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POINTWISE LOCALIZATION AND SHARP WEIGHTED BOUNDS

FOR RUBIO DE FRANCIA SQUARE FUNCTIONS
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Abstract: Let Hωf be the Fourier restriction of f ∈ L2(R) to an interval ω ⊂ R. If Ω is an arbitrary
collection of pairwise disjoint intervals, the square function of {Hωf : ω ∈ Ω} is termed the Rubio

de Francia square function TΩ
RF. This article proves a pointwise bound for TΩ

RF by a sparse operator

involving local L2-averages. A pointwise bound for the smooth version of TΩ
RF by a sparse square

function is also proved. These pointwise localization principles lead to quantified Lp(w), p > 2, and
weak Lp(w), p ≥ 2, norm inequalities for TΩ

RF. In particular, the obtained weak Lp(w)-norm bounds

are new for p ≥ 2 and sharp for p > 2. The proofs rely on sparse bounds for abstract balayages of

Carleson sequences, local orthogonality, and very elementary time-frequency analysis techniques.
The paper also contains two results related to the outstanding conjecture that TΩ

RF is bounded

on L2(w) if and only if w ∈ A1. The conjecture is verified for radially decreasing even A1-weights,

and in full generality for the Walsh group analogue of TΩ
RF.
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1. Introduction and main results

The Lp-norm, 1 < p <∞, equivalence between f and its Littlewood–Paley square
function lies at the foundation of the modern treatment of singular integrals. The
fact that this equivalence extends to weighted Lp(w)-norms for weights in the Muck-
enhoupt class testifies the localized nature of the Littlewood–Paley inequalities. In
contrast to the lacunary Littlewood–Paley configuration, this article addresses the
localization properties of square functions of both smooth and rough multipliers sup-
ported on frequency intervals forming an arbitrary pairwise disjoint, or finitely over-
lapping, collection; precise definitions are given below.
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For intervals ω ⊂ R, define the class of multipliers adapted to ω as follows. Say m ∈
Mω if m ∈ CD(ω) for a fixed large integer D and

suppm ⊂ ω, sup
ξ∈ω

sup
0≤j≤D

dist(ξ, ∂ω)j‖m(j)‖∞ ≤ 1.

To a collection of pairwise disjoint intervals Ω, and a choice {mω ∈ Mω : ω ∈ Ω},
associate the square function

TΩf :=

(∑
ω∈Ω

|Tωf |2
) 1

2

, Tωf(x) :=

∫
R
f̂(ξ)mω(ξ)e−iξx

dξ√
2π
, x ∈ R.

The operator

(1) Hωf(x) :=

∫
ω

f̂(ξ)e−iξx
dξ√
2π
, x ∈ R,

is an instance of Tω corresponding to the choice mω = 1ω. This specific case of TΩ is
the so-called Rubio de Francia square function, which is assigned the notation TΩ

RF

TΩ
RFf(x) :=

(∑
ω∈Ω

|Hωf(x)|2
) 1

2

, x ∈ R.

With more details and discussion to follow, one of the main results of this paper is
the pointwise control of TΩ

RFf by a sparse form, see Subsection 1.1, in a sharp way,
leading to new and in several cases best possible weighted norm inequalities for this
operator.

Theorem A. Let Ω be a collection of pairwise disjoint intervals and TΩ
RF be as above.

For every f ∈ L2(R) with compact support there exists a sparse collection S such that

TΩ
RFf .

∑
Q∈S
〈f〉2,Q1Q

and the L2-average on the right hand side cannot be replaced by any Lp-average for
any p < 2. Furthermore there holds

‖TΩ
RF‖L2(w)→L2,∞(w) . [[w]A1 [w]A∞ log(e + [w]A∞)]

1
2

and for 2 < p <∞

‖TΩ
RF‖Lp(w)→Lp,∞(w) . [w]

1
p

A p
2

[w]
1
p′

A∞
.

The first estimate is best possible up to the logarithmic term while the second estimate
is best possible.

We will get Theorem A as a consequence of more general corresponding results
for square functions TΩ defined in terms of more general multipliers in {Mω}ω∈Ω, as
described above; see Theorem C, Corollary C.1, and Subsection 1.2.
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A smooth, intrinsic counterpart of TΩ is defined as follows. For each interval ω ⊂ R,
let Φω be the class of functions

Φω :=

{
φ ∈ S(R) : suppφ ⊂ ω, sup

0≤j≤D
`jω‖φ(j)‖∞ ≤ 1

}
for a positive integer D which we fix to be sufficiently large throughout the paper.
Then the intrinsic smooth Rubio de Francia square function is the operator

GΩf :=

(∑
ω∈Ω

f2
ω

) 1
2

, fω(x) := sup
φ∈Φω

|f ∗ φ̂(x)|, x ∈ R.

Both definitions naturally extend to higher dimensions and/or parameters by consid-
ering collections of disjoint rectangles with respect to a fixed choice of a basis in Rn
and defining the corresponding frequency projection operators. The two square func-
tions GΩ, TΩ are related by vector-valued Littlewood–Paley inequalities, and their
Lp(R) behavior, and in fact their Lp(w)-boundedness for weights w ∈ Ap as well,
1 < p <∞, are thus qualitatively equivalent.

The well-known result by Rubio de Francia [36] tells us that the operators TΩ
RF,

GΩ are bounded on Lp(R) for p ≥ 2; see [24, 26] for the higher parametric case.
Rubio de Francia’s reliance on local orthogonality in [36] is embodied by the main
step of his proof, namely the sharp function pointwise inequality

(2) [GΩf ]# ≤ C
√

M(|f |2).

1.1. Pointwise sparse domination of TΩ and GΩ. Estimate (2) also yields
Lp(w)-norm bounds for weights w in appropriate Muckenhoupt classes. With the dual
intent of strengthening (2) and of precisely quantifying these weighted estimates, we
establish pointwise domination principles for both TΩ and GΩ, respectively involving
the case p = 2 of the sparse operators

(3) Tp,Sf :=
∑
Q∈S
〈f〉p,Q1Q, Gp,Sf :=

(∑
Q∈S
〈f〉2p,Q1Q

) 1
2

, 0 < p <∞,

associated to a sparse collection S of intervals on the real line. The notations and
definitions appearing in (3) and in what follows are standard, and are recalled at the
end of the introduction.

Theorem B. Let Ω be a collection of pairwise disjoint intervals. For each f ∈ L2(R)
with compact support there exists a sparse collection S such that

GΩf . G2,Sf

pointwise almost everywhere. The implicit constant in the above inequality is absolute.

Theorem C. Let Ω be a collection of pairwise disjoint intervals. For each f ∈ L2(R)
with compact support there exists a sparse collection S such that

TΩf . T2,Sf

pointwise almost everywhere. The implicit constant in the above inequality is absolute.

Pointwise domination of Hölder-continuous Calderón–Zygmund operators by the
sparse operator T1,S is the keystone of Lerner’s simple re-proof [28] of Hytönen’s
A2 theorem [19]. Since then, Tp,S have become ubiquitous in singular integral the-
ory, to the point that an exhaustive list of references is well beyond the purview of
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this article. On the other hand, the sparse square functions G1,S , Gp,S have previ-
ously appeared in the context of weighted norm inequalities for square functions of
Littlewood–Paley and Marcinkiewicz type; see e.g. [4, 14, 29] and references therein.
Thus, the specific relevance of the sparse domination principles of Theorems B and C,
beyond the strengthening of (2), is explained by the next proposition involving weights
and Ap-weight constants, whose standard definitions are also recalled at the end of
the introduction.

Proposition 1.1. The estimates below hold with implicit constants possibly depending
only on the exponents p, q appearing therein and in particular independent of the
sparse collection S.

(i) ‖G2,S‖L2(w)→L2,∞(w) . [[w]A1
log(e + [w]A∞)]

1
2 .

(ii) ‖T2,S‖L2(w)→L2,∞(w) . [[w]A1 [w]A∞ log(e + [w]A∞)]
1
2 .

(iii) ‖G2,S‖Lp(w)→Lp,∞(w) . [w]
1
p

A p
2

[w]
1
2−

1
p

A∞
, 2 < p <∞.

(iv) ‖T2,S‖Lp(w)→Lp,∞(w) . [w]
1
p

A p
2

[w]
1
p′

A∞
, 2 < p <∞.

(v) ‖G2,S‖Lp(w) . min{[w]
max{ 1

p−2 ,
1
2}

A p
2

, [w]
1
2

Aq
}, 2 ≤ 2q < p <∞.

(vi) ‖T2,S‖Lp(w) . min{[w]
max{ 1

p−2 ,1}
A p

2

, [w]Aq}, 2 ≤ 2q < p <∞.

An application of Proposition 1.1 immediately entails two corollaries of our main
results.

Corollary B.1. Estimates (i), (iii), and (v) of Proposition 1.1 hold for the intrinsic
smooth square function GΩ in place of G2,S .

Corollary C.1. Estimates (ii), (iv), and (vi) of Proposition 1.1 hold for TΩ in place
of T2,S .

