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Abstract: Noetherian rings have played a fundamental role in commutative algebra, algebraic

number theory, and algebraic geometry. Along with their dual, Artinian rings, they have many

generalizations, including the notions of iso-Noetherian and iso-Artinian rings. In this paper, we
prove that the Krull dimension of every iso-Artinian ring is at most one. We then use this result to

provide a characterization of iso-Artinian rings. Specifically, we prove that a ring R is iso-Artinian if
and only if R is uniquely isomorphic to the direct product of a finite number of rings of the following

types: (i) Artinian local rings; (ii) non-Noetherian iso-Artinian local rings with a nilpotent maximal

ideal; (iii) non-field principal ideal domains; (iv) Noetherian iso-Artinian rings A with MinA being a
singleton and MinA ( AssA; (v) non-Noetherian iso-Artinian rings A with MinA being a singleton

and MinA ( AssA; (vi) non-Noetherian iso-Artinian rings A with a unique element in MinA that

is not maximal, and MinA = AssA. Several examples of these types of rings are also provided.
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1. Introduction

Throughout this article, the term “ring” refers to commutative rings with non-zero
identity.

In 1921, Emmy Noether showed that in a ring R every ideal of R is finitely gener-
ated if and only if R satisfies ACC on its ideals. Noether’s subsequent deep research
had a significant impact on module theory and representation theory. Assuming ACC
on a ring leads to many beautiful properties. For instance, Emanuel Lasker and Emmy
Noether demonstrated that every ideal of a ring satisfying ACC has a primary decom-
position, which is a generalization of the fundamental theorem of arithmetic. In 1927,
Emil Artin began studying rings with both ACC and DCC properties, which led to
several interesting applications of the ACC property. It was clear from simple exam-
ples that ACC does not imply DCC, so Artin assumed both ACC and DCC. In honor
of Noether and Artin, the rings satisfying ACC (respectively, DCC) are now referred
to as Noetherian (respectively, Artinian) rings.

The method of decomposition is a common approach in mathematical research,
which enables the transfer of properties from basic building blocks to more complex
objects and vice versa. This technique has been used for a long time, with the de-
composition of natural numbers into prime factors being one of the earliest examples.
Algebra is no exception, and the fundamental theorem of finitely generated Abelian
groups is just one of many instances of this approach. Another famous example is
the theorem attributed to Akizuki and Cohen, which states that an Artinian ring is
uniquely isomorphic to the direct product of a finite number of Artinian local rings.
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Due to the importance and wide range of applications of Noetherian and Artinian
rings, many authors have proposed and examined some generalizations of these con-
cepts. One of the most natural generalizations was introduced by Alberto Facchini
and Zahra Nazemian in 2016 [6]. They define a ring R to be iso-Noetherian (respec-
tively, iso-Artinian) if every ascending (respectively, descending) chain of ideals of R
terminates up to isomorphism. Several interesting results and examples pertaining to
these types of rings can be found in [6]. To explore the topic of iso-Noetherian and
iso-Artinian rings in more depth, we recommend consulting the following references:
[6, 7, 8, 2, 3].

Numerous natural questions arise regarding iso-Noetherian and iso-Artinian rings.
For instance, it is unknown whether an iso-Artinian ring is necessarily iso-Noetherian.
In [6, Corollary 4.8], Facchini and Nazemian showed that a reduced iso-Artinian ring
is isomorphic to a finite direct product of principal ideal domains. In particular,
every reduced iso-Artinian ring is Noetherian. The aim of this paper is to establish a
decomposition result for general iso-Artinian rings. We prove that:

Theorem 1.1. A ring R is iso-Artinian if and only if it is uniquely isomorphic to the
direct product of a finite number of the following types of rings with various choices:

(i) Artinian local rings.

(ii) Non-Noetherian iso-Artinian local rings with nilpotent maximal ideal.

(iii) Non-field principal ideal domains.

(iv) Noetherian iso-Artinian rings A with a unique minimal prime ideal p such that
A/p is a principal ideal domain and MinA  AssA.

(v) Non-Noetherian iso-Artinian rings A with a unique minimal prime ideal p such
that A/p is a principal ideal domain and MinA  AssA.

(vi) Non-Noetherian iso-Artinian rings A with a unique minimal non-maximal prime
ideal p such that A/p is a principal ideal domain and MinA = AssA.

In the proof of this theorem, a key ingredient is to demonstrate that for an iso-
Artinian ring R, the set of associated primes of R is finite, and every minimal prime
ideal of R is also an associated prime of R. This implies, in particular, that the Krull
dimension of every iso-Artinian ring is at most one.

While there are many examples of rings falling under types (i) and (iii) in the
above theorem, the other four types of iso-Artinian rings deserve more attention. We
provide some examples of these types. One of these examples demonstrates that iso-
Artinian rings may not be iso-Noetherian. Furthermore, we provide some examples
to show that the condition of being “iso-Artinian” cannot be relaxed for types (ii),
(v), and (vi).

2. Main results

In the proof of our main result, we will utilize the fact that the Krull dimension of
every iso-Artinian ring is at most one, as stated in Proposition 2.3. To demonstrate
this, we will rely on the following two lemmas.

Recall that the set of associated primes of R is defined as

AssR = {p ∈ SpecR | p = (0 :R x) for some x ∈ R}.

We use Z(R) to represent the set of zero-divisors of R. An ideal I of a ring R is said
to be regular if it contains a regular element of R. A ring R is called Marot if every
regular ideal of R can be generated by regular elements. It is well known that if Z(R)
is a finite union of prime ideals, then R is a Marot ring.
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Lemma 2.1. Let R be an iso-Artinian ring. Then AssR is non-empty and finite. In
particular, R is a Marot ring.

Proof: Since R is iso-Artinian, it satisfies both ACC and DCC on annihilator ideals, as
shown in [6, Lemma 4.10(1)]. Let Σ:={(0 :R x) | 0 6= x∈R}, which is non-empty since
R is non-zero. As R has ACC on annihilator ideals, Σ has a maximal element (0 :R z)
with respect to inclusion. One can easily observe that the ideal (0 :R z) is prime, and
hence (0 :R z) belongs to AssR.

Now, we show that AssR is finite. Suppose to the contrary that AssR is infinite.
Then there are prime ideals p1, p2, . . . , pn, . . . ∈ AssR such that p1 is a maximal
element of AssR and pn+1 is a maximal element of AssR\{p1, p2, . . . , pn} for all n ≥ 1.
Consider the descending chain of ideals

p1 ⊇ p1 ∩ p2 ⊇ p1 ∩ p2 ∩ · · · ∩ pn ⊇ · · · .

Since R has DCC on annihilator ideals, this chain stabilizes. Thus, there is a natural
number ` such that p1 ∩ p2 ∩ · · · ∩ p` = p1 ∩ p2 ∩ · · · ∩ p` ∩ p`+1. Thus, pi ⊆ p`+1 for
some 1 ≤ i ≤ `. However, pi is a maximal element of AssR \ {p1, p2, . . . , pi−1}, which
implies that pi=p`+1. This is a contradiction, since p`+1∈AssR\{p1, p2, . . ., pi, . . . , p`}.

Finally, note that Z(R) is the union of members of AssR, and that if Z(R) is a
finite union of prime ideals, then R is a Marot ring.

We use SpecR to denote the set of all prime ideals of R. Also, let MaxR (re-
spectively MinR) denote the set of all maximal (respectively minimal) prime ideals
of R.

Lemma 2.2. Let R be an iso-Artinian ring. Then MinR is a non-empty subset
of AssR. As a consequence, MinR is finite.

Proof: First, note that since R is non-zero, MinR is non-empty. It follows from the
definition that the localization of an iso-Artinian ring at any multiplicative set is
also iso-Artinian, as shown in [4, Lemma 3.2]. Let p ∈ MinR. Then pRp is the
unique prime ideal of the iso-Artinian ring Rp. According to Lemma 2.1, we have
AssRp = {pRp}. Hence, there exists x/t ∈ Rp such that pRp = (0 :Rp

x/t). Clearly,
(0 :Rp

x/t) = (0 :Rp
x/1).

Let Σ denote the non-empty set of all annihilator ideals of the form (0 :R I),
where I is a finitely generated ideal of R and I ⊆ p. Since R has DCC on annihilator
ideals, Σ admits a minimal element (0 :R J). We claim that (0 :R J) = (0 :R p).
Suppose the contrary holds. Then, as (0 :R p) ⊆ (0 :R J), there exists an element y ∈
(0 :R J) \ (0 :R p). Since y /∈ (0 :R p), there exists a ∈ p such that ay 6= 0. As
(0 :R J + Ra) ⊆ (0 :R J), by the minimality of (0 :R J) in Σ, we deduce that
(0 :R J + Ra) = (0 :R J). Thus, y ∈ (0 :R J + Ra), which implies ay = 0, a
contradiction.

As x/1∈(0 :Rp
pRp)⊆(0 :Rp

JRp) and J is finitely generated, there exists s ∈ R\p
such that J(sx) = 0. Consequently, sx ∈ (0 :R J) = (0 :R p), and hence p ⊆ (0 :R sx).
On the other hand, we have

(0 :R x) ⊆ (0 :Rp
x/1) ∩R = pRp ∩R = p,

so (0 :R sx) ⊆ p. Therefore, p = (0 :R sx), and so p ∈ AssR.

We can now prove the claim we made at the beginning of this section:

Proposition 2.3. Let R be an iso-Artinian ring. Then R/p is a principal ideal do-
main for every p ∈ AssR. Consequently dimR ≤ 1, and so SpecR = MinR∪MaxR.
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Proof: Let p ∈ AssR. Then, p = (0 :R x) for some non-zero element x of R. As Rx is
a submodule of R and R/p ∼= Rx, the ring R/p is iso-Artinian. By [6, Corollary 4.8],
we deduce that R/p is a principal ideal domain.

Clearly, dimR=dimR/q for some q∈MinR. By Lemma 2.2, we have q∈AssR. As
R/q is a principal ideal domain, it follows that dimR = dimR/q ≤ 1, as desired.

To prove the main result, we need the following six additional lemmas. We begin
by showing that iso-Artinian rings are a subclass of a well-known class of rings called
Prüfer rings.

Recall that the localization of a ring R at the set of all regular elements is called
the total ring of fractions of R and is denoted by T (R). An ideal I of a ring R is said
to be invertible if I−1I = R, where

I−1 = {r ∈ T (R) | rI ⊆ R}.

A ring R for which every finitely generated regular ideal is invertible is called a Prüfer
ring. Following [11], if every regular ideal of a ring R is invertible, then we call it a
Dedekind ring. So, Dedekind rings are Prüfer.

Lemma 2.4. Let R be an iso-Artinian ring. Every regular ideal of R is principal and
generated by a regular element. Consequently, R is a Dedekind ring.

Proof: Let I be a regular ideal ofR. Then, I contains an element z such that (0 :R z)=0.
Thus, I ∼= Izk for every natural number k. Consider the following descending chain
of ideals of R:

R ⊇ I ⊇ Rz ⊇ Iz ⊇ Rz2 ⊇ Iz2 ⊇ Rz3 ⊇ · · · .
As R is iso-Artinian, there is a natural number k such that I ∼= Izk ∼= Rzk+1.
It follows that I is principal. Clearly, zk+1 is regular. Let ϕ : Rzk+1 → I be the
mentioned isomorphism. Then, I = Rϕ(zk+1) and ϕ(zk+1) is regular.

For the last statement, let J be a regular ideal. By the first statement, J = Rz0

for some regular element z0. As 1 =
(

1
z0

)
z0, it follows that R ⊆ J−1J . Therefore,

J−1J = R, and so R is a Dedekind ring. Note that J−1J ⊆ R is evident.

A discrete valuation ring (DVR) is a principal ideal domain with a unique non-zero
maximal ideal. An Artinian local principal ideal ring is called special, and it has only
finitely many ideals, each of which is a power of the maximal ideal.

Lemma 2.5. Assume that R is a local ring with a principal maximal ideal m. Then
the following are equivalent:

(i) R is Noetherian.

(ii)
⋂∞
i=1 m

i = 0.

(iii) {0} ∪ {mi | i ∈ N0} is the set of all ideals of R, and so R is either a DVR or a
special ring.

Proof: (i) ⇒ (ii) is immediate by the Krull intersection theorem.

(ii) ⇒ (iii) Let m = Rz and I be a non-zero ideal of R. Then there exists a natural
number ` such that I ⊆ m` and I * m`+1. Choose x ∈ I \m`+1. Since x ∈ m` \m`+1,

we have x = rz` for some r ∈ R \ m. Since r is a unit, we have z` ∈ I, and so
m` = Rz` = I. Thus, {0} ∪ {mi | i ∈ N0} is the set of all ideals of R. In particular,
R is a principal ideal ring. If m is nilpotent, then R is Artinian, and so R is a special
ring.
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Now, assume that m is not nilpotent, so zk 6= 0 for all k ∈ N. We will show that
R is a DVR. Since R is a local principal ideal ring, and m 6= 0, it suffices to show
that R is a domain. Let x be a non-zero element of R. Since

⋂∞
i=1 m

i = 0, there exists
a natural number t such that x ∈ mt \ mt+1. Hence, x = rzt for some unit r. Thus,
every non-zero element of R can be written as uzn, where u is a unit of R and n is
a natural number. Now, a direct examination shows that R is a domain. Therefore,
R is a DVR.

(iii) ⇒ (i) is evident.

Lemma 2.6. Let R be an iso-Artinian ring. Then R is isomorphic to the direct
product of finitely many indecomposable iso-Artinian rings. Moreover, if

R ∼= R1 × · · · ×Rl ∼= S1 × · · · × Sm,

where Ri’s and Sj’s are indecomposable iso-Artinian rings, then l = m and Ri ∼= Sσ(i)

for some permutation σ on the set {1, . . . , l}.

Proof: First, note that the (minimal) prime ideals of
∏l
i=1Ri are of the form

∏l
i=1 pi,

where for some j, pj is a (minimal) prime ideal of the ring Rj and pi = Ri for all i 6= j.
By Lemma 2.2, MinR is finite. Let n be the number of elements of MinR. If R is

indecomposable, then we are done. Otherwise, suppose R ∼= R1×R2, where R1 and R2

are two rings. If R1 and R2 are indecomposable, then we are done. Without loss of
generality, assume that R1 is not indecomposable, so R1

∼= A1×A2 for some rings A1

and A2. Thus, we have R ∼= A1×A2×R2. If A1, A2, and R2 are all indecomposable,
then we are done. Otherwise, we repeat the process. Keeping in mind the form of prime
ideals of the direct products of rings, this process must stop after at most n steps.
All of the finite decomposition components are iso-Artinