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GROUND STATE SOLUTIONS

OF THE SCHRÖDINGER–POISSON–SLATER EQUATION

WITH DOUBLE CRITICAL EXPONENTS

Chunyu Lei and Yutian Lei

Abstract: This paper is concerned with the Schrödinger–Poisson–Slater (SPS) equation with double
critical exponents. Such exponents appear in the Coulomb–Sobolev inequality, one being the Sobolev

exponent and the other being called the Coulomb exponent here. We study the existence of nontrivial

solutions of the SPS equation. This can be done by solving a variational problem with lack of com-
pactness which is caused by these two critical exponents. Although the concentration compactness

principle can be used to deal with the lack of compactness caused by the Sobolev exponent, it seems

difficult to handle the other lack of compactness caused by the Coulomb exponent. Here we employ
the Nehari–Pohozaev manifolds instead of the direct argument of concentration compactness on the

Coulomb–Sobolev space to overcome this difficulty and prove that the equation possesses ground

state solutions in these manifolds.
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1. Introduction

In this paper, we study the existence of positive solutions of the following
Schrödinger–Poisson–Slater (SPS) equation:

(1.1) −∆u+ (|x|α−n ∗ u2)u = µ|u|q−2u+ |u|2
∗−2u in Rn,

where n ≥ 3, α ∈ (0, n), 2∗ = 2n
n−2 , q := 8+2α

2+α , and µ > 0. Here we call 2∗ and q the

Sobolev exponent and the Coulomb exponent respectively. In equation (1.1), |x|α−n ∗
u2 is the repulsive Coulomb potential, which implies the Coulomb–Sobolev space is a
suitable work space (cf. [14]). The Coulomb–Sobolev space is

X1,α := {v ∈ D1,2(Rn); L(v) <∞},

with the norm ‖u‖ := ‖u‖X1,α = (‖∇u‖22 + [L(u)]
1
2 )

1
2 (cf. [19]), where

L(v) :=

∫
Rn

∫
Rn

v2(x)v2(y)

|x− y|n−α
dx dy

is the Coulomb energy of the wave. It is known that each solution of (1.1) is a critical
point of the energy functional J : X1,α → R, given by

J(u) =
1

2

∫
Rn
|∇u|2 dx+

1

4

∫
Rn

∫
Rn

u2(x)u2(y)

|x− y|n−α
dx dy

− µ

q

∫
Rn
|u|q dx− 1

2∗

∫
Rn
|u|2

∗
dx.
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Here 2∗ and q are two critical end points of the admission interval of p in the Coulomb–
Sobolev inequality

(1.2) ‖φ‖pp ≤ C‖∇φ‖
p(n+α)−4n

4+α−n
2 [L(φ)]

2n−p(n−2)
2(4+α−n)

with n 6= 4 + α, where

(1.3)



p ∈
[

2(4 + α)

2 + α
,∞
)
, n = 2,

p ∈
[

2(4 + α)

2 + α
,

2n

n− 2

]
, 3 ≤ n < 4 + α,

p ∈
[

2n

n− 2
,

2(4 + α)

2 + α

]
, n > 4 + α.

The best constant of (1.2) is helpful to estimate the lower bound of the Coulomb en-
ergy (cf. [4] and [13]). To obtain the best constant, one can consider the minimization
problem

(1.4) inf
φ6=0

‖∇φ‖
p(n+α)−4n

4+α−n
2 [L(φ)]

2n−p(n−2)
2(4+α−n)

‖φ‖pp
.

In [2] and [3], the authors proved that (1.4) is attained under the assumption (1.3).
The Euler–Lagrange equation is

(1.5) −∆u+ (|x|α−n ∗ u2)u = µ|u|p−2u in Rn,

where n ≥ 2, α ∈ (0, n), and µ > 0 is the so-called Slater constant.
Systems (1.1) and (1.5) appear in various physical frameworks, such as plasma

physics, semiconductor physics, and the Hartree–Fock theory (cf. [5, 13, 16] and the
references therein). There is a series of analytical results on the Schrödinger–Poisson
systems in the literature (see [1, 8, 9, 20, 21, 24] and many others).

When n = 3, α = 2 (now 2∗ = 6 and q = 3), Ianni and Ruiz ([11]) studied the
following version of the Schrödinger–Poisson–Slater equation:

(1.6) −∆u+

(
u2 ∗ 1

4π|x|

)
u = µ|u|p−2u in R3.

With the help of the ‘monotonicity trick’, a positive ground state solution was ob-
tained when 3 < p < 6. When p = 3 (i.e., p is equal to the Coulomb exponent q),
(1.6) has no solution if µ is suitably small. A natural question is whether (1.6) has
a nontrivial solution for large µ. In addition, Ruiz ([19]) investigated the existence
of ground state solutions with the radial structure when 18

7 < p < 3. Now, the
Coulomb exponent is q̄ = 18/7 instead of q = 3. Following the ideas in [18] and [22],
the authors of paper [12] studied the higher-dimensional version of the Schrödinger–
Poisson–Slater equation (1.5) where p belongs to the intervals in (1.3). Under the
assumption q < p < 2∗ when n < 4 +α, or 2∗ < p < q when n > 4 +α, they obtained
a ground state solution of the Nehari–Pohozaev type.

In 2019, Liu, Zhang, and Huang studied the following equation of the Schrödinger–
Poisson–Slater type with the Sobolev exponent and the subcritical exponent ([17]):

(1.7) −∆u+

(
u2 ∗ 1

|4πx|

)
u = µ|u|p−2u+ |u|4u in R3,

where µ > 0. The main results are listed as follows. When p ∈ (3, 6), they obtained
the existence of positive ground state solutions. They also studied the existence of
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radial solutions. When p = 3, they obtained the existence of radial solutions in radial
space X1,2

rad by the constrained minimization method provided µ is suitably large.
When p ∈ (18/7, 3) and µ ∈ (0, µ∗) with some µ∗ > 0, they proved the existence
of radial solutions. The analogous results were generalized to the equation with the
fractional Laplacian (cf. [10]).

When p = 3 and µ is suitably small, it is unknown whether (1.7) has nontrivial
solutions without the radial structure. This is the main motivation of this paper. In
addition, we are concerned with the existence of nontrivial solutions (which are not
limited to radial structure) of higher-dimensional equation (1.1), because there are
many differences between the case of 3 ≤ n < 4 + α and the case of n > 4 + α.

Now our main results in this paper are stated as follows. Set

(1.8) M± := {u ∈ X1,α\{0} : I±(u) = 0},

where

I±(u) :=
1

2

∫
Rn
|∇u|2 dx+

1

4
L(u)− 1

q
µ

∫
Rn
|u|q dx∓ 2∗ − nb

q − nb
1

2∗

∫
Rn
|u|2

∗
dx,

with b = 2
2+α .

Theorem 1.1. Let n ≥ 4, α ∈ (0, n), 2∗ = 2n
n−2 , q := 8+2α

2+α , and let µ > 0 be suitably
small. Then

(i) (1.1) has a ground state solution in M+ when 4 ≤ n < 4 + α,

(ii) (1.1) has a ground state solution in M− when n > 4 + α.

In addition, these ground state solutions are the L2∗
(Rn)-limit of some minimizing

sequence of J in M±.

Clearly, the following two embedding results

X1,α ↪→ L2∗
(Rn), X1,α ↪→ Lq(Rn)

are not compact. Applying the concentration compactness principle, we can only
obtain the strong convergence of minimizing sequence {um} in L2∗

loc(Rn) when 3 ≤
n < 4+α. Here the best Sobolev constant S comes into play to estimate the threshold
value of J , because the test function can be chosen as the extremal function of the
Sobolev inequality. Now, q < 2∗ and hence the Lqloc(Rn) convergence of um also holds
to ensure the limit of J(um) makes sense. When n > 4 + α (which implies q > 2∗),
Lqloc(Rn) convergence of um is not natural any more if we use S to estimate the
threshold value of J . The best constant of the Coulomb–Sobolev inequality may be
suitable to estimate the threshold value of J . However, we do not know whether the
extremal functions exist or not when p in (1.2) is equal to 2∗ or q (cf. Theorem 2.2
in [2]). Therefore, it seems difficult to take the test functions to estimate the threshold
value of J . Consequently, it is not easy to prove that the limit of the minimizing
sequence of J is the critical point in X1,α. In this paper, we adopt a new approach to
take place of the direct argument of the concentration compactness on X1,α. Here,
the Pohozaev-type identity P(u) = 0 plays a key role, where

P(u) :=
n− 2

2

∫
Rn
|∇u|2 dx+

n+ α

4
L(u)− µn

q

∫
Rn
|u|q dx− n

2∗

∫
Rn
|u|2

∗
dx.

We will apply this Pohozaev-type identity to construct suitable constraint manifolds
to find the nontrivial solutions of (1.1).
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Finally, we consider ground states in the radial space. Set

X1,α
rad = {v ∈ X1,α; v is a radially symmetric function}

with the same norm from X1,α. Define

M̃± := {u ∈ X1,α
rad\{0} : I±(u) = 0}.

Now, the embedding

(1.9) X1,α ↪→ L
8+2α
2+α (Rn)

is compact if α ∈ (1, n) (cf. Theorem 1.5 in [3]). So we can prove the following theorem.

Theorem 1.2. Let n ≥ 4, α ∈ (0, n), 2∗ = 2n
n−2 , q := 8+2α

2+α , and let µ > 0 be suitably

small. Then the conclusions (i)-(ii) of Theorem 1.1 still hold when M± is replaced

with M̃±. Furthermore, if α ∈ (1, n), those ground state solutions are the X1,α
rad -limits

of some minimizing sequence of J in M̃±.

Remark 1.3. When µ = 0, equation (1.1) has no nontrivial solution. Indeed, suppos-
ing that u is a solution of equation (1.1) with n 6= 4 + α, there holds 〈J ′(u), u〉 = 0.
Combining with P(u) = 0 yields

n− 2

2

∫
Rn
|∇u|2 dx+

n+ α

4
L(u)− n

2∗

∫
Rn
|u|2

∗
dx = 0,

∫
Rn
|∇u|2 dx+ L(u)−

∫
Rn
|u|2

∗
dx = 0.

Consequently, (
n+ α

4
− n− 2

2

)
L(u) =

4 + α− n
4

L(u) = 0.

This implies that u = 0.

Remark 1.4. When µ > 0, it seems difficult to prove the X1,α-convergence of (PS)-
sequences because of q = 8+2α

2+α < 4, where 4 is the order of L(u). In addition, when

α = 2, n = 3, and p = q(= 3), the authors of [17] pointed out that the perturbation
method and the monotonicity trick technique are invalid even though µ is suitably
large. So they studied the existence of (1.1) in the radial spaceX1,α

rad . Here Theorem 1.1
shows that we can find a nontrivial solution of (1.1) in X1,α when p = q. Although we
do not know whether this solution is the X1,α-limit of the (PS)-sequence, Theorem 1.2
shows that the radial solution is.

Remark 1.5. According to Section 1.4 in [3], when α ∈ (1, n), one end point of the
admissible interval of p in (1.3) changes from q to q̄ := 2(5n − 4 − α)/(3n − 4 + α).
(In particular, q̄ = 18/7 when n = 3 and α = 2.) Thus, the new admissible interval
becomes larger and q belongs to the new interval. Equation (1.1) is not the double
critical problem any more. The argument in this paper may be helpful to understand
the existence of the new double critical problem (1.1) where q is replaced with q̄ in
the radial space.

2. Nehari–Pohozaev manifold

In this section, we follow the ideas in [18] and [22] to introduce some properties
of the Nehari–Pohozaev manifold related to the functional J .

We first establish the following result.

Lemma 2.1. The functional J is unbounded from below.



Schrödinger–Poisson–Slater equation 477

Proof: Let u ∈ X1,α, and u±t = t±1u(t±bx), where b = 2
2+α and t > 0.

By the standard scaling we have∫
Rn
|∇u±t |2 dx = t±q∓nb

∫
Rn
|∇u|2 dx, L(u±t ) = t±q∓nbL(u),

and ∫
Rn
|u±t |q dx = t±q∓nb

∫
Rn
|u|q dx,

∫
Rn
|u±t |2

∗
dx = t±2∗∓nb

∫
Rn
|u|2

∗
dx.

Hence,

J(u±t ) =
1

2

∫
Rn
|∇u±t |2 dx+

1

4
L(u±t )− µ

q

∫
Rn
|u±t |q dx−

1

2∗

∫
Rn
|u±t |2

∗
dx

=
t±q∓nb

2

∫
Rn
|∇u|2 dx+

t±q∓nb

4
L(u)− µt±q∓nb

q

∫
Rn
|u|q dx

− t±2∗∓nb

2∗

∫
Rn
|u|2

∗
dx.

