{\rho}) \text{ volume} \\ d\rho = \mathbf{v} \cdot \rho \end{array}$

	symmetric	endomorphism	skew-symmetric	
even				
odd				

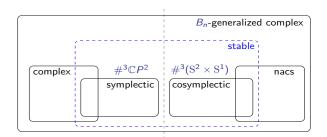
 $\begin{array}{l} \rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure} \\ (\rho, \overline{\rho}) \text{ volume} \\ d\rho = \mathbf{v} \cdot \rho \end{array}$

shape non-degeneracy integrability

	symmetric	endomorphism	skew-symmetric	
even				
odd				

 $\rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure}$ $(\rho, \overline{\rho}) \text{ volume}$ $d\rho = \mathbf{v} \cdot \rho$

shape non-degeneracy integrability



	symmetric	endomorphism	skew-symmetric	
even				
odd				

	symmetric	endomorphism	skew-symmetric	
even				
odd				

	symmetric	endomorphism	skew-symmetric	
even				
odd				

It all comes from one choice:

Quadratic form on $TM \oplus T^*M$ given by $Q(X + \alpha) = \alpha(X)$ that is, symmetric pairing $\langle X + \alpha, Y + \beta \rangle = \frac{1}{2}(\beta(X) + \alpha(Y))$

	symmetric	endomorphism	skew-symmetric	
even				
odd				

It all comes from one choice:

Quadratic form on $TM \oplus T^*M$ given by $Q(X + \alpha) = \alpha(X)$ that is, symmetric pairing $\langle X + \alpha, Y + \beta \rangle = \frac{1}{2}(\beta(X) + \alpha(Y))$

But we could have done:

skew-symmetric pairing $\langle X + \alpha, Y + \beta \rangle = \frac{1}{2} (\beta(X) - \alpha(Y))$

	symmetric	endomorphism	skew-symmetric	
even				
odd				

It all comes from one choice:

Quadratic form on $TM \oplus T^*M$ given by $Q(X + \alpha) = \alpha(X)$ that is, symmetric pairing $\langle X + \alpha, Y + \beta \rangle = \frac{1}{2}(\beta(X) + \alpha(Y))$

But we could have done:

skew-symmetric pairing $\langle X + \alpha, Y + \beta \rangle = \frac{1}{2}(\beta(X) - \alpha(Y))$

Beyond the canonical symmetric pairing in generalized geometry

Roberto Rubio joint with Filip Moučka (who typed most of these slides)

Symplectic geometry seminar

impa

Instituto de Matemática Pura e Aplicada

Rio de Janeiro, 9th April 2025

Thank you for your attention!

RYC2020-030114-I PID2022-137667NA-I00

Slides will be available at mat.uab.cat/gentle