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Abstract

In this article, we determine the automorphism group of all the quotient modular
curves of the modular curve X0(pq), where p, q are two distinct primes. In obtaining
such results, we provide different insights to compute the automorphism group for any
quotient modular curve, which are very effective when the level of the curve is square-
free. In particular, in the case where the level of the quotient curve is non square-free,
we would mention that we present an unfamiliar automorphism of order 3 for the genus
4 curve X∗

0 (25 · 11) defined over Q[
√
5].

1 Introduction

Kenku and Momose in [KM88], determined the automorphism group of all modular curves
X0(N) with genus > 1, except for N = 63, which was solved by Elkies in [Elk90], and N = 108
in [Har14].

For the modular curve X+
0 (N) := X0(N)/⟨wN⟩, where wN denotes the Fricke involution,

in [BaHa03] Baker and Hasegawa determined the automorphism group when N is a prime.
When N is the square of a prime, the automorphism group of X+

0 (N) was studied in [Gon16].
Later González and the first author in [BaGo21] determined the automorphism group for

the modular curves X∗
0 (N) = X0(N)/B(N), with N square-free, where B(N) is the group of

the Atkin-Lehner involutions wd with d||N (i.e., d|N and (d,N/d) = 1) of the modular curve
X0(N).

The present paper is the first in this direction, where we determine the automorphism group
for X0(N)/WN with WN a non-trivial subgroup of B(N) such that genus(X0(N)/WN) ≥ 2 and
provide first insights to determine the automorphism group of X∗

0 (N) with N a fixed non
square-free positive integer. In particular, we extend the results of [BaHa03] in the sense
that, as applications of the techniques presented, we determine the automorphism group of
X0(N)/WN when N is a product of two different primes and WN is any non-trivial subgroup of
B(N). Another generalization of the results of [BaHa03] and [Gon16] for the Cartan subgroups
can be found in the recent paper of Dose, Lido and Mercuri (cf. [DLM22]).

First, observe that B(N)/WN is always a commutative subgroup of Aut(X0(N)/WN), the
automorphism group of X0(N)/WN . Following the case of X0(N), one can ask whether
B(N)/WN will coincide with Aut(X0(N)/WN) for almost all N with 4 ∤ N and 9 ∤ N
(cf. [AtLe70, Theorem 8], [KM88, Theorem 0.1], [BaGo21, Theorem 2] and [Lan01, §3, Corol-
lary]). We call any u ∈ Aut(X0(N)/WN)\(B(N)/WN) a non Atkin-Lehner type automorphism
of the quotient modular curve X0(N)/WN . In particular, if any u ∈ Aut(X0(N)/WN) com-
mutes with an element w ∈ B(N)/WN , then it induces a non-trivial automorphism for the
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quotient curve X0(N)/⟨WN , w⟩. Unfortunately, such commutative situation only works with-
out any problem in the case when the Q-decomposition on isogeny factors of the Jacobian of
X0(N)/WN has no repeated factors, see §3.

In general, if the Jacobian decomposition does not involve abelian varieties associated to
modular forms with complex multiplication, we can control the decomposition of the Jacobian
over a number field. Concretely, we know the smallest number field K where all automor-
phisms are defined ( §2) and control the repeated factors in the K-isogeny decomposition of
the Jacobian. Thus, in the case when repeated factors appear (under the assumption that no
CM modular form appears), we provide in §3 different results following ideas of Baker and
Hasegawa in [BaHa03] and of González and the first author in [BaGo20] and [BaGo21], in §4
following results by computing automorphisms via the canonical model (which is also known
as Petri’s model) as explained, and in §5 following ideas of Hasegawa in [Has97] and ad-hoc
results for particular quotient curves.

In particular, we derive

Theorem 1. Consider C = X0(N)/WN a quotient modular curve of genus gWN
N , write by g∗N

the genus of X∗
0 (N). Then Aut(X0(N)/WN) = B(N)/WN in the following situations:

(i) (Corollary 23 in text) N is an odd square-free natural number such that the Jacobian de-
composition of C over Q has no repeated factors with Gon(X∗

0 (N)) > 3 (where Gon(X∗
0 (N))

denotes the gonality of X∗
0 (N)) and satisfies gWN

N > dg∗N+(d−1)5, where d := |B(N)/WN |.

(ii) (Corollary 17 in text) N =Mp is a square-free natural number with p prime, and WN =
⟨wd | d||M⟩ such that g∗M = 0 and gWN

N ≥ 2.

(iii) (Corollary 36 in text) N is square-free natural number with N ≥ 645 and M |N with
WN = B(M).

We remark that for a fixed square-free level N and subgroup WN such that the Jacobian of
X0(N)/WN has no repeated factors in the Q-decomposition, it is computationally manageable
to compute its automorphism group as we indicate in §3 with few examples.

For levels that are products of two or three primes we can go further in general (results
corresponding to main results in §6 and §7 respectively).

Theorem 2. [Theorem 37, Theorem 38 in text] Consider C = X0(N)/WN a quotient modular
curve with N = pq, where p,q are two different primes with gWN

N ≥ 2 and WN = ⟨wd⟩ with d|pq,
and denote the curve C by (N, d). Then Aut((N, d)) = B(N)/⟨wd⟩ except for the following
quotient curves whose automorphism group is isomorphic to Z/2Z× Z/2Z where we have new
involutions because they are hyperelliptic or bielliptic curves:

(57, 57), (74, 74), (77, 77), (85, 85), (91, 91), (111, 111), (143, 143)

(57, 3), (58, 29), (142, 71).

Theorem 3. Consider C = X0(N)/WN a quotient modular curve with N = pqr, where p,q
and r are three different primes with gWN

N ≥ 2.

(i) (Proposition 40 in text) Assume that g∗r = 0 and consider WN = ⟨wqp, wr⟩, and denote
such quotient curve C by (N ; r). Then Aut(C) = B(N)/⟨wqp, wr⟩ except for

(102; 2), (114; 2), (138; 2), (165; 11), (195; 3), (195; 5), (238; 2), (154; 2), (231; 7), (285; 3), (286; 2),

where all such exceptions correspond to hyperelliptic or bielliptic curves, and in each case
the automorphism group is isomorphic to Z/2Z× Z/2Z.
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(ii) (Proposition 41 in text) Assume that g∗r = 0 and WN = ⟨wpq⟩, then Aut(C) = B(N)/WN .

(iii) (Proposition 42 in text) AssumeWN = ⟨wp⟩ orWN = ⟨wp, wq⟩, then Aut(C) = B(N)/WN ,
except for the hyperelliptic or bielliptic curves: X0(190)/⟨w5, w19⟩, X0(138)/⟨w3, w23⟩ ,
X0(130)/⟨w2, w13⟩, X0(114)/⟨w2, w19⟩ and X0(102)/⟨w3, w17⟩ with automorphism group
isomorphic to Z/2Z× Z/2Z.

The proof of Theorem 1(iii), Theorem 2 and Theorem 3 heavily depends on whether there is a
map between Aut(X0(N)/WN) and Aut(X0(N)/⟨WN , w⟩) for a certain Atkin-Lehner involution
w ∈ B(N) \WN . We prove that such map exists for certain cases (cf. Theorem 34 for the
precise statement in a concrete situation).

Finally, for non-square free levels we derive some insights in §4, the more remarkable are:

Proposition 4. Consider the quotient curves X0(p
kq)/⟨wpk⟩ and X∗

0 (p
kq) with p, q two different

primes and k ≥ 1 and assume that g∗
pk

= 0. Then

(i) (Corollary 19 in text) Any non-trivial automorphism of X0(p
kq)/⟨wpk⟩ over Q different

from wq induces a non-trivial automorphism of X∗
0 (p

kq).

(ii) (Lemma 25 in text) Aut(X∗
0 (275))

∼= S3, where an element of order three is defined over
Q[

√
5], corresponding to a non Atkin-Lehner type automorphism of order 3.

All the codes to verify the computations in this paper can be found at https://github.
com/FrancescBars/Files-on-Automorphism-Quotient-Curves.

The paper is organized as follows: In §2, we discuss various techniques for computing the
field of definition of automorphisms of quotient modular curves. In §3, we discuss some initial
techniques to compute the automorphism group and prove Theorem 1(ii), Proposition 4(i).
In §3.1, we prove Theorem 1(i). In §4, we discuss how to compute the automorphism group
by reduction modulo primes of good reduction and prove Proposition 4(ii), Proposition 4(iii).
In §5, by studying the reduction at bad primes, we establish an exact sequence between the
automorphism groups of certain quotient modular curves and prove Theorem 1(iii). Finally, in
§6 we prove Theorem 2, and in §7 we prove Theorem 3.

2 On the field of definition of the automorphism group

In order to compute the automorphisms of a curve, we first need to decide what is the field
of definition of the automorphisms. The main objective of this section is to discuss how to
compute the field of definition of automorphisms of quotient modular curves.

As usual, for a smooth, proper curve X over a number field k we denote by Aut(X) the
automorphism group of X and by Autk(X) the automorphisms of X defined over k.

We first recall the following general results.

Lemma 5. [BaHa03, Lemma 2.1] Let X be a smooth proper and geometrically connected
algebraic curve of genus g ≥ 2 over a field k, and let J(X) be its Jacobian variety over k. Then
Autk(X) injects into Endk(J(X)).

Theorem 6. [Rib75, Corollary 1.4] Let A be a semistable abelian variety over the rationals.
Then every endomorphism of A is defined over the rationals.
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Now assume that N is a natural number and let B(N) denote the group of automorphisms
of X0(N) generated by the Atkin-Lehner involutions. For any subgroup WN ≤ B(N), consider
the quotient modular curve X0(N)/WN . Clearly, we have a natural inclusion

B(N)/WN ≤ AutQ(X0(N)/WN).

Furthermore, for a fixed number field K and w ∈ B(N)/WN , if w commutes with all elements
of AutK(X0(N)/WN), then we have an exact sequence:

1 → ⟨w⟩ → AutK(X0(N)/WN) → AutK(X0(N)/⟨WN , w⟩).

We now study the automorphism group of quotient modular curves inside its Jacobian.
Recall that the Jacobian J0(N) of X0(N) decomposes over Q as

J0(N) ∼Q
∏

f∈NewN /GQ

Af ·
∏
M |N
M<N

∏
f∈NewM /GQ

A
nf

f , (2.1)

where nf is the number of positive divisors of N
M

(for any field F , the notation ∼F denotes
“isogenous over F”).

Let JWN
0 (N) (resp., J∗

0 (N)) denote the Jacobian of the quotient curveXWN
0 (N) := X0(N)/WN

(resp., X∗
0 (N)). We have the Jacobian decomposition

JWN
0 (N) ∼Q

∏
f∈New

WN
N /GQ

Af ·
∏
M |N
M<N

∏
f∈New

WN
M /GQ

A
mf

f , (2.2)

where 0 < mf ≤ nf and f ∈ NewWN
N (resp., f ∈ NewWN

M ) means f ∈ NewN (resp., f ∈ NewM)
such that f |wd = f for all wd ∈ WN (resp., for all wd ∈ WN with d|M). Hence

End(JWN
0 (N))⊗Q =

∏
f∈New

WN
N /GQ

Kf ·
∏
M |N
M<N

∏
f∈New

WN
M /GQ

Mmf
(Kf ), (2.3)

where Kf denote the totally real number field associated to f .

Proposition 7. [BaHa03, Proposition 2.4] Let X be an algebraic curve over Q of genus ≥ 1.
If the Jacobian variety J(X) is semistable over Q, then every automorphism of X is defined
over Q. Furthermore, if End(Jac(X)) ⊗ Q is a product of totally real fields, then Aut(X) is
an elementary abelian 2-group i.e Aut(X) ∼= Z/2Z⊕ · · · ⊕ Z/2Z.

When N is square-free, as consequences of Proposition 7, we obtain the following results.

Theorem 8. ( [Rib75, Proposition 3.1]) For any square-free integer N , the Jacobian variety
J0(N) is a semistable over Q. Consequently, JWN

0 (N) is also semistable over Q and every
automorphism of X0(N)/WN is defined over Q for any subgroup WN ≤ B(N).

Proof. Since N square-free, J0(N) is semi-stable over Q by [Rib75, Proposition 3.1] (which
refers to [DeRa72, Theorem 6.9, DeRa-144]). Now the result follows from the fact that any
Q-isogeny factor of JWN

0 (N) appears in J0(N).

Corollary 9 ( [BaHa03]). Let N be a square-free integer and suppose the decomposition of
JWN
0 (N) over Q has no repeated factors (i.e., mf = 1 for all f appearing in the product (2.2)).

Then End(JWN
0 (N))⊗Q is a product of totally real fields, thus Aut(X0(N)/WN) is a 2-abelian

group. In particular if WN = B(N), then J
B(N)
0 (N) has no repeated factors, thus Aut(X∗

0 (N))
is a 2-abelian group.

4



Proof. The endomorphism ring (tensored by Q) for each Q-isogeny factor Af of J0(N) (in
particular for JWN

0 (N)) is a totally real number field (cf. [Rib80, (3.9), Theorem 5.1] or [MuPa08,

Corollary 4.2]). Now by Proposition 7 we conclude the first statement. Finally, J
B(N)
0 (N) has

no repeated Q-isogeny factors by [BaHa03, before Corollary 2.6] (see [Rib80]).

Therefore when N is square-free, every automorphism of X0(N)/WN is defined over Q, i.e.,
AutQ(X0(N)/WN) = Aut(X0(N)/WN).

On the other hand, for any arbitrary positive integer N there is an injective mapping

Aut(X0(N)/WN) ↪→ EndQ(J
WN
0 (N))⊗Q.

Moreover, we know the decomposition of JWN
0 (N) over Q. The following proposition gives us

a criterion to check when the automorphisms of X0(N)/WN are defined over Q.

Proposition 10. ( [BaGo20, Proposition 2.4, Remark 2.5]) Let A be a modular abelian variety
defined over Q such that A ∼Q

∏m
i=1A

ni
fi

for some fi ∈ NewNi
, where Afi are pairwise non-

isogenous over Q. All endomorphisms of A are defined over Q if and only if, for every non
trivial quadratic Dirichlet character χ, the newform fi⊗χ is different from any Galois conjugate
of fj for all i and j.

Moreover, for any quadratic Dirichlet character χ attached to the quadratic number field
F = Q(

√
D), the abelian varieties Af and Af ⊗ χ are isogenous over F .

Remark 11. Take Af with f ∈ NewM the Shimura abelian variety defined over Q associated
to a modular form f with dim(Af ) > 1. A lot of authors studied the Q-decomposition of Af

as isogeny factors, see for example [Pyl04] and references therein. Recall that if f ̸= f ⊗ χ
for all χ quadratic Dirichlet character (i.e. f has no CM), then Af , in order to have a one
dimensional quotient, need to satisfy that ap(f)

2 ∈ Z for any prime p, where ap(f) denotes the
p-th term of the q-expansion of the modular form f , see [Pyl04].

The following result will be very useful for computing the field of definition of automorphisms
of a quotient modular curve.

Corollary 12. Write JWN
0 (N) ∼Q

∏m
i=1A

nfi
fi

, and assume that each fi has no inner twist (i.e
fi ⊗ χ ̸= f ′

i for any Dirichlet character χ and Galois conjugate f ′
i of fi). List all the quadratic

twists involving the different fi’s by fi⊗χi,j = fj (for i ̸= j) with quadratic field Ki,j associated
to χi,j, and denote by K the composition of all Ki,j. Then any u ∈ Aut(X0(N)/WN) is defined
over K, thus Aut(X0(N)/WN) = AutK(X0(N)/WN).

Proof. Consider u ∈ Aut(X0(N)/WN), then naturally u can be considered as an element of
End(JWN

0 (N)). It is well-known that if fi does not have any inner twists, then the abelian
variety Afi is simple over Q (if fi has no inner twists, then the twisting group of fi (as defined
in [MuPa08, Page 19] or [Rib80, Page 48]) is trivial, consequently, EndQ̄(Afi) is a field and
this forces that Afi is simple over Q̄ (cf. [MuPa08, Corollary 4.2 and the proof]).) Thus by
Proposition 10, we have EndQ(Afi) = EndQ(Afi). If Afi and Afj are isogenous over Q but not
over Q, then there exists a Dirichlet character χ such that Afi = Afj ⊗χ [BGGP05, Proposition
4.2]. In particular, Afi ∼Ki,j

Afj (i.e., Afi and Afj are isogenous over Ki,j). Therefore the
automorphism u should keep Afi invariant over K. Now the result follows from the fact that
the isogeny decomposition of JWN

0 (N) remains the same for any extension of K in Q.
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3 Insights on involutions of X0(N)/WN

In this section we discuss various techniques to compute the automorphisms of quotient modular
curves. Consider the quotient modular curve X0(N)/WN of genus gWN

N . Clearly, B(N)/WN is
an abelian subgroup of AutQ(X0(N)/WN) given only by involutions. Moreover, such involutions
are modular in the sense that they are obtained from the normalizer of ⟨Γ0(N),WN⟩ in PSL2(R).

In the case when gWN
N ≥ 3 and X0(N)/WN is not hyperelliptic, by Petri’s theorem we can

obtain the canonical model of this curve given by an explicit system of quadratic or cubic

equations in Pg
WN
N −1 which is easily computable. If there are no repeated factors (over Q) in

JWN
0 (N), then any possible involution (over Q) can be computed as mentioned in [BaGo19, Page

2947]. Such procedure will cover all automorphism groups when N is square-free.
Recall that for a non-hyperelliptic curve X defined over C with genus g > 2, the image of

the canonical map X → Pg−1 is the common zero locus of a set of homogeneous polynomials
of degree 2 and 3, when g > 3, or of a homogenous polynomial of degree 4, if g = 3.

More precisely, assume that X is defined over Q and choose a basis ω1, · · · , ωg of Ω1
X/Q.

For any integer i ≥ 2, let us denote by Li the Q-vector space of homogeneous polynomials
Q ∈ Q[x1, · · · , xg] of degree i that satisfy Q(ω1, · · · , ωg) = 0. Of course, dimLi ≤ dimLi+1

because one has xj ·Q ∈ Li+1 for all Q ∈ Li and for 1 ≤ j ≤ g.
If g = 3, then dimL2 = dimL3 = 0 and dimL4 = 1. Any generator of L4 provides an

equation for X. On the other hand, for g > 3, dimL2 = (g − 2)(g − 3)/2 > 0 and a basis of
L2

⊕
L3 provides a system of equations for X. When X is neither trigonal nor a smooth plane

quintic (g = 6), it suffices to take a basis of L2.

As before, assume that JWN
0 (N)

Q∼ Ak1
h1
×· · ·×Akn

hn
for some normalized eigenforms h1, · · · , hk ∈

SWN
2 (N). These abelian varieties Ahi

are simple and pairwise nonisogenous over Q and, any
automorphism u of X0(N)/WN defined over Q leaves each Aki

hi
stable. In the case when N is

square-free and ki = 1 for all i, any non trivial automorphism u of X0(N)/WN is an involution
defined over Q. Thus u acts on Ω1

Ahi
as the product by −1 or the identity.

Choose a basis {ω1, · · · , ωg
WN
N

} of Ω1
(X0(N)/WN )/Q obtained as the ordered union of bases of

all Ω1

A
ki
hi

/Q
. Assume that N is square-free, and ki = 1 for all i. Under these assumptions all

non-trivial automorphisms of X0(N)/WN are involutions defined over Q. An involution u of
X0(N)/WN induces a linear map u∗ : Ω1

(X0(N)/WN )/Q → Ω1
(X0(N)/WN )/Q sending (ω1, · · · , ωg

WN
N

)

to (ε1ω1, · · · , εgWN
N

ω
g
WN
N

) with εi = ±1 for all i ≤ gWN
N and satisfy

Q(ε1x1, · · · , εgWN
N

x
g
WN
N

) ∈ Li for all Q ∈ Li and for all i ≥ 2 . (3.1)

The genus of the quotient curve X0(N)/⟨WN , u⟩ is the cardinality of the set I = {i : εi = 1}
and {ωj}j∈I is a basis of the pullback of the regular differentials of the quotient curve. For any
linear map u∗ as above satisfying condition (3.1), only one of the two maps ±u∗ comes from an
involution of the curve, because we are assuming that X is non-hyperelliptic. Therefore, we can
determine the Automorphism group of non-hyperelliptic X0(N)/WN for N square-free, under
the assumption that its Jacobian decomposition overQ has no repeated factors. We present here
two such examples. The Mathematica codes to verify the following computations can be found
in github.com/FrancescBars/Mathematica-files-on-Automorphism-Quotient-Curves.

For simplicity of notations, instead of writting a Q-isogeny Jacobian decomposition of
JWN
0 (N) by

∏
Ani

fi
, we will write it by

∑
(dim(Afi)di,fi)

ni , where di denotes the notation of
the modular form fi as in [LMFDB] when dim(Afi) ≥ 2, and di denotes the Cremona level
(cf. [Cre]) of the elliptic curve corresponding to the modular form fi when dim(Afi) = 1.
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Example 13. Consider the genus 5 quotient modular curve C := X0(210)/⟨w2, w3, w5⟩. Since
N = 210 is square-free, all automorphisms of C are defined over Q. The Jacobian decomposition
of C over Q is given by

1E14a,f1 + 1E35a,f2 + 2105.2.a.b,f3 + 1E210d,f4

and any automorphism of C acts as an automorphism on each factor as ±1. Since C is non-
hyperelliptic, we consider the following canonical model of C in (x : y : z : t : s) ∈ P4:

−1260s2 − 1575t2 − 1815tx+ 480x2 + 1059ty + 15xy − 1179tz + 900xz − 135yz = 0,

−900s2 − 9225t2 − 3225tx+ 2685ty + 1185xy + 480y2 + 315tz + 540xz − 1305yz = 0,

−600s2 + 2850t2 − 1150tx+ 790ty − 210xy − 2790tz + 360xz − 30yz + 480z2 = 0.

From the canonical model we can easily conclude that the only non-trivial automorphism of C
is given by w7 which acts as x ↔ −x, y ↔ −y, (z, t) ↔ (−z,−t) and s ↔ s, implying that
Aut(C) = {id, w7}.

Example 14. Consider the genus 10 quotient modular curve C := X0(210)/⟨w6, w10, w15⟩.
Since N = 210 is square-free, all automorphisms of C are defined over Q. The Jacobian
decomposition of C over Q is given by

1E14a,f1 + 1E21a,f2 + 1E35a,f3 + 235.2.a.b,f4 + 1E105a,f5 + 2105.2.a.b,f6 + 1E210d,f7 + 1E210e,f8

and any automorphism of C acts as an automorphism on each factor as ±1. Since C is non-
hyperelliptic, by constructing a canonical model of C in (x1 : . . . : x10) ∈ P9 it can be easily
verified that all automorphism of C corresponds to B(210)/⟨w6, w10⟩ ∼= Z/2Z× Z/2Z.

For the general case when N is not necessarily square-free (recall here that the automor-
phisms may not be defined over Q), if w ∈ Aut(X0(N)/WN) commutes with B(N)/WN then
it induces an automorphism of X∗

0 (N).

Lemma 15. Let N be a positive integer and let WN be a subgroup of B(N). Assume that
the Jacobian decomposition of X0(N)/WN over Q has no repeated factors. Then any w ∈
AutQ(X0(N)/WN) \ (B(N)/WN) induces a non-trivial automorphism of X∗

0 (N) defined over
Q.

Proof. Write JWN
0 (N) ∼Q

∏m
i=1Afi . Note that AutQ(X0(N)/WN) ⊂

∏m
i=1EndQ(Afi). Since

the isomorphisms of each factor EndQ(Afi)⊗Q correspond to a totally real fieldKi and the only
finite order elements in Ki are {±1}, we obtain that AutQ(X0(N)/WN) is an abelian 2-group.
Therefore any w ∈ AutQ(X0(N)/WN)\ (B(N)/WN) commutes with all elements of B(N)/WN .
Consequently, w induces a non-trivial involution of X∗

0 (N).

When N is square-free, by the work of the first author and González, we know the structure
of the automorphism group of X∗

0 (N). More precisely, we have

Theorem 16. [BaGo21, Theorem 1,Theorem 2] Let N be a square-free integer such that the
curve X∗

0 (N) has genus > 2 and it is not bielliptic1.
Then, the group Aut(X∗

0 (N)) is non-trivial if and only if N = 366, 645. In both cases, the
order of this group is 2 and the genus of the quotient curve by the non trivial involution is 2.

As a consequence of Lemma 15 and Theorem 16, we obtain the following result.

1i.e. N /∈ {178, 183, 246, 249, 258, 290, 303, 318, 370, 430, 455, 510}.
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Corollary 17. Let N be a square-free positive integer and p be a prime such that (p,N) = 1
and g∗N = 0 2. Consider the concrete subgroup W := ⟨wd | d||N⟩ ⊂ B(Np), in particular,
⟨W , wp⟩ = B(Np). If gWN ≥ 2, then we have an exact sequence

1 → ⟨wp⟩ → Aut(X0(Np)/W) → Aut(X∗
0 (Np)).

Furthermore, if g∗Np > 2, then Aut(X0(Np)/W) = {id, wp} for

Np /∈ {178, 183, 246, 249, 258, 290, 303, 318, 366, 370, 430, 455, 510, 645}.

Proof. Since N is square-free, all the automorphisms of X0(N)/W and X∗
0 (N) are defined over

Q. Consider the Jacobian decomposition of X0(N)/W over Q:

JW
0 (Np) ∼Q

k∏
i=1

Ani
fi
, (3.2)

where fi is a weight 2 newform of level li with li|Np and ni ≥ 1 is an integer. If possible, let
p ∤ li for some i and let fi be a newform of level li appearing in the Jacobian decomposition
(3.2). Let li =

∏ki
j=1 pj be the prime factorization of li. By definition of W , we have wpj ∈ W

for j = 1, . . . , k. Since fi appears in the Jacobian decomposition of JW
0 (Np), all wpj ,li ’s (here

wpj ,li denotes the pj-th Atkin-Lehner operator acting on level li and wpj denotes the pj-th
Atkin-Lehner operator acting on level Np) acts as +1 on fi (the ±1 action of the Atkin-Lehner
involution wpj ,li acting on a modular form fi of level li remains unchanged for all the liftings
of fi at level Mli with (M, li) = 1, i.e. wpj ,Mli acts exactly in the same way as wpj ,li for each
lift of fi at level Mli [AtLe70]). By [BaGo20, Lemma 2.1,Proposition 2.2], fi can be lifted to
a weight 2 cuspform for ⟨Γ0(N), B(N)⟩ (since fi has level li and N/li is a product of distinct
primes coprime with li, we can lift fi to an old form in Γ0(N) such that wℓ̃ acts as +1 for each
prime ℓ̃ with ℓ̃|N/li, and wℓ at level N acts in the same way as wℓ,li at level li for each prime ℓ
dividing lj) . This contradicts the assumption that g∗N = 0.

Hence p|li for all i. Consider a cuspform fi of level li = pl′ appearing in the Jacobian
decomposition (3.2). Let l′ =

∏s
j=1 qj be the prime decomposition of l′. Since wqj ∈ W ,

each Atkin-Lehner involution wqj ,li acts as +1 on fi (the argument is similar as before ).
By [BaGo20, Lemma 2.1, Proposition 2.2], fi can be uniquely lifted to a weight 2 cuspform for
⟨Γ0(pN),W⟩ (since fi has level li = pl′ and N/li is a product of distinct primes coprime with li,
we can lift fi to an old form in Γ0(Np) such that wℓ acts as +1 for each prime ℓ with ℓ|N/li and
wqj acts as +1 for each prime qj dividing l

′, thus such lift becomes a cuspform for ⟨Γ0(pN),W⟩,
furthermore such lift is unique up to multiple by constants when N is square-free (cf. loc.cit.)).
Therefore ni = 1 for all i, i.e., the decomposition of JW

0 (Np) over Q has no repeated factors.
By Corollary 9, Aut(X0(N)/W) is an abelian group. Now the first part follows from Lemma
15.

The second part follows from the first part and Theorem 16.

We now discuss some criteria to compute the automorphism group of X0(N)/WN when N
is not necessarily square-free.

Lemma 18. Let K be a number field, N be a positive integer and WN be a subgroup of B(N).
Assume that each wd ∈ B(N)/WN acts as ±1 on each repeated factor appearing in the Jacobian
decomposition of X0(N)/WN over K (where ± depends only on d and the repeated factor). Then
any w ∈ AutK(X0(N)/WN) \ (B(N)/WN) induces a non-trivial automorphism of X∗

0 (N) over
K.

2Recall that g∗N = 0 for N in the list: 2, 3, 5, 6,7, 10,11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34,
35, 38, 39, 41, 42, 46, 47, 51, 55, 59, 62, 66, 69, 70, 71, 78, 87, 94, 95, 105, 110, 119.
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Proof. Take w ∈ AutK(X0(N)/WN), then naturally w can be considered as an element of
EndK(J

WN
0 (N)). Let JWN

0 (N) ∼K

∏m
i=1A

mi
fi

be the decomposition of the Jacobian over K,
where the factors Afi ’s are pairwise non-isogenous over K. Then each Ami

fi
remains stable

under the action of w. Since wd acts as ±1 on each repeated factor, we have that in each
factor w commutes with wd. Therefore w ◦wd = wd ◦w in the group AutK(X0(N)/WN). Since
X0(N)/WN → X∗

0 (N) is a Galois cover given by wd’s, we conclude that w induces a non-trivial
automorphism in X∗

0 (N).

Corollary 19. Let p, q be two distinct primes and k ≥ 2 be an integer such that the genus
of X∗

0 (p
k) is zero 3. Then any non-trivial w ∈ AutQ(X0(p

kq)/⟨wpk⟩) with w ̸= wq induces a
non-trivial automorphism of X∗

0 (p
kq) over Q.

Moreover, assume that for any two non-Q-isogeny factors Afi and Afj of the Jacobian of

X0(p
kq)/⟨wpk⟩ which are isogenous over Q, the involution wq acts as +1 on both factors or

exactly as -1 on both factors. Then, any non-trivial w ∈ Aut(X0(p
kq)/⟨wpk⟩) with w ̸= wq

induces a non-trivial automorphism of X∗
0 (p

kq).

Proof. We show that for any number field K, the Atkin-Lehner involution wq acts as ±1 on
the repeated factors appearing in the Jacobian decomposition of X0(p

kq)/⟨wpk⟩ over K. Then
the result follows from Lemma 18.

First consider the Jacobian decomposition over Q (we take K = Q).
Assume that a factor Afi appears in such decomposition corresponding to a newform fi of

level l with l|pkq. If q ∤ l, then by [BaGo20, Lemma 2.1,Prop.2.2] we can lift fi to level pk which
is fixed by wpk , this contradicts the assumption that g∗

pk
= 0. Therefore q|l, and write l = qps

for some non-negative integer s.
The newform fi has level qps. Let wps,qps(fi) = ϵ · fi (recall that wps,qps denotes the ps-th

Atkin-Lehner operator on level qps, and ϵ = 1 when s = 0). Let Sfi be the vector subspace of
S2(Γ0(p

kq)) generated by the k−s+1 linearly independent eigenforms {f(z), f(pz), . . . , f(pk−sz)}.
Then using the similar arguments as in the proof of [BaGo20, Proposition 2.2], we get that the
dimension nfi of the vector space S2(Γ0(p

kq))⟨w
k
p⟩ ∩ Sfi is

nfi =

{
k−s+1

2
if k − s is odd,

k−s+1−ϵ
2

if k − s is even.
(3.3)

In particular, this dimension encodes the number of repeated factors for Afi at level p
kq that

appears in the Jacobian decomposition of X0(p
kq)/⟨wpk⟩. Also, note that if wq,qps(fi) = δfifi

(recall that δfi ∈ {±1}), then for any g ∈ S2(Γ0(p
kq))⟨w

k
p⟩ ∩ Sfi , we have wq(g) = δfig (i.e.,

the action of wq on every element of S2(Γ0(p
kq))⟨w

k
p⟩ ∩ Sfi is same as the action of wq,qps on

fi). Consequently, wq acts as ±1 on the repeated factor corresponding to Afi appearing in the
Jacobian decomposition of X0(p

kq)/⟨wpk⟩. This concludes the proof for K = Q.

Consider now that Afi and Afj non Q-isogeny factors that are isogenous over Q. By
[BGGP05, Proposition.4.2] they are isogenous in a quadratic twist in a quadratic number field
K by its Dirichlet character fi ⊗ χ ∼= fj, but from the above argument, one has level qpk1 and
the other qpk2 and because the action of wq remains unchanged by hypothesis, we obtain the
result arguing as in the rational field case.

We give an example where we apply Corollary 19 to compute the automorphism group.

Example 20. We have Aut(X∗
0 (245))

∼= Aut(X∗
0 (147))

∼= Z/2Z and all the automorphisms
are defined over Q. Moreover, for p ∈ {3, 5}, AutQ(X0(49 · p)/⟨w49⟩) ∼= ⟨wp⟩, and Aut(X0(49 ·
p)/⟨w49⟩) = AutQ[

√
−7](X0(49 · p)/⟨w49⟩).

3Recall g∗pk = 0 with k ≥ 2 iff pk ∈ {4, 8, 9, 16, 25, 27, 32, 49}
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Proof. First observe thatX∗
0 (7

2 ·3) is a hyperelliptic curve of genus 2 with the hyperelliptic invo-
lution defined overQ. The Jacobian decomposition is given by J∗

0 (147) ∼Q 2147.2.a.d. The dimen-
sion two factor does not break into two elliptic curves in the algebraic closure (cf. [Pyl04]) and
the corresponding modular form does not have CM. Thus by Corollary 12, all automorphisms
of X∗

0 (7
2 · 3) are defined over Q, and by Magma we see that the only non-trivial automorphism

over Q is the hyperelliptic involution. Hence Aut(X∗
0 (7

2 · 3)) ∼= Z/2Z. On the other hand, the
curve X∗

0 (49 · 5) is bielliptic with bielliptic involution defined over Q (cf. [BaGo20, Propositiom
5.1]). The Jacobian decompositions over Q of the curve is given by

J∗
0 (245) ∼Q 1E35a,f1 + 2245.2.a.e.

By a similar argument as previous, we get that all automorphisms of X∗
0 (245) are defined

over Q and one can easily check that (by constructing an explicit model using Petri’s theorem
as discussed earlier) the automorphism group is Z/2Z, given by the bielliptic involution(cf,
[BaGo21, Lemma 2]).

For the quotient curves X0(147)/⟨w49⟩ and X0(245)/⟨w49⟩, the Q-decompositions of the
Jacobian are given by:

J
⟨w49⟩
0 (147) ∼Q 1E21a,g1 + 1E147b,g2 + 2147.2.a.d,g3=g + 2147.2.a.e,g4

J
⟨w49⟩
0 (245) ∼Q 1E35a,f1 + 235.2.a.b,f2 + 2245.2.a.e,f3=h + 2245.2.a.f,f4 + 2245.2.a.h,f5 .

The cusp forms appearing in the above Jacobian decomposition have no inner twist, but h ⊗
χQ[

√
−7] = f4 and g⊗ χQ[

√
−7] = g4. Therefore, all the automorphisms of such quotient modular

curves are defined over Q[
√
−7].

Observe that the operator w3 acts on the Q-decomposition of J
⟨w49⟩
0 (147) as follows: on the

dimension 2 factor corresponding to the modular form g it acts as +1 and on the dimension
two factor corresponding to the modular form g4 it acts as −1. Thus the automorphisms
of X0(147)/⟨w49⟩ defined over Q[

√
−7] are not necessarily coming from an automorphism of

X∗
0 (147). A similar argument holds in the case 245.
Since g∗49 = 0, by Corollary 19, any (non-trivial) non Atkin-Lehner type automorphism

of X0(245)/⟨w49⟩ over Q maps to the bielliptic involution of X∗
0 (245). Since the Jacobian

decomposition of X0(245)/⟨w49⟩ over Q has no repeated factors, every element of the group
AutQ(X0(245)/⟨w49⟩) is an involution. We need to check whether the bielliptic involution of
X∗

0 (245) lifts to an automorphism of X0(245)/⟨w49⟩. If such lift exists, then it acts as +1
on E35a and -1 on 2245.2.a.e,h (or vice-versa). Now using the canonical model it is easy to
check that no such lift is possible (the Mathematica files for verifying the computations can be
found in https://github.com/FrancescBars/Files-on-Automorphism-Quotient-Curves).
Therefore, AutQ(X0(245)/⟨w49⟩) = {id, w5}. A similar argument holds for N = 147.

3.1 N odd square-free and no repeated factors in JWN
0 (N)

In this section, we present a criterion to compute the automorphism group of quotient modular
curves of odd level.

Proposition 21. Let N be a square-free positive integer andW ≤ B(N) such that X0(N)/W is
non-hyperelliptic with g := g(X0(N)/W ) ≥ 3 and that the Jacobian decomposition of X0(N)/W
over Q has no repeated factors. If u is any non-trivial involution of X0(N)/W , then u(∞) ̸= ∞.

In particular, if u /∈ B(N)/W , then u(∞) is not a cusp.

10
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Proof. By Theorem 8, u is defined over Q and the eigenvalues of u on S2(⟨Γ0(N),W ⟩) are
±1. If all the eigenvalues are +1, then u = id on X0(N)/W . On the other hand, if all the
eigenvalues are −1, then X0(N)/W is hyperelliptic and u is the hyperelliptic involution.

Thus +1 and−1 both are eigenvalues of u. There are differentials ω1, ω2 ∈ H0(X0(N)/W,Ω1)
such that u∗ω1 = ω1 and u

∗ω2 = −ω2, which are normalized eigendifferentials under the action
of the Hecke algebra. The q-expansion at ∞ of ωi is of the form

ωi =
( ∞∑

j=1

ai,jq
j
)dq
q
,

where ai,1 = 1 for i ∈ {1, 2}.
This implies that ω = ω1+ω2 does not vanish at ∞ but u∗ω = ω1−ω2 vanishes at ∞. This

shows that u(∞) ̸= ∞. This proves the first part.
Since N is square-free, the Atkin-Lehner involutions act transitively on the cusps. If u(∞)

is a cusp, then there exists w ∈ B(N)/W such that u(∞) = w(∞), i.e., wu(∞) = ∞. By the
first part, we conclude that u ∈ B(N)/W . The result follows.

Proposition 22. Assume that N is an odd square-free positive integer andW ≤ B(N) such that
X0(N)/W is non-hyperelliptic with g := g(X0(N)/W ) ≥ 3 and that the Jacobian decomposition
of X0(N)/W over Q has no repeated factors. If u /∈ B(N)/W is a non-trivial involution of
X0(N)/W , then the Q-gonality of X0(N)/W is ≤ 6.

Proof. Since u is defined over Q, by Eichler-Shimura congruence we have

uTl = Tlu on Jac(X0(N)/W ), for any prime l ∤ N. (3.4)

In particular, we have
uT2 = T2u on Jac(X0(N)/W ). (3.5)

From Proposition 21, we know that Q = u(∞) is not a cusp. Let P ∈ Y0(N) such that
πW (P ) = u(∞), where πW is the natural projection mapping πW : X0(N) → X0(N)/W .

Since P is not a cusp, there exists an elliptic curve E defined over Q̄ and an N -cyclic
subgroup CN of E(Q̄) such that P = (E,CN). If wd ∈ W , then

wd(P ) = (E/Cd, (E[d] + CN)/Cd),

where Cd denotes the d-th cyclic subgroup of CN , i.e., Cd = CN ∩ E[d].
Let S ∈ X0(N)/W be a non cuspidal point. Consider the divisor

DS := (uT2 − T2u)(∞− S).

From (3.5) we see that DS is linearly equivalent to zero. If DS is identically zero then

uT2(∞) + T2u(S) = uT2(S) + T2u(∞). (3.6)

Since all the points in the support of T2(∞) are cusps and all the points in the support of T2(S)
are noncuspidal, applying u to both sides of (3.6) we see that there is no cancellation between
the points in the support of uT2(∞) and uT2(S). Therefore (3.6) implies uT2(∞) = T2u(∞),
i.e., 3(Q) = T2(Q). Recall that

T2(Q) =
3∑

i=1

πW ((E/Gi, (CN +Gi)/Gi)),
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where Gi, 1 ≤ i ≤ 3, are the 2-cyclic subgroups of E[2].
If 3(Q) = T2(Q), then each elliptic curve E/Gi is isomorphic to E/Cd for some d|N such that

wd ∈ W . Therefore, E has CM by a quadratic order O of discriminant D with odd conductor.
Moreover, this property holds for all elliptic curves E/Cd with d|N such that wd ∈ W and also
for all elliptic curves E/Gi.

From the proof of [BaGo21, Proposition 2], we know that for every elliptic curve E with CM
by the order of discriminant D with odd conductor, there is at least a 2-subgroup G of E[2] such
that the discriminant of the order End(E/G) has even conductor. Therefore T2(Q) ̸= 3(Q),
i.e., DS is not identically zero.

Since u(∞) is not a cusp, taking S = u(∞), we see that DS is a divisor of a non-constant
function which is difference of effective rational degree 6 divisors. Thus the Q-gonality of
X0(N)/W is at most 6.

As an immediate consequence of Proposition 22 and Castelnuovo-Severi’s inequality, we
obtain the following result which will be helpful for computing the automorphism group of
quotient modular curves of higher genus.

Corollary 23. Assume that N is an odd square-free positive integer and W ≤ B(N) such that
Gon(X∗

0 (N)) > 3 (where Gon(X∗
0 (N)) denotes the gonality of X∗

0 (N)) and that the Jacobian
decomposition of X0(N)/W over Q has no repeated factors. Let g∗ (resp., g) denote the genus of
X∗

0 (N) (resp., X0(N)/W ) and d := |B(N)/W |. If g > d·g∗+(d−1)·5, then Aut(X0(N)/W ) =
B(N)/W .

Proof. By Corollary 9, we have Aut(X0(N)/W ) ∼= Z/2Z × · · · × Z/2Z. Recall that there is
a degree d mapping f1 : X0(N)/W → X∗

0 (N) defined over Q. By Proposition 22 (note that
the assumption Gon(X∗

0 (N)) > 3 implies that X0(N)/W is non-hyperelliptic and g ≥ 3), if
u /∈ B(N)/W is any non trivial involution of X0(N)/W , then the Q-gonality of X0(N)/W is
≤ 6. Let f2 : X0(N)/W → P1 be a mapping of degree d′ ≤ 6. If possible let f1 and f2 factor
through a common map f3 : X0(N)/W → Y of degree > 1. Since f2 factors through f3, we
have Gon(Y ) ≤ 3. On the other hand since f1 factors through f3, we have 3 < Gon(X∗

0 (N)) ≤
Gon(Y ), which is a contradiction (the values of N such that Gon(X∗

0 (N)) ≤ 3 can be found
in [HaHa96] and [HaSh00]). Thus the mappings f1, f2 do not factor through a common map.
By Castelnuovo-Severi’s inequality we must have

g ≤ d · g(X∗
0 (645)) + (d− 1) · 5,

which is a contradiction. Thus Aut(X0(N)/W ) = B(N)/W .

We now discuss an application of Corollary 23.

Corollary 24. Aut(X0(645)/⟨w3, w5⟩) = ⟨w43⟩.

Proof. Note that g(X0(645)/⟨w3, w5⟩) = 21, g(X∗
0 (645)) = 5, Gon(X∗

0 (645)) > 3 (cf. [HaSh00,
Theorem 1]) and the Jacobian decomposition of X0(645)/⟨w3, w5⟩ over Q has no repeated
factors. Since g(X0(645)/⟨w3, w5⟩) > 2g(X∗

0 (645)) + 5, by Corollary 23 (with d = 2) we
conclude that Aut(X0(645)/⟨w3, w5⟩) = B(645)/⟨w3, w5⟩ = ⟨w43⟩.

4 A computation bound for |Aut(X0(N)/WN)|
In this section we discuss how to compute the automorphism group by obtaining an explicitly
computable upper bound on it. Throughout the section we always assume that g(X0(N)/WN) ≥
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2. Recall that B(N)/WN ≤ Aut(X0(N)/WN), moreover for p ∤ N we have an injective map

ι : Aut(X0(N)/WN) ↪→ Aut(X0(N)/WN),

where X0(N)/WN denote the reduction mod p of the curve X0(N)/WN . More concretely, if we
consider all automorphisms of X0(N)/WN defined over a number field K, then for each prime
p of K with p ∩ Z = pZ (recall that p ∤ N), we have an injective map

ιK : AutK(X0(N)/WN) ↪→ AutOK/p(X0(N)/WN).

The Magma code “X0NQuotient(N,[WN])” gives a model for the quotient curve X0(N)/WN

over Q (here “WN” should be replaced by the integers di’s such that wdi ’s generate WN). In
many cases this model is a good model to study the mod p reduction for some prime p ∤ N .
However, in some cases this built-in model is not good to study the mod p reduction for some
p ∤ N , in those cases, using Magma we construct a good model of X0(N)/WN . Then the Magma
code

“#Automorphisms(ChangeRing(X0NQuotient(N,[WN]),GF(q)))”

computes the number of automorphisms ofX0(N)/WN modulo p over the finite fieldGF (q = pz)
for some prime p ∤ N and z ∈ N. Thus we obtain an upper bound for |Aut(X0(N)/WN)| and if it
coincides with |B(N)/WN | then we obtain Aut(X0(N)/WN) = B(N)/WN . By abuse notations
we denote AutFpz

(X0(N)/WN) by AutFpz
(X0(N)/WN).

Following the notations of §3, suppose that the Jacobian decomposition of X0(p
kq)/⟨wpk⟩

is of the form
∑

(dim(Afi)di,fi)
ni . Since we are interested in the action of wq on the mod-

ular forms appearing the Jacobian decomposition, we write
∑

(dim(Afi)di,fi,ti)
ni instead of∑

(dim(Afi)di,fi)
ni , where ti denotes the action of wq on the modular form fi.

We now discuss an interesting example.

Lemma 25. We have AutQ(X
∗
0 (275))

∼= Z/2Z, Aut(X∗
0 (275)) = AutQ[

√
5](X

∗
0 (275))

∼= S3,
AutQ(X0(275)/w25) = {id, w11}. Moreover, there is an exact sequence:

1 → {id, w11} → Aut(X0(275)/w25) = AutQ[
√
5](X0(275)/w25) → Aut(X∗

0 (275)).

Proof. The Jacobian decomposition of X0(275)/⟨w25⟩ over Q is given by

J
(25)
0 (275) ∼Q (1E11a,g1,−1)

2 + 1E55a,g2,1 + 255.2.a.b,g3,−1 + 1E275a,g4,1+

1E275b,g5,−1 + 2275.2.a.e,g6,1 + 2275.2.a.f,g7,−1 + 2275.2.a.h,g8,−1.

The cusp forms gi’s have only the inner twist g8 ⊗ χQ[
√
5] = g8, and the quadratic twists

correspond to g2 ⊗ χQ[
√
5] = g4, g1 ⊗ χQ[

√
5] = g5 and g6 ⊗ χQ[

√
5] = g7. Therefore the automor-

phisms of X∗
0 (275) and the automorphisms of X0(275)/w25 are defined over Q[

√
5]. Moreover,

any non-trivial automorphism of X0(275)/w25 which is not Atkin-Lehner type, induces a non-
trivial automorphism of X∗

0 (275) (cf. Corollary 19). By [BaGo20], we know that X∗
0 (275)

is bielliptic over Q and using Magma we see that the automorphism groups of X∗
0 (275) and

X0(275)/w25 over F2 have exactly two elements. Thus AutQ(X0(275)/w25) = {id, w11} and
AutQ(X

∗
0 (275)) = {id, biel} where biel is the bielliptic involution of X∗

0 (275) (cf. [BaGo20, Proof
of Proposition 6.1]). Again, using Magma we see that the automorphism groups over Q[

√
5]

of the curves X0(275)/⟨w25⟩ and X∗
0 (275) each have at most 6 elements. We prove that we do

have an order three automorphism over Q[
√
5] for X∗

0 (275) and the result follows.
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The Jacobian decomposition of X∗
0 (275) over Q[

√
5] is given by J∗

0 (275) ∼Q[
√
5] 1

2
E55a,g2

+
2275.2.a.e,g6 and a canonical model over Q for X∗

0 (275) (following notations and techniques also
introduced in [BaGo20] or [BaGo21]) is given by

−24t2 + 3x2 + 5y2 + 6tz − 2z2 = 0,

135tx2 + 384t2y − 192x2y + 225ty2 + 102t2z + 12x2z − 96tyz + 20y2z + 6tz2 + 32yz2 = 0.

Now over Q[
√
5], a non-trivial automorphism u acts on the decomposition 12g2 + 2g6 (up to

multiplication by −1) as follows: on 12g2 it acts by a 2 × 2 matrix and on 2g6 it acts as +1.

We take A = −

(
1
2

−
√
5
2

3
2
√
5

1
2

)
, A acting on (x, y) corresponding to 155a,g2 + 1275a,g4 and (z, t)

invariant corresponding to 2g6 . Such order three automorphism does not commute with the
bielliptic involution x↔ −x (keeping y, z, t invariant), thus the automorphism group ofX∗

0 (275)
is isomorphic to the symmetric group S3.

Now apply Corollary 19 to conclude the result (recall that w11 acts as +1 on both g2 and
g4).

Remark 26. For the automorphism of X∗
0 (25 · p) or X0(25 · p)/w25 with p = 7 , p = 13 and

p = 17 we make the following comments:

� N = 175: The Jacobian decomposition of X0(25 · 7)/w25 over Q is given by

J
⟨w25⟩
0 (175) ∼Q 1E35a,f1,(w7=)−1 + 235.2.a.b,f2,1 + 1E175b,f3,1 + 2175.2.a.e,f4,−1 + 2175.2.a.f,f5,−1

where each fi has no inner twists, and the only quadratic twist between them correspond to
f1⊗χQ[

√
5] = f3 and f2⊗χQ[

√
5] = f5. Therefore, all automorphisms of X∗

0 (175) are defined

over Q (the factors of J
⟨w25⟩
0 (175) that remains in J∗

0 (175) are the ones with w7 acting as
+1) and all automorphisms of X0(175)/⟨w25⟩ are defined over Q[

√
5] (cf. Corollary 12).

Now using Magma we see that AutF9(X
∗
0 (175)) is trivial, therefore Aut(X

∗
0 (175)) = {id}.

Because the action of w7 is different in the repeated factors of the isogeny decomposition
over Q(

√
5) of the curve X0(175)/⟨w25⟩, if such quotient curve has an automorphism,

then it may not descend to an automorphism of X∗
0 (175). Thus we need to deal directly

with the quotient curve X0(175)/⟨w25⟩. Using Magma we get |AutF3(X0(175)/⟨w25⟩)| = 2,
thus AutQ(X0(175)/⟨w25⟩) = {id, w7}. Moreover, |AutFq(X0(175)/⟨w25⟩)| = 6 with q = p

for any prime p which splits in Q[
√
5] and q = p2 for any prime p which remains inert in

Q[
√
5], with p ≤ 61 and p ∤ 35. Thus a study of an automorphism of order 3 over Q[

√
5]

is needed for the genus 8 quotient curve X0(175)/⟨w25⟩ as we did for level N = 275.

� Consider N = 325:

J
⟨w25⟩
0 (325) ∼Q 165a,h1,w13=1 + 265.2.a.c,h2,−1 + 265.2.a.b,h3,1 + 1325b,h4,1 + 1325c,h5,−1+

1325e,h6,−1 + 2325.2.a.g,h7,1 + 2325.2.a.h,h8,−1 + 2325.2.a.i,h9,−1

where each hi has no inner twist, and the quadratic twists correspond to h1⊗χQ[
√
5] = h5,

h2 ⊗ χQ[
√
5] = h7 and h3 ⊗ χQ[

√
5] = h9. The operator w13 acts differently in each compo-

nent, thus we obtain that AutQ(X
∗
0 (325)) = Aut(X∗

0 (325)) and AutQ[
√
5](X0(325)/w25) =

Aut(X0(325)/⟨w25⟩). Now using Magma we see that AutF7(X
∗
0 (325)) = {id} and we have

AutQ(X
∗
0 (325)) = {id}. Moreover, AutQ(X0(325)/⟨w25⟩) = {id, w13} by Corollary 19,

and using Magma we see that AutF11(X0(325)/⟨w25⟩) = AutF19(X0(325)/⟨w25⟩) = 6. It
remains to study whether there is an order 3 element in Aut(X0(325)/⟨w25⟩), similar to
the case N = 175 and 275. We hope to resolve this issue in future work.

14



� N = 425:

J
⟨w25⟩
0 (425) ∼Q ((117a,j1,w17=−1)

2 + 185a,j2,−1 + 285.2.a.b,j3,1 + 285.2.a.c,j4,1+

1425a,j5,1 + 1425c,j6,1 + 1425d,j7,1 + 2425.2.a.e,j8,−1 + 2425.2.a.f,j9,−1 + 5425.2.a.i,j10,−1

where each ji has no inner twist and there are the quadratic twists j1 ⊗ χ5 = j5, j3 ⊗
χ5 = j9 and j4 ⊗ χ5 = j8 between them. Therefore all automorphisms of X∗

0 (425) and
X0(425)/⟨w25⟩ are defined over Q[

√
5]. Using Magma we see that |AutF4(X

∗
0 (425))| = 1,

hence Aut(X∗
0 (425)) = {id}.

Remark 27. Continuing with Example 20, the Q-decomposition of the Jacobian of X0(49 ·
p)/⟨w49⟩ for p ∈ {3, 5, 11, 13, 17} has isogeny factors over Q[

√
−7], where wp is not acting with

the same sign in both isogeny factors. Thus all automorphisms of such quotient curves are
defined over Q[

√
−7] (if any automorphism is defined over Q[

√
−7] but not over Q, then such

automorphism does not induce an automorphism for X∗
0 (49 ·p)), but for p = 11 or when we con-

sider X∗
0 (49 · p) with p ∈ {3, 5, 11, 13, 17}, the modular forms appearing in the Q-decomposition

of the Jacobian have no quadratic twists. Thus, in such cases all automorphisms are defined
over Q. Using Magma we get |AutF2(X

∗
0 (49·p))| = 1 for p ∈ {11, 13, 17}, thus Aut(X∗

0 (49·p)) =
{id} for such primes. Moreover, |AutF4(X0(147)/⟨w49⟩)| = |AutF9(X0(245)/⟨w49⟩)| = 2, thus
AutQ[

√
−7](X0(147)/⟨w49⟩) = {id, w3} and AutQ(

√
−7)(X0(245)/⟨w49⟩) = {id, w5}. Unfortu-

nately, for the other values of p, the genus of X0(49 · p)/⟨w49⟩ is big and we are not able
to get any conclusion using the current version of Magma (V2.27-7).

Lemma 28. Consider the curves X0(160)/⟨w32⟩ and X∗
0 (160). Then, Aut(X

∗
0 (160))

∼= Z/2Z×
Z/2Z, generated by the bielliptic involution of X∗

0 (160) defined over Q(i) and an involution
defined over Q and we have an exact sequence:

1 → {id, w5} → Aut(X0(160)/w32) → Aut(X∗
0 (160)).

Moreover, we have AutQ(X0(160)/⟨w32⟩) ∼= Z/2Z× Z/2Z.

Proof. Observe that the genus 4 quotient curve X∗
0 (160) is non-hyperelliptic and it is bielliptic

overQ(i) (but not overQ) (cf. [BaGo20, Theorem 1.2]). The Jacobian decomposition ofX∗
0 (160)

over Q and Q(i) are given by:

J∗
0 (160) ∼Q E20a

2 × E80b× E160a,

J∗
0 (160) ∼Q[i] (E20a)

3 × E160a.

Moreover, E20a and E160a have no inner twists. Thus all automorphisms of X∗
0 (160) are

defined over Q(i). Observe that 7 is inert in Q(i), thus the order of the automorphism group of
X∗

0 (160) is bounded by the order of AutF49(X
∗
0 (160)). Using Magma we get |AutF49(X

∗
0 (160))| =

4 and |AutF7(X
∗
0 (160))| = 2. Recall that the normalizer of Γ0(160) in PSL2(Z) is strictly bigger

than ⟨Γ0(160), B(160)⟩ because 4|160 (cf. [AtLe70, Theorem 8]). In particular, it contains S2 =(
1 1/2
0 1

)
(which does not belong to ⟨Γ0(160), B(160)⟩), and is well-known that V2 = S2w32S2

commutes with w5 and w32 [BKS23, Proposition 4.15], thus induces a non-trivial automorphism
of X∗

0 (160) over Q. Therefore AutQ(X
∗
0 (160)) = {id, V2} and AutQ[i](X

∗
0 (160))

∼= Z/2Z×Z/2Z
by the bound on the order of automorphism group over finite fields.

Now the Q-isogeny decomposition of the Jacobian of X0(160)/⟨w32⟩ is:

(1E20a,f1)
2 + (1E40a,f2)

2 + 1E80a,f3 + 1E80b,f4 + 1160a,f5 + 2160.2.a.c,f6 ,
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the corresponding modular forms have only the inner twist f6 ⊗ χQ[i] = f6, and the quadratic
twists f1⊗χQ[i] = f4 and f2⊗χQ[i] = f3. Thus the automorphisms of X0(160)/⟨w32⟩ are defined
over Q[i]. The factors 1E20a,f1 and 1E80b,f4 (resp., 1E40a,f2 and 1E80a,f3) are non-isogenous over
Q but isogenous over Q(i), and w5 acts as +1 (resp., −1) on both factors. By Corollary 19,
any non-trivial u ∈ Aut(X0(160)/⟨w32⟩) with u ̸= w5 induces a non-trivial automorphism of
X∗

0 (160). This proved the first part.
Using Magma we see that |AutF7(X0(160)/⟨w32⟩)| = 4. Hence the automorphism group of

X0(160)/⟨w32⟩ over Q is generated by w5 and V2 (cf. [BKS23, Proposition 4.15]).

Remark 29. Using the canonical model of X∗
0 (N), in [BaGo20, §2] (resp., in [BaGo21, Lemma

2]), the first author and González gave a methodology to check if X∗
0 (N) has a bielliptic invo-

lution over Q (resp., any involution over Q when N square-free). In general, to obtain all
automorphisms over Q we need to find all matrices of finite order in PGLg∗N

(Q) which leaves
the canonical model (which is obtained using the cusp forms appearing in the Q-isogeny decom-
position of the Jacobian) invariant. Since we know the Q-isogeny decomposition of its Jacobian
and each isogeny factor remains invariant under the action of any automorphism, such matrices
can be obtained by blocks. For example, we know that J∗

0 (160) ∼Q E20a
2 × E80b× E160a. In

order to obtain an automorphism of X∗
0 (160) over Q, it suffices to compute a matrix of the formA ±1

±1


4×4

with A ∈ GL2(Q), which fixes the canonical model of X∗
0 (160) in 4 variables

x1, x2, x3, x4, where x1, x2 correspond to E20a2, x3 corresponds to E80b, and x4 corresponds to
E160a (we denote the corresponding automorphism by A×±1×±1).

5 On automorphisms group for square free N = Mq by

reduction modulo q

Let N = qM , whereM is a positive integer and q is a prime such that q ∤M . For any subgroup
WN of B(N), if u ∈ Aut(X0(N)/WN) commutes with all wd ∈ B(N) \WN , then u induces
a non-trivial automorphism on X∗

0 (N). By [BaGo20], we know the structure of the group
Aut(X∗

0 (N)) when N is square-free.
By Deligne-Rapaport [DeRa72], the reduction modulo q of X0(q ·M) consists of two copies Z

and Z ′ of X0(M) over Fq which intersects transversally at the supersingular points on X0(M).
The Atkin-Lehner involution wd with d|N acts on X0(N) modulo q as follows:

(i) if q ∤ d, then wd fixes each component Z and Z ′ and it acts in characteristic q in the
same way as in characteristic zero. Note that in this case, wd still acts as an involution on
X0(M) and the image wd(P ) of a point P is supersingular if and only if P is supersingular
on X0(M). Therefore a point on X0(M)/⟨wd⟩ is supersingular if and only if its preimage
under the quotient map is supersingular on X0(M) (recall that a point on a quotient
curve X0(M)/W is supersingular if the underlying elliptic curve is supersingular).

(ii) if q|d, then wd interchanges Z and Z ′. In particular, if wd = wq then wq fixes each Fq-
rational supersingular point while it exchanges each properly Fq2-rational supersingular
points to its conjugate.

Now consider a subgroup WN ≤ B(N) generated by certain Atkin-Lehner involutions. If WN

is generated by wd’s with q ∤ d, then X0(N)/WN mod q consists of two copies Z and Z ′ of
X0(M)/WN over Fq, meeting transversally at the supersingular points on X0(M)/WN (note
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that the assumption on WN implies WN ≤ B(N) ∩ B(M)). On the other hand, if wd ∈ WN

such that q|d, then X0(N)/WN mod q consists of only one component Z
′′
, where Z

′′
is some

quotient of X0(M) (cf. [Has97] and [FuHa99] for more details).

Lemma 30. Let N = qM , where M is a positive integer and q is a prime such that q ∤M . For
any subgroup WN of B(qM) such that (q, d) = 1 for all wd ∈ WN , the number of intersection
points for the two components Z and Z ′ of X0(M)/WN modulo q is equal to:

1 + g(X0(N)/WN)− 2 · g(X0(M)/WN).

Moreover, all the points in Z ∩ Z ′ are Fq2-rational.

Proof. By the specialization principle, the arithmetic genus of Z+Z ′ is equal to g(X0(N)/WN).
Moreover, we have the following relation

1 + pa(Z + Z ′) = pa(Z) + pa(Z
′) + Z · Z ′ = g(X0(M)/WN) + g(X0(M)/WN) + Z · Z ′,

where pa denotes the arithmetic genus. Since Z and Z ′ intersect transversally, Z ·Z ′ is exactly
the number of intersection points of Z and Z ′ (which is also equal to the number of supersingular
points on X0(M)/WN mod q). Therefore

Z · Z ′ = #Z ∩ Z ′ = 1 + g(X0(N)/WN)− 2 · g(X0(M)/WN).

This proves the first part. Recall that the set Z ∩Z ′ contains only the supersingular points on
X0(M)/WN in characteristic q, and a point on X0(M)/WN is supersingular if and only if its
preimage is supersingular on X0(M). Since the supersingular points on X0(M) in characteristic
q are Fq2-rational, all the points in Z ∩ Z ′ are Fq2-rational.

Lemma 31. Let N = qM , where M is a square-free positive integer and q is a prime such that
q ∤M . Suppose WN is a subgroup of B(qM) such that (q, d) = 1 for all wd ∈ WN . For any u ∈
Aut(X0(N)/WN)\{id}, consider the automorphism v := u◦wq ◦u−1 ◦w−1

q ∈ Aut(X0(N)/WN).
If n denotes the order of v, then we have

g(X0(N)/WN)− 1 ≥ n(g(X0(N)/WN)− 1− 2g(X0(M)/WN)). (5.1)

Proof. Recall that X0(N)/WN mod q is Z + Z ′ where Z and Z ′ isomorphic to X0(M)/WN

mod q. Since u either fixes or swaps Z and Z ′, v mod q fixes both Z and Z ′. Thus v mod q
can be thought as an automorphism on X0(M)/WN mod q. Since u is rational and wq acts as
Frobenius on Z ∩ Z ′, v fixes every point in Z ∩ Z ′ (recall that every point in Z ∩ Z ′ is Fq2-
rational). Therefore v mod q induces an automorphism of order n on Z = X0(M)/WN mod q
which fixes every point in Z ∩Z ′. Since #Z ∩Z ′ = 1+ g(X0(N)/WN)− 2 · g(X0(M)/WN) (cf.
Lemma 30), by Riemann Hurwitz formula we obtain

2g(X0(M)/WN)− 2 ≥ n(2g − 2) + (n− 1)(1 + g(X0(N)/WN)− 2 · g(X0(M)/WN)) (5.2)

≥ −2n+ (n− 1)(1 + g(X0(N)/WN)− 2 · g(X0(M)/WN)), (5.3)

where g denotes the genus of Z/v. In particular, we have

g(X0(N)/WN)− 1 ≥ n(g(X0(N)/WN)− 1− 2g(X0(M)/WN)). (5.4)
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Corollary 32. LetM, q,N,WN , u, v and n be as in Lemma 31. If n = 1 for all u ∈ Aut(X0(N)/WN)\
{id}, then we have an exact sequence:

1 → ⟨wq⟩ → Aut(X0(N = qM)/WN) → Aut(X0(N)/⟨WN , wq⟩).

Proof. Suppose n = 1 for all u ∈ Aut(X0(N)/WN)\{id}, then u◦wq = wq◦u onAut(X0(N)/WN).
Thus u ∈ Aut(X0(N)/⟨WN , wq⟩) and there is a natural mapping

φq : Aut(X0(N)/WN) → Aut(X0(N)/⟨WN , wq⟩).

Now to prove the corollary it suffices to prove that ker(φq) = ⟨wq⟩. Let u ∈ Aut(X0(N)/WN)
such that u = id onAut(X0(N)/⟨WN , wq⟩). Consider a non-trivial element u ∈ Aut(X0(N)/WN)
such that u ̸= wq. Since automorphisms u,w−1

q ◦u ∈ Aut(X0(N)/WN) have finitely many fixed
points on X0(N)/WN , there exists P ∈ X0(N)/WN such that u(P ) ̸∈ {P,wq(P )}. Therefore
u ̸= id on X0(N)/⟨WN , wq⟩ and we conclude that ker(φq) = ⟨wq⟩.
Lemma 33. Suppose M ≥ 2 is a square-free integer and q is a prime such that (q,M) = 1. For
any d||M , let ν(M,d) (resp., ν(qM, d)) denote the number of fixed points of the Atkin-Lehner
involution wd on X0(M) (resp., X0(qM)). Then we have

2ν(M,d)− ν(qM, d) ≥ 0. (5.5)

Proof. For any square-free positive integer N and d||N , we have

ν(N, d) :=
(∏

p|N
d

c1(p)
)
h(−4d) +

{(∏
p|N

d
c2(p)

)
h(−d) if 4 ≤ d ≡ 3 (mod 4)

0, otherwise

+

{∏
p|N

2

(
1 +

(
−4
p

))
, if d = 2

0, otherwise

+

{∏
p|N

3

(
1 +

(
−3
p

))
, if d = 3

0, otherwise,

where, for i = 1, 2

ci(p) :=

1 +
(

−d
p

)
, if p ̸= 2, d ≡ 3 (mod 4)

1 +
(

−4d
p

)
, if p ̸= 2, d ̸≡ 3 (mod 4),

c1(2) :=

{
1, if d ≡ 1 (mod 4) and 2||N
2, if d ≡ 3 (mod 4) and 2||N

c2(2) := 1 +
(−d

2

)
if d ≡ 3 (mod 4).

In particular for any d||M , it is easy to see that

2ν(M,d)− ν(qM, d) = (2− c1(q))h(−4d)
∏
p|M

d

c1(p)+


(2− c2(q))h(−d)

∏
p|M

d
c2(p),

if 4 ≤ d ≡ 3 (mod 4)

0, otherwise

+

{(
1−

(
−4
q

))∏
p|M

2

(
1 +

(
−4
p

))
, if d = 2

0, otherwise

+

{(
1−

(
−3
q

))∏
p|M

3

(
1 +

(
−3
p

))
, if d = 3

0, otherwise.
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Since ci(q) ≤ 2, we always have 2ν(M,d)− ν(qM, d) ≥ 0. The result follows.

We are now ready to prove the main theorem of this section.

Theorem 34. Suppose M ≥ 2 is a square-free integer and q is a prime such that (q,M) = 1.
Let W be any subgroup of B(qM) such that (q, d) = 1 for all wd ∈ W and g(X0(qM)/W ) ≥ 2.
Then there is an exact sequence

1 → ⟨wq⟩ → Aut(X0(qM)/W ) → Aut(X0(qM)/⟨W,wq⟩).

Proof. We follow the approach of [Ogg77, Hilfsatz 11]. Observe that by assumption on W , we
have W ⊆ B(qM) ∩ B(M). For simplicity of notations, we denote Z=X0(M)/W (mod q) by
X0(M)/W . Let u ∈ Aut(X0(qM)/W )\{id}, and consider the automorphism v := u◦wq ◦u−1 ◦
w−1

q on X0(qM)/W . From the proof of Lemma 31, we see that v induces an automorphism

on X0(M)/W , and it fixes at least 1 + g(X0(qM)/W )− 2 · g(X0(M)/W ) points over Fq2 . If n
denotes the order of v, then by Lemma 31, we have

2g(X0(M)/W )− 2 ≥ n(2g − 2) + (n− 1)(1 + g(X0(qM)/W )− 2 · g(X0(M)/W )) (5.6)

≥ −2n+ (n− 1)(1 + g(X0(qM)/W )− 2 · g(X0(M)/W )), (5.7)

where g denotes the genus of Z/v. In particular we have

g(X0(qM)/W )− 1 ≥ n(g(X0(qM)/W )− 1− 2g(X0(M)/W )). (5.8)

We show that n = 1. This implies v = id, i.e., wq commutes with u and the result follows.
Note that if Aut(X0(qM)/W ) is commutative, then we automatically have n = 1.

Let |W | = 2s. Recall that

g(X0(qM)/W ) =
1

2s+1

(
2g(X0(qM))− 2 + 2s+1 −

∑
wd∈W

ν(qM, d)
)
and, (5.9)

g(X0(M)/W ) =
1

2s+1

(
2g(X0(M))− 2 + 2s+1 −

∑
wd∈W

ν(M,d)
)
, (5.10)

where ν(M,d) (resp., ν(qM, d)) denote the number of fixed points of the Atkin-Lehner involu-
tion wd on X0(M) (resp., X0(qM)).

For any square-free positive integer N , the genus of X0(N) is given by

g(X0(N)) = 1 +
ψ(N)

12
− µ−4(N)

4
− µ−3(N)

3
− 2rN−1 ≤ 1 +

ψ(N)

12
− 2rN−1, (5.11)

where

ψ(N) =
∏
p|N

(p+ 1)

µ−m(N) =
∏
p|N

(
1 +

(−m
p

))
for m ∈ {3, 4},

and rN denotes the number of distinct prime divisors of N .
Recall that for any wd ∈ B(qM) ∩B(M), from Lemma 33 we have

2ν(M,d)− ν(qM, d) ≥ 0. (5.12)
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Combining (5.9), (5.10), (5.11) and (5.12), we get

g(X0(qM)/W )− 1− 2g(X0(M)/W )

=
1

2s+1

(
2g(X0(qM)) + 2− 2s+2 − 4g(X0(M)) +

∑
wd∈W

(2ν(M,d)− ν(qM, d))
)

=
1

2s+1

(
2 ·
(
− 2s+1 + (q − 1)

ψ(M)

12
+
(
1−

(−4

q

))µ−4(M)

4
+
(
1−

(−3

q

))µ−3(M)

3

)
+
∑
wd∈W

(2ν(M,d)− ν(qM, d))

)

≥ 1

2s

(
− 2s+1 + (q − 1)

ψ(M)

12

)
,

i.e.,

g(X0(qM)/W )− 1− 2g(X0(M)/W ) ≥ 1

2s

(
− 2s+1 + (q − 1)

ψ(M)

12

)
. (5.13)

On the other hand, from (5.9) and (5.11) we obtain

g(X0(qM)/W )− 1 ≤ 1

2s+1

(
2g(X0(qM))− 2

)
≤ 1

2s

(ψ(qM)

12
− 2rM

)
. (5.14)

We now compute the values of the triple (q,M,W ) such that g(X0(qM)/W )−1−2g(X0(M)/W ) ≤
0.

If g(X0(qM)/W )− 1− 2g(X0(M)/W ) ≤ 0, then from (5.13) we have

(q − 1)
ψ(M)

12
≤ 2s+1 ≤ 2rM+1, (5.15)

where rM denotes the number of distinct prime divisors of M .
If possible let rM ≥ 4. Since q ≥ 2 and M ≥ 2, from (5.15) we get

2rM+1 <
3 · 4 · 6 · 8 · 8rM−4

12
≤ (q − 1)

ψ(M)

12
≤ 2rM+1,

which is a contradiction. Therefore, we must have rM ≤ 3. Using this bound, from (5.15) we
obtain

(q − 1)ψ(M) ≤ 12 · 24 = 192. (5.16)

Since q ≥ 2, M ≥ 2 and M < ψ(M), from (5.16) it is easy to see that q ≤ 64 and M ≤ 192.
Furthermore, for 2 ≤ q ≤ 64 and 2 ≤ M ≤ 192 with q ∤ M , using MAGMA we get

g(X0(qM)/W )− 1− 2g(X0(M)/W ) ≤ 0 if and only if

(q,M,W ) ∈ S0 := {(2, 15, ⟨w3⟩), (2, 21, ⟨w7⟩), (2, 33, ⟨w3⟩), (2, 35, ⟨w7⟩), (3, 14, ⟨w2⟩)}.

Therefore, we conclude that g(X0(qM)/W )−1−2g(X0(M)/W ) ≤ 0 if and only if (q,M,W ) ∈
S0.

For (q,M,W ) ∈ S0, using MAGMA, we see that |AutFp(X0(qM)/W )| = 4 for some prime
p ∤ qM (choose the primes p = 7, 11, 5, 3, 5 respectively). Hence the group AutQ(X0(qM)/W )
is commutative for (q,M,W ) ∈ S0. Consequently, for such values of (q,M,W ) we must have
v = id, i.e., n = 1.

From now on we assume that

(q,M,W ) ̸∈ {(2, 15, ⟨w3⟩), (2, 21, ⟨w7⟩), (2, 33, ⟨w3⟩), (2, 35, ⟨w7⟩), (3, 14, ⟨w2⟩)}.
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For such values of q,M and W we have g(X0(qM)/W )− 1− 2g(X0(M)/W ) > 0.
We now study the validity of (5.8). Here, the main idea is that we show the inequality (5.8)

does not hold when some parameters are too large.
Case I: q ≥ 5.
First consider the case q ≥ 5. If possible let n ≥ 2 for q ≥ 5. From (5.8), we have

g(X0(qM)/W )− 1 ≥ 2(g(X0(qM)/W )− 1− 2g(X0(M)/W )). (5.17)

Combining (5.17), (5.13) and (5.14), we get

ψ(qM)

12
− 2rM ≥ −2s+2 + 2(q − 1)

ψ(M)

12
. (5.18)

Simplifying we get (recall that s ≤ rM)

0 < (q − 3)
ψ(M)

12
≤ 2s+2 − 2rM ≤ 3 · 2rM . (5.19)

If possible let rM ≥ 4. Since q ≥ 5, from (5.19) we obtain

12 · 3 · 2rM+1 ≤ 2 · 3 · 4 · 6 · 8 · (12)rM−4 ≤ (q − 3)ψ(M) ≤ 12 · 3 · 2rM , (5.20)

which is a contradiction. Therefore rM ≤ 3.
Since q ≥ 5 and rM ≤ 3, from (5.19) we get

2M < (q − 3)ψ(M) ≤ 12 · 3 · 8, i.e., M < 144.

On the other hand, since ψ(M) ≥ 3 and rM ≤ 3, from (5.19) we obtain

(q − 3) · 3 ≤ (q − 3)ψ(M) ≤ 12 · 3 · 8, i.e., q ≤ 99. (5.21)

Using MAGMA, we conclude that for prime 5 ≤ q ≤ 99, rM ≤ 3 and 2 ≤ M ≤ 144 (recall that
g(X0(qM)/W ) ≥ 2), the inequality (5.17) is satisfied if and only if (q,M,W ) = (5, 14, ⟨w2⟩).

Therefore, for q ≥ 5 and (q,M,W ) ̸= (5, 14, ⟨w2⟩), we must have n = 1, i.e., wq commutes
with u.

Now consider the curve X0(5 · 14)/⟨w2⟩. Clearly, ⟨w5, w7⟩ ⊆ Aut(X0(5 · 14)/⟨w2⟩). Using
MAGMA, we see that #AutF3(X0(5 · 14)/⟨w2⟩) = 4. Hence Aut(X0(5 · 14)/⟨w2⟩) = ⟨w5, w7⟩, i.e.,
Aut(X0(5 · 14)/⟨w2⟩) is commutative. Consequently, in this case we have n = 1.

Therefore, in the case q ≥ 5 and M ≥ 2, we conclude that n = 1, i.e., wq commutes with u
and the result follows.

Case II: q ∈ {2, 3} and n ≥ 4.
Now assume that q ∈ {2, 3}. If possible let n ≥ 4. Then we have

g(X0(qM)/W )− 1 ≥ 4(g(X0(qM)/W )− 1− 2g(X0(M)/W )). (5.22)

Combining (5.22), (5.13) and (5.14) we get

(3q − 5)
ψ(M)

12
≤ 2s+3 − 2rM ≤ 7 · 2rM . (5.23)

If rM ≥ 4, then from (5.23) we have

7 · 2rM <
3 · 6 · 8 · 12 · (14)rM−4

12
≤ (3q − 5)

ψ(M)

14
≤ 7 · 2rM , (5.24)
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which is a contradiction. Hence we must have rM ≤ 3. Using this bound, from (5.23) we have

(3q − 5)ψ(M) ≤ 7 · 12 · 2rM ≤ 7 · 12 · 23. (5.25)

If q = 2, then from (5.25) we get M < ψ(M) ≤ 672. On the other hand, if q = 3, then from
(5.25) we get M < ψ(M) ≤ 168.

For simplicity of notations, we denote the triple (q,M,W ) by (q,M, d1, d2, . . . , dk), where
W := ⟨wd1 , wd2 , . . . , wdk⟩.

Using MAGMA, we see that for q ∈ {2, 3} the inequality (5.22) is satisfied only for the values of
(q,M,W ) appearing in Table 2. For the triples (q,M,W ) appearing in Table 2, if we can show
that either AutFq(X0(M)/W ) has no element of order ≥ 4 or Aut(X0(qM)/W ) is commutative,
then we can conclude that for such values of (q,M,W ) the only possibility is n ≤ 3.

Now consider the triples (q,M,W ) appearing in Table 2. Using MAGMA4, we see that

|AutF2(X0(115)/⟨w23⟩)| = 2, and |AutF2(X0(165)/⟨w3, w5⟩)| = 2.

Hence for the triples (2, 115, 23) and (2, 165, 3, 5), we must have n ≤ 3 (since there is no
automorphism of order ≥ 4).

For the remaining triples (q,M,W ) in Table 2, using MAGMA, we see that |AutFp(X0(qM)/W )| ≤
4 for some prime p ∤ qM (cf. Table 3). Hence for the remaining values of (q,M,W ) in Table 2,
the group AutQ(X0(qM)/W ) is commutative. Consequently, for such values of (q,M,W ) we
must have n = 1.

Therefore in any case, we have n ≤ 3. We now show that n ̸= 3 for q ∈ {2, 3}.
Case III: n = 3 and q = 3
Consider the case q = 3 and n = 3. For such cases we have

g(X0(qM)/W )− 1 ≥ 3(g(X0(qM)/W )− 1− 2g(X0(M)/W )). (5.26)

Combining (5.26), (5.14) and (5.13) we obtain

(2q − 4)
ψ(M)

12
=
ψ(M)

6
≤ 3 · 2s+1 − 2rM ≤ 5 · 2rM . (5.27)

If rM ≥ 4, then from (5.27) we get

27 · 4 · 2rM < 3 · 6 · 8 · 12 · (14)rM−4 ≤ 6 · 5 · 2rM , (5.28)

which is a contradiction. Hence we must have rM ≤ 3. Using this bound, from (5.27) we have

M < ψ(M) ≤ 30 · 23 = 240. (5.29)

Using MAGMA, we see that for q = 3 and 2 ≤M ≤ 240, the inequality (5.26) is satisfied only for
the triples (3,22,2), (3,35,7). But using MAGMA, we see that the curves X0(22)/⟨w2⟩ (mod 3)
and X0(35)/⟨w7⟩ (mod 3) have no automorphism of order 3.

Therefore for q = 3, we must have n ≤ 2.
Case IV: n = 3 and q = 2.
Now consider the case q = 2 and n = 3. If possible let ḡ ≥ 1 (recall that ḡ denotes the

genus of (X0(M)/W )/v).
From (5.6), we get

2g(X0(M)/W )− 2 ≥ 2(1 + g(X0(2M)/W )− 2g(X0(M)/W )), (5.30)

4For the curves X0(115)/⟨w23⟩ and X0(165)/⟨w3, w5⟩, the built-in models in MAGMA are not good over GF (2),
for these curves we first construct good models over GF (2) and then compute the automorphism group.
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i.e.,
3g(X0(M)/W )− 2 ≥ g(X0(2M)/W ). (5.31)

Note that we have the following commutative diagram over Q:

X0(2M) X0(M)

X0(2M)/W X0(M)/W

deg 3

deg 2s deg 2s

deg 3

(5.32)

Since the natural mapping X0(2M)/W → X0(M)/W is not unramified (it ramifies atleast at
one cusp), by Riemann Hurwitz theorem we have

2g(X0(2M)/W )− 2 > 3(2g(X0(M)/W )− 2), (5.33)

i.e.,
g(X0(2M)/W ) > 3g(X0(M)/W )− 2, (5.34)

which contradicts (5.31). Therefore if q = 2 and n = 3, then ḡ = 0. Thus X0(M)/W is trigonal
over F2, i.e., there is a degree 3 mapping X0(M)/W → P1 defined over F2. Consequently, we
must have

#X0(M)(F2α) ≤ 2s ·#X0(M)/W (F2α) ≤ 3 · 2s · P1(F2α) for α ∈ N. (5.35)

In particular, we have (cf. [Ogg74, Page 455-456])

ψ(M)

12
+ 2rM ≤ #X0(M)(F4) ≤ 3 · 2s · 5. (5.36)

From (5.36), we see that rM ≤ 4 and M < ψ(M) ≤ 12 · 16 · 14 = 2688 (the arguments are
similar as for the equation (5.28)). Moreover, since ḡ = 0,M andW should satisfy the following
inequality (cf. (5.8))

g(X0(2M)/W )− 1 ≥ 3(g(X0(2M)/W )− 1− 2g(X0(M)/W )). (5.37)

Using MAGMA, we see that for q = 2 andM ≤ 2688, the inequalities (5.35), (5.36), and (5.37) are
satisfied only for the values of (q,M,W ) appearing in Table 4. For the triples (q,M,W ) appear-
ing in Table 4, if we can show that either X0(M)/W is not trigonal over F2 or AutF2(X0(M)/W )
has no element of order 3 or the group Aut(X0(qM)/W ) is commutative, then we can conclude
that n can not take the value 3 when q = 2.

Now consider the values of (q,M,W ) appearing in Table 4. Let w ∈ B(M)\W such that
g(X0(M)/⟨W,w⟩) ≥ 1. Recall that there is a degree 2 mapping X0(M)/W → X0(M)/⟨W,w⟩
defined over Fq. By Castelnuovo-Severi’s inequality, if X0(M)/W is trigonal over F2, then we
must have

g(X0(M)/W ) ≤ 2g(X0(M)/⟨W,w⟩) + 2. (5.38)

For example, consider the curve X0(105)/⟨w3⟩. There is degree 2 mapping X0(105)/⟨w3⟩ →
X0(105)/⟨w3, w35⟩ defined over F2, where g(X0(105)/⟨w3, w35⟩) = 1. Since

7 = g(X0(105)/⟨w3⟩) > 2g(X0(105)/⟨w3, w35⟩) + 2,

by Castelnuovo-Severi’s inequality we get that X0(105)/⟨w3⟩ is not trigonal over F2. Using a
similar argument we conclude that X0(M)/W is not trigonal over Fq for the following values
of (q,M,W ):
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(2,105,7), (2,105,15), (2,111,37), (2,123,3), (2,129,43), (2,143,11), (2,143,13), (2,159,3), (2,161,23),
(2,177,177), (2,183,61), (2,185,5), (2,185,37), (2,187,11), (2,195,3,5), (2,195,3,13), (2,203,29),
(2,209,11), (2,215,43), (2,217,7), (2,231,3,7), (2,231,3,11), (2,247,19), (2,255,3,5), (2,255,5,17),
(2,285,3,5), (2,285,3,19), (2,357,3,7), (2,357,7,51).

On the other hand, for the following values of (q,M,W ), the automorphism group of the
curve X0(M)/W has no element of order 3 over Fq:

(2,115,5),(2,115,23), (2,163,163), (2,165,3,5),(2,165,3,55), (2,165,5,33), (2,165,15,33), (2,235,5,47),
(2,253,11,23), (2,265,5,53), (2,273,3,7,13).

For the remaining triples (q,M,W ) in Table 4, using MAGMA, we see that |AutFp(X0(qM)/W )| ≤
4 for some prime p ∤ qM (cf. Table 5). Hence for the remaining values of (q,M,W ) in Table 4,
we see that AutQ(X0(qM)/W ) is commutative. Consequently, for such values of (q,M,W ) we
must have n = 1.

Therefore for q = 2, we must have n ≤ 2. Summarizing the discussions so far, we conclude
that for q ∈ {2, 3}, the only possibility is n ≤ 2. We now prove that n can not take the value
2 for q ∈ {2, 3}.

Cast V: n = 2 and q = 3.
Consider the case q = 3 and n = 2. Note that we have the following commutative diagram

over Q:

X0(3M) X0(M)

X0(3M)/W X0(M)/W

deg 4

deg 2s deg 2s

deg 4

(5.39)

A similar argument as in the case q = 2 and n = 3 shows that ḡ = 0, i.e., X0(M)/W is
hyperelliptic over F3. Consequently, we must have

#X0(M)(F3α) ≤ 2s ·#X0(M)/W (F3α) ≤ 2s+1 · P1(F3α) for α ∈ N. (5.40)

In particular, we have (cf. [Ogg74, Page 455-456])

2 · ψ(M)

12
+ 2rM ≤ #X0(M)(F32) ≤ 2s+1 · 10. (5.41)

Using a similar argument as in (5.28), from (5.41), we see that rM ≤ 4 and M < ψ(M) ≤
6 · 19 · 24 = 1824. Moreover, since ḡ = 0, M and W should satisfy the following inequality (cf.
(5.8))

g(X0(3M)/W )− 1 ≥ 2(g(X0(3M)/W )− 1− 2g(X0(M)/W )). (5.42)

Using MAGMA, we see that for q = 3 and M ≤ 1824, the inequalities (5.40), (5.41), and (5.42)
are satisfied only for the values of (q,M,W ) appearing in Table 6. For the triples (q,M,W )
appearing in Table 6, if we can show that either X0(M)/W is not hyperelliptic over F3 or
AutF3(X0(M)/W ) has no element of order 2 which fixes at least 1 + g(X0(qM)/W ) − 2 ·
g(X0(M)/W ) points over F32 (from the proof of Lemma 31, recall that v has at least 1 +
g(X0(qM)/W ) − 2 · g(X0(M)/W ) fixed points over F32) or the group Aut(X0(qM)/W ) is
commutative, then we can conclude that n can not take the value 2 when q = 3. Consequently,
we must have n = 1.

Now consider the triples (q,M,W ) appearing in Table 6. Let w ∈ B(M)\W such that
g(X0(M)/⟨W,w⟩) ≥ 1. By Castelnuovo-Severi’s inequality, if X0(M)/W is hyperelliptic over
F3, then we must have

g(X0(M)/W ) ≤ 2g(X0(M)/⟨W,w⟩) + 1. (5.43)
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Since 7 = g(X0(190)/⟨w5, w38⟩) > 2g(X0(190)/⟨w5, w38, w2⟩) + 1 = 5, by Castelnuovo-Severi’s
inequality we get that the curve X0(190)/⟨w5, w38⟩ is not hyperelliptic over F3. Using a similar
argument, we conclude that X0(M)/W is not hyperelliptic over Fq for the following values of
(q,M,W ):

(3,91,7), (3,143,11), (3,154,2,11).
Furthermore using MAGMA5 we see thatX0(M)/W is not hyperelliptic over Fq for the following

values of (q,M,W ):
(3,65,5), (3,65,13), (3,85,5), (3,85,17).
Now consider the curve X0(94)/⟨w2⟩ over F3. Using MAGMA we see that X0(94)/⟨w2⟩ is

hyperelliptic over F3 and AutF3(X0(94)/⟨w2⟩) = ⟨ι⟩, where ι is the hyperelliptic involution.
Thus for the triple (3, 94, 2), if n = 2, then we must have ι = v (mod 3). Since the supersingular
points on X0(94)/⟨w2⟩ in characteristic 3 are F32 rational and fixed by v, the equality ι = v
(mod 3) implies that ι fixes at least 1 + g(X0(3 · 94)/⟨w2⟩)− 2g(X0(94)/⟨w2⟩) = 12 points over
F32 . Using MAGMA, we see that ι fixes only 4 points over F32 , which is a contradiction. Therefore,
for (q,M,W ) = (3, 94, 2), n can not take the value 2, hence we must have n = 1. A similar
argument shows that, in the case (3, 95, 5) we have n = 1.

For the remaining values of (q,M,W ) in Table 6, using MAGMA, we see that |AutFp(X0(qM)/W )| ≤
4 for some prime p ∤ qM (cf. Table 7). Hence for such values of (q,M,W ), the group
AutQ(X0(qM)/W ) is commutative. Consequently, for such values of (q,M,W ) we must have
n = 1.

Therefore for q = 3, we must have n = 1.
Case VI: n = 2 and q = 2.
Now consider the case q = 2 and n = 2. If possible let ḡ ≥ 1. Since the mapping Z → Z/v

is wildly ramified (note that v has fixed points and the ramification at the fixed points is 2),
by Riemann-Hurwitz-Hasse theorem we have

2g(X0(M)/W )− 2 ≥ 2(2ḡ − 2) + 2(1 + g(X0(2M)/W )− 2g(X0(M)/W )), i.e.,

2g(X0(M)/W )− 2 ≥ 2(1 + g(X0(2M)/W )− 2g(X0(M)/W )). (5.44)

The inequality (5.44) implies

3(2g(X0(M)/W )− 2) ≥ 2g(X0(2M)/W )− 2, (5.45)

which contradicts (5.33). Hence in the case n = q = 2, we must have ḡ = 0, i.e., X0(M)/W is
hyperelliptic over F2. Consequently, we must have

#X0(M)(F2α) ≤ 2s ·#X0(M)/W (F2α) ≤ 2s+1 · P1(F2α) for α ∈ N. (5.46)

In particular, we have
ψ(M)

12
+ 2rM ≤ #X0(M)(F4) ≤ 2s+1 · 5. (5.47)

Using a similar argument as in (5.28), from (5.47), we see that rM ≤ 3 and M < ψ(M) ≤
9 · 12 · 8 = 864. Moreover, since ḡ = 0, M and W should satisfy the following inequality (cf.
5.8)

g(X0(2M)/W )− 1 ≥ 2(g(X0(2M)/W )− 1− 2g(X0(M)/W )). (5.48)

Using MAGMA, we see that for q = 2 and M ≤ 864, the inequalities (5.46), (5.47), and (5.48)
are satisfied only for the values of (q,M,W ) appearing in Table 8. For the triples (q,M,W )
appearing in Table 8, if we can show that either X0(M)/W is not hyperelliptic over F2 or the

5For example, in MAGMA use the code "IsHyperelliptic(ChangeRing(X0NQuotient(65,[5]),GF(3)));"
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group Aut(X0(qM)/W ) is commutative, then we can conclude that n can not take the value 2
when q = 2, consequently we must have n = 1.

Now consider the values of (q,M,W ) appearing in Table 8.
Let w ∈ B(M)\W such that g(X0(M)/⟨W,w⟩) ≥ 1. By Castelnuovo-Severi’s inequality, if

X0(M)/W is hyperelliptic over F2, then we must have

g(X0(M)/W ) ≤ 2g(X0(M)/⟨W,w⟩) + 1. (5.49)

As an immediate consequence of (5.49), we get that X0(M)/W is not hyperelliptic over Fq for
the following values of (q,M,W ):

(2,91,7), (2,111,3), (2,115,23), (2,123,123), (2,133,7).
For the remaining values of (q,M,W ) in Table 8, using MAGMA, we see that |AutFp(X0(qM)/W )| ≤

4 for some prime p ∤ qM (cf. Table 9). Hence for the remaining values of (q,M,W ), we see
that AutQ(X0(qM)/W ) is commutative. Consequently, for such values of (q,M,W ) we must
have n = 1.

Hence combining the discussions so far, we conclude that for M ≥ 2, the only possibility is
n = 1. Now the result follows from Corollary 32.

Corollary 35. Let N := M ·
∏k

i=1 qi, where M ≥ 2 is a square-free integer and qi ≥ 2 are

primes such that (M,
∏k

i=1 qi) = 1 and g(X∗
0 (N)) ≥ 2. If Aut(X∗

0 (N)) is trivial, then

Aut(X0(N)/B(M)) = B(N)/B(M) = ⟨wq1 , . . . , wqk⟩.

Proof. Observe that ⟨wqi+1
, . . . , wqk⟩ ∩ ⟨wq1 , wq2 , . . . , wqi , B(M)⟩ = {id}. Since g(X∗

0 (N)) ≥ 2,
we have g(X0(N)/W ) ≥ 2 for any subgroup W ⊆ B(N). Now the result follows by repeated
application of Theorem 34.

By [BaGo21], we know that Aut(X∗
0 (N)) is trivial for N > 645. Hence, as an immediate

consequence of Corollary 35, we obtain:

Corollary 36. Let N > 645 be a square-free integer. For any integer M such that M |N , we
have Aut(X0(N)/B(M)) = B(N)/B(M).

6 Automorphism Group of Quotient Curves of X0(pq)

As an application of the discussions so far, we now compute the automorphism group of different
quotient curves of X0(pq). Throughout the section, we assume that p and q are two distinct
primes and N := pq. The possible quotient curves of X0(N) are X∗

0 (N) := X0(pq)/⟨wp, wq⟩,
X+

0 (pq) := X0(pq)/⟨wpq⟩ and X0(pq)/⟨wpi⟩ where pi ∈ {p, q}.
From [BaGo21], we know that Aut(X∗

0 (pq)) is trivial when N = pq not in the following
table.

g∗N N = pq
0 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 62, 69, 87, 94, 95, 119
1 57, 58, 65, 74, 77, 82, 86, 91, 111, 118, 123, 141, 142, 143, 145, 155, 159
2 85, 93, 106, 115, 122, 129, 133, 134, 146, 158, 161, 166, 177, 205,

206, 209, 213, 215, 221, 287, 299
3 178, 183, 249, 303

Table 1: X∗
0 (pq) with non trivial automorphism

We now compute the automorphism group of X+
0 (pq).
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6.1 Automorphism Group of X+
0 (pq)

Since J+
0 (pq) := Jacobian(X+

0 (pq)) is semisimple, all the automorphisms of X+
0 (pq) are defined

over Q. Moreover we have (cf. [Mom87, Page 271])

J+
0 (pq)

∼=Q
∏
M |N

∏
f∈NewM /GQ

Af . (6.1)

Hence End(J+
0 (pq)) ⊗ Q is a product of totally real fields. Consequently, Aut(X+

0 (pq)) is an
elementary abelian 2-group, i.e., Aut(X+

0 (pq))
∼= Z/2Z⊕ · · · ⊕ Z/2Z (cf. Corollary 9).

We know that wp(= wq) ∈ Aut(X+
0 (pq)). Since Aut(X+

0 (pq)) is an abelian group, any
u ∈ Aut(X+

0 (pq))\⟨wp, wq⟩ induces an automorphism on X∗
0 (pq). Recall that Aut(X∗

0 (pq)) is
trivial when N = pq not in Table 1. Therefore Aut(X+

0 (N)) ∼= Z/2Z for N = pq not in Table
1. When X+

0 (pq) is hyperelliptic, using MAGMA, we get

Aut(X+
0 (pq))

∼=

{
Z/2Z, for pq = 46, 62, 69, 87, 94,

Z/2Z× Z/2Z for pq = 57, 74, 77, 85, 91, 111, 143.

We now deal with the values of N = pq appearing in Table 1. Recall that for a curve X defined
overQ of genus≥ 2 and a prime l of good reduction, we have an injectionAutQ(X) ↪→ AutFl

(X).
Using MAGMA6 we see that the order of AutFl

(X+
0 (pq)) is always 2 for the values of N, l given in

the following table:

N l N l N l N l N l N l N l N l
58 3 65 2 82 3 86 3 93 2 106 3 115 2 118 3
122 3 123 2 129 2 133 2 134 3 141 2 142 5 145 3
146 3 155 2 158 3 159 2 161 3 166 3 177 2 178 3
183 2 205 2 206 5 209 3 213 2 215 2 221 2 249 2
287 3 299 3 303 2

Hence Aut(X+
0 (pq)) = ⟨wp⟩ = ⟨wq⟩, when X+

0 (pq) is non-hyperelliptic curve of genus ≥ 2.
Therefore we conclude the following theorem:

Theorem 37. Let N = pq, where p and q are two distinct primes. When g(X+
0 (N)) ≥ 2, then

Aut(X+
0 (N)) ∼=

{
Z/2Z× Z/2Z for N = 57, 74, 77, 85, 91, 111, 143,

Z/2Z, otherwise.

6.2 The Automorphism Group for X0(pq)/wp

Recall that p, q are two distinct primes and N = pq. Let A := Aut(X0(N)/wp). By Theorem
8, all automorphisms of X0(N)/wp are defined over Q. If g(X0(pq)/wp) ≥ 2, then by Theorem
34 we have an exact sequence

1 → ⟨wq⟩ → Aut(X0(pq)/⟨wp⟩) → Aut(X∗
0 (pq)). (6.2)

Since Aut(X∗
0 (pq)) is trivial when N = pq not in Table 1, from the exact sequence (6.2) we

conclude that Aut(X+
0 (N)) ∼= Z/2Z for N = pq not in Table 1.

Now consider the values of N = pq appearing in Table 1. Using MAGMA we see that the order
of AutFl

(X0(pq)/wp) is always 2 for the values of N, p, l given in the following table:

6For example, in MAGMA (online) use the code "#Automorphisms(ChangeRing(X0NQuotient(58,[58]),GF(3)));"
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(N, p) l (N, p) l (N, p) l (N, p) l (N, p) l (N, p) l
(57,19) 5 (58,2) 5 (65,5) 7 (65,13) 7 (74,2) 5 (74,37) 5
(77,7) 5 (77,11) 5 (82,2) 5 (82,41) 5 (85,5) 7 (85,17) 7
(86,2) 3 (86,43) 3 (91,7) 5 (91,13) 5 (93,3) 7 (93,31) 7
(106,2) 7 (106,53) 7 (111,3) 5 (111,37) 5 (115,5) 3 (115,23) 7
(118,2) 5 (118,59) 5 (122,2) 3 (122,61) 3 (123,3) 5 (123,41) 5
(129,2) 2 (129,61) 2 (133,7) 3 (133,19) 2 (134,2) 5 (134,67) 5
(141,3) 2 (141,47) 2 (142,2) 3 (143,11) 2 (143,13) 2 (145,5) 3
(145,29) 3 (146,2) 5 (146,73) 3 (155,5) 3 (155,31) 3 (158,2) 5
(158,79) 5 (159,3) 5 (159,53) 5 (161,7) 3 (161,23) 3 (166,2) 3
(166,83) 3 (177,3) 2 (177,59) 2 (178,2) 3 (178,89) 5 (183,3) 5
(183,61) 2 (205,5) 3 (205,41) 3 (206,2) 3 (206,103) 3 (209,11) 3
(209,19) 3 (213,3) 5 (213,71) 2 (215,5) 2 (215,43) 2 (221,13) 2
(221,17) 3 (249,3) 5 (249,83) 2 (287,7) 2 (287,41) 5 (299,13) 3
(299,23) 5 (303,3) 2 (303,101) 2

Since we have an embedding AutQ(X0(pq)/wp) ↪→ AutFl
(X0(pq)/wp) for primes l of good

reduction and g(X0(pq)/wp) ≥ 2, we conclude that

AutQ(X0(pq)/wp) ∼= Z/2Z, when X0(pq)/wp is non− hyperelliptic and g(X0(pq)/wp) ≥ 2.

When X0(pq)/wp is hyperelliptic, using MAGMA, we see that

Aut(X0(N)/wp) ∼=


Z/2Z for (N, p) ∈ {(33, 3), (35, 7), (38, 2), (39, 13), (46, 2), (51, 3), (55, 5),

(62, 2), (69, 3), (87, 3), (87, 29), (94, 2), (95, 5), (95, 19),

(119, 7), (119, 17)},
Z/2Z× Z/2Z for (N, p) ∈ {(57, 3), (58, 29), (142, 71)}.

Therefore we conclude that

Theorem 38. Let N = pq, where p and q are two distinct primes. When g(X0(N)/wp) ≥ 2,
then

Aut(X0(N)/wp) ∼=

{
Z/2Z× Z/2Z, for (N, p) ∈ {(57, 3), (58, 29), (142, 71)}
Z/2Z, otherwise.

7 On automorphism group for X0(N)/WN with N = pqr

In this section we compute the automorphism group of certain quotient curves of X0(pqr),
where p, q, r are distinct primes. Throughout this section we always assume that p, q, r denote
three distinct primes.

7.1 Automorphism group for X0(pqr)/⟨wpq, wr⟩ if g∗0(r) = 0

In this subsection, we compute automorphism group of X0(pqr)/⟨wpq, wr⟩.

Lemma 39. The Jacobian decomposition of X0(pqr)/⟨wpq, wr⟩ over Q has no repeated factors
if the genus of X∗

0 (r) is zero.
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Proof. By (2.2), if a factor Af corresponding to a newform f is a repeated factor in the Jacobian
decomposition of X0(pqr)/⟨wpq, wr⟩, then the conductor of f is a strict divisor of pqr. Now
using the results of [BaGo20, Lemma 2.1, Proposition 2.2] (see also arguments in the proof of
Corollary 19) we see that, under the assumption, f uniquely lifts to a modular form of level
pqr. Thus the Jacobian decomposition of X0(pqr)/⟨wpq, wr⟩ has no repeated factors.

Proposition 40. Consider the quotient modular curve X0(pqr)/⟨wpq, wr⟩ such that g
⟨wpq ,wr⟩
pqr ≥ 2

and g∗0(r) = 0. Then Aut(X0(pqr)/⟨wpq, wr⟩) = ⟨wp⟩ ∼= Z/2Z except for the following situations
(where non Atkin-Lehner type automorphisms appear):

pqr r Aut genus Hyper
102 2 Z/2Z× Z/2Z 2 Yes
114 2 Z/2Z× Z/2Z 2 Yes
138 2 Z/2Z× Z/2Z 2 Yes
165 11 Z/2Z× Z/2Z 3 Yes
195 3 Z/2Z× Z/2Z 3 No
195 5 Z/2Z× Z/2Z 3 Yes
238 2 Z/2Z× Z/2Z 3 No
154 2 Z/2Z× Z/2Z 4 No
231 7 Z/2Z× Z/2Z 4 No
285 3 Z/2Z× Z/2Z 4 No
286 2 Z/2Z× Z/2Z 4 No

There the levels 102, 114, 138, 165, 195 correspond to curves that are bielliptic and hyperel-
liptic quotient curves (i.e. they have a degree two morphism to an elliptic curve or a projective
line), and all levels with automorphism group bigger than Z/2Z correspond to bielliptic curves
(cf. [BaGoKa20]).

Proof. By the Lemma 39 and Corollary 9, all automorphisms are defined over Q and form an
abelian group, thus any non-trivial automorphism will provide a non-trivial automorphism of
X∗

0 (pqr). The group Aut(X∗
0 (pqr)) may not be trivial if the genus X∗

0 (pqr) ≤ 2 (such levels
are listed in [BaGo20, Appendix]) or a finite list obtained in [BaGo21], see Theorem 16. Thus
we are restricted to study a finite list of levels pqr (and of quotient curves). We denote the
collection of such levels by E . Applying the Magma code

“#Automorphisms(ChangeRing(X0NQuotient(p*q*r,[p*q,r]),GF(l)))”

we see that for some prime l ∤ prq, the automorphism group of X0(pqr)/⟨wpq, wr⟩ over the
finite field Fl has at most two elements, except the 11 cases discussed bellow (cf. Appendix
A). Therefore the full automorphism group over Q of the curves of the form X0(pqr)/⟨wpq, wr⟩
with g∗r = 0 is generated by the Atkin-Lehner involution, except for the following 11 quotient
curves where the automorphism group is of order at most 4. We denote the quotient curve
X0(pqr)/⟨wpq, wr⟩ by (pqr, r) and its genus by gpqr,r.

� When gpqr,r = 2, the curves we need to study further are (102, 2),(114, 3) and (138, 23).
By [BaGoKa20] these curves are bielliptic. Applying [BaGo19, Remark 10], we see that for
each such curve there are two bielliptic involutions v1, v2 and one hyperelliptic involution
w. Hence in each case, there are 3 non-trivial involutions i.e, the full automorphism group
is isomorphic to Z/2Z× Z/2Z.
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� When gpqr,r = 3, the curves we need to study further are (165, 11), (195, 5), (195, 3) and
(238, 2). The first two curves are hyperelliptic curves and by [BaGoKa20] they are also
bielliptic curves, thus its group is isomorphic to Z/2 × Z/2. For the remaining last two
situations, by use of Petri’s result and a model in P2 we have:

(pqr, r) Q(x, y, z)
(195, 3) x4 + x2y2 + y4 + x2z2 − 3y2z2 − z4

(238, 2) 2x4 + 3x2y2 + y4 − 3x2z2 − 5y2z2 + 2z4

Observe that for each curve the mappings x ↔ −x and y ↔ −y are automorphisms.
Consequently, for each curve the automorphism group contains two bielliptic involutions
and an involution whose quotient has genus 2. Therefore for the curves (195, 3) and
(238, 2) the automorphism group is isomorphic to Z/2Z× Z/2Z.

� When gpqr,r ≥ 4, the curves we need to study further are the genus 4 curves (154, 2),
(231, 7), (285, 3) and (286, 2). Note that such curves are bielliptic (cf. [BaGoKa20]).
Except (231, 7), the other three quotient curve have an involution (bielliptic) which is
not of Atkin-Lehner type (cf. [BaGoKa20]), thus its automorphism group is isomorphic
to Z/2Z × Z/2Z. The Jacobian decomposition over Q of the curve X0(231)/⟨w7, w33⟩ is
given by

Jac(X0(231)/⟨w7, w33⟩) ∼Q E11a× E21a× E77a× E77c.

Choosing the variables corresponding to the modular forms appearing in the above de-
composition, a canonical model for (231, 7) is given by

−29t2 − 8tx+ x2 − 27y2 + 63z2 = 0

3tx2 + 54x3 − 812ty2 + 224xy2 + 493tz2 + 38xz2 = 0.

The mappings y ↔ −y and z ↔ −z provide two bielliptic involutions with elliptic
quotients E21a and E77a respectively and the other involution has genus 2 quotient
curve.

7.2 The Automorphism group for X0(pqr)/⟨wpq⟩ if g∗0(r) = 0

Proposition 41. Let p, q, r be distinct primes such that g(X0(pqr)/⟨wpq⟩) ≥ 2 and g(X∗
0 (r)) =

0. Then Aut(X0(pqr)/⟨wpq⟩) ∼= Z/2Z× Z/2Z.
Proof. By Theorem 34, there is an exact sequence

1 → ⟨wr⟩ → Aut(X0(pqr)/⟨wpq⟩) → Aut(X0(pqr)/⟨wpq, wr⟩). (7.1)

Observe that if Aut(X0(pqr)/⟨wpq, wr⟩) ∼= Z/2Z, then from the exact sequence (7.1) we see
that

Aut(X0(pqr)/⟨wpq⟩) ∼= Z/2Z× Z/2Z.
By Proposition 40, we only need to consider the curves X0(pqr)/⟨wpq⟩ such that either

g(X0(pqr)/⟨wpq, wr⟩) ≤ 1 or

(pqr, pq) ∈
{
(102, 51), (114, 57), (138, 69), (165, 15), (195, 65), (195, 39), (238, 119), (154, 77),

(231, 33), (285, 95), (286, 143)
}

For such curves, the automorphism groups over finite fields are given in Appendix B. Now the
result follows from Appendix B.
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7.3 The automorphism groups of X0(pqr)/⟨wp, wq⟩ and X0(pqr)/⟨wp⟩
Proposition 42. Consider the quotient curves X0(pqr)/⟨wp, wq⟩ and X0(pqr)/⟨wp⟩ of genus
≥ 2, then its automorphism group is generated by Atkin-Lehner involutions except for the
following hyperelliptic and bielliptic curves (for simplicity we denote the curve X0(pqr)/⟨wp, wq⟩
by (pqr; p, q)):

genus Curve Aut
2 (190; 5, 19), (138; 3, 23), (102; 3, 17) Z/2Z× Z/2Z
3 (114; 2, 19), (130; 2, 13) Z/2Z× Z/2Z

Proof. By Proposition 7, all the automorphisms of X0(pqr)/⟨wp, wq⟩ or X0(pqr)/⟨wp⟩ are de-
fined over Q. Naturally, we can consider B(q1q2) = ⟨wq1 , wq2⟩ as a subgroup of B(pqr) where
qi are different primes in the set W = {p, q, r}. Write X = X0(pqr)/B(q1q2) which we assume
that has genus ≥ 2. By Theorem 34, we obtain the exact sequence (where q3 ∈ W \ {q1, q2}):

1 → ⟨wq3⟩ → Aut(X) → Aut(X∗
0 (pqr)).

If the automorphism group of X∗
0 (N) is trivial, then Aut(X) = ⟨wq3⟩. Consider the levels

N = pqr such that Aut(X∗
0 (pqr)) is non-trivial and the genus of X∗

0 (N) is ≥ 2. By [BaGo20]
we only need to consider the following levels N

g(X∗
0 (N)) = 2 154, 165, 170, 186, 230, 266, 285, 286, 357

g(X∗
0 (N)) = 3 246, 258, 290, 318, 430, 455

g(X∗
0 (N)) = 4 366, 370

g(X∗
0 (N)) = 5 645.

Moreover, we know |Aut(X∗
0 (N))| = 2, thus |Aut(X)| is either 4 or 2, or the genus of X∗

0 (N) is
≤ 1, i.e.

N ∈ {30, 42, 66, 70, 78, 105, 110} for g∗N = 0,

or N ∈ {102, 114, 130, 138, 174, 182, 190, 195, 222, 231, 238} for g∗N = 1.

Using Magma V2.27-7 we obtain:
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(N ; q1, q2) l #AutFl
(X) (N ; q1, q2) l #AutFl

(X)
(30; 2, q2) 7 2 (42; q1, q2) 11 2
q2 ∈ {3, 5} q1, q2 ∈ {2, 3, 7}
(66; q1, q2) 5 2 (70; q1, q2) 3 2

q1, q2 ∈ {2, 3, 11} (q1, q2 ∈ {2, 5, 7})
(78; q1, q2) 5 2 (102; 2, q2) 5 2

q1, q2 ∈ {2, 3, 13} q2 ∈ {3, 17}
(102; 3, 17) 5 4∗ (105; q1, q2) 11 2

q1, q2 ∈ {3, 5, 7}
(110; q1, q2) 3 2 (114; 3, q2) 7 2

q1, q2 ∈ {2, 5, 11} q2 ∈ {2, 19}
(114; 2, 19) 5 4∗ (130; 5, q2) 3 2

q2 ∈ {2, 13}
(130; 2, 13) 3 4∗ (138; 2, q2) 5 2

q2 ∈ {3, 23}
(138; 3, 23) 5 4* (154; q1, q2) 3 2

q1, q2 ∈ {2, 7, 11}
(165; q1, q2) 13 2 (170; q1, q2) 7 2

q1, q2 ∈ {3, 5, 11} q1, q2 ∈ {2, 5, 17}
(174; q1, q2) 5 2 (182; q1, q2) 3 2

q1, q2 ∈ {2, 3, 29} q1, q2 ∈ {2, 7, 13}
(186, q1, q2) 5 2 (190; 2, q2) 3 2

q1, q2 ∈ {2, 3, 31} q2 ∈ {5, 19}
(190; 5, 19) 7 4* (195; q1, q2) 7 2

q1, q2 ∈ {3, 5, 13}
(222, q1, q2) 5 2 (230; q1, q2) 7 2

q1, q2 ∈ {2, 3, 37} q1, q2 ∈ {2, 5, 23}
(231; q1, q2) 2 2 (238; q1, q2) 3 2

q1, q2 ∈ {3, 7, 11} q1, q2 ∈ {2, 7, 17}
(246; q1, q2) 5 2 (258; q1, q2) 5 2

q1, q2 ∈ {2, 3, 41} q1, q2 ∈ {2, 3, 43}
(266; q1, q2) 3 2 (285; q1, q2) 2 2

q1, q2 ∈ {2, 7, 19} q1, q2 ∈ {3, 5, 19}
(286; q1, q2) 3 2 (290; q1, q2) 3 2

q1, q2 ∈ {2, 11, 13} q1, q2 ∈ {2, 5, 29}
(318; q1, q2) 5 2 (357; q1, q2) 5 2

q1, q2 ∈ {2, 3, 53} q1, q2 ∈ {3, 7, 17}
(366; 61, q2) 5 2 (370; q1, q2) 3 2
q2 ∈ {2, 3} q1, q2 ∈ {2, 5, 37}
(430; 5, 43) 3 2 (430; 5, 2) 3 2
(430; 2, 43) 7 2 (455; q1, q2) 3 2

q1, q2 ∈ {5, 7, 13}
(645; 3, 43) 2 2 (645; 5, 43) 7 2

The genus 2 curves (190; 5, 19),(138; 3, 23) and (102; 3, 17) are both hyperelliptic and biel-
liptic (cf. [BaGoKa20, Page 399-400]). Hence for such curves the automorphism group is iso-
morphic to Z/2Z× Z/2Z.