When 3 ≤ n < 4 + α, we see 2∗ > q > nb. Therefore, J(u+
t ) → −∞ as t → +∞.

When n > 4 + α, we see 2∗ < q < nb. Therefore, J(u−t )→ −∞ as t→ +∞.

This result implies that we have to search for the ground state under some con-
straint conditions. So we will introduce a restriction manifold.

For introducing the suitable constraint conditions, we observe the following result.

Lemma 2.2. Set

ϕ±(t) := t±q∓nb
[

1

2

∫
Rn
|∇u|2 dx+

1

4
L(u)− µ

q

∫
Rn
|u|q dx

]
− t±2∗∓nb

2∗

∫
Rn
|u|2

∗
dx,

where t ≥ 0, u ∈ M+ when 3 ≤ n < 4 + α, and u ∈ M− when n > 4 + α. Then
both ϕ+ with 3 ≤ n < 4 + α and ϕ− with n > 4 + α have their unique critical points,
corresponding to their maximum.

Proof: Since u ∈M+ when 3 ≤ n < 4 + α and u ∈M− when n > 4 + α, we have

1

2

∫
Rn
|∇u|2 dx+

1

4
L(u)− µ

q

∫
Rn
|u|q dx =

2∗ − nb
q − nb

1

2∗

∫
Rn
|u|2

∗
dx > 0.

Therefore, when 3 ≤ n < 4 + α,

ϕ+(t)→ 0+ as t→ 0+, and ϕ+(t)→ −∞ as t→ +∞.
Similarly, when n > 4 + α,

ϕ−(t)→ 0+ as t→ 0+, and ϕ−(t)→ −∞ as t→ +∞.
Noting ϕ(0) = 0, we see that ϕ+ has a unique positive critical point when 3 ≤ n <
4 + α. Similarly, ϕ− has a unique positive critical point when n > 4 + α. The proof
of Lemma 2.2 is completed.

Write u±t = t±1u(t±bx), with b = 2
2+α and t > 0. By the proof of Lemma 2.1, there

holds
ϕ±(t) = J(u±t ).

By Lemma 2.2, if u is a critical point of J on M±, the maxima of ϕ+(t) with 3 ≤
n < 4 + α and ϕ−(t) with n < 4 + α should be achieved at t = 1 and [ϕ±]′(1) = 0.
Noting

I±(u) = (q − nb)−1[ϕ±]′(1),

we know that M± defined in (1.8) makes sense.
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Obviously, M± 6= ∅. Indeed, for any given v 6= 0, the proof of Lemma 2.2 shows
that there exists t > 0 such that vt ∈M±. Moreover, the curve Γ = {ut}t∈R intersects
with manifoldsM± (whereM± are C1-manifolds (see Lemma 2.3)), and J |Γ attains
its maximum along Γ at the point u. If u is a mountain pass type solution of (1.1), it
is natural to look for the minimizers of J in M±. In addition, if u is a critical point
of J , it satisfies the Pohozaev identity P(u) = 0. By a simple calculation, we get

(2.1) (4 + α− n)bI±(u) = ±〈J ′(u), u〉 ∓ bP(u)

with b = 2
α+2 . Therefore, M± are called the Nehari–Pohozaev manifolds. In this

paper, we will look for nontrivial solutions of (1.1) in the Nehari–Pohozaev mani-
folds M+ with 3 ≤ n < 4 + α and M− with n > 4 + α.

Next, we have the following result.

Lemma 2.3. When 3 ≤ n < 4 + α, M+ is a C1-manifold, and every critical point
of J in M+ is a critical point of J in X1,α. When n > 4 + α, if we replace M+

with M−, the conclusion above still holds.

Proof: We proceed by three steps.

Step 1. We claim J > 0.
In fact, for any u ∈M+ with 3 ≤ n < 4 + α, there holds

J(u) =
1

2

∫
Rn
|∇u|2 dx+

1

4
L(u)− µ

q

∫
Rn
|u|q dx− 1

2∗

∫
Rn
|u|2

∗
dx

=
1

2∗
2∗ − nb
q − nb

∫
Rn
|u|2

∗
dx− 1

2∗

∫
Rn
|u|2

∗
dx

=
1

2∗
2∗ − q
q − nb

∫
Rn
|u|2

∗
dx > 0.

(2.2)

Similarly, for any u ∈M− with n > 4 + α, there holds

J(u) =
1

2

∫
Rn
|∇u|2 dx+

1

4
L(u)− µ

q

∫
Rn
|u|q dx− 1

2∗

∫
Rn
|u|2

∗
dx

=
1

2∗
−2∗ + nb

−q + nb

∫
Rn
|u|2

∗
dx− 1

2∗

∫
Rn
|u|2

∗
dx

=
1

2∗
q − 2∗

nb− q

∫
Rn
|u|2

∗
dx > 0.

(2.3)

Step 2. We claim that M+ with 3 ≤ n < 4 + α and M− with n > 4 + α are C1-
manifolds.

In fact, by the implicit function theorem, it is sufficient to prove that [I±]′(u) 6= 0
for any u ∈ M+ with 3 ≤ n < 4 + α and u ∈ M− with n > 4 + α. We prove it by
argument of contradiction. Specifically, suppose that [I±]′(u) = 0 for some u+ ∈M+

with 3 ≤ n < 4 + α or u− ∈M− with n > 4 + α. Thus, in a weak sense there holds

(2.4) −∆u± + (|x|α−n ∗ u2
±)u± = µ|u±|q−2u± ±

2∗ − nb
q − nb

|u±|2
∗−2u±.

Multiplying (2.4) by u± and integrating, we have

(2.5)

∫
Rn
|∇u±|2 dx+ L(u±)− µ

∫
Rn
|u±|q dx∓

2∗ − nb
q − nb

∫
Rn
|u±|2

∗
dx = 0.
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The Pohozaev identity corresponding to equation (2.4) is

n− 2

2

∫
Rn
|∇u±|2 dx+

n+ α

4
L(u±)− µn

q

∫
Rn
|u±|q dx

∓ n

2∗
2∗ − nb
q − nb

∫
Rn
|u±|2

∗
dx = 0.

(2.6)

It follows from I±(u±) = 0 (which is implied by u± ∈M±) that

n

2

∫
Rn
|∇u±|2 dx+

n

4
L(u±)− µn

q

∫
Rn
|u±|q dx∓

n

2∗
2∗ − nb
q − nb

∫
Rn
|u±|2

∗
dx = 0.

Therefore, by (2.6),

(2.7)

∫
Rn
|∇u±|2 dx =

α

4
L(u±).

Multiplying (2.5) by q−1 and applying I±(u±) = 0, we have(
1

2
− 1

q

)∫
Rn
|∇u±|2 dx+

(
1

4
− 1

q

)
L(u±) = ±

(
1

2∗
− 1

q

)
2∗ − nb
q − nb

∫
Rn
|u±|2

∗
dx.

Inserting (2.7) into the equation above, we obtain

(2.8)
q(2 + α)− 2α− 8

8q
L(u±) = ±

(
1

2∗
− 1

q

)
2∗ − nb
q − nb

∫
Rn
|u±|2

∗
dx.

In view of q = 8+2α
2+α , there hold q(2+α)−2α−8

8q = 0 and
(

1
2∗ − 1

q

)
2∗−nb
q−nb 6= 0. Therefore,

(2.8) leads to a contradiction. Thus, M± are C1-manifolds.

Step 3. We claim that the critical points of J inM+ with 3 ≤ n < 4 +α and inM−
with n > 4 + α are critical points of J in X1,α.

(1) Case of 3 ≤ n < 4 + α.
Assume that u is a critical point of J in M+; there exists a Lagrange multiplier λ

such that

J ′(u) = λ(I+)′(u).

It can be written, in a weak sense, as

−∆u+ (|x|α−n ∗ u2)u− µ|u|q−2u− |u|2
∗−2u

= λ

[
−∆u+ (|x|α−n ∗ u2)u− µ|u|q−2u− 2∗ − nb

q − nb
|u|2

∗−2u

]
.

That is,

(2.9) −(1−λ)∆u+(1−λ)(|x|α−n∗u2)u = (1−λ)µ|u|q−2u+

(
1− 2∗ − nb

q − nb
λ

)
|u|2

∗−2u.

It remains to prove λ = 0.
Denote

T =

∫
Rn
|∇u|2 dx, B = µ

∫
Rn
|u|q dx, C =

∫
Rn
|u|2

∗
dx.
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Clearly, λ 6= 1 (otherwise, (2.9) implies u ≡ 0). We can establish the following system:

(2.10)



I+(u) =
1

2
T +

1

4
L(u)− 1

q
B − 1

2∗
2∗ − nb
q − nb

C = 0,

T + L(u)− B − 1

1− λ

(
1− 2∗ − nb

q − nb
λ

)
C = 0,

n− 2

2
T +

n+ α

4
L(u)− n

q
B − 1

1− λ

(
1− 2∗ − nb

q − nb
λ

)
n

2∗
C = 0,

where the second equation follows by multiplying (2.9) by u and integrating, and the
third one is the Pohozaev identity corresponding to equation (2.9).

Combining the first and the third equations in (2.10), we have

(2.11) T =
α

4
L(u) +

n

2∗

[
2∗ − nb
q − nb

− 1

1− λ
+

2∗ − nb
q − nb

λ

1− λ

]
C.

The second equation in (2.10) can be rewritten as

(2.12)
1

q
T +

1

q
L(u)− 1

q
µ

∫
Rn
|u|q dx− 1

1− λ

(
1− 2∗ − nb

q − nb
λ

)
1

q
C = 0.

It follows from (2.12) and the first equation in (2.10) that

(2.13)
q − 2

2q
T +

q − 4

4q
L(u) = F (u),

where

F (u) =

[
1

2∗
2∗ − nb
q − nb

− 1

1− λ

(
1− 2∗ − nb

q − nb
λ

)
1

q

]
C.

Thus by (2.11) and (2.13) we see that

(2.14)
q(2 + α)− 2α− 8

8q
L(u) = F (u)−G(u),

where

G(u) =
q − 2

2q

n

2∗

(
2∗ − nb
q − nb

− 1

1− λ
+

2∗ − nb
q − nb

λ

1− λ

)
C.

In view of q = 8+2α
2+α , it follows from (2.14) that

F (u) = G(u).

Specifically,

1

2∗
2∗ − nb
q − nb

− 1

1− λ

(
1− 2∗ − nb

q − nb
λ

)
1

q
=
q − 2

2q

n

2∗

(
2∗ − nb
q − nb

− 1

1− λ
+

2∗ − nb
q − nb

λ

1− λ

)
.

This is equivalent to

1

2∗
2∗ − nb
q − nb

(1− λ)− 1

q

(
1− 2∗ − nb

q − nb
λ

)
=
q − 2

2q

n

2∗

(
2∗ − nb
q − nb

(1− λ)− 1 +
2∗ − nb
q − nb

λ

)
.

To solve λ, we rewrite the result above as

(2.15)

(
1

q
− 1

2∗

)
2∗ − nb
q − nb

λ+Kq,n,b = 0,

where

Kq,n,b =
1

2∗
2∗ − nb
q − nb

− 1

q
− n

2∗
q − 2

2q

2∗ − nb
q − nb

+
q − 2

2q

n

2∗
.
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By computing, we have

Kq,n,b =
1

2∗
2∗ − nb
q − nb

− 1

q
− n

2∗
q − 2

2q

2∗ − nb
q − nb

+
q − 2

2q

n

2∗

=
1

2∗
2∗ − nb
q − nb

(
1− n(q − 2)

2q

)
+
n(q − 2)− 2 · 2∗

2 · 2∗q

=
1

2∗
2∗ − nb
q − nb

(
1− n(q − 2)

2q
+
n(q − 2)− 2 · 2∗

2q

q − nb
2∗ − nb

)

=
1

2∗
2∗ − nb
q − nb

2q(2∗ − nb)− n(q − 2)(2∗ − nb) + (q − nb)[n(q − 2)− 2 · 2∗]
2q(2∗ − nb)

=
1

2∗
2∗ − nb
q − nb

−2qnb+ (q − 2∗)(nq − 2n) + 2 · 2∗nb
2q(2∗ − nb)

=
n

2∗
2∗ − nb
q − nb

−2qb+ (q − 2∗)(q − 2) + 2 · 2∗b
2q(2∗ − nb)

=
n

2∗
2∗ − nb
q − nb

2b(2∗ − q) + (q − 2∗)(q − 2)

2q(2∗ − nb)

=
n

2∗
2∗ − nb
q − nb

(2∗ − q)(2b− q + 2)

2q(2∗ − nb)

= 0,

where we use the fact 2b − q + 2 = 4
2+α + 2 − 8+2α

2+α = 0. Consequently, it follows

from (2.15) that

λ ≡ 0.

Therefore, we conclude that J ′(u) = 0 for n ≥ 3, i.e., u is a critical point of J .

(2) Case of n > 4 + α.
Assume that u is a critical point of J inM−. There exists the Lagrange multiplier λ

such that J ′(u) = λ(I−)′(u), which implies

−(1− λ)∆u+ (1− λ)(|x|α−n ∗ u2)u = µ(1− λ)|u|q−2u+

(
1− −2∗ + nb

−q + nb
λ

)
|u|2

∗−2u.

We see that λ 6= 1, and it remains to prove λ = 0.
By the same derivation as in (2.10), we can see that

(2.16)



1

2
T +

1

4
L(u)− 1

q
B − 1

2∗
−2∗ + nb

−q + nb
C = 0,

T + L(u)− B − 1

1− λ

(
1− −2∗ + nb

−q + nb
λ

)
C = 0,

n− 2

2
T +

n+ α

4
L(u)− n

q
B − 1

1− λ

(
1− −2∗ + nb

−q + nb
λ

)
n

2∗
C = 0.

It follows from the first and the second equations in (2.16) that

(2.17)
1

4
L(u) =

(
1

2
− 1

q

)
B +

[
1

2(1− λ)

(
1− −2∗ + nb

−q + nb
λ

)
− 1

2∗
−2∗ + nb

−q + nb

]
C.
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Applying the third and the second equations in (2.16), we have

n− 4− α
4

L(u) =
n− 2

2
B − n

q
B

+
n− 2

2(1− λ)

(
1− −2∗ + nb

−q + nb
λ

)
C − 1

1− λ

(
1− −2∗ + nb

−q + nb
λ

)
n

2∗
C

=
(n− 2)q − 2n

2q
B.

It follows from this result and (2.17) that[
1

2(1− λ)

(
1−−2∗ + nb

−q + nb
λ

)
− 1

2∗
−2∗ + nb

−q + nb

]
C = l

[
1

q
− 1

2
+

1

n− 4− α
(n− 2)q − 2n

2q

]
B.

That is, [
1

2

(
1− −2∗ + nb

−q + nb
λ

)
− 1

2∗
−2∗ + nb

−q + nb
(1− λ)

]
C

=

[
1

q
− 1

2
+

1

n− 4− α
(n− 2)q − 2n

2q

]
(1− λ)B.

(2.18)

In view of −2∗+nb
−q+nb = n

n−2 , we have

1

2

(
1− −2∗ + nb

−q + nb
λ

)
− 1

2∗
−2∗ + nb

−q + nb
(1− λ) =

1

2

(
1− n

n− 2
λ

)
− 1

2∗
n

n− 2
(1− λ)

=
1

2

(
1− n

n− 2
λ

)
− 1

2
(1− λ)

=
1

2

(
1− n

n− 2

)
λ

=
1

n− 2
λ.

On the other hand, noting (n− 2)q − 2n = (8+2α)(n−2)
2+α − 2n = 4(n−4−α)

2+α , we get

1

q
− 1

2
+

1

n− 4− α
(n− 2)q − 2n

2q
=

2 + α

8 + 2α
− 1

2
+

2

8 + 2α
= 0.

From the information above and (2.18), we obtain 1
n−2λC = 0. Consequently, we

conclude that

λ ≡ 0.

Therefore, we obtain J ′(u) = 0, i.e., u is a critical point of J . The proof is completed.

Remark 2.4. Comparing with Step 4 in the proof of Lemma 5 in [12], we find (2.10) is
more complicated than (12) in [12], because the functional I±(u) contains four terms.
From the algebraic structure of (2.10), it seems difficult to determine the value of λ.
Thanks to the fact that q is the Coulomb exponent, we can also deduce that λ = 0
here.

Remark 2.5. All the results above are still true if we replace M± with M̃±.
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3. Minimizing sequence

Hereafter, u ∈ M+ means u ∈ M+ with 3 ≤ n < 4 + α, and u ∈ M− means u ∈
M− with n > 4 + α.

By Step 1 in the proof of Lemma 2.3, we can find a minimizing sequence {um} of J
in M±. Specifically,

(3.1) J(um)→ inf
M±

J as m→∞.

Therefore, using the same calculations as in (2.2) and (2.3), and noting 1
2∗

2∗−q
q−nb = 1

n ,

we can deduce from um ∈M± that

(3.2)
1

n

∫
Rn
|um|2

∗
dx→ inf

M±
J (m→∞).

Lemma 3.1. Let n ≥ 3 and α ∈ (0, n). Assume that {um} is the minimizing sequence
of J in M±. Then, for suitably small µ > 0, we can find a subsequence of {um}
denoted by itself such that {um} is bounded in X1,α.

Proof: Clearly, um ∈M± implies I±(um) = 0. In particular,

1

2
‖∇um‖22 +

1

4
L(um)− µ

q
‖um‖qq −

1

2∗
2∗ − nb
q − nb

‖um‖2
∗

2∗ = 0.

Combining with (3.2) yields

1

2
‖∇um‖22 +

1

4
L(um) ≤ µ

q
‖um‖qq + C.

Applying (1.2) and the Young inequality, and noting that µ is suitably small, we have

(3.3) ‖um‖X1,α ≤ C∗.

Here C∗ > 0 is an absolute constant (independent of m). By (1.2), from (3.3) it follows
that

(3.4) ‖∇um‖22 + L(um) + ‖um‖qq + ‖um‖2
∗

2∗ ≤ C.

By Lemma 3.1 and the Ekeland variational principle (see Theorem 8.5 in [23]),
there exist a subsequence of {um} (denoted by itself) and {λm} ⊂ R such that

(3.5) J ′(um)− λmI ′(um)→ 0 as m→∞.

Obviously, Φm(um) := J(um)− λmI(um)→ infM± J as m→∞. Therefore, {um} is
a bounded (PS)c-sequence of Φm.

Lemma 3.2. The infimum of J on the constraints M± is strictly positive, and the
Lagrange multiplier λm 6= 1 in (3.5) for all m.
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Proof: We first claim that the infimum of J on the constraintsM± is strictly positive.
Indeed, since 0 6∈ M±, and um ∈ M±, by the Coulomb–Sobolev, the Sobolev and
the Young inequalities, we have

1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)≤ µ

q

∫
Rn
|um|q dx+

2∗ − nb
q − nb

1

2∗

∫
Rn
|um|2

∗
dx

≤ Cqµ
(∫

R2

|∇um|2 dx
) α

2+α

[L(um)]
2

2+α +C

(∫
Rn
|∇um|2 dx

)2∗
2

≤ C1µ

∫
Rn
|∇um|2 dx+C2µL(um)+C

(∫
Rn
|∇um|2 dx

)2∗
2

,

where C1, C2, and C are positive constants. Then(
1

2
− C1µ

)∫
Rn
|∇um|2 dx+

(
1

4
− C2µ

)
L(um) ≤ C

(∫
Rn
|∇um|2 dx

) 2∗
2

.

Since µ is small enough and um 6≡ 0, from the above inequality we deduce

(3.6)

∫
Rn
|∇um|2 dx ≥ c > 0.

The above inequalities also imply that

0 < c

(
1

2
− C1µ

)
<

(
1

2
− C1µ

)∫
Rn
|∇um|2 dx

≤
(

1

2
− C1µ

)∫
Rn
|∇um|2 dx+

(
1

4
− C2µ

)
L(um)

≤ 2∗ − nb
q − nb

1

2∗

∫
Rn
|um|2

∗
dx

→ n

2
inf
M±

J.

Therefore, infM± J > 0.
In the following we prove λm 6= 1. It follows from (3.5) that, when m→∞,

(1− λm)‖∇um‖22 + (1− λm)L(um)− µ(1− λm)‖um‖qq

−
(

1− 2∗ − nb
q − nb

λm

)
‖um‖2

∗

2∗ = o(1).
(3.7)

If λm = 1, then

0 <
(2∗ − q)n
q − nb

inf
M±

J → 2∗ − q
q − nb

‖um‖2
∗

2∗ = o(1).

This is a contradiction. Now, (3.7) can be written as

(3.8) ‖∇um‖22 + L(um)− µ‖um‖qq −
1

1− λm

(
1− 2∗ − nb

q − nb
λm

)
‖um‖2

∗

2∗ → 0.

It follows from (3.4) and (3.8) that

θm :=
1

1− λm

(
1− 2∗ − nb

q − nb
λm

)(
=

1− nλm/(n− 2)

1− λm

)
is bounded and positive because µ is small. Thus, after passing to a subsequence of m,
we have that θ∗ = limm→∞ θm is nonnegative.
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Remark 3.3. By (3.5), it is natural to verify the following Pohozaev-type result:

n− 2

2

∫
Rn
|∇um|2 dx+

n+ α

4
L(um)− µn

q

∫
Rn
|um|q dx

− n− 2

2
θ∗

∫
Rn
|um|2

∗
dx = o(1).

(3.9)

Since the value of the Lagrange multiplier is unknown, (3.9) seems difficult to be
proved when 3 ≤ n < 4 + α. In order to overcome these difficulties, we consider two
cases: θ∗ ≥ 1 and 0 ≤ θ∗ < 1.

3.1. Case θ∗ ≥ 1.

Lemma 3.4. Let 3 ≤ n < 4 + α and α ∈ (0, n). If θ∗ ≥ 1 and infM+ J <
1
nS

n
2 , then

the sequence {um} satisfies (3.9). Here S is the best constant in the Sobolev inequality.

Proof: Since {um} is bounded in X1,α, by (1.2) we know that {um} is also bounded
in L2∗

(Rn) and in Lq(Rn), which implies that {|um|2
∗−1} and {|um|q−1} are bounded

in L
2∗

2∗−1 (Rn) and L
q
q−1 (Rn) respectively. Therefore, we can find a subsequence of um

denoted by itself such that

um ⇀ v0 weakly in X1,α,

|um|2
∗−2um ⇀ |v0|2

∗−2v0 weakly in L
2∗

2∗−1 (Rn),

|um|q−2um ⇀ |v0|q−2v0 weakly in L
q
q−1 (Rn),

when m→∞. It follows from (3.5) that∫
Rn
∇v0∇ϕdx+

∫
Rn

∫
Rn

[v0(x)]2v0(y)ϕ(y)

|x− y|n−α
dx dy

− µ
∫
Rn
|v0|q−2v0ϕdx− θ∗

∫
Rn
|v0|2

∗−2v0ϕdx = 0

for ϕ ∈ C∞0 (Rn). Then v0 is a critical point for Φ∗ (Φ∗(u) = J(u)− θ∗I(u)). That is,
v0 is a solution of the equation

(3.10) −∆u+ (|x|α−n ∗ u2)u = µ|u|q−2u+ θ∗|u|2
∗−2u,

and

(3.11)
n− 2

2

∫
Rn
|∇v0|2 dx+

n+ α

4
L(v0)−µn

q

∫
Rn
|v0|q dx−n− 2

2
θ∗

∫
Rn
|v0|2

∗
dx=0.

Step 1. Write

u1
m := um − v0.

By Lemma 3.1, {um} is bounded in X1,α. Therefore, {u1
m} is also bounded in X1,α.

By (1.2), {u1
m} is also bounded in L2∗

(Rn) and in Lq(Rn). This implies that {|u1
m|2

∗−1}
and {|u1

m|q−1} are bounded in L
2∗

2∗−1 (Rn) and L
q
q−1 (Rn) respectively. Therefore, we

can find a subsequence of u1
m denoted by itself such that as m→∞,

u1
m ⇀ 0 weakly in X1,α,

|u1
m|2

∗−2u1
m ⇀ 0 weakly in L

2∗
2∗−1 (Rn),

|u1
m|q−2u1

m ⇀ 0 weakly in L
q
q−1 (Rn).
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Therefore, using (3.5), when m→∞, we have

∫
Rn
∇u1

m∇ϕdx+

∫
Rn

∫
Rn

[u1
m(x)]2u1

m(y)ϕ(y)

|x− y|n−α
dx dy

− µ
∫
Rn
|u1
m|q−2u1

mϕdx− θm
∫
Rn
|u1
m|2

∗−2u1
mϕdx = o(1)

for ϕ ∈ C∞0 (Rn). Therefore,

(3.12) Φ′m(u1
m)→ 0 (m→∞).

According to the Brézis–Lieb lemma (cf. [6]), when m→∞ we have∫
Rn
|u1
m|q dx =

∫
Rn
|um|q dx−

∫
Rn
|v0|q dx+ o(1),(3.13)

∫
Rn
|∇u1

m|2 dx =

∫
Rn
|∇um|2 dx−

∫
Rn
|∇v0|2 dx+ o(1),(3.14)

∫
Rn
|u1
m|2

∗
dx =

∫
Rn
|um|2

∗
dx−

∫
Rn
|v0|2

∗
dx+ o(1).(3.15)

In addition, by the nonlocal Brézis–Lieb lemma (cf. Lemma 2.2 in [2]), we get

(3.16) L(u1
m) = L(um)− L(v0) + o(1)

when m→∞. Hence, from the above information, we obtain

(3.17) Φm(u1
m) = Φm(um)− Φ∗(v

0) + o(1)→ inf
M+

J − Φ∗(v
0) (m→∞).

Step 2. If u1
m → 0 (m→∞) in X1,α, we are done.

In order to illustrate the conclusion, when u1
m → 0 (m→∞) in X1,α, by (1.2),∫

Rn
|u1
m|q dx→ 0,

∫
Rn
|u1
m|2

∗
dx→ 0, as m→∞.

By (3.11), we have that when m→∞,[
n− 2

2

∫
Rn
|∇um|2 dx+

n+ α

4
L(um)− n

q
µ

∫
Rn
|um|q dx−

n− 2

2
θm

∫
Rn
|um|2

∗
dx

]

→ n− 2

2

∫
Rn
|∇v0|2 dx+

n+ α

4
L(v0)− n

q
µ

∫
Rn
|v0|q dx

− n− 2

2
θ∗

∫
Rn
|v0|2

∗
dx = 0.
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Step 3. If u1
m 6→ 0 (m→∞) in X1,α, the argument is divided into two cases:

Case 1. lim
m→∞

∫
Rn
|um|q dx =

∫
Rn
|v0|q dx;

Case 2. lim
m→∞

∫
Rn
|um|q dx 6=

∫
Rn
|v0|q dx.

In Case 1, by the condition um ∈M+, we get

1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ

q

∫
Rn
|um|q dx−

1

2

∫
Rn
|um|2

∗
dx = 0.

When v0 = 0, according to (3.13)–(3.16), we obtain

1

2

∫
Rn
|∇u1

m|2 dx+
1

4
L(u1

m)− 1

2

∫
Rn
|u1
m|2

∗
dx = o(1).

Consequently, ∫
Rn
|∇u1

m|2 dx ≥ S
n
2 or

∫
Rn
|∇u1

m|2 dx = o(1).

If the former holds, by (3.13)–(3.16) again, we obtain that when m→∞,

1

n
S
n
2 > inf

M+

J = J(um) + o(1)

=
1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ

q

∫
Rn
|v0|q dx− 1

2∗

∫
Rn
|um|2

∗
dx+ o(1)

=
1

2

∫
Rn
|∇u1

m|2 dx+
1

4
L(u1

m)− 1

2∗

∫
Rn
|u1
m|2

∗
dx+ J(v0) + o(1)

=
1

n

∫
Rn
|∇u1

m|2 dx+
1

2n
L(u1

m) + o(1)

≥ 1

n
S
n
2 .

This contradiction implies that∫
Rn
|∇u1

m|2 dx→ 0,

∫
Rn
|u1
m|2

∗
dx→ 0, L(u1

m)→ 0 (m→∞).

Therefore, (3.9) holds true from (3.11).

When v0 6= 0, noting that v0 is a solution of (3.10), we know
n− 2

2

∫
Rn
|∇v0|2 dx+

n+ α

4
L(v0)− µn

q

∫
Rn
|v0|q dx− n− 2

2
θ∗

∫
Rn
|v0|2

∗
dx = 0,

∫
Rn
|∇v0|2 dx+ L(v0)− µ

∫
Rn
|v0|q dx− θ∗

∫
Rn
|v0|2

∗
dx = 0,

and hence
4 + α− n

4
L(v0) = µ

2n− q(n− 2)

2q

∫
Rn
|v0|q dx,

n− 4− α
4

∫
Rn
|∇v0|2 dx=µ

4n− q(n+ α)

4q

∫
Rn
|v0|q dx+

n− 4− α
4

θ∗

∫
Rn
|v0|2

∗
dx.
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Therefore,

J(v0) =
1

2

∫
Rn
|∇v0|2 dx+

1

4
L(v0)− µ

q

∫
Rn
|v0|q dx− 1

2∗

∫
Rn
|v0|2

∗
dx

=
1

2
µ
q(n+ α)− 4n

q(4 + α− n)

∫
Rn
|v0|q dx+ µ

2n− q(n− 2)− 4n

2q(4 + α− n)

∫
Rn
|v0|q dx

− µ1

q

∫
Rn
|v0|q dx+

1

2
θ∗

∫
Rn
|v0|2

∗
dx− 1

2∗

∫
Rn
|v0|2

∗
dx

=
1

2
θ∗

∫
Rn
|v0|2

∗
dx− 1

2∗

∫
Rn
|v0|2

∗
dx

≥
(

1

2
− 1

2∗

)∫
Rn
|v0|2

∗
dx (by θ∗ ≥ 1)

> 0.

In addition, note that um ∈M+ and by (3.13)–(3.16), we get

0 =
1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ

q

∫
Rn
|um|q dx−

1

2

∫
Rn
|um|2

∗
dx

=
1

2

∫
Rn
|∇u1

m|2 dx+
1

4
L(u1

m)− 1

2

∫
Rn
|u1
m|2

∗
dx

+
1

2

∫
Rn
|∇v0|2 dx+

1

4
L(v0)− µ

q

∫
Rn
|v0|q dx− 1

2

∫
Rn
|v0|2

∗
dx+ o(1),

which implies

∫
Rn
|u1
m|2

∗
dx =

∫
Rn
|∇u1

m|2 dx+
1

2
L(u1

m) + 2J(v0)− 2

n

∫
Rn
|v0|2

∗
dx

=

∫
Rn
|∇u1

m|2 dx+
1

2
L(u1

m) + 2

(
1

2
θ∗−

1

2∗

)∫
Rn
|v0|2

∗
dx− 2

n

∫
Rn
|v0|2

∗
dx

=

∫
Rn
|∇u1

m|2 dx+
1

2
L(u1

m) + 2(θ∗ − 1)

∫
Rn
|v0|2

∗
dx.

Since θ∗ ≥ 1, we get

∫
Rn
|∇u1

m|2 dx ≥ S
n
2 or

∫
Rn
|∇u1

m|2 dx = o(1).
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If the former holds, applying the above information, we obtain

inf
M+

J = J(um) + o(1)

=
1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ

q

∫
Rn
|v0|q dx− 1

2∗

∫
Rn
|um|2

∗
dx+ o(1)

=
1

2

∫
Rn
|∇u1

m|2 dx+
1

4
L(u1

m)− 1

2∗

∫
Rn
|u1
m|2

∗
dx+ J(v0) + o(1)

=
1

n

∫
Rn
|∇u1

m|2 dx+
1

2n
L(u1

m) +
2

n
J(v0) +

2

n2∗

∫
Rn
|v0|2

∗
dx+ o(1)

≥ 1

n
S
n
2 ,

which implies that

u1
m → 0 in X1,α (m→∞).

Therefore, (3.9) holds true.

Step 4. In Case 2, since X1,α ↪→ Lqloc(Rn) (now q < 2∗ for n < 4 + α) is compact,
there exist δ1 > 0, {ξ1

m} ⊂ Rn, such that

(3.18)

∫
B1

|u1
m(x+ ξ1

m)|q dx ≥ δ1 > 0.

According to (3.18), we have |ξ1
m| → +∞ (m→∞).

Write v1
m := u1

m(·+ξ1
m). Obviously, (3.12) and (3.17) show that {v1

m} is a bounded
(PS)-sequence at level infM+

J − Φ∗(v
0). Up to a subsequence, we may assume that

v1
m ⇀ v1 (m → ∞) in X1,α. Similar as in Step 1, we also see that v1 is a solution

of (3.10), and hence

Φ′∗(v
1) = 0.

By (3.18) we have that

v1 6= 0,

and the Pohozaev identity of (3.10) implies

n− 2

2

1∑
i=0

∫
Rn
|∇vi|2 dx+

n+ α

4

1∑
i=0

L(vi)− µn
q

1∑
i=0

∫
Rn
|vi|q dx

− n− 2

2
θ∗

1∑
i=0

∫
Rn
|vi|2

∗
dx = 0.

Step 5. Define

u2
m := u1

m − v1(· − ξ1
m).

Then u2
m ⇀ 0 (m→∞) in X1,α. Arguing as in Step 1, we obtain that when m→∞,
F [u2

m] = F [u1
m]−F [v1] + o(1) = F [um]−F [v0]−F [v1] + o(1),

Φn(u2
m) = Φn(u1

m)− Φn(v1) = Φn(um)− Φ∗(v
0)− Φ∗(v

1) + o(1),

Φ′n(u2
m)→ 0.

Here F(u) = ‖∇u‖22 + L(u).
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When u2
m → 0 (m→∞) in X1,α, we are done. When u2

m 6→ 0 (m→∞) in X1,α,
as in the argument of Step 3, if u2

m → 0 (m→∞) in Lq(Rn), as v1 6= 0, we still have
for i = 0, 1

J(vi) =
1

2
θ∗

∫
Rn
|vi|2

∗
dx− 1

2∗

∫
Rn
|vi|2

∗
dx

≥
(

1

2
− 1

2∗

)∫
Rn
|vi|2

∗
dx (by θ∗ ≥ 1)

> 0,

0 =
1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ

q

∫
Rn
|um|q dx−

1

2

∫
Rn
|um|2

∗
dx

=
1

2

∫
Rn
|∇u1

m|2 dx+
1

4
L(u1

m)− 1

2

∫
Rn
|u1
m|2

∗
dx− µ

q

∫
Rn
|u1
m|q dx

+
1

2

∫
Rn
|∇v0|2 dx+

1

4
L(v0)− µ

q

∫
Rn
|v0|q dx− 1

2

∫
Rn
|v0|2

∗
dx+ o(1)

=
1

2

∫
Rn
|∇u2

m|2 dx+
1

4
L(u2

m)− 1

2

∫
Rn
|u2
m|2

∗
dx+

1

2

1∑
i=0

∫
Rn
|∇vi|2 dx

+
1

4

1∑
i=0

L(vi)− µ

q

1∑
i=0

∫
Rn
|vi|q dx− 1

2

1∑
i=0

∫
Rn
|vi|2

∗
dx+ o(1),

and ∫
Rn
|u2
m|2

∗
dx =

∫
Rn
|∇u2

m|2 dx+
1

2
L(u2

m) + 2

1∑
i=0

J(vi)− 2

n

1∑
i=0

∫
Rn
|vi|2

∗
dx

=

∫
Rn
|∇u2

m|2 dx+
1

2
L(u2

m)

+ 2

(
1

2
θ∗ −

1

2∗

) 1∑
i=0

∫
Rn
|vi|2

∗
dx− 2

n

1∑
i=0

∫
Rn
|vi|2

∗
dx

=

∫
Rn
|∇u2

m|2 dx+
1

2
L(u2

m) + 2(θ∗ − 1)

∫
Rn

1∑
i=0

|vi|2
∗
dx.

Since θ∗ ≥ 1, we get∫
Rn
|∇u2

m|2 dx ≥ S
n
2 or

∫
Rn
|∇u2

m|2 dx = o(1).
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If the former holds, applying the above information, we obtain

inf
M+

J = J(um) + o(1)

=
1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ

q

∫
Rn
|um|q dx−

1

2∗

∫
Rn
|um|2

∗
dx+ o(1)

=
1

2

∫
Rn
|∇u1

m|2 dx+
1

4
L(u1

m)− µ

q

∫
Rn
|u1
m|q dx−

1

2∗

∫
Rn
|u1
m|2

∗
dx+J(v0)+o(1)

=
1

2

∫
Rn
|∇u2

m|2 dx+
1

4
L(u2

m)− µ

q

∫
Rn
|v1|q dx− 1

2∗

∫
Rn
|u2
m|2

∗
dx+J(v0)+o(1)

=
1

n

∫
Rn
|∇u2

m|2 dx+
1

2n
L(u2

m) +
2

n

1∑
i=0

J(vi) +
2

n2∗

1∑
i=0

∫
Rn
|vi|2

∗
dx+ o(1)

≥ 1

n
S
n
2 ,

which implies that

u2
m → 0 in X1,α (m→∞).