Proof of Proposition 1.1: Points (i), (iii), and the leftmost estimates in (v) and (vi)
are essentially special cases of previously known results. For (i), (iii), and the leftmost
estimate in (v), rely on the observation that

‖G2,S‖Lp(w)→Lp,∞(w) = ‖T1,S‖
1
2

L
p
2 (w)→L

p
2
,∞(w)

, ‖G2,S‖Lp(w) = ‖T1,S‖
1
2

L
p
2 (w)

together with the sharp bound for the appropriate weighted norm of T1,S . The weak-
type Lq(w)-bound for T1,S was sharply quantified in [32, Theorem 1.2] for q > 1 and
in [17, Theorem 1.4] for q = 1, whence (iii) and (i) respectively; the latter estimate for
Calderón–Zygmund operators for q = 1 is contained in [31]. The strong-type Lq(w)-
bound for T1,S is classical; see e.g. [3, 9, 17, 22, 30, 34]. Finally, the leftmost
estimate in (vi) is from [3, Proposition 6.4].

The bounds (ii), (iv), and the rightmost estimates in (v) and (vi) seemingly do
not appear in past literature. Estimates (ii) and (iv) are obtained by combining (i)
and (iii), respectively, with Corollary F.1 below, cf. Section 2. This corollary is a sparse
operator version of the exponential square good-λ of Chang, Wilson, and Wolff [5].
The rightmost estimate in (v) is obtained by interpolating the weak-type estimates
in (iii) for p

2 ∈ (q,∞). Likewise, the rightmost estimate in (vi) is obtained by inter-
polating the weak-type estimates of (iv) in the same open range of exponents.
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1.2. On the sharpness of Corollaries B.1 and C.1. As customary in the lit-
erature, the term sharpness of a weighted estimate in the Muckenhoupt class Aq,
say, refers below to whether the functional dependence of the estimate on the weight
characteristic [w]Aq is best possible.

With this language, estimate (i) is sharp up to the logarithmic term. It is con-
ceivable that the appearance of such correction is related to whether L2(w)-bounds
for GΩ hold true for all w ∈ A1, a question that remains open at the time of writing.
For GΩ, the leftmost estimate in (v) is sharp for p ≥ 4, while estimate (iii) is sharp
for all 2 < p < ∞. Analogously, it is expected that the presence of the logarithmic
correction in (ii) is necessary if L2(w) fails for TΩ. At the time of writing, we can
only show that (ii) is sharp up to the logarithmic term. The leftmost estimate in (vi)
is sharp for p ≥ 3 and estimate (iv) is sharp for all p > 2. The rightmost estimates
in (v) and (vi) are sharp.

The above claims are verified as follows. The claimed sharpness for strong-type
Lp(w)-estimates ensues by combining the main results of [33] with the fact that the

unweighted Lp-bounds for GΩ are O(p
1
2 ), and the unweighted Lp-bounds for TΩ are

O(p) as p→ +∞. Similarly, in order to verify the sharpness of weak Lp(w)-estimates,
interpolate any two such estimates for p in the open range (2,∞) with w ∈ A1 and
use [33] again.

1.3. Past literature on weighted and sparse bounds for TΩ and GΩ. In [36,
Theorem 6.1], Rubio de Francia proved thatGΩ, and hence TΩ

RF, are bounded on Lp(w)
for 2 < p <∞ and w ∈ A p

2
. The L2(w)-boundedness for w ∈ A1 of TΩ

RF and GΩ, con-

jectured in [36, Section 6, p. 10], see also [15, Section 8.2, pp. 186–187], remains an
open question at the time of writing. This conjecture is corroborated by the fact that
it holds for the particular case of congruent intervals [35, Theorem A], as well as the
partial result that TΩ

RF, GΩ are L2(w)-bounded for w(x) = |x|−α ∈ A1, 0 < α < 1.
The latter was proved by Rubio de Francia in [37], and a different argument was
later given by Carbery in [39, pp. 81–93]. Weighted weak-type estimates at the end-
point p = 2 were found in [25, Theorem B(ii)], yielding the weak variant of Rubio de
Francia’s conjecture.

Quantitative weighted strong (for 2 < p < ∞) and weak (at p = 2) estimates
for TΩ

RF were recently obtained in [18, Corollaries 1.5 and 1.6] as a consequence of
a sparse form domination [3, 10] of the bilinear form for the vector-valued version
of the Rubio de Francia square function TΩ

RF, cf. [18, Theorem 1.3]. In comparison
with the arguments of the present paper, the sparse domination proof of [18] relied
on a combination of the stopping forms techniques of [10] with deeper time-frequency
tools, such as vector-valued tree estimates and size decompositions [2], circumventing
the usual passing through the smooth operator GΩ. The pointwise sparse bound
of Theorem C is formally stronger than the vector-valued sparse estimate of [18].
Furthermore, forgoing the vector-valued formalism leads to a simpler argument devoid
of vector-valued time-frequency analysis.

In [18], the quantification of the behavior of TΩ
RF on Lp(w) is sharp for 3 ≤ p <∞.

On the other hand, the quantitative weighted weak-type estimate at the endpoint p =

2 was of order [w]
1
2

A1
[w]

1
2

A∞
log(e + [w]A∞). In the present paper, the weak-type (2, 2)

bound of Proposition 1.1(ii) improves by a [log(e + [w]A∞)]
1
2 term in comparison

to [18, Corollary 1.6], while the weak (p, p) bound, 2 < p <∞, is sharp.

1.4. The strong L2(w) inequality for the Walsh model. The Rubio de Fran-
cia square function TΩ has an immediate Walsh group analogue. For direct compar-
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ison with the trigonometric case, the same notation is kept for corresponding oper-
ations, to the extent possible. In stark contrast with the former, we have a proof of
L2(w)-boundedness for the Walsh–Rubio de Francia square function. A precise state-
ment is in Theorem D below. Albeit Theorems B and C continue to hold in the Walsh
setting, here a sharp endpoint is available, and weighted extrapolation of the L2(w) re-
sults yields better quantified weighted Lp(w)-bounds for the Walsh–Rubio de Francia
square function than those following from the corresponding sparse domination.

Here follow the definitions relevant to Theorem D. Let ω = [k,m) be an interval
with k,m ∈ N. Define the Walsh projection operator by

Hωf(x) :=

∞∑
n=0

1ω(n)〈f,Wn〉Wn(x), x ∈ T,

where {Wn : n ∈ N} are the characters of the Walsh group on T = [0, 1); see (39).
For a collection ω ∈ Ω of pairwise disjoint intervals in N the Walsh–Rubio de Francia
square function is

TΩf(x) :=

(∑
ω∈Ω

|Hωf(x)|2
) 1

2

, x ∈ T.

Due to the dyadic nature of the Walsh setting, it suffices to assume dyadic Ap condi-
tions on the weight. The corresponding dyadic constant will be denoted by Ap,D.

Theorem D. Let w ∈ A1. Then,

‖TΩf‖L2(w) . [w]
1/2
A1,D

[w]
1/2
A∞
‖f‖L2(w).

Furthermore, the sharp bound

‖TΩf‖Lp(w) . [w]A p
2
,D
‖f‖L2(w), 2 < p <∞,

holds with implicit constants depending only on p.

1.5. The strong L2(w) inequality for radially decreasing A1-weights. Our
final result extends the class of weights for which the L2(w)-boundedness holds to
even and radially decreasing A1-weights in the form of the following theorem, giving
new insight on the open question of the L2(w)-boundedness for w ∈ A1 of the Rubio
de Francia square function.

Theorem E. Let w be an even and radially decreasing A1-weight on the real line.
There holds

‖GΩ‖L2(w) . [w]A1
‖f‖L2(w), ‖TΩ‖L2(w) . [w]

1
2

A∞
[w]A1

‖f‖L2(w).

The proof of Theorem E combines local orthogonality with a stopping time ar-
gument and is presented in Section 6. Our argument actually yields the conclusions
of Theorem E under the more general, albeit more technical, assumption (43). The
latter is in general a strengthening of the A1 condition, but is equivalent to A1 for
even, radially decreasing weights.

1.6. Notation and generalities. We shall write X . Y to indicate that X ≤ CY
with a positive constant C independent of significant quantities and we denote X ' Y
when simultaneously X . Y and Y . X.

The Fourier transform obeys the normalization

f̂(ξ) =
1√
2π

∫
R
f(x)e−ixξ dx, ξ ∈ R.
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Throughout the article, for I ⊂ R being any interval, denote

χI(x) :=

[
1 +

(
|x− cI |
`I

)2
]−1

, x ∈ R,

with cI and `I being respectively the center and length of I. For positive localized
averages and for their tailed counterpart, write

〈f〉p,I := |I|−
1
p ‖f1I‖p, 〈f〉p,I,† := |I|−

1
p ‖fχ9

I‖p, 0 < p <∞.
When p = 1, the subscript is omitted, simply writing 〈f〉I and 〈f〉I,† instead. The
chosen 18th order decay is not a relevant feature.

Sparse collections. A collection of intervals S is called η-sparse if for every I ∈ S
there exists a subset EI ⊆ I such that

|EI | ≥ η|I|
and the collection of sets {EI : I ∈ S} is pairwise disjoint. In this article, the exact
value of η may vary at each occurrence, although there is an absolute constant η0 > 0
which bounds from below each occurrence of η. In accordance, η is omitted when
referring to η-sparse collections.

Dyadic grids. The standard system of shifted dyadic grids on R, see e.g. [30], is

Dj =

{
2−n

[
k +

(−1)nj

3
, k + 1 +

(−1)nj

3

)
: k, n ∈ Z

}
, j = 0, 1, 2.

The superscript j in Dj is omitted whenever fixed and clear from the context. If I is
an interval, write D(I) = {J ∈ D : J ⊆ I}. For k ≥ 0, j ∈ Z, and Q ∈ D, denote
by Q(k) ∈ D the k-th dyadic parent of Q and define Q(k,j) := Q(k) + j`Q(k) , which
also belongs to D. To each Q ∈ D, associate an instance of the decomposition

(4) D =

 ⋃
|j|≤1

D(Q(0,j))

 ∪
 ⋃

k≥1
|j|≤1

{Q(k,j)}

 ∪
 ⋃

k≥0
2≤|j|≤3

D(Q(k,j))

 .

Equality (4) will be used in connection with tail estimates. It can be easily obtained
as a consequence of the dyadic covering

5J (1) \ 5J = J (1,−2) ∪ J (1,2) ∪ J (0,3σ),

holding for each J ∈ D, with σ = 1 if J is a left child of J (1), and σ = −1 otherwise.
Indeed, let Q ∈ D and J be the maximal elements of D contained in R \ 5Q. The
elements of J partition R \ 5Q and one has the disjoint union

J =

∞⋃
k=0

Jk, Jk := {J ∈ D : J ∩ 5Q(k,0) = ∅, J ⊂ 5Q(k+1,0)}.

Notice that Jk is a partition of 5Q(k+1,0) \ 5Q(k,0). The maximality of J and the
initial observation forces the equality

Jk = {Q(k+1,−2), Q(k+1,2), Q(k,3σ)}
for some σ∈{−1, 1}. Therefore, for a generic I∈D, there are the following possibilities.

1. I ⊂ 5Q. Then I ∈ D(Q(0,j)) for some |j| ≤ 2.

2. I ∩ 5Q 6= ∅, I 6⊂ 5Q. Then I = Q(k,j) for some |j| ≤ 2 and k ≥ 1.

3. I ⊂ R \ 5Q. Then I ⊂ J for some J ∈ Jk and k ≥ 0, whence I ⊂ Q(k,j) for
some k ≥ 0 and 2 ≤ |j| ≤ 3.
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From here, equality (4) is deduced. If Q ∈ D is a dyadic cube, it is convenient to
introduce the non-dyadic dilates of Q

(5) Q̃(k) :=
⋃
|j|≤2

Q(k,j), k ≥ 0, R(Q) := {Q̃(k) : k ≥ 0}.

Note that 5Q(k) = Q̃(k) and that R(Q) is a sparse collection, two facts used on several
occasions below.

A general principle is that the operators associated to a sparse collection S may
be estimated pointwise by a finite sum of operators associated to sparse collections
coming from dyadic grids. More precisely, the three-grid lemma ([30, Theorem 3.1])
may be easily used to deduce that for each sparse collection S there exist sparse
collections Sj ⊂ Dj , j = 0, 1, 2, such that, cf. (3),

Tp,Sf .
∑

j=0,1,2

Tp,Sjf, Gp,Sf .
∑

j=0,1,2

Gp,Sjf,

pointwise, with implicit constants depending on p only. Any quasi-Banach function
space operator norm estimate for operators (3) may thus be reduced to the case where
S is a subset of a dyadic grid D.

Weight characteristics. A weight w on R is a positive, locally integrable function.
For 1 ≤ p ≤ ∞, the Ap characteristic of w is defined by

[w]Ap :=



sup
I
〈w〉1,I(inf

I
w)−1, p = 1,

sup
I
〈w〉1,I〈w−1〉 1

p−1 ,I
, 1 < p <∞,

sup
I
〈M(w1I)〉1,I〈w〉−1

1,I , p =∞,

where the suprema are being taken over all intervals I ⊂ R and M is the Hardy–
Littlewood maximal function. Note that our definition of A∞ coincides with that of
Wilson, see e.g. [17, 23, 40], and that

[w]A∞ . [w]Ap ≤ [w]Aq , 1 ≤ q < p <∞,
with absolute implicit constant; see [23]. The formal definition of the dyadic Ap
characteristic [w]Ap,D is the same as the usual Ap constant, with the supremum therein

being replaced by the supremum over all intervals in D0(T), where T = [0, 1).

Structure of the paper. Section 2 introduces the sparse operators (3) as special
cases of balayages of Carleson sequences and contains two relevant results: a weighted
exponential good-λ inequality for balayages and a pointwise domination of balayages
by a sparse operator. Sections 3 and 4 are devoted to the proofs of Theorem B and
Theorem C, respectively. Theorem D is shown in Section 5, and Theorem E is proved
in Section 6.
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2. Balayages of Carleson sequences

Let D be a fixed dyadic grid and a = {aQ : Q ∈ D} be any sequence of complex
numbers. If E ⊂ D, the E-balayage of a is defined by

(6) AE [a] :=
∑
Q∈E
|aQ|1Q.

Remark 2.1. Sparse operators are special cases of (6). Indeed, if 0 < p < ∞ and
f ∈ Lploc(R),

Tp,Sf = AS [{〈f〉p,Q : Q ∈ D}], Gp,Sf =
√
AS [{〈f〉2p,Q : Q ∈ D}].

2.1. An exponential good-λ inequality for sparse balayages. The next theo-
rem is an exponential good-λ inequality for balayages supported on sparse collections.
Its corollary has been used in the deduction of estimates (ii), (iv) of Proposition 1.1 re-
spectively from (i), (iii) of the same proposition. For ease of notation, given a complex
sequence a = {aQ : Q ∈ D}, indicate by a2 := {a2

Q : Q ∈ D}.

Theorem F. Let w ∈ A∞. There exist absolute constants C, δ > 0 such that the
following holds. Let S ⊂ D be a sparse collection and a = {aQ : Q ∈ D} be any
sequence. Then for all λ, γ > 0,

w({AS [a] > 2λ,
√
AS [a2] ≤ γλ}) ≤ C exp

(
− δγ2

[w]A∞

)
w({AS [a] > λ}).

Corollary F.1. Let 0 < q, s <∞, 0 < r, t ≤ ∞. Then

sup ‖T2,S : Lq,r(w)→ Ls,t(w)‖ . [w]
1
2

A∞
sup ‖G2,S : Lq,r(w)→ Ls,t(w)‖

with the supremum taken over all not necessarily dyadic sparse collections S, and
implied constant depending on q, r, s, t only.

Proof of Theorem F and Corollary F.1: First, in view of Remark 2.1, Corollary F.1
follows from the theorem by standard good-λ method. To prove the theorem, by
monotone convergence, it suffices to prove the claim for finite sparse collections S as
long as the estimate obtained is uniform in #S. Denote S(Q) = {Z ∈ S : Z ⊆ Q} for
each Q ∈ D. Also denote by Fλ and Eλ the sets appearing respectively in the left and
right hand side of the conclusion of the theorem. Under our qualitative assumptions
the set Eλ is a finite union of intervals of D, whence Eλ = ∪{R : R ∈ R} and R is
the collection of those elements of D contained in Eλ and maximal with respect to
inclusion. Pairwise disjointness of the collection R thus reduces our claim to proving

(7) w(Fλ ∩R) ≤ C exp

(
− δγ2

[w]A∞

)
w(R), R ∈ R.

If x ∈ Fλ ∩R, then

2λ < AS [a](x) = AS(R)[a](x) +
∑
Z∈S

Z⊇R(1)

|aZ | ≤ AS(R)[a](x) + λ

≤
√
AS(R)[a2](x)

( ∑
Z∈S(R)

1Z

) 1
2

+ λ ≤ γλ

( ∑
Z∈S(R)

1Z

) 1
2

+ λ.
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For the second inequality on the first line we have used that R(1) 6⊂Eλ due to maxi-
mality of R. Therefore

Fλ ∩R ⊂

{
x ∈ R :

∑
Z∈S(R)

1Z > γ−2

}

and (7) follows from the weighted John–Nirenberg inequality. The proof of the theorem
is thus complete.

2.2. Subordinated Carleson sequences. Let f ∈ L1(Rd) be a fixed function. Say
that the sequence a = {aI : I ∈ D} is a Carleson sequence subordinated to f if

(8)
1

|I|
∑

J∈D(I)

|J ||aJ | ≤ C〈f〉I,†

uniformly over all I ∈ D. The least constant C such that (8) holds is denoted by ‖a‖D
and termed the Carleson norm of a. The next proposition shows that balayages of
Carleson sequences subordinated to f are dominated by 1-average sparse operators
applied to f .

Proposition 2.2. There exists an absolute constant C such that the following holds.
For each f ∈ L1(R) with compact support there exists a sparse collection S of intervals
with the property that for all Carleson sequences a subordinated to f there holds

(9) AD[a] ≤ C‖a‖DT1,Sf,

pointwise almost everywhere.

The remainder of this section is devoted to the proof of Proposition 2.2. Fix a
compactly supported function f , and choose Q∈D with supp f ⊂ (1+3−1)Q. Further,
fix a = {aI : I ∈ D} subordinated to f , and without loss of generality assume aI ≥ 0,
and normalize ‖a‖D = 1. As a is fixed, for a generic collection E , the notation AE is
used in the proof in place of AE [a].

For the proof of (9), note that (4) readily yields the splitting

(10) AD ≤
∑
|j|≤1

AD(Q(0,j)) +
∑
k≥1
|j|≤1

|aQ(k,j) |1Q(k,j) +
∑
k≥0

2≤|j|≤3

AD(Q(k,j)).

The proof is articulated into two constructions. The main term in (10) is the |j| ≤
1 summation while the last two summands entail error terms. We first deal with those.

2.3. Tails. Here we control the latter two sums on the right hand side of (10). We
note preliminarily that

I ∈ D, I(`,0) ∈ {Q(k,±2), Q(k,±3)} =⇒ dist(supp f, I) & 2−``I

=⇒ 〈f〉I,† . 2−6`〈f〉
Q̃(k)

.
(11)

To obtain the last implication we have used that ‖χ9
I1supp f‖∞ . 2−9`, supp f ⊂

Q̃(k), and |I| & 2−`|Q̃(k)|. The second summand in (10) is estimated by the Carleson
condition for a single scale, as follows:

(12)
∑
k≥1
|j|≤1

|aQ(k,j) |1Q(k,j) ≤
∑
k≥1
|j|≤1

〈f〉Q(k,j),†1Q(k,j) . T1,R(Q)f,
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using the notation of Subsection 1.6, cf. (5) in particular. For the third summand
in (10) we also proceed via a single scale. Indeed, applying the Carleson condition at
the second step, and following with (11), we have for τ ∈ {±2,±3} that

AD(Q(k,τ)) =
∑
`≥0

∑
I∈D

I(`,0)=Q(k,τ)

|aI |1I ≤
∑
`≥0

∑
I∈D

I(`,0)=Q(k,τ)

〈f〉I,†1I

.
∑
`≥0

2−6`
∑
I∈D

I(`,0)=Q(k,τ)

〈f〉
Q̃(k)

1I . 〈f〉Q̃(k)
1
Q̃(k)

.

The last inequality shows that the third summation in (10) is also controlled by the
sparse operator T1,R(Q) as on the rightmost side of (12).

2.4. Main term. The main term in (10) will be controlled via the intermediate
estimate

(13) AD(I) . T1,Q(I),†f, T1,Q,†f :=
∑
I∈Q
〈f〉1,I,†1I

for each I ∈ {Q(0,j), |j| ≤ 1}, where Q(I) is a suitably constructed sparse collection.
Then,

T1,Q(I),†f .
∑
k≥0

2−8k
∑

I∈Q(I)

〈f〉2,2kI1I

so that two applications of [8, Theorem A], cf. [8, proof of Corollary A.1], upgrade (13)
to

AD(I) . T1,Q′(I)f, I ∈ {Q(0,j), |j| ≤ 1}

with a possibly different sparse collection Q′(I). Combining these bounds with the
estimates of Subsection 2.3 completes the proof of (9), and in turn of Proposition 2.2.

The proof of (13) is a simple John–Nirenberg type iteration argument: details are
as follows. For each R ∈ D(I), define the collection

S(R) := maximal elements of

Z ∈ D(R) :
∑

W∈D(R)
Z⊂W

aW > 4〈f〉R,†

 .

As S(R) is a pairwise disjoint collection, an application of the Carleson condition in
the last step yields the packing estimate∑

Z∈S(R)

|Z| ≤ 1

4〈f〉R,†

∑
Z∈S(R)

∫
Z

AD(R) ≤
‖AD(R)‖1
4〈f〉R,†

≤ |R|
4

while, setting D?(R) := D(R) \
⋃
Z∈S(R)D(Z),

(14) AD(R) ≤ AD?(R) +
∑

Z∈S(R)

AD(Z) ≤ 4〈f〉R,† +
∑

Z∈S(R)

AD(Z).
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Setting Q0 := {I}, inductively define

Qk+1 :=
⋃

R∈Qk

S(R), k = 0, 1, . . . , Q(I) :=
⋃
k≥0

Qk,

and observe that the previously obtained packing estimate ensures Q(I) is a sparse
collection. Finally, iterating (14),

AD(I) ≤
∑
R∈Q

AD?(R) ≤ 4T1,Q(I),†f,

which is the claimed (13).

3. Proof of Theorem B

The proof of Theorem B relies upon a suitable discretization of GΩ into a wave
packet coefficient square function. It is not difficult to show that the square sum of
the wave packet coefficients of f localized on a single spatial interval is a Carleson
sequence subordinated to |f |2, so that the claim of the theorem readily follows from
Proposition 2.2.

We turn to the details. For j = 0, 1, 2 define the corresponding j-th tile uni-
verse Sj ⊂ D0 × Dj as the set of those I × ω ∈ D0 × Dj with `I`ω = 1. The
superscript j is omitted whenever fixed and clear from the context. As customary, the
notation s = Is × ωs is employed for s ∈ S. If P ⊂ S, we write

(15) P(I) = {s ∈ P : Is = I}, P⊆(I) = {s ∈ P : Is ⊆ I}

for each interval I ⊂ R. For our purposes, we are especially interested in subcollections
of tiles whose frequency intervals are pairwise disjoint, the precise definition being as
follows. If Ω ⊂ D is a collection of pairwise disjoint intervals, write

(16) PΩ := {s ∈ P : ωs = ω for some ω ∈ Ω}.

With these notations, let PΩ(I) := {s ∈ PΩ : Is = I} for each interval I ⊂ R. Fix a
large integer D. To each tile s = Is × ωs, recalling that cωs denotes the center of ωs,
we associate the L1-normalized wavelet class Ψs consisting of those φ ∈ C∞(R) with

(17) supp φ̂ ⊂ ωs, sup
0≤j≤D

|Is|1+j‖χ−DIs (exp(icωs ·)φ)(j)‖∞ ≤ 1.

The intrinsic wave packet coefficient of f ∈ L2(R) is then defined by the maximal
quantity

(18) s(f) := sup
φ∈Ψs

|〈f, φ〉|, s ∈ S.

The coefficients (18) may be used to construct a smooth, approximately localized
analogue of the L2-norm of f on the torus I ∈ D. Namely, if Ω is a collection of
pairwise disjoint dyadic intervals, set

[f ]SΩ(I) :=

( ∑
s∈SΩ(I)

s(f)2

) 1
2

, I ∈ D.

The next lemma shows that whenever Ω ⊂ D is a pairwise disjoint collection, and
f ∈ L2(R), the sequence {[f ]2SΩ(I) : I ∈ D} is a Carleson sequence subordinated to

the function |f |2.

Lemma 3.1. There holds
∑

J∈D(I)

|J |[f ]2SΩ(J) . |I|〈|f |
2〉I,† uniformly over I ∈ D.
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Proof: Fix I ∈ D. It suffices to show that

(19)
∑

J∈D(I)

∑
s∈SΩ(J)

|J ||〈f, φs〉|2 . |I|〈|f |2〉I,†

for an arbitrary choice of φs ∈ Ψs, for each J ∈ D(I) and s ∈ SΩ(J). Set ϕs := χ−9
I φs.

Due to localization and to the pairwise disjoint nature of the collection Ω, the almost
orthogonality estimate

|〈ϕs, ϕs′〉|

{
= 0, ωs 6= ωs′ ,

. |Is|−1 dist(Is, Is′)
−100, ωs = ωs′ ,

holds for all s, s′ ∈ SΩ with Is, Is′ ∈ D(I). A standard TT ∗ type argument, see for
example [1, §4.3], yields the almost orthogonality bound

(20)
∑

J∈D(I)

∑
s∈SΩ(J)

|J ||〈g, ϕs〉|2 . ‖g‖22

and (19) follows by applying (20) to g = fχ9
I and relying on the definition of 〈·〉I,†.

A combination of Proposition 2.2 and Lemma 3.1 immediately yields a sparse
domination result for the intrinsic wave packet square function

(21) WΩf :=

(∑
s∈SΩ

s(f)21Is

) 1
2

=
√
AD[{[f ]2SΩ(I)

: I ∈ D}].

Proposition 3.2. Let f ∈ L2(R) be a compactly supported function and Ω ⊂ D be a
pairwise disjoint collection. Then there exists a sparse collection S with the property
that

WΩf . G2,Sf

pointwise almost everywhere. The implicit constant in the above inequality is absolute.

Indeed, by Lemma 3.1, {[f ]2SΩ(I) : I∈D} is a Carleson sequence subordinated to the

function |f |2. Thus Proposition 3.2 is obtained via an application of Proposition 2.2,

followed by the observation that
√
T1,S(|f |2) = G2,Sf .

3.1. Sparse estimates for smooth square functions: proof of Theorem B.
The relation of GΩ with the wave packet square function WΩ defined above is given
by the pointwise estimate

(22) GΩf . sup
1≤k≤9

WΩk,?f,

where each Ωk,?, 1 ≤ k ≤ 9, is a collection of pairwise disjoint intervals contained
in one of the three grids Dj , j = 0, 1, 2. To obtain this pointwise bound, associate
to each ω ∈ Ω an index j ∈ {0, 1, 2} and a smoothing interval ω? ∈ Dj , that is the
unique interval of Dj with ω ⊂ ω? and 3`ω ≤ `ω? < 6`ω. As the intervals of Ω are
pairwise disjoint, Ω can be split into collections Ωk, 1 ≤ k ≤ 9, with the property
that Ωk,? := {ω? : ω ∈ Ωk} ⊂ Dj for some j and is a pairwise disjoint collection. A
standard discretization procedure, see for example [1, Lemma 5.9], then entails

GΩkf .WΩk,?f

and (22) follows. Finally we may combine Proposition 3.2 with (22) to conclude The-
orem B, using also that the union of nine sparse collections is still a sparse collection;
see e.g. [30].
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4. Proof of Theorem C

The proof of Theorem C, finalized at the end of this section, rests on a well-known
Littlewood–Paley type reduction to a model time-frequency square function appearing
on the left hand side of (24), which we now introduce.

4.1. Time-frequency square function. Fix a dyadic grid D. Given an interval ω
we let ω ⊂ D be a collection of dyadic intervals with the following properties.

(i) The collection ω is pairwise disjoint.

(ii) For each k ∈ Z there exists at most one α ∈ ω with `α = 2k.

(iii) Each α ∈ ω satisfies 73α ⊂ ω and 74α 6⊂ ω.

Observe that by (iii) the collection ω is a subcollection of a dyadic Whitney covering
of ω but not necessarily the whole Whitney cover. As a result properties (i) and (ii)
can always be achieved by splitting ω into finitely many subcollections. Let I ⊂ R
be any interval, possibly unbounded. Recalling the definitions (15), (16), (17), let
ΦS := {ϕs ∈ Ψs, ϑs ∈ |Is|Ψs : s ∈ S} be a choice of wave packets. We say that

PΦS
I,ω,ωf :=

∑
s∈Sω⊆(I)

〈f, ϕs〉ϑs, ω ∈ Ω,

is a time-frequency projection of f on the time-frequency region I × ω. Note the L1,
L∞ normalizations of ϕs, ϑs respectively. We will drop the subindex S from ΦS for the
rest of the section and, whenever the choices of Φ and ω are fixed and clear from the
context, we will simplify the notation by writing PI,ω, suppressing the dependence
on ΦS and ω. It is easy to check that

P̃I,ωf := PI,ω(χ−9
I f)

is a standard Calderón–Zygmund operator, whence the estimates

(23) ‖PI,ωf‖p . pp′|I|
1
p 〈f〉p,I,†, 1 < p <∞,

hold uniformly over all bounded intervals I, which we will only use for p = 2. Fur-
thermore, due to the frequency localization of the Ψs classes for s ∈ Sω, the equality

PI,ωf = PI,ωHωf

holds for the frequency projection Hω defined in (1). The next theorem is a sparse
domination principle for the square function ‖PR,ω‖`2(ω∈Ω) under the pairwise dis-
jointness assumption of the corresponding collection ω ∈ Ω.

Proposition 4.1. Let Φ be a choice of wave packets, f ∈ L2(R) be a compactly
supported function, and Ω be a qualitatively finite, pairwise disjoint collection of in-
tervals. Then there exists a sparse collection S depending on Φ, f , Ω only with the
property that

(24) ‖PΦ
R,ωf‖`2(ω∈Ω) . T2,Sf

pointwise almost everywhere, with implicit absolute numerical constant.

The proof of the proposition is given in Subsection 4.3. It relies on two lemmas
which we state now. The first deals with domination of tails.
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Lemma 4.2. Let J ∈ D and M2f := (M|f |2)
1
2 . Let Φ be a choice of wave packets.

The following pointwise bounds hold.

(i)

∥∥∥∥∥ ∑
s∈Sω(J)

〈f, ϕs〉ϑs

∥∥∥∥∥
`2(ω∈Ω)

. χ9
J〈f〉2,J,†.

(ii) Suppose dist(x, J) & `J . Then ‖PJ,ωf(x)‖`2(ω∈Ω) . χ6
JM2f(x).

(iii) If supp f ⊂ 2J (0,±2), then ‖PJ,ωf‖`2(ω∈Ω) . χ9
J〈f〉2,7J .

Proof: The first estimate follows immediately from the two controls√∑
ω∈Ω

∑
s∈Sω(J)

|〈f, ϕs〉|2 . 〈f〉2,J,†, sup
s∈Sω(J)

|ϑs| . χ9
J ,

the second meant pointwise. To obtain the bound in (ii),

‖PJ,ωf(x)‖`2(ω∈Ω) ≤
∑
`≥0

∑
I∈D(J)

I(`,0)=J

∥∥∥∥∥ ∑
s∈Sω(I)

〈f, ϕs〉ϑs(x)

∥∥∥∥∥
`2(ω∈Ω)

.
∑
`≥0

∑
I∈D(J)

I(`,0)=J

χ9
I(x)〈f〉2,I,†

. M2f(x)
∑
`≥0

∑
I∈D(J)

I(`,0)=J

χ8
I(x) . χ6

JM2f(x),

(25)

having applied (i) with J = I for each I such that I(`,0) = J . We have employed the
easily verified inequalities

χI(x)〈f〉2,I,† . M2f(x),
∑

I∈D(J)

I(`,0)=J

χ8
I(x) . 2−`χ6

J(x),

valid for I ⊂ J , dist(x, J) & `J . To obtain the bound of (iii), start again from the
right hand side of the first line of (25), and apply (i) for each I in the summation, so
that

(26) ‖PJ,ωf‖`2(ω∈Ω) .
∑
`≥0

∑
I∈D(J)

I(`,0)=J

χ9
I〈f〉2,I,† . χ9

J〈f〉2,7J

as claimed. We have used that for each I as above, dist(supp f, I) & 2``I . Together
with supp f ⊂ 2J (0,±2) ⊂ 7J , it follows that 〈f〉2,I,† . 2−8`〈f〉2,7J , whence the last
inequality in (26). This completes the proof of the lemma.

The second lemma encapsulates the main iteration of the proof of Proposition 4.1.

Lemma 4.3. Let J ∈ D and f ∈ L2(R). Let Φ be a choice of wave packets. Then
there exists a sparse collection Q = Q(Φ, J, f,Ω) with the property that, pointwise
almost everywhere,

(27) ‖1JPΦ
3J,ωf‖`2(ω∈Ω) . T2,Qf.

The proof of this lemma is more involved and thus occupies its own subsection.
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4.2. Proof of Lemma 4.3. The collection Φ is fixed throughout this proof and thus
omitted from the notation. Arguing as in Subsection 2.4, cf. (13), it suffices to prove
the weaker result that for some sparse collection Q

(28) ‖1JP3J,ωf‖`2(ω∈Ω) . T2,Q,†f, T2,Q,†f :=
∑
I∈Q
〈f〉2,I,†1I ,

and later upgrade (28) to (27) via [8], with a possibly different sparse collection Q.
The proof of (28) rests on an iterative inequality whose first step is a stopping

construction. Fix again a large constant Θ to be determined. For each I ∈ D(J),
define the stopping sets and collections

E1(I) := {x ∈ I : ‖MP3I,ωf‖`2(ω∈Ω) > Θ〈f〉2,I,†},

E2(I) := {x ∈ I : ‖M[Hω(fχ9
I)]‖`2(ω∈Ω) > Θ〈f〉2,I,†},

S(I) := {maximal elements Z ∈ D : Z ⊂ E(I) := E1(I) ∪ E2(I)}.
This time, the maximality condition ensures

inf
3Z
‖MP3I,ωf‖`2(ω∈Ω) + inf

3Z
‖M[Hω(fχ9

I)]‖`2(ω∈Ω) . 〈f〉2,I,†, Z ∈ S(I),(29)

‖MP3I,ωf(x)‖`2(ω∈Ω) ≤ Θ〈f〉2,I,†, x ∈ I \ E(I).(30)

Now set Q0 := {J}. Proceed inductively, defining

Qk+1 :=
⋃
I∈Qk

S(I), k = 0, 1, . . . , Q :=
⋃
k≥0

Qk.

Arguing in the same way as [6, proof of equation (2.22)], see also [7, Section 4], the
fact that Q is a sparse collection is easily verified once the estimates |Ej(I)| < 2−16|I|,
j = 1, 2, are proved. In the case of E1(I), provided Θ is large enough, this follows
from Chebyshev and

1

|I|

∫
‖MP3I,ωf‖2`2(ω∈Ω) .

1

|I|
∑
ω∈Ω

‖P̃3I,ωHω(fχ9
I)‖22 .

1

|I|
∑
ω∈Ω

‖Hω(fχ9
I)‖22 ≤ 〈f〉22,I,†

having used the maximal theorem in the first step, (23) for the second inequality,
and orthogonality of the projections Hω in the last. A shorter computation leads
to the same estimate for E2(I). The next lemma is the main device that controls
the oscillation. The maximal frequency truncation idea dates back to the single tree
estimate in Lacey and Thiele’s seminal paper on the Carleson operator [27]. The proof
is given at the end of this subsection.

Lemma 4.4. Let Z ∈ S(I). There holds

sup
Z
|P3Z,ωf − P3I,ωf | . inf

3Z
MP3I,ωf + inf

3Z
M[Hω(fχ9

I)].

Now for each I ∈ D(J), with the stopping collection S(I) at hand, pick x ∈ I.
Then either x ∈ I \ E(I), in which case

‖P3I,ωf(x)‖`2(ω∈Ω) ≤ C〈f〉2,I,†,

by virtue of (30), or x ∈ Z for some Z ∈ S(I), in which case

‖P3I,ωf(x)‖`2(ω∈Ω) ≤ ‖P3Z,ωf(x)‖`2(ω∈Ω) + C〈f〉2,I,†
via an application of Lemma 4.4 and (29). It follows that

(31) 1I‖P3I,ωf‖`2(ω∈Ω) ≤ C〈f〉2,I,†1I +
∑
Z∈Q

1Z‖P3Z,ωf‖`2(ω∈Ω).
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Starting from I = J, iterate (31) to obtain

1J‖P3J,ωf‖`2(ω∈Ω) .
∑
I∈Q
〈f〉2,I,†1I ,

completing the proof of (28), and in turn of Lemma 4.3.

Proof of Lemma 4.4: Note that

|P3Z,ωf − P3I,ωf | =

∣∣∣∣∣ ∑
s∈Sω⊆(3I)\Sω⊆(3Z)

〈f, ϕs〉ϑs

∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣
∑

s∈Sω⊆(3I)

`Is>`Z

〈f, ϕs〉ϑs

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑
|j|≥2

Z(0,j)⊂3I

PZ(0,j),ωf

∣∣∣∣∣∣∣∣ .
(32)

Let us deal with the tail term in (32). The separation between Z and the small scales
contained in Z(0,j) for some j ≥ 2 allows for the standard Calderón–Zygmund tail
estimate

1Z

∣∣∣∣∣∣∣∣
∑
|j|≥2

Z(0,j)⊂3I

PZ(0,j),ωf

∣∣∣∣∣∣∣∣ = 1Z

∣∣∣∣∣∣∣∣
∑
|j|≥2

Z(0,j)⊂3I

∑
s∈Sω⊆(Z(0,j))

〈Hω(fχ9
I), ϕs〉ϑs

∣∣∣∣∣∣∣∣
. inf

3Z
M[Hω(fχ9

I)].

(33)

The proof is essentially a repetition of the one for Lemma 4.2(ii) using L1-averages
instead, and thus the details are omitted. The first term in (32) is the main term. To
deal with it define the sets

βZ := Conv
(⋃
{α ∈ ω : `α < (`Z)−1}

)
, γZ := Conv

(⋃
{α ∈ ω : `α ≤ (`Z)−1}

)
.

Using the Whitney property of ω, there exist positive constants c1, c2, c3, c4 with c2−
c1 ' 1, c4 − c3 ' 1 such that if ω = [a, b),

βZ = (a, a+ c1(`Z)−1)∪ (b− c3(`Z)−1, b) ⊂ γZ = (a, a+ c2(`Z)−1)∪ (b− c4(`Z)−1, b).

Therefore, we may choose a smooth function ψZ with the properties that

|Z|‖χ−9
Z ψZ‖∞ . 1, 1βZ ≤ ψ̂Z ≤ 1γZ .

In particular, ψ̂Z = 1 on ωs whenever s ∈ Sω⊆(3I) and `Is > `Z , given that in this

case ωs ⊂ βZ , while ψ̂Z = 0 on ωs whenever s ∈ Sω⊆(3I) and `Is < `Z , given that

instead ωs ∩ γZ = ∅. Hence, the main term of (32) equals P3I,ω ∗ ψZ , up to removal

of the tiles at scale `Is = `Z , on whose frequency intervals ψ̂Z is not necessarily equal
to zero or one. For the details, let S(Z, ω) be the set of tiles with Is ⊂ 3I, `Is = `Z ,
and ωs ∈ ω. The spatial intervals of the tiles S(Z, ω) are contained in 3I, pairwise
disjoint and of the same scale `Z , so that for x ∈ Z

(34)

∣∣∣∣∣ ∑
s∈S(Z,ω)

〈f, ϕs〉ϑs(x)

∣∣∣∣∣ =

∣∣∣∣∣ ∑
s∈S(Z,ω)

〈Hω(fχ9
I), χ

−9
I ϕs〉ϑs(x)

∣∣∣∣∣ . inf
3Z

M[Hω(fχ9
I)].
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Then ∣∣∣∣∣∣∣∣∣
∑

s∈Sω⊆(3I)

`Is>`Z

〈f, ϕs〉ϑs

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
(
P3I,ωf −

∑
s∈S(Z,ω)

〈f, ϕs〉ϑs

)
∗ ψZ

∣∣∣∣∣∣
. inf

3Z
M[P3I,ωf ] + inf

3Z
M[Hω(fχ9

I)].

Together with (33) and (34), this completes the proof of the lemma.

4.3. Proof of Proposition 4.1. Fix an instance of Ω, Φ, and let f be a fixed
compactly supported function in L2(R). It is possible to choose Q ∈ D with the
property that supp f ⊂ (1 + 3−1)Q. A first lemma takes care of the tails

PΦ
out,ωf := PΦ

R,ωf − 15QP
Φ
3Q,ωf, ω ∈ Ω.

Lemma 4.5. With R(Q) as in (5), there holds

(35) ‖PΦ
out,ωf‖`2(ω∈Ω) . T2,R(Q)f + M2f

pointwise almost everywhere.

Proof: In this proof, Φ is fixed and thus omitted from superscripts. First of all, note
that

Pout,ω = [PR,ωf − P3Q,ω] + 1R\5QP3Q,ω

and the summand outside the square bracket, that is the non-local part of P3Q,ω,
is immediately controlled by (ii) of Lemma 4.2. Therefore, it suffices to control the
difference PR,ωf − P3Q,ω, which by (4) satisfies

|PR,ωf − P3Q,ωf | ≤
∑
|m|≤1

∑
k≥1

∣∣∣∣∣ ∑
s∈Sω(Q(k,m))

〈f, ϕs〉ϑs

∣∣∣∣∣+
∑
|m|=2,3

∑
k≥0

|PQ(k,m),ωf |

=:
∑
|m|≤1

∑
k≥1

Um,k,ω +
∑
|m|=2,3

∑
k≥0

Vm,k,ω.

Applying respectively (i) and (iii) of Lemma 4.2 yields for all k ≥ 0 the pointwise
estimates

(36) ‖Um,k,ω‖`2(ω∈Ω) . 〈f〉2,Q̃(k)
χ9

Q̃(k)
, ‖Vm,k,ω‖`2(ω∈Ω) . 〈f〉2,Q̃(k)

χ9

Q̃(k)
,

the first of which holds uniformly over k ≥ 1, |m| ≤ 1, while the second holds
uniformly over k ≥ 0, |m| ∈ {2, 3}. For the second control let τ ∈ {±2,±3} and apply
Lemma 4.2(iii) with J = Q(k,τ) together with the fact that 〈f〉2,7Q(k,τ) ' 〈f〉

2,Q̃(k)
.

The desired estimate follows since

supp f ⊂ Q̃(k), |7Q(k,τ)| ' |Q̃(k)|.

Now fix m and a point x ∈ R. Summing (36) up over k and splitting according to

whether or not x ∈ Q̃(k) entails the claim of the lemma.
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As T2,R(Q) is a sparse operator and M2f obeys a sparse bound of the type (24), it
remains to control

15QP
Φ
3Q,ω =

∑
|m|≤1
|j|≤2

1Q(0,j)PΦ
Q(0,m),ω.

Applying Lemma 4.2(ii) we gather that

(37) |j −m| > 1 =⇒ ‖1Q(0,j)PΦ
Q(0,m),ωf‖`2(ω∈Ω) . M2f.

If |j −m| ≤ 1, we instead have

(38) 1Q(0,j)PΦ
Q(0,m),ω = 1JP

Φj,m

3J,ω , ω ∈ Ω,

having set J = Q(0,j) and having constructed Φj,m = {ϕj,ms , ϑs : s ∈ S} from Φ =
{ϕs, ϑs : s ∈ S} as follows: ϕj,ms = ϕs if Is ⊂ Q(0,m) and ϕj,ms = 0 otherwise.
Applying Lemma 4.3 to each right hand side of (38) and combining with (35)–(37)
completes the proof of Proposition 4.1.

4.4. Rough square functions: proof of Theorem C. Using [12, equation (2.10)],
we learn that

|Tωf | .
285∑
j=1

|PΦj
R,ω,ωjf |, ω ∈ Ω,

where, for each j ∈ {1, . . . , 285}, Φj is a suitable collection of wave packets, ωj is
a collection of dyadic intervals satisfying properties (i)–(iii) of Subsection 4.1, and
both Φj and ωj are constructed on the fixed shifted grid Dkj , for some kj ∈ {0, 1, 2}.
Proposition 4.1 then immediately implies the conclusion of Theorem C.

5. The Walsh case

In this section, we will prove Theorem D. The strategy of proof involves a Walsh
version of the wave packet square function WΩ. An L2(w)-quantitative relation be-
tween this object and the Walsh–Rubio de Francia square function is provided by the
Chang–Wilson–Wolff inequality, [40, Theorem 3.4].

5.1. The setting for the Walsh model. Let T = [0, 1) be the 1-torus. For k =
0, 1, 2, . . . , define the Walsh function W2k

W2k(x) := sign(sin(2k+1πx)), x ∈ T.

Now, for n ∈ N, write the binary expansion of n as

n =

∞∑
k=0

nk2k,

where nk ∈ {0, 1} for every k = 0, 1, 2, . . . , and define the n-th Walsh function Wn

as

(39) Wn(x) :=

∞∏
k=0

W2k(x)nk , x ∈ T.

The functions {Wn : n ∈ N} are the characters of the Walsh group
(
T,⊕

)
, where

⊕ stands for addition of binary digits without carry, cf. [11] for an introduction from
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the harmonic analysis viewpoint. For an interval ω = [k,m) ⊂ R with k,m ∈ N, recall
the definition of Walsh frequency projection

Hωf(x) :=

∞∑
n=0

1ω(n)〈f,Wn〉Wn(x), x ∈ T.

For a collection Ω = {ω}ω∈Ω of pairwise disjoint intervals with endpoints in N, recall
that the Walsh–Rubio de Francia square function is defined as

TΩf(x) :=

(∑
ω∈Ω

|Hωf(x)|2
) 1

2

, x ∈ T.

Below we describe the time-frequency model for this square function. We say that
s = Is×ωs ⊆ T×[0,∞) is a tile if Is and ωs are dyadic intervals satisfying |Is|·|ωs| = 1.
Then, for every tile s we can find an integer n = n(s) ∈ N so that

s = Is × ωs = Is ×
1

|Is|
[n, n+ 1).

Letting S denote the universe of all tiles thus defined, the notations (15), (16) will be
used in exactly the same way below. Given a tile s ∈ S, we define the L2-normalized
wave packet associated to s by

ϕs(x) :=
1

|Is|
1
2

Wn(s)

(
x

`Is

)
1Is(x), x ∈ T.

Observe that the Haar functions arise as a special case of these wave packets by taking
s = I × 1

|I| [1, 2) with I dyadic subinterval of T, namely

hI(x) :=
1

|I| 12
W1

(
x

`I

)
1I(x), x ∈ T.

Then, the wave packet square function for the Walsh model is defined by

WΩf(x) :=

(∑
s∈SΩ

|〈f, ϕs〉|2
1Is(x)

|Is|

) 1
2

, x ∈ T.

5.2. The Walsh wave packet square function. Describing the relation between
TΩ and its wave packet model requires some preliminaries. For ω ∈ Ω, denote by ω
the collection of maximal dyadic intervals in ω. Imagining the frequency intervals as
living on the vertical real axis, denote by ωu the collection of dyadic intervals ω ∈ ω
which are the upper half of their dyadic parent, and by ωd := ω \ωu those which are
the lower half of their parent. Then set

Ω? :=
⋃

σ∈{u,d}

⋃
ω∈Ω

ωσ.

The following lemma is a consequence of the Chang–Wilson–Wolff inequality, [5, 40].
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Lemma 5.1. Let w ∈ A∞,D. Then, the following inequality holds:

‖TΩf‖L2(w) . [w]
1
2

A∞,D
‖WΩ?f‖L2(w).

Proof: Let ω = [k,m) be an interval with endpoints in N, and write

Hωf =

m−1∑
n=0

〈f,Wn〉Wn −
k−1∑
n=0

〈f,Wn〉Wn =
∑

σ∈{u,d}

∑
s∈Sωσ

〈f, ϕs〉ϕs;

for the last identity see [38, Section 8.1] (also [21, p. 995]). By symmetry, only consider
the case σ = d and study the operator

TΩ
d f :=

∑
ω∈Ω

∣∣∣∣∣ ∑
s∈Sωd

〈f, ϕs〉ϕs

∣∣∣∣∣
2
 1

2

.

Note that for each fixed ω ∈ Ω, the frequency components of the tiles in Sωd form
a Whitney decomposition of ω with respect to the right endpoint of ω. Using this

fact, which in time-frequency terminology says that Sωd is a tree, together with [20,
Lemma 2.2] yields the identity

(40)

∣∣∣∣∣ ∑
s∈Sωd

〈f, ϕs〉ϕs

∣∣∣∣∣ =

∣∣∣∣∣ ∑
s∈Sωd

〈f,Wn(s)hIs〉hIs

∣∣∣∣∣,
where n(ω) ∈ N depends on ω ∈ Ω. Thus∥∥∥∥∥ ∑

s∈Sωd
〈f, ϕs〉ϕs

∥∥∥∥∥
2

L2(w)

=

∥∥∥∥∥ ∑
s∈Sωd

〈fWn(s), hIs〉hIs

∥∥∥∥∥
2

L2(w)

. [w]A∞,D

∥∥∥∥∥
( ∑
s∈Sωd

|〈fWn(s), hIs〉|2
1Is
|Is|

) 1
2
∥∥∥∥∥

2

L2(w)

= [w]A∞,D

∥∥∥∥∥
( ∑
s∈Sωd

|〈f, ϕs〉|2
1Is
|Is|

) 1
2
∥∥∥∥∥

2

L2(w)

,

where we have used the Chang–Wilson–Wolff inequality in the form of [40, Theo-
rem 3.4] to pass to the second line, and identity (40) again for the last equality.
Note that the right hand side of the identity above is easily seen to be bounded
by [w]A∞,D‖WΩ?f‖2L2(w) and the proof is complete.

Because of Lemma 5.1, Theorem D is reduced to the following proposition. Here
we can drop the restriction Is ⊂ T in the tiles s in the definition of WΩ and just work
with tiles with Is ⊂ R, which we implicitly assume below.

Proposition 5.2. Let Ω be a collection of pairwise disjoint intervals with endpoints
in N. Then

‖WΩf‖Lp(w) . [w]
1/2
A p

2
,D
‖f‖Lp(w), 2 ≤ p <∞,

with implicit constants depending only on p. These bounds are sharp in terms of the
power of the appearing weight characteristic.
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Proof: We begin with the case p = 2 and we prove that for any non-negative locally
integrable function w, the following stronger estimate holds:∫

|WΩf |2w .
∫
|f |2MDw.

This clearly implies the conclusion for p = 2. Here we recall that MD stands for the
dyadic maximal operator. To that end, we make the qualitative assumption w ∈ L1,
which will be removed momentarily, and use a layer-cake decomposition to prove an
L2(w)-bound for the operator WΩ. More precisely, for w ∈ A1 and f ∈ L2(T), say,
write

‖WΩf‖2L2(w) =

∫
T

∑
s∈SΩ

|〈f, ϕs〉|2
1Is(x)

|Is|
w(x) dx

=
∑
s∈SΩ

|〈f, ϕs〉|2
∫ ∞

0

1{w(Is)
|Is|

>λ} dλ =

∫ ∞
0

∑
s∈SΩ

w(Is)
|Is|

>λ

|〈f, ϕs〉|2 dλ.

Now, let

Rλ :=

{
Is : s ∈ SΩ,

w(Is)

|Is|
> λ

}
,

and denote by R?λ the collection of maximal elements of Rλ. Then,

(41) ‖WΩf‖2L2(w) =

∫ ∞
0

∑
I?∈R?λ

∑
s∈SΩ
⊆(I?)

|〈f, ϕs〉|2 dλ.

The rightmost term in the display above can be estimated by using the local orthog-
onality of the Walsh wave packets in the form∑

s∈SΩ
⊆(I)

|〈f, ϕs〉|2 ≤
∫
I

|f(x)|2 dx ∀I ∈ D.

Applying this in (41) we get

‖WΩf‖2L2(w) ≤
∫ ∞

0

∑
I?∈R?λ

∫
I?
|f(x)|2 dxdλ =

∫ ∞
0

∫
⋃
I?∈R?

λ
I?
|f(x)|2 dx dλ.

Recall that MD stands for the dyadic maximal function, and observe that⋃
I?∈R?λ

I? ⊂ {x : MDw(x) > λ}.

Thus,

‖WΩf‖2L2(w) ≤
∫ ∞

0

∫
MDw(x)>λ

|f(x)|2 dxdλ =

∫
T
|f(x)|2MDw(x) dx,

which is the estimate we want to prove for p = 2. We can now drop the assumption w ∈
L1, for example by a monotone convergence argument, yielding the same inequality
for arbitrary locally integrable non-negative functions w. Finally the estimate above
and the definition of dyadic A1-weights readily yields

‖WΩf‖2L2(w) ≤ [w]A1,D‖f‖2L2(w),

which is the conclusion of the proposition for p = 2.
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For p > 2, the Lp(w)-estimates of the proposition follow easily by extrapolation,
using for example [16, Corollary 4.2]. Finally note that these bounds are sharp, in
terms of the exponents of the Ap,D-weight. Indeed, as in [33], any of the bounds in
the conclusion of the theorem implies that the unweighted Lp-norms of the martingale
square function grow like p1/2, which is best possible: any better exponent on [w]Ap,D
would imply a stronger, and false, p growth of the martingale square function as p→
∞.

5.3. Optimality in Theorem D. The only thing remaining to show in order to
complete the proof of Theorem D is the optimality of the exponent 1 appearing in
the exponent of the weight constant in the estimate

‖TΩf‖Lp(w) . [w]Ap/2,D‖f‖Lp(w), 2 ≤ p <∞.

For this we can just choose Ω consisting of a single interval of the form [0, b + 1)
with b ∈ N. We claim that an estimate of the form

sup
b∈N

∥∥∥∥∥ ∑
n∈[0,b]

〈f,Wn〉Wn

∥∥∥∥∥
Lp(w)

≤ Cp‖f‖Lp(w)

implies that martingale transforms are bounded on Lp with constant at most Cp.
This observation together with the considerations in [33] will imply again the claimed
sharpness. In order to verify the observation above, we quote from [13, equation (5.7)]
the equality ∣∣∣∣∣

b∑
n=0

〈f,Wn〉Wn

∣∣∣∣∣ =

∣∣∣∣∣∑
I∈D

εI,b〈fWb, hI〉hI

∣∣∣∣∣,
where εI,b ∈ {0, 1} is a sequence depending on b only. The right hand side is a Haar
martingale transform of fWb. This shows that we can recover any Haar martingale
transform of f by suitable choice of b, which is the promised claim and completes the
proof of the optimality of the exponents in Theorem D.

6. Proof of Theorem E

The proof of Theorem E begins with relating TΩ to the intrinsic wave packet square
function WΩ defined in (21) via a version of the Chang–Wilson–Wolff inequality.

Lemma 6.1. For all w ∈ A∞ there holds

‖TΩ‖L2(w) . [w]
1
2

A∞
‖GΩ‖L2(w) . [w]

1
2

A∞
‖WΩ‖L2(w).

Proof: The second inequality in the conclusion of the lemma is an application of (22).
The first inequality follows from an application of the Chang–Wilson–Wolff inequal-
ity [5], for example in the form elaborated by Lerner in [29, Theorem 2.7].

The next step is to establish a sufficient condition for L2(w)-boundedness of WΩ

based on the super-level sets of Mw; see (42) below. We will later show that (42) is
satisfied by radially decreasing, even A1-weights. Turning to the former task, let w ∈
A1 and λ > 0, and let Rλ denote a collection of dyadic intervals such that w(R)

|R| > λ.

Note that ⋃
R∈Rλ

R ⊆ {MDw > λ},
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where MD denotes the dyadic maximal function. Arguing as in Section 5 we can re-
duce the L2(w)-boundedness of the intrinsic wave packet square function WΩ defined
in (21) to the estimate

(42)

∫ ∞
0

∑
t∈SΩ

Rt∈Rλ

|Rt|〈f, ϕt〉2 .w

∫
|f |2w,

for an arbitrary choice of ϕt ∈ Ψt for each t ∈ SΩ. This is because

‖WΩf‖2L2(w) .
∫
R

∑
t∈SΩ

|Rt||〈f, ϕt〉|2
1Rt(x)

|Rt|
w(x) dx

=
∑
t∈SΩ

|Rt||〈f, ϕt〉|2
∫ ∞

0

1{w(Rt)
|Rt|

>λ} dλ =

∫ ∞
0

∑
t∈SΩ

Rt∈Rλ

|Rt||〈f, ϕt〉|2 dλ.

Thus, our goal is to prove (42). We will use the following definition.

Definition 6.2. Let R, R∗ be collections of intervals. We say that R is subordinate
to R∗ if for every R ∈ R there exists R∗ ∈ R∗ such that R ⊆ R∗.

The canonical example of a collectionR∗ to whichR is subordinate is the collection
of its maximal elements. However, other choices are possible. Now we assume that for
each λ > 0 the collection Rλ is subordinate to R∗λ. Then, in view of Lemma 3.1 we
have the chain of inequalities∫ ∞

0

∑
Rt∈Rλ

|Rt||〈f, ϕt〉|2 =

∫ ∞
0

∑
R∗∈R∗λ

∑
Rt∈Rλ
Rt⊆R∗

|Rt||〈f, ϕt〉|2 .
∫
R
|f |2

∫ ∞
0

∑
R∗∈R∗λ

χ9
R∗ .

Thus, a sufficient condition for the desired L2(w)-boundedness (42) is that for a.e.
x ∈ R there holds

(43)

∫ ∞
0

∑
R∗∈R∗λ

χ9
R∗(x) dλ . w(x),

where R∗λ is such that Rλ is subordinate to R∗λ for every λ>0. By considering a single
interval R and taking λ < w(R)/|R| we readily see that (43) implies the A1 condition.

6.1. L2(w)-boundedness for even and radially decreasing A1-weights. We
can show the sufficient condition (43) for even and radially decreasing weights w ∈ A1,
i.e. w(x) = w0(|x|) for some w0 : [0,∞) → [0,∞) and w0 decreasing. The proof
proceeds by verifying the sufficient condition (43). In doing so we also provide the
promised generalization of Theorem E of the previously known results for w(x) :=
|x|−α ∈ A1 to even radially decreasing A1-weights on the real line.

Let R = [a, b] be an interval belonging to Rλ, which we recall is the collection of

intervals such that w(R)
|R| > λ. Without loss of generality, assume that |a| < |b| so that

R ⊆ [−|b|, |b|]. Since the weight w is even and decreasing we have that

λ <
w(R)

|R|
≤ [w]A1 inf

x∈R
w(x) = [w]A1w0(|b|)⇐⇒ w0(|b|) > λ

[w]A1

.

Since w is decreasing the last inequality implies the existence of some bλ=bλ([w]A1
,w)>

0 with w0(bλ) > λ/[w]A1 such that |b| ≤ bλ. That is, denoting Rλ := [−bλ, bλ] we have
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that R ⊆ Rλ and all intervals R ∈ Rλ are subordinate to the collection {Rλ} for
every λ > 0. However,∫ ∞

0

χ9
Rλ

dλ .
∑
τ≥0

2−18τ

∫ ∞
0

1{|x|≤2τ bλ}(x) dλ,

where we have used the decay of χ9
Rλ

. Observe that

|x| ≤ 2τ bλ ⇐⇒ w0

(
|x|
2τ

)
≥ w0(bλ) >

λ

[w]A1

.

Thus, ∫ ∞
0

χ9
Rλ

dλ .
∑
τ≥0

2−18τ

∫ [w]A1
w0(

|x|
2τ )

0

dλ =
∑
τ≥0

2−18τ [w]A1w0

(
|x|
2τ

)
.

Finally, note that |x|2τ ≤ |x|, so that

w0

(
|x|
2τ

)
= inf

(0,
|x|
2τ )

w ≤ w([0, |x|/2τ ])

|x|/2τ
≤ w([0, |x|])

|x|
· 2τ

≤ [w]A1
2τ inf

(0,|x|)
w = 2τ [w]A1

w0(|x|).

Using this in the previous inequality yields∫ ∞
0

χ9
Rλ

dλ . [w]A1

∑
τ≥0

2−18τ2τ [w]A1
w0(|x|) . [w]2A1

w(x).

This shows that even and radially decreasing A1-weights satisfy the sufficient condi-
tion (43) and thus, combined with Lemma 6.1, Theorem E is proved.
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Universidad del Páıs Vasco, Bilbao, Spain

E-mail address: lroncal@bcamath.org

Received on December 19, 2023.

Accepted on September 9, 2024.

http://dx.doi.org/10.5565/PUBLMAT_35191_01
http://dx.doi.org/10.1007/978-3-540-74587-7

	1. Introduction and main results
	1.1. Pointwise sparse domination of T and G
	1.2. On the sharpness of Corollaries B.1 and C.1
	1.3. Past literature on weighted and sparse bounds for T and G
	1.4. The strong L2(w) inequality for the Walsh model
	1.5. The strong L2(w) inequality for radially decreasing A1-weights
	1.6. Notation and generalities
	Structure of the paper
	Acknowledgments

	2. Balayages of Carleson sequences
	2.1. An exponential good- inequality for sparse balayages
	2.2. Subordinated Carleson sequences
	2.3. Tails
	2.4. Main term

	3. Proof of Theorem B
	3.1. Sparse estimates for smooth square functions: proof of Theorem B

	4. Proof of Theorem C
	4.1. Time-frequency square function
	4.2. Proof of Lemma 4.3
	4.3. Proof of Proposition 4.1
	4.4. Rough square functions: proof of Theorem C

	5. The Walsh case
	5.1. The setting for the Walsh model
	5.2. The Walsh wave packet square function
	5.3. Optimality in Theorem D

	6. Proof of Theorem E
	6.1. L2(w)-boundedness for even and radially decreasing  A1-weights

	References