The genus 3 quotient curves (114; 2, 19) and (130; 2, 13) both are hyperelliptic and bielliptic
(loc. cit.), thus in each case the automorphism group is isomorphic to Z/2Z× Z/2Z.
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By Corollary 24, we know that Aut(X0(645)/⟨w3, w5⟩) = ⟨w43⟩.
The only remaining case corresponds to the genus 15 curve (366; 2, 3) of even level 7. For-

tunately, its Jacobian has no repeated factors and thus the all automorphisms are involutions
defined over Q, and are acting as ±1 in each Q-isogeny factor in the Jacobian decomposition:

Jac(X0(366)/⟨w2, w3⟩) ∼Q 1E61a+361.2.a.b+1E122a+2122.2.a.b+2183.2.a.a+3183.2.a.b+1E366e+2366.2.a.h

by computing its canonical model, it is easy to check that the non-trivial involution of X∗
0 (366)

(recall that J∗
0 (366) ∼ 1E61a + 1E122a + 2183.2.a.a, and the only non-trivial involution of X∗

0 (366)
acts on J∗

0 (366) by ±(−1 × −1 × 1), giving a genus 2 quotient curve [BaGo21, Proposition
5], [BaGo19, Proposition 24]) does not lift to an involution ofX0(366)/⟨w2, w3⟩ (see all details in
the github folder https://github.com/FrancescBars/Files-on-Automorphism-Quotient-Curves),
and therefore Aut(X0(366)/⟨w2, w3⟩) = ⟨w61⟩.

Consider now the curves of the form X0(pqr)/⟨wp⟩, with genus ≥ 2. The automorphism
groups of all such quotient curves have an order 4 subgroup ⟨wq, wr⟩. and this will be the exact
group of automorphisms if Aut(X0(pqr)/⟨wp, wq⟩) has exact order 2 (or genus ≤ 1). Thus we
are reduced to a finite list of levels N = pqr. Computing by Magma the automorphism group
over a finite field of order ℓ with ℓ ∤ pqr for this finite list, we conclude that for each case the
full automorphism group is isomorphic to Z/2Z× Z/2Z.
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A List of results #AutFℓ(X0(pqr)/⟨wr, wpq⟩)
We denote the quotient curve X0(pqr)/⟨wpq, wr⟩ by (pqr, r), and we consider the finite field Fℓ

and compute #AutFℓ
((pqr, r)) by Magma (online version V2.28-4 if is not marked with *) for

all (pqr, r) such that has genus ≥ 2 and g∗0(r) = 0 with p,q and r are three diferent primes. We
denote by Aut the number #AutFℓ

((pqr, r)), and by Field the number ℓ in the next table.

7The computation by Magma of the automorphism group of (318; 2, 3) over F5 took more than 18 hours,
and for (366; 2, 3) took two days to conclude that over F5 the automorphism group has order 2, thus we prefer
to present how we deal with last curve using canonical model result on a genus 15 curve.
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Curve Field Aut Curve Field Aut Curve Field Aut
(66,3) 5 2 (70,7) 3 2 (78,13) 5 2
(102,2) 5 4 (102,3) 5 2 (102,17) 5 2
(105,7) 11 2 (110,5) 3 2 (114,2) 5 2
(114,3) 5 4 (114,19) 5 2 (130,2) 3 2
(130,5) 3 2 (130,13) 3 2 (138,2) 5 2
(138,3) 5 2 (138,23) 5 4 (154,2) 3 4
(154,7) 3 2 (154,11) 3 2 (165,3) 2 2
(165,5) 2 2 (165,11) 7 4 (170,5) 3 2
(170,2) 3 2 (170,17) 3 2 (174,2) 5 2
(174,3) 5 2 (174,29) 5 2 (182,2) 3 2
(182,7) 3 2 (182,13) 3 2 (186,2) 5 2
(186,3) 5 2 (186,31) 5 2 (190,2) 3 2
(190,5) 3 2 (190,19) 3 2 (195,3) 7 4
(195,5) 11 4 (195,13) 7 2 (222,2) 5 2
(222,3) 5 2 (230,2) 3 2 (230,5) 3 2
(230,23) 7 2 (231,3) 2 2 (231,7) 2 4
(231,11) 2 2 (238,2) 3 4 (238,7) 3 2
(238,17) 3 2 (246,2) 5 2 (246,3) 5 2
(246,41) 5 2 (255,3) 2 2 (255,5) 2 2
(255,17) 2 2 (258,2) 5 2 (258,3) 5 2
(266,2) 3 2 (266,7) 3 2 (266,19) 3 2
(285,3) 2 4 (285,5) 2 2 (285,19) 2 2
(286,2) 5 4 (286,11) 5 2 (286,13) 5 2
(290,2) 3 2 (290,5) 3 2 (290,29) 3 2
(318,2) 5 2 (318,3) 5 2 (357,3) 5 2
(357,7) 2 2 (357,17) 2 2 (366,2) 5 2
(366,3) 5 2 (370,2) 3 2 (370,5) 3 2
(430,2) 3 2 (430,5) 3 2 (455,5) 2 2
(455,7) 2 2 (455,13) 2 2 (645,3) 2 2
(645,5) 2 2*

B List of results #AutFl(X0(pqr)/⟨wpq⟩)
pqr pq Field Aut pqr pq Field Aut pqr pq Field Aut
30 10 7 4 42 6 11 4 42 21 11 4
66 6 13 4 66 33 13 4 70 14 13 4
70 35 13 4 78 26 19 4 78 39 19 4
102 51 19 4 105 21 19 4 105 35 19 4
110 10 3 4 110 55 7 4 114 57 7 4
138 69 7 4 165 15 7 4 195 65 7 4
195 39 7 4 238 119 5 4 154 77 5 4
231 33 5 4 285 95 7 4 286 143 3 4

C Inequality in Theorem 34 for n ≥ 4, q = 2

(2,39,13), (2,51,3), (2,55,5), (2,57,19), (2,65,5), (2,65,13), (2,69,3), (2,77,7), (2,77,11),
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(2,85,5,17), (2,87,3), (2,95,5), (2,115,23), (2,119,7), (2,165,3,5), (2,165,15,33)

Table 2: Values of (q,M,W ) that satisfy the inequality (5.22)

Curve Field Aut Curve Field Aut Curve Field Aut
(2,35,7) 3 4 (2,39,13) 5 4 (2,51,3) 7 4
(2,55,5) 3 4 (2,57,19) 5 4 (2,65,5) 3 4
(2,65,13) 3 4 (2,69,3) 5 4 (2,77,7) 3 4
(2,77,11) 3 4 (2,85,5,17) 3 2 (2,87,3) 5 4
(2,95,5) 3 4 (2,119,7) 3 4 (2,165,15,33) 7 4

Table 3: Remaining cases for n ≥ 4, q = 2

D Inequality in Theorem 34 for n = 3, q = 2

(2,33,33), (2,35,5), (2,37,37), (2,39,13), (2,43,43), (2,51,3), (2,55,5), (2,55,55), (2,57,19), (2,57,3,19),
(2,65,5), (2,65,13), (2,65,5,13), (2,67,67), (2,69,3), (2,77,7), (2,77,11), (2,77,7,11) (2,85,5),
(2,85,17), (2,85,5,17), (2,87,3), (2,91,7), (2,93,31), (2,93,3,31), (2,95,5) (2,105,3), (2,105,7),

(2,105,15), (2,105,3,5), (2,105,3,7), (2,105,7,15), (2,111,37), (2,115,5), (2,115,23), (2,115,5,23),
(2,119,7) (2,123,3), (2,129,43), (2,133,7), (2,143,11), (2,143,13) (2,159,3), (2,161,23), (2,163,163),

(2,165,3,5), (2,165,3,55), (2,165,5,33), (2,165,15,33), (2,165,3,5,11) (2,177,177), (2,183,61),
(2,185,5), (2,185,37), (2,187,11) (2,195,3,5), (2,195,3,13), (2,203,29), (2,209,11), (2,215,43),

(2,217,7), (2,231,3,7), (2,231,3,11), (2,235,5,47), (2,247,19) (2,253,11,23), (2,255,3,5), (2,255,5,17),
(2,265,5,53) (2,273,21,39), (2,273,3,7,13) (2,285,3,5), (2,285,3,19) (2,357,3,7), (2,357,7,51)

Table 4: Values of (q,M,W ) that satisfy the inequalities (5.35), (5.36) and (5.37)

Curve Field Aut Curve Field Aut Curve Field Aut
(2,33,33) 5 4 (2,35,5) 3 4 (2,37,37) 3 2
(2,39,13) 5 4 (2,43,43) 5 2 (2,51,3) 7 4
(2,55,5) 3 4 (2,55,55) 7 4 (2,57,19) 5 4

(2,57,3,19) 5 2 (2,65,5) 3 4 (2,65,13) 3 4
(2,65,5,13) 3 2 (2,67,67) 3 2 (2,69,3) 5 4
(2,77,7) 3 4 (2,77,11) 3 4 (2,77,7,11) 3 2
(2,85,5) 11 4 (2,85,17) 3 4 (2,85,5,17) 3 2
(2,87,3) 5 4 (2,91,7) 3 4 (2,93,31) 5 4

(2,93,3,31) 5 2 (2,95,5) 3 4 (2,105,3,5) 11 4
(2,105,3,7) 11 4 (2,105,7,15) 11 4 (2,115,5,23) 3 2
(2,119,7) 3 4 (2,165,3,5,11) 7 2

Table 5: Remaining cases for n = 3, q = 2
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E Inequality in Theorem 34 for n = 2, q = 3

(3,22,2), (3,22,22), (3,35,5), (3,35,7), (3,38,2), (3,46,2), (3,55,5), (3,62,2), (3,65,5),
(3,65,13), (3,65,5,13), (3,70,2,7), (3,77,11), (3,85,5), (3,85,17), (3,85,5,17), (3,91,7), (3,94,2),

(3,95,5), (3,110,2,5), (3,119,7), (3,143,11), (3,154,2,11), (3,190,5,38)

Table 6: Values of (q,M,W ) that satisfy the inequalities (5.40), (5.41) and (5.42)

Curve Field Aut Curve Field Aut Curve Field Aut
(3,22,2) 5 4 (3,22,22) 5 4 (3,35,5) 11 4
(3,35,7) 11 4 (3,38,2) 5 4 (3,46,2) 7 4
(3,55,5) 2 4 (3,62,2) 5 4 (3,65,5,13) 2 2
(3,70,2,7) 11 4 (3,77,11) 5 4 (3,85,5,17) 2 2
(3,110,2,5) 7 4 (3,119,7) 2 4

Table 7: Remaining cases for n = 2, q = 3

F Inequality in Theorem 34 for n = 2, q = 2

(2,15,3), (2,21,7), (2,33,3), (2,33,33), (2,35,5), (2,35,7), (2,37,37), (2,39,3), (2,39,13),
(2,43,43) (2,51,3), (2,51,51), (2,53,53), (2,55,5), (2,55,11), (2,55,55), (2,57,3), (2,57,19),

(2,57,57), (2,57,3,19) (2,65,5), (2,65,13), (2,65,5,13), (2,67,67), (2,69,3), (2,69,23), (2,69,69),
(2,73,73) (2,77,77), (2,77,7,11), (2,79,79), (2,85,17), (2,85,85), (2,85,5,17), (2,87,3),
(2,87,87), (2,91,7), (2,91,13), (2,91,7,13), (2,93,31), (2,93,3,31), (2,95,5), (2,95,19),
(2,103,103), (2,105,3,5), (2,105,3,7), (2,105,7,15), (2,107,107) (2,111,3), (2,111,3,37),
(2,115,23), (2,115,5,23), (2,119,7), (2,119,17) (2,123,123), (2,127,127), (2,129,3,43),

(2,133,7), (2,133,7,19), (2,143,11,13) (2,161,7,23), (2,165,5,11), (2,165,5,33), (2,165,11,15),
(2,165,3,5,11), (2,183,3,61), (2,185,5,37) (2,187,11,17), (2,195,5,39) (2,203,7,29), (2,215,5,43),

(2,217,7,31), (2,247,13,19) (2,255,3,5,17) (2,285,3,5,19) (2,335,5,67) (2,345,3,5,23) (2,385,5,7,11)

Table 8: Values of (q,M,W ) that satisfy the inequalities (5.46), (5.47) and (5.48)

Curve Field Aut Curve Field Aut Curve Field Aut
(2,33,33) 5 4 (2,35,5) 3 4 (2,37,37) 3 2
(2,39,3) 5 4 (2,39,13) 5 4 (2,43,43) 5 2
(2,51,3) 7 4 (2,51,51) 5 4 (2,53,53) 3 2
(2,55,5) 3 4 (2,55,11) 3 4 (2,55,55) 7 4
(2,57,3) 5 4 (2,57,19) 5 4 (2,57,57) 5 4

(2,57,3,19) 5 2 (2,65,5) 3 4 (2,65,13) 3 4
(2,65,5,13) 3 2 (2,67,67) 3 2 (2,69,3) 5 4
(2,69,23) 5 4 (2,69,69) 5 4 (2,73,73) 3 2
(2,77,77) 3 4 (2,77,7,11) 3 2 (2,79,79) 5 2
(2,85,17) 3 4 (2,85,85) 3 4 (2,85,5,17) 3 2
(2,87,3) 5 4 (2,87,87) 5 4 (2,91,7) 3 4
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(2,91,13) 5 4 (2,91,7,13) 3 2 (2,93,31) 5 4
(2,93,3,31) 5 3 (2,95,5) 3 4 (2,95,19) 3 4
(2,103,103) 3 2 (2,105,3,5) 11 4 (2,105,3,7) 11 4
(2,105,7,15) 11 4 (2,107,107) 3 2
(2,111,3,37) 5 2 (2,115,5,23) 3 2
(2,119,7) 3 4 (2,119,17) 3 4 (2,123,123) 5 4

(2,129,3,43) 5 2 (2,133,7,19) 3 2
(2,143,11,13) 3 2 (2,161,7,23) 3 2 (2,165,5,11) 7 4
(2,165,5,33) 7 4 (2,165,11,15) 7 4 (2,165,3,5,11) 7 2
(2,183,3,61) 5 2 (2,185,5,37) 7 2 (2,195,5,39) 7 4
(2,215,5,43) 3 2 (2,255,3,5,17) 7 2 (2,285,3,5,19) 7 2

Table 9: Remaining cases for n = 2, q = 2
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Centre de Recerca Matemàtica (CRM), C. dels Til.lers
08193 Bellaterra, Catalonia
Francesc.Bars@uab.cat

Tarun Dalal
Institute of Mathematical Sciences, ShanghaiTech University
393 Middle Huaxia Road, Pudong, Shanghai 201210, China
tarun.dalal80@gmail.com

39


	Introduction
	On the field of definition of the automorphism group
	Insights on involutions of X0(N)/WN
	N odd square-free and no repeated factors in J0WN(N)

	A computation bound for |Aut(X0(N)/WN)|
	On automorphisms group for square free N=Mq by reduction modulo q
	Automorphism Group of Quotient Curves of X0(pq)
	Automorphism Group of X0+(pq)
	The Automorphism Group for X0(pq)/wp

	On automorphism group for X0(N)/WN with N=pqr
	Automorphism group for X0(pqr)/wpq,wr if g0*(r)=0
	The Automorphism group for X0(pqr)/wpq if g0*(r)=0
	The automorphism groups of X0(pqr)/wp,wq and X0(pqr)/wp

	List of results #AutF(X0(pqr)/wr,wpq)
	List of results # AutFl(X0(pqr)/wpq)
	Inequality in Theorem 34 for n4, q = 2
	Inequality in Theorem 34 for n=3,q=2
	Inequality in Theorem 34 for n=2,q=3
	Inequality in Theorem 34 for n=2,q=2