Therefore, (3.9) holds true.
If u2

m 6→ 0 (m → ∞) in Lq(Rn), we may assume the existence of {ξ2
m} ⊂ Rn such

that ∫
B1

|u2
m(x+ ξ2

m)|q dx ≥ δ2 for some δ2 > 0.

Since u2
m ⇀ 0 (m→∞) and u2

m(·+ ξ1
m) ⇀ 0 (m→∞) in X1,α, we can deduce that

|ξ2
m| → +∞, |ξ2

m − ξ1
m| → +∞ (m→∞).

Therefore, up to a subsequence, we may assume that u2
m(· + ξ2

m) ⇀ v2 (m → ∞)
in X1,α, and v2 is a nontrivial solution of (3.10), which implies

n− 2

2

∫
Rn
|∇v2|2 dx+

n+ α

4
L(v2)− µn

q

∫
Rn
|v2|q dx− n− 2

2
θ∗

∫
Rn
|v2|2

∗
dx = 0.

We now define

u3
m := u2

m − v2(· − ξ2
m).

Iterating by the procedure above we construct sequences {ujm}j and {ξjm}j in the
following way:

uj+1
m := ujm − vj(· − ξjm),

F [ujm] = F [um]−
j−1∑
i=0

F [vi] + o(1) (m→∞),(3.19)

Φn(ujm) = J(um)−
j−1∑
i=0

Φ∗(v
i) + o(1) (m→∞),

n− 2

2

∫
Rn
|∇vi|2 dx+

n+ α

4
L(vi)− µn

q

∫
Rn
|vi|q dx−n− 2

2
θ∗

∫
Rn
|vi|2

∗
dx=0.(3.20)
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Since {um} is bounded in X1,α, F [um] is also bounded. And note that

(3.21)


4 + α− n

4
L(vi) = µ

2n− q(n− 2)

2q

∫
Rn
|vi|q dx,

n−4−α
4

∫
Rn
|∇vi|2 dx=µ

4n− q(n+ α)

4q

∫
Rn
vi|q dx+

n− 4− α
4

θ∗

∫
Rn
|vi|2

∗
dx.

Therefore, by (1.2), we have

q(4 + α− n)

2[2n− q(n− 2)]
L(vi) = µ

∫
Rn
|vi|q dx

≤ µC
(∫

Rn
|∇vi|2 dx

) α
2+α

[L(vi)]
2

2+α .

When i > 0, vi 6= 1, then

L(vi) ≤ Cµ
2+α
2

∫
Rn
|∇vi|2 dx.

Applying (3.21), one has∫
Rn
|∇vi|2 dx = CL(vi) + θ∗

∫
Rn
|vi|2

∗
dx

≤ Cµ
2+α
2

∫
Rn
|∇vi|2 dx+

∫
Rn
|vi|2

∗
dx

≤ Cµ
2+α
2

∫
Rn
|∇vi|2 dx+ C

(∫
Rn
|∇vi|2 dx

) 2∗
2

.

Since µ is small enough, we have∫
Rn
|∇vi|2 dx ≥ C > 0,

where C is independent of i. Consequently, we have F [vi] ≥ C > 0. This implies that
the iteration must stop at some k. Otherwise, it contradicts (3.19) and the bounded-
ness of F [um]. Specifically, for some k, ukm → 0 (m → ∞) in X1,α. Consequently, it
follows from (3.20) that

lim
m→∞

[
n− 2

2

∫
Rn
|∇um|2 dx+

n+ α

4
L(um)− µn

q

∫
Rn
|um|q dx−

n− 2

2
θ∗

∫
Rn
|um|2

∗
dx

]

=
n− 2

2

k∑
i=0

∫
Rn
|∇vi|2 dx+

n+ α

4

k∑
i=0

L(vi)− µn
q

k∑
i=0

∫
Rn
|vi|q dx

− n− 2

2
θ∗

k∑
i=0

∫
Rn
|vi|2

∗
dx = 0.

The proof is complete.
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3.2. Case θ∗ ∈ [0, 1). First, we prove the following result.

Theorem 3.5. Assume that θ∗ ∈ [0, 1) and {um} is the (PS)c-sequence of Φm. If
n ≥ 4, α ∈ (0, n), and µ > 0 is suitably small, we can find a subsequence of um
denoted by itself such that

lim
m→∞

um = v0 in L2∗

loc(Rn).

This result is a corollary of Lemmas 3.6 and 3.10.

Lemma 3.6. Let n ≥ 3, α ∈ (0, n), and θ∗ ∈ [0, 1). Assume that {um} ⊂ X1,α is
a bounded (PS)c-sequence of Φm. We can find a subsequence of um denoted by itself
and u∗ ∈ X1,α such that

(3.22) lim
m→∞

um = u∗ in L2∗

loc(Rn),

as long as either

(i) n > 4 + α, or

(ii) 3 ≤ n < 4 + α, and {um} is a (PS)c-sequence of Φm with c < 1
nS

n
2 , where S is

the best Sobolev constant.

Proof: When n > 4 + α, take θ ∈ (0, 1) such that 2∗−θ
1−θ ∈ (2∗, q). Since ‖um‖X1,α is

bounded, ‖um‖ 2∗−θ
1−θ

is also bounded. In addition, we can find a subsequence denoted

by itself and u∗ ∈ X1,α such that um weakly converges to u∗ in X1,α. Let Ω be an
arbitrary compact subset of Rn. Since the embedding operator from X1,α to L1(Ω)
is compact (cf. Lemma 6.1 in [3]), there is a subsequence of um denoted by itself such
that um converges to u∗ in L1(Ω). By the Hölder inequality,

(3.23)

∫
Ω

|um − u∗|2
∗
dx ≤

(∫
Ω

|um − u∗| dx
)θ(∫

Ω

|um − u∗|
2∗−θ
1−θ dx

)1−θ

→ 0

when m→∞. Specifically, (3.22) is true.
For 3 ≤ n < 4 + α, and since {um} ∈ M± is the (PS)c-sequence of Φm, when

m→∞, there holds

c = J(um)− I(um) + o(1)

=
1

n

∫
Rn
|um|2

∗
dx+ o(1).

(3.24)

Since {um} ⊂ X1,α is bounded, {um} is also bounded in L2∗
(Rn). Therefore, we

can find u∗ ∈ X1,α and a subsequence of um denoted by itself, such that as m→∞,

(3.25) um ⇀ u∗ weakly in L2∗
(Rn),

and

(3.26) |∇um|2 ⇀ |∇u∗|2 + µ̃, |um|2
∗
⇀ |u∗|2

∗
+ ν

weakly in the Radon measure space. Using the concentration compactness principle
due to Lions (see Lemma I.1 in [15]), we get the existence of a set, at most countable Λ,
a sequence {xi} ⊂ Rn, and {µi}i∈Λ, {νi}i∈Λ ⊂ [0,∞) such that

(3.27) ν =
∑
i∈Λ

νiδxi , µ̃ ≥
∑
i∈Λ

µiδxi , and µi ≥ Sν
2
2∗
i , ∀ i ∈ Λ,

where δxi is the Dirac mass centred at xi ∈ Rn.
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Take ζ ∈ C∞0 (Rn, [0, 1]) such that ζ = 1 on B1(0), ζ = 0 on Rn\B2(0), and |∇ζ|∞ ≤
2. Define

ζε(x) = ζ

(
x− xi
ε

)
, ε > 0.

We claim that for every i ∈ Λ, νi < S
n
2 . Indeed, if νi0 ≥ S

n
2 for some i0 ∈ Λ,

by (3.24), one has

c ≥ 1

n

∫
Rn
|um|2

∗
ζε dx+ o(1).

Then, passing to the limit m→∞ and using (3.26) and (3.27), we deduce that

c ≥ 1

n

(∫
Rn
|u∗|2

∗
ζε dx+

∫
Rn

∑
i∈Λ

νiζε dδxi

)
≥ 1

n
νi0 ≥

1

n
S
n
2 ,

which contradicts c < 1
nS

n/2. Thus,

(3.28) νi < S
n
2 , ∀ i.

On the other hand, (3.5) implies 〈Φ′n(um), ζεum〉 → 0 (m → ∞). Specifically, when
m→∞,

o(1) = 〈Φ′n(um), ζεum〉

=

∫
Rn
um∇um∇ζε dx+

∫
Rn
|∇um|2ζε dx+

∫
Rn

∫
Rn

u2
m(x)u2

m(y)ζε(y)

|x− y|n−α
dx dy

− µ
∫
Rn
|um|qζε dx− θ∗

∫
Rn
|um|2

∗
ζε dx

≥
∫
Rn
um∇um∇ζε dx+

∫
Rn
|∇um|2ζε dx+

∫
Rn

∫
Rn

u2
m(x)u2

m(y)ζε(y)

|x− y|n−α
dx dy

− µ
∫
Rn
|um|qζε dx−

∫
Rn
|um|2

∗
ζε dx.

(3.29)

By the same derivation as in (3.23), we can find a subsequence of um denoted by
itself such that um converges to u∗ in L2

loc(Rn) and in Lqloc(Rn). Therefore, there holds∣∣∣∣∫
Rn
um∇um∇ζε dx

∣∣∣∣ ≤ C

ε

(∫
B2ε(xi)

|∇um|2 dx
) 1

2
(∫

B2ε(xi)

|um|2 dx
) 1

2

≤ C

ε

(∫
B2ε(xi)

|um|2 dx
) 1

2

≤ C

ε

(∫
B2ε(xi)

|u∗|2 dx
) 1

2

(m→∞)

≤ C
(∫

B2ε(xi)

|u∗|2
∗
dx

) 1
2∗

→ 0 (ε→ 0).

In addition,

lim
ε→0

(
lim
m→∞

∫
Rn
|um|qζε dx

)
= lim
ε→0

∫
Rn
|u∗|qζε dx = 0.
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Moreover, by (3.26) we have

lim
ε→0

lim
m→∞

∫
Rn
|∇um|2ζε dx ≥ lim

ε→0

∫
Rn
ζε dµ̃,

lim
ε→0

lim
m→∞

∫
Rn
|um|2

∗
ζε dx = lim

ε→0

∫
Rn
ζε dν.

Inserting these results into (3.29), we deduce

lim
ε→0

∫
Rn
ζε dν ≥ lim

ε→0

∫
Rn
ζε dµ̃.

Specifically, νi ≥ µi. And by (3.27), we infer that

νi ≥ S
n
2 .

This of course contradicts (3.28) and hence Λ = ∅. Consequently, (3.26) implies that
‖um‖2

∗

L2∗ (Ω)
converges to ‖u∗‖2

∗

L2∗ (Ω)
, where Ω is an arbitrary compact subset of Rn.

Combining with (3.25), we obtain (3.22).

Lemma 3.7. Let n ≥ 3 and α ∈ (0, n). Assume either n > 4 + α, or else θ∗ ∈ [0, 1),
and infM+

J < 1
nS

n
2 . Then (3.9) holds for um ∈M±.

Proof: Step 1. It is similar to the proofs of Steps 1 and 2 in Lemma 3.4 that (3.9) holds.
Now, when u1

m 6→ 0 (m→∞) in X1,α, the argument is divided into two cases:

Case 1. lim
m→∞

∫
Rn
|um|2

∗
dx =

∫
Rn
|v0|2

∗
dx;

Case 2. lim
m→∞

∫
Rn
|um|2

∗
dx 6=

∫
Rn
|v0|2

∗
dx.

In Case 1, by the condition um ∈M±, there holds

1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ

q

∫
Rn
|um|q dx−

1

2

∫
Rn
|um|2

∗
dx = 0.

When v0 = 0, we have

1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ

q

∫
Rn
|um|q dx = 0.

By the Coulomb–Sobolev and the Young inequalities, we obtain(
1

2
− Cµ

)∫
Rn
|∇um|2 dx+

(
1

4
− Cµ

)
L(um) ≤ 0.

Since µ is suitably small, we have um → v0 in X1,α. Then we are done.

When v0 6= 0, we know
1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ1

q

∫
Rn
|um|q dx−

1

2

∫
Rn
|v0|2

∗
dx = o(1),

∫
Rn
|∇um|2 dx+ L(um)− µ

∫
Rn
|um|q dx− θ∗

∫
Rn
|v0|2

∗
dx = o(1),

and hence

(1− θ∗)
∫
Rn
|∇um|2 dx+

(
1− 1

2
θ∗

)
L(um) = µ

1

q
(1− 2θ∗)

∫
Rn
|um|q dx+ o(1).
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Since µ is small, when 0 ≤ θ∗ < 1, we deduce um → v0 in X1,α. When n > 4 + α,
by (3.13)–(3.16), we also have um → v0 in X1,α as m → ∞ provided µ is suitably
small. Therefore, our conclusion is true.

Step 2. In Case 2, since X1,α ↪→ L2∗

loc(Rn) (for n < 4 + α) is compact by Lemma 3.6,
there exist δ1 > 0, {ξ1

m} ⊂ Rn, such that∫
B1

|u1
m(x+ ξ1

m)|2
∗
dx ≥ δ1 > 0.

This implies that |ξ1
m| → +∞ (m→∞).

Write v1
m := u1

m(·+ξ1
m). Since {v1

m} is a bounded (PS)-sequence at level infM± J−
Φ∗(v

0), we may assume, after passing to a subsequence, that v1
m ⇀ v1 6= 0 (m→∞)

in X1,α. Note that v1 is a solution of (3.10), and hence

n− 2

2

1∑
i=0

∫
Rn
|∇vi|2 dx+

n+ α

4

1∑
i=0

L(vi)− µn
q

1∑
i=0

∫
Rn
|vi|q dx

− n− 2

2
θ∗

1∑
i=0

∫
Rn
|vi|2

∗
dx = 0.

Step 3. Define

u2
m := u1

m − v1(· − ξ1
m).

Then u2
m ⇀ 0 (m → ∞) in X1,α. When u2

m → 0 (m → ∞) in X1,α, we are done.
When u2

m 6→ 0 (m→∞) in X1,α, as in the argument of Step 1, if u2
m → 0 (m→∞)

in L2∗
(Rn), as v1 6= 0, we have for i = 0, 1

o(1) =

∫
Rn
|∇um|2 dx+ L(um)− µ

∫
Rn
|um|q dx− θ∗

∫
Rn
|um|2

∗
dx

=

∫
Rn
|∇u1

m|2 dx+ L(u1
m)− µ

∫
Rn
|u1
m|q dx− θ∗

∫
Rn
|u1
m|2

∗
dx

+

∫
Rn
|∇v0|2 dx+ L(v0)− µ

∫
Rn
|v0|q dx− θ∗

∫
Rn
|v0|2

∗
dx+ o(1)

=

∫
Rn
|∇u1

m|2 dx+ L(u1
m)− µ

∫
Rn
|u1
m|q dx− θ∗

∫
Rn
|u1
m|2

∗
dx+ o(1)

(v0 solves (3.10))

=

∫
Rn
|∇u2

m|2 dx+ L(u2
m)− µ

∫
Rn
|u2
m|q dx− θ∗

∫
Rn
|v1|2

∗
dx

+

∫
Rn
|∇v1|2 dx+ L(v1)− µ

∫
Rn
|v1|q dx+ o(1)

=

∫
Rn
|∇u2

m|2 dx+ L(u2
m)− µ

∫
Rn
|u2
m|q dx+ o(1) (v1 solves (3.10)).

By the Coulomb–Sobolev and the Young inequalities again, when µ is suitably small,
one has

u2
m → 0 in X1,α (m→∞).

Therefore, (3.9) holds true.
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If u2
m 6→ 0 (m→∞) in L2∗

(Rn), we may assume the existence of{ξ2
m} ⊂ Rn such

that ∫
B1

|u2
m(x+ ξ2

m)|2
∗
dx ≥ δ2 for some δ2 > 0.

Since u2
m ⇀ 0 (m→∞) and u2

m(·+ ξ1
m) ⇀ 0 (m→∞) in X1,α, and

|ξ2
m| → +∞, |ξ2

m − ξ1
m| → +∞ (m→∞),

we may assume, after passing to a subsequence, that u2
m(· + ξ2

m) ⇀ v2 (m → ∞)
in X1,α, and v2 is a nontrivial solution of (3.10), which implies

n− 2

2

∫
Rn
|∇v2|2 dx+

n+ α

4
L(v2)− µn

q

∫
Rn
|v2|q dx− n− 2

2
θ∗

∫
Rn
|v2|2

∗
dx = 0.

We now define

u3
m := u2

m − v2(· − ξ2
m).

Iterating by the procedure above we construct sequences {ujm}j and {ξjm}j in the
following way:

uj+1
m := ujm − vj(· − ξjm).

Similarly as in Step 5 in Lemma 3.4, we also have

lim
m→∞

[
n− 2

2

∫
Rn
|∇um|2 dx+

n+ α

4
L(um)− µn

q

∫
Rn
|um|q dx−

n− 2

2
θ∗

∫
Rn
|um|2

∗
dx

]

=
n− 2

2

k∑
i=0

∫
Rn
|∇vi|2 dx+

n+ α

4

k∑
i=0

L(vi)− µn
q

k∑
i=0

∫
Rn
|vi|q dx

− n− 2

2
θ∗

k∑
i=0

∫
Rn
|vi|2

∗
dx = 0.

The proof is complete.

3.3. Solution of (1.1).

Remark 3.8. By Lemmas 3.4, 3.7, and 3.10, we see that {um} satisfies (3.9). Similarly
as in the proof of Step 3 in Lemma 2.3, from (3.8) we can deduce

lim
m→∞

λm = 0.

Thus,

(3.30) J ′(um)→ 0 as m→∞.

Combining with (3.1), we see that {um} ⊂ M± is a (PS)-sequence of J .
Noting um ∈M±, by (3.30) we get

(3.31) P(um)→ 0 as m→∞.

Lemma 3.9. Let n ≥ 4 and α ∈ (0, n). Assume that {um} is the minimizing sequence
of J inM±. Then for suitably small µ > 0, we can find a subsequence of {um} denoted
by itself such that

lim
m→∞

um = v0 weakly in X1,α.

Here v0 solves (1.1) and satisfies I±(v0) = 0.
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Proof: Since {um} is bounded in X1,α, by (1.2) we know that {um} is also bounded
in L2∗

(Rn) and in Lq(Rn), which implies that {|um|2
∗−1} and {|um|q−1} are bounded

in L
2∗

2∗−1 (Rn) and L
q
q−1 (Rn) respectively. Therefore, we can find a subsequence of um

denoted by itself such that

um ⇀ v0 weakly in X1,α,(3.32)

|um|2
∗−2um ⇀ |v0|2

∗−2v0 weakly in L
2∗

2∗−1 (Rn),

|um|q−2um ⇀ |v0|q−2v0 weakly in L
q
q−1 (Rn),

when m→∞. It follows from (3.30) that∫
Rn
∇v0∇ϕdx+

∫
Rn

∫
Rn

[v0(x)]2v0(y)ϕ(y)

|x− y|n−α
dx dy

− µ
∫
Rn
|v0|q−2v0ϕdx−

∫
Rn
|v0|2

∗−2v0ϕdx = 0

for ϕ ∈ C∞0 (Rn). Then v0 is a critical point for J . Therefore,

(3.33) J ′(v0) = 0 and P(v0) = 0,

which, together with (2.1), implies I±(v0) = 0.

Lemma 3.9 shows that v0 solves (1.1). In Section 4 we prove that (1.1) has a ground
state solution inM±. The concentration compactness principle comes into play, and
we need the convergence of um in L2∗

loc.

3.4. The threshold value. In this subsection, we mainly estimate the threshold
value of J . Denote

Ψ(x) =
[n(n− 2)]

n−2
4

(1 + |x|2)
n−2
2

, Ψε(x) =
[n(n− 2)ε2]

n−2
4

(ε2 + |x|2)
n−2
2

, x ∈ Rn, ε > 0.

Ψ (and Ψε) satisfies the limit equation

∆Ψ + Ψ2∗−1 = 0, Ψ > 0 in Rn,

and ∫
Rn
|∇Ψ|2 dx =

∫
Rn

Ψ2∗
dx = S

n
2 .

Choose η ∈ C∞0 (Rn, [0, 1]), satisfying η(x) = 1 for x ∈ Bδ(x0) and η(x) = 0 for x 6∈
B2δ(x0). Denote uε = Ψεη.

Lemma 3.10. We have supt≥0 J(tuε(t
bx)) < 1

nS
n
2 (b = 2

2+α) for suitably small ε >
0, if either

(i) 3 < n < 4 + α, or

(ii) n = 3 with µ = µ(ε) sufficiently large.
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Proof: From Lemma 1.1 in [7], we have
∫
Rn
|∇uε|2 dx =

∫
Rn
|∇Ψ|2 dx+O(εn−2) = S

n
2 +O(εn−2),

∫
Rn
u2∗

ε dx =

∫
Rn

Ψ2∗
dx+O(εn) = S

n
2 +O(εn),

and

(3.34)

∫
Rn
uσε dx =



cε
(n−2)σ

2 , 1 < σ <
n

n− 2
,

cε
n
2 |ln ε|, σ =

n

n− 2
,

cεn−
(n−2)σ

2 ,
n

n− 2
< σ < 2∗.

Since limt→0+ J(tuε(t
bx)) = 0 and limt→+∞ J(tuε(t

bx))→ −∞ as t→∞, there exists
a Tε > 0 such that supt≥0 J(tuε(t

bx)) = J(Tεuε(Tεx)). Moreover, we can obtain that
there exist t1, t2 > 0 (independent of ε, µ), such that

t1 ≤ Tε ≤ t2 < +∞.
By the Hardy–Littlewood–Sobolev inequality,

L(u) ≤ C‖u‖4
L

4n
n+α (Rn)

.

Consequently,

sup
t≥0

J(tuε(t
bx)) ≤ sup

t≥0

{
tq−nb

2
S
n
2 − t2

∗−nb

2∗
S
n
2

}

+
tq−nb2

4
L(uε)−

µtq−nb1

q

∫
Rn
uqε dx+O(εn−2)

≤ 1

n
S
n
2 +O(εn−2) + C

(∫
Rn
u

4n
n+α
ε dx

)n+α
n

− Cµ
∫
Rn
uqε dx.

(3.35)

(i) When 4 ≤ n < 4+α, there holds 8+2α
2+α −

n
n−2 = 6n+nα−16−4α

(2+α)(n−2) > 0. Then, it follows

from (3.34) that ∫
Rn
u

8+2α
2+α
ε dx = Cεn−

(n−2)
2

8+2α
2+α = Cε

2(4+α−n)
2+α .

On the other hand, since n ≥ 4 and α < n, we have 4n
n+α −

n
n−2 = n(3n−8−α)

(n+α)(n−2) > 0.

Thus (∫
Rn
u

4n
n+α
ε dx

)n+α
n

= C(εn−
2n(n−2)
n+α )

n+α
n = Cε4+α−n.

Therefore, noting 4 ≤ n < 4 + α, which implies 2(4+α−n)
2+α < n − 2 and 2(4+α−n)

2+α <
4 + α− n, we deduce that

sup
t≥0

J(tuε(t
bx)) =

1

n
S
n
2 +O(εn−2) + C

(∫
Rn
u

4n
n+α
ε dx

)n+α
n

− Cµ
∫
Rn
uqε dx

≤ 1

n
S
n
2 +O(εn−2) + Cε4+α−n − Cµε

2(4+α−n)
2+α <

1

n
S
n
2

for ε suitably small.
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(ii) When n = 3. It follows from (3.34) that(∫
R3

u
12

3+α
ε dx

) 3+α
3

≤ Cε2 + Cε1+α,

and

(3.36)

∫
R3

uqε dx =

∫
R3

u
8+2α
2+α
ε dx =


Cε

q
2 , 2 < α < 3,

Cε
3
2 |ln ε|, α = 2,

Cε3− q2 , 0 < α < 2.

It follows from (3.35) and (3.36) that

sup
t≥0

J(tuε(t
bx)) =

1

3
S

3
2 +O(ε) + C

(∫
R3

u
12

3+α
ε dx

) 3+α
3

− Cµ
∫
R3

uqε dx

≤ 1

3
S

3
2 + C(ε+ ε2 + ε1+α)− Cµ(ε

q
2 + ε

3
2 |ln ε|+ ε3− q2 ).

Since 2 < q < 4, we have q
2 > 1 and 3 − q

2 > 1. Consequently, for any ε ∈ (0, 1), we
can find large µ∗ such that

sup
t≥0

J(tuε(t
bx)) <

1

3
S

3
2

provided µ ≥ µ∗. The proof is complete.

Remark 3.11. When n = 3, Lemma 3.10 needs that µ > 0 be suitably large. Now, it
seems difficult to obtain the boundedness of ‖um‖X1,α (Lemma 3.1 requires that µ be
suitably small). Thus, Lemma 3.6 cannot be applied to prove Theorem 3.5 when n = 3.

4. Ground state solution

In this section, we look for the ground state solution on the Nehari–Pohozaev
manifold M±.

Theorem 4.1. Let n ≥ 4, α ∈ (0, n), 2∗ = 2n
n−2 , q := 8+2α

2+α , and let µ > 0 be suitably
small. Then

(i) (1.1) has a ground state solution in M+ when 4 ≤ n < 4 + α,

(ii) (1.1) has a ground state solution in M− when n > 4 + α.

Proof: Assume that {um} is the minimizing sequence of J inM±, and v0 is the weak
limit of um in Lemma 3.9. Since I±(v0) = 0, by the same calculations as in (2.2)
and (2.3), we also get

(4.1) J(v0) =
1

2∗
2∗ − q
q − nb

∫
Rn
|v0|2

∗
dx =

1

n

∫
Rn
|v0|2

∗
dx.

Step 1. Write

u1
m := um − v0.

By Lemma 3.1, {um} is bounded in X1,α. Therefore, {u1
m} is also bounded in X1,α.

By (1.2), {u1
m} is also bounded in L2∗

(Rn) and in Lq(Rn). This implies that {|u1
m|2

∗−1}
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and {|u1
m|q−1} are bounded in L

2∗
2∗−1 (Rn) and L

q
q−1 (Rn) respectively. Therefore,

by (3.32), we can find a subsequence of u1
m denoted by itself such that as m→∞,

u1
m ⇀ 0 weakly in X1,α,

|u1
m|2

∗−2u1
m ⇀ 0 weakly in L

2∗
2∗−1 (Rn),

|u1
m|q−2u1

m ⇀ 0 weakly in L
q
q−1 (Rn).

Therefore, when m→∞,∫
Rn
∇u1

m∇ϕdx+

∫
Rn

∫
Rn

[u1
m(x)]2u1

m(y)ϕ(y)

|x− y|n−α
dx dy

− µ
∫
Rn
|u1
m|q−2u1

mϕdx−
∫
Rn
|u1
m|2

∗−2u1
mϕdx = o(1)

for ϕ ∈ C∞0 (Rn). Therefore,

(4.2) J ′(u1
m)→ 0 (m→∞).

According to the Brézis–Lieb lemma again, when m→∞, we obtain

(4.3) J(u1
m) = J(um)− J(v0) + o(1)→ inf

M±
J − J(v0) (m→∞).

In addition, from (3.13)–(3.16), we obtain P(um) = P(u1
m)+P(v0)+o(1) whenm→

∞. In view of (3.31) and (3.33), we have

(4.4) P(u1
m)→ 0 (m→∞).

Step 2. If u1
m → 0 (m→∞) in X1,α, we are done.

In fact, by (1.2),∫
Rn
|u1
m|q dx→ 0,

∫
Rn
|u1
m|2

∗
dx→ 0, as m→∞.

Specifically, J(u1
m)→ 0 (m→∞). By (4.3) and Lemma 3.2, we have

J(v0) = inf
M±

J > 0.

This and (4.1) imply v0 6= 0. By Lemma 3.9 we see that v0 ∈M±, and hence v0 is a
ground state solution of (1.1).

Step 3. If u1
m 6→ 0 (m→∞) in X1,α, the argument is divided into two cases:

Case 1. lim
m→∞

∫
Rn
|um|2

∗
dx =

∫
Rn
|v0|2

∗
dx;

Case 2. lim
m→∞

∫
Rn
|um|2

∗
dx 6=

∫
Rn
|v0|2

∗
dx.

In Case 1, infM± J > 0. Indeed, if the infimum infM± J = 0, then by Lemma 2.3,
Step 1, one obtains

lim
m→∞

∫
Rn
|um|2

∗
dx =

∫
Rn
|v0|2

∗
dx = 0.
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By the conditions um ∈M± and um satisfying the Pohozaev identity, we get

(4.5)


1

2

∫
Rn
|∇um|2 dx+

1

4
L(um)− µ

q

∫
Rn
|um|q dx = o(1),

n− 2

2

∫
Rn
|∇um|2 dx+

n+ α

4
L(um)− µn

q

∫
Rn
|um|q dx = o(1).

Consequently, ∫
Rn
|∇um|2 dx =

α

2
L(um) + o(1).

This, together with (4.5) and the Coulomb–Sobolev inequality, yields

1 + α

4
L(um) =

µ

q

∫
Rn
|um|q dx+ o(1)

≤ Cqµ
(∫

R2

|∇um|2 dx
) α

2+α

[L(um)]
2

2+α + o(1)

= Cqµ

[
α

2
L(um) + o(1)

] α
2+α

[L(um)]
2

2+α + o(1)

= C ′qµL(um) + o(1).

Since µ is small enough, the above inequality implies that

L(um)→ 0,

∫
Rn
|∇um|2 dx→ 0, as m→∞.

This contradicts (3.6). Therefore, infM± J > 0.
In the following we prove v0 is a ground state solution of (1.1) in Case 1. Whenm→

∞, it follows from (4.4) that

(4.6)
n− 2

2

∫
Rn
|∇u1

m|2 dx+
n+ α

4
L(u1

m)− µn
q

∫
Rn
|u1
m|q dx = o(1).

In addition, from 〈J ′(um), um〉 → 0 (m→∞) (implied by (3.30)) it follows that∫
Rn
|∇um|2 dx+ L(um)− µ

∫
Rn
|um|q dx−

∫
Rn
|um|2

∗
dx = o(1).

Thus, in view of (3.13)–(3.16), when m→∞ we have∫
Rn
|∇u1

m|2 dx+

∫
Rn
|∇v0|2 dx+ L(u1

m) + L(v0)

− µ
∫
Rn
|u1
m|q dx− µ

∫
Rn
|v0|q dx−

∫
Rn
|v0|2

∗
dx = o(1).

Combining this with 〈J ′(v0), v0〉 = 0 (implied by(3.33)), we conclude that

(4.7)

∫
Rn
|∇u1

m|2 dx+ L(u1
m)− µ

∫
Rn
|u1
m|q dx = o(1) (m→∞).

It follows from (4.6) and (4.7) that(
n− 2

2
− n

q

)∫
Rn
|∇u1

m|2 dx+

(
n+ α

4
− n

q

)
L(u1

m) = o(1) (m→∞).

Specifically,

(4.8) L(u1
m) =

2[(n− 2)p− 2n]

4n− (n+ α)q

∫
Rn
|∇u1

m|2 dx+ o(1) (m→∞).
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By (3.13)–(3.16), we obtain that when m→∞,

inf
M±

J = J(um) + o(1)

=
1

2

∫
Rn
|∇u1

m|2 dx+
1

4
L(u1

m)− µ

q

∫
Rn
|u1
m|q dx+ J(v0) + o(1).

Combining with (4.7) and (4.8) yields

0 < inf
M±

J =

(
1

2
− 1

q

)∫
Rn
|∇u1

m|2 dx+

(
1

4
− 1

q

)
L(u1

m) + J(v0) + o(1)

=

(
q − 2

2q
− 4− q

4q
· 2[(n− 2)q − 2n]

4n− (n+ α)q

)∫
Rn
|∇u1

m|2 dx+ J(v0) + o(1)

= J(v0) (m→∞).

(4.9)

This implies that v0 6= 0, and hence v0 is a ground state solution of (1.1).

Step 4. In Case 2, there exist δ1 > 0, {ξ1
m} ⊂ Rn, such that

(4.10)

∫
B1

|u1
m(x+ ξ1

m)|2
∗
dx ≥ δ1 > 0.

According to Theorem 3.5, we have |ξ1
m| → +∞ (m→∞).

Write v1
m := u1

m(· + ξ1
m). Obviously, (4.3) and (4.2) show that {v1

m} is a bounded
(PS)-sequence at level infM± J − J(v0). Up to a subsequence, we may assume that
v1
m ⇀ v1 (m→∞) in X1,α. Similarly as in the proof of Lemma 3.9, we also see that
v1 is a solution of (1.1), and hence

(4.11) J ′(v1) = 0 and P(v1) = 0.

By (2.1), I±(v1) = 0. By (4.10) we have that

(4.12) v1 6= 0,

which, together with I±(v1) = 0, implies

(4.13) v1 ∈M±,

and hence infM± J > 0.

Step 5. Define

u2
m := u1

m − v1(· − ξ1
m).

Then u2
m ⇀ 0 (m→∞) in X1,α. Arguing as in Step 1, we obtain that when m→∞,

(4.14)



F [u2
m] = F [u1

m]−F [v1] + o(1) = F [um]−F [v0]−F [v1] + o(1),

J(u2
m) = J(u1

m)− J(v1) = J(um)− J(v0)− J(v1) + o(1),

J ′(u2
m)→ 0,

P(u2
m)→ 0.

Here F(u) = ‖∇u‖22 + L(u).
Clearly, (4.2) and (4.3) show that u1

m is a (PS)c-sequence. Here c = infM± J −
J(v0) ≤ infM± J by virtue of J(v0) ≥ 0 (implied by (4.1)). According to Lemma 3.6,

(4.15) u2
m → 0 in L2∗

loc(Rn).
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When u2
m → 0 (m→∞) in X1,α, we are done. In fact, similarly as in the proof of

Lemma 3.9, we can obtain that v1 is a solution of (1.1). In view of (4.12), v1 is also
nontrivial, and hence v1 ∈ M±. On the other hand, the second result of (4.14) and
J(u2

m)→ 0 (m→∞) show that J(v0) +J(v1) = infM± J . Noting J(v0) ≥ 0 (implied
by (4.1)) and (4.13), we obtain J(v0) = 0 and J(v1) = infM± J .

When u2
m 6→ 0 (m → ∞) in X1,α, as in the argument of Step 3, if u2

m → 0
(m→∞) in L2∗

(Rn), J(v0) + J(v1) = infM± J still holds by the same derivation as
in (4.9). Therefore, we are done by an analogous argument above. If u2

m 6→ 0 (m→∞)
in L2∗

(Rn), we may assume the existence of {ξ2
m} ⊂ Rn such that∫

B1

|u2
m(x+ ξ2

m)|2
∗
dx ≥ δ2 for some δ2 > 0.

Since u2
m ⇀ 0 (m→∞) and u2

m(·+ ξ1
m) ⇀ 0 (m→∞) in X1,α, by (4.15) we deduce

that

|ξ2
m| → +∞, |ξ2

m − ξ1
m| → +∞ (m→∞).

Therefore, up to a subsequence, we may assume that u2
m(· + ξ2

m) ⇀ v2 (m → ∞)
in X1,α, and v2 is a nontrivial solution of (1.1) (which implies v2 ∈ M±). We now
define

u3
m := u2

m − v2(· − ξ2
m).

Iterating by the procedure above we construct sequences {ujm}j and {ξjm}j in the
following way:

uj+1
m := ujm − vj(· − ξjm),

F [ujm] = F [um]−
j−1∑
i=0

F [vi] + o(1) (m→∞),(4.16)

J(ujm) = J(um)−
j−1∑
i=0

J(vi) + o(1) (m→∞),(4.17)

J ′(vi) = 0, for i ≥ 0.(4.18)

Since {um} is bounded in X1,α, F [um] is also bounded. And (4.18) implies vi ∈M±
for every i ≥ 1. Therefore, when 3 ≤ n < 4 + α, we have

1

2
F [vi] ≥ 1

2

∫
Rn
|∇vi|2 dx+

1

4
L(vi) =

µ

q

∫
Rn
|vi|q dx+

1

2∗
2∗ − nb
q − nb

∫
Rn
|vi|2

∗
dx

>
1

2∗
2∗ − nb
q − nb

∫
Rn
|vi|2

∗
dx =

1

2

∫
Rn
|vi|2

∗
dx ≥ n

2
inf

u∈M+

J.

Similarly, when n > 4+α, we also have F [vi] > n infu∈M− J . Thus, F [vi] > n infM± J
for i = 1, 2, . . . This implies that the iteration must stop at some k. Otherwise, it
contradicts (4.16) and the boundedness of F [um]. Specifically, for some k, ukm → 0
(m→∞) in X1,α. Consequently, J(ukm)→ 0 when m→∞. Letting m→∞ in (4.17)
with j = k yields

(4.19)

k∑
i=0

J(vi) = inf
u∈M±

J.



Schrödinger–Poisson–Slater equation 505

In view of vi ∈M± for i ≥ 1, we obtain

J(vi) ≥ inf
u∈M±

J, i ≥ 1.

Combining this result and (4.19) with J(v0) ≥ 0 (implied by (4.1)), we can see v0 6= 0
and k = 0, or v0 = 0 and k = 1. In the first case, um(· + ξ1

m) → v0(·) (m → ∞)
in X1,α and v0 is a solution of equation (1.1) with J(v0) = infu∈M± J , and so v0 is a
ground state solution of (1.1). In the latter, um(· + ξ1

m) → v1(·) in X1,α as m → ∞
and v1 is a ground state solution of equation (1.1) with J(v1) = infu∈M± J . The proof
is complete.

Remark 4.2. The conclusions in Theorem 4.1 still hold if we replace M± with M̃±.

In particular, we can find either v0 or v1 is the ground state solution of (1.1) in M̃±.

5. Convergence relation

In this section, we investigate the convergence relation between the ground state
solutions and the minimizing sequence under the assumptions in Theorems 1.1 and 1.2.

Theorem 5.1. Let n ≥ 4 and α ∈ (0, n). The ground state solution v0 (or v1) is the
L2∗

(Rn)-limit of some subsequence of the minimizing sequence um of J in M±.

Proof: Since um is the minimizing sequence, similarly as in the derivation of (3.24),
we get

inf
M±

J = J(um)− β〈J ′(um), um〉 − θP(um) + o(1)

=
1

n

∫
Rn
|um|2

∗
dx+ o(1)

when m→∞. Applying (3.15) and (4.1), we obtain from the result above that

inf
M±

J =
1

n

∫
Rn
|u1
m|2

∗
dx+

1

n

∫
Rn
|v0|2

∗
dx+ o(1)

=
1

n

∫
Rn
|u1
m|2

∗
dx+ J(v0) + o(1) (m→∞).

(5.1)

When v0 ∈M± is the ground state solution, the result above shows

lim
m→∞

1

n

∫
Rn
|u1
m|2

∗
dx+ J(v0) = inf

M±
J ≤ J(v0).

This implies that

lim
m→∞

1

n

∫
Rn
|u1
m|2

∗
dx = 0.

Thus, um converges to v0 in L2∗
(Rn).

When v1 ∈ M± is the ground state solution, we know that the Brézis–Lieb type
results (3.13)–(3.16) still hold if we replace u1

m, um, and v0 with u2
m, u1

m, and v1

respectively. By the same derivation as in (2.2) and (2.3), we have

J(v1) =
1

n

∫
Rn
|v1|2

∗
dx.

Therefore, by the Brézis–Lieb type results, from (5.1) we have

(5.2) inf
M±

J =
1

n

∫
Rn
|u2
m|2

∗
dx+ J(v1) + J(v0) + o(1).
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In view of v1 ∈M± and J(v0) ≥ 0 (implied by (4.1)), the result above implies that

(5.3)
1

n

∫
Rn
|u2
m|2

∗
dx→ 0 (m→∞),

and J(v0) = 0. In view of (4.1), we see that v0 = 0 a.e. on Rn. Thus, (5.3) implies
that um converges to v1 in L2∗

(Rn). Theorem 5.1 is proved.

Remark 4.2 shows that (1.1) has ground state solution v0 or v1 in M̃±.

Theorem 5.2. Assume n ≥ 4 and α ∈ (1, n). Then the ground state solution v0

(or v1) is the X1,α
rad -limit of some subsequence of the minimizing sequence um of J

in M̃±.

Proof: According to Remark 2.5, the results in Section 2 still hold for M̃±. By Step 1

in the proof of Lemma 2.3, J is bounded from below on M̃±. By the same argument
as in the proof of Lemmas 3.1 and 3.2, we know that {um} is a bounded (PS)-sequence

of J in X1,α
rad . That is, when m→∞,

(5.4) J ′(um)→ 0, J(um)→ inf
M̃±

J.

Since {um} is bounded in X1,α
rad , when m → ∞, we see that, up to a subsequence,

um ⇀ v0 weakly in X1,α
rad , and hence

(5.5) um → v0 in Lq(Rn)

because the embedding (1.9) with α ∈ (1, n) is compact. By the same derivation as
in (3.33), there hold

(5.6) J ′(v0) = 0 and P(v0) = 0.

Set u1
m = um − v0. From (5.5) it follows that

(5.7) lim
m→∞

∫
Rn
|u1
m|q dx = 0.

Therefore, using 〈J ′(um), um〉 → 0 (m→∞) (which is implied by (5.4)) and (3.13)–
(3.16), we have∫

Rn
|∇u1

m|2 dx+

∫
Rn
|∇v0|2 dx+ L(u1

m) + L(v0)

− µ
∫
Rn
|v0|q dx−

∫
Rn
|u1
m|2

∗
dx−

∫
Rn
|v0|2

∗
dx=o(1) (m→∞).

(5.8)

Combining this with 〈J ′(v0), v0〉 = 0 (see (5.6)), we obtain

(5.9)

∫
Rn
|∇u1

m|2 dx+ L(u1
m)−

∫
Rn
|u1
m|2

∗
dx = o(1) (m→∞).

It follows from (5.9) and (4.4) that

(5.10) L(u1
m) = o(1) (m→∞).

Inserting (5.10) into (5.9), we obtain

(5.11)

∫
Rn
|∇u1

m|2 dx−
∫
Rn
|u1
m|2

∗
dx = o(1) (m→∞).
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When m→∞, using (3.13)–(3.16), (5.7), and (5.10), we deduce from (5.4) that

inf
M̃±

J = J(um) + o(1)

=
1

2

∫
Rn
|∇u1

m|2 dx+
1

2

∫
Rn
|∇v0|2 dx+

1

4
L(v0)

− µ

q

∫
Rn
|v0|q dx− 1

2∗

∫
Rn
|u1
m|2

∗
dx− 1

2∗

∫
Rn
|v0|2

∗
dx+ o(1)

=
1

2

∫
Rn
|∇u1

m|2 dx−
1

2∗

∫
Rn
|u1
m|2

∗
dx+ J(v0) + o(1).

Thus, by (5.11), it follows that

inf
M̃±

J =
1

n

∫
Rn
|∇u1

m|2 dx+ J(v0) + o(1).

When v0 ∈ M̃± is a ground state solution, we know that J(v0) ≥ infM̃±
J . From

the information above, it follows that∫
Rn
|∇u1

m|2 dx = o(1) (m→∞).

Combining this with (5.10), we conclude that when m→∞,

um → v0 in X1,α
rad .

When v1 ∈ M̃± is a ground state solution, we can find a subsequence of um
denoted by itself such that ‖u2

m‖qq → 0 (m → ∞) by the boundedness of ‖um‖X1,α

and the compactness of the embedding (1.9). By the same derivation as in (5.8),
when m→∞, from 〈J ′(u1

m), u1
m〉 → 0 (implied by (4.2)) we can see that

‖∇u2
m‖22 + L(u2

m)− ‖u2
m‖2

∗

2∗ → 〈J ′(v1), v1〉 (m→∞).

In view of J ′(v1) = 0 (implied by (4.11)), there holds

(5.12) ‖∇u2
m‖22 + L(u2

m)− ‖u2
m‖2

∗

2∗ → 0 (m→∞).

By the fourth result in (4.14) we know that

n− 2

2
[‖∇u2

m‖22 − ‖u2
m‖2

∗

2∗ ] +
n+ α

4
L(u2

m) = o(1) (m→∞).

Combining with (5.12) yields

(5.13) L(u2
m)→ 0 (m→∞).

Inserting this into (5.12) we get

‖∇u2
m‖22 − ‖u2

m‖2
∗

2∗ → 0 (m→∞).

This result, together with (5.2), implies

inf
M̃±

J =
1

n
‖∇u2

m‖22 + J(v1) + J(v0) + o(1).

Noting v1 ∈ M̃± and J(v0) ≥ 0, we have

(5.14)
1

n
‖∇u2

m‖22 = o(1) (m→∞),
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and J(v0) = 0. By (4.1) we have v0 = 0 a.e. on Rn. Therefore, (5.14) implies that

∇um → ∇v1 in L2(Rn) when m → ∞. Combining with (5.13), um → v1 in X1,α
rad .

Theorem 5.2 is proved.
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(2012), 369–376. DOI: 10.1016/j.anihpc.2011.12.001.
[10] H. Hu, Y. Li, and D. Zhao, Ground state for fractional Schrödinger–Poisson equation in

Coulomb–Sobolev space, Discrete Contin. Dyn. Syst. Ser. S 14(6) (2021), 1899–1916. DOI: 10.
3934/dcdss.2021064.

[11] I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger–Poisson–Slater problem,

Commun. Contemp. Math. 14(1) (2012), 1250003, 22 pp. DOI: 10.1142/S0219199712500034.
[12] C. Lei and Y. Lei, On the existence of ground states of an equation of Schrödinger–Poisson–

Slater type, C. R. Math. Acad. Sci. Paris 359(2) (2021), 219–227. DOI: 10.5802/crmath.175.

[13] E. H. Lieb, Coherent states as a tool for obtaining rigorous bounds, in: Coherent States.
Past, Present, and Future, Proceedings of the International Symposium, Oak Ridge Nat’l Lab.

14–17 June 1993, World Scientific, 1994, pp. 267–278. DOI: 10.1142/9789814503839_0020.

[14] P.-L. Lions, Some remarks on Hartree equation, Nonlinear Anal. 5(11) (1981), 1245–1256.
DOI: 10.1016/0362-546X(81)90016-X.

[15] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit

case, Part I, Rev. Mat. Iberoamericana 1(1) (1985), 145–201. DOI: 10.4171/RMI/6.
[16] P.-L. Lions, Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys.

109(1) (1987), 33–97. DOI: 10.1007/BF01205672.
[17] Z. Liu, Z. Zhang, and S. Huang, Existence and nonexistence of positive solutions for a static

Schrödinger–Poisson–Slater equation, J. Differential Equations 266(9) (2019), 5912–5941.

DOI: 10.1016/j.jde.2018.10.048.

http://dx.doi.org/10.1142/S021919970800282X
http://dx.doi.org/10.1007/s00208-014-1046-2
http://dx.doi.org/10.1007/s00208-014-1046-2
http://dx.doi.org/10.1090/tran/7426
http://dx.doi.org/10.4310/MRL.2016.v23.n3.a2
http://dx.doi.org/10.1142/S0218202503002969
http://dx.doi.org/10.2307/2044999
http://dx.doi.org/10.1002/cpa.3160360405
http://dx.doi.org/10.1002/cpa.3160360405
https://doi.org/10.1137/S0036141004442793
https://doi.org/10.1137/S0036141004442793
http://dx.doi.org/10.1016/j.anihpc.2011.12.001
http://dx.doi.org/10.3934/dcdss.2021064
http://dx.doi.org/10.3934/dcdss.2021064
http://dx.doi.org/10.1142/S0219199712500034
http://dx.doi.org/10.5802/crmath.175
http://dx.doi.org/10.1142/9789814503839_0020
http://dx.doi.org/10.1016/0362-546X(81)90016-X
http://dx.doi.org/10.4171/RMI/6
http://dx.doi.org/10.1007/BF01205672
http://dx.doi.org/10.1016/j.jde.2018.10.048


Schrödinger–Poisson–Slater equation 509

[18] D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct.

Anal. 237(2) (2006), 655–674. DOI: 10.1016/j.jfa.2006.04.005.

[19] D. Ruiz, On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonra-
dial cases, Arch. Ration. Mech. Anal. 198(1) (2010), 349–368. DOI: 10.1007/s00205-010-

0299-5.

[20] D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger–Poisson–Slater problem around a
local minimum of the potential, Rev. Mat. Iberoam. 27(1) (2011), 253–271. DOI: 10.4171/RMI/

635.

[21] G. Siciliano, Multiple positive solutions for a Schrödinger–Poisson–Slater system, J. Math.
Anal. Appl. 365(1) (2010), 288–299. DOI: 10.1016/j.jmaa.2009.10.061.

[22] X. Tang and S. Chen, Ground state solutions of Nehari–Pohozaev type for Schrödinger–Poisson

problems with general potentials, Discrete Contin. Dyn. Syst. 37(9) (2017), 4973–5002. DOI: 10.
3934/dcds.2017214.

[23] M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl. 24, Birkhäuser
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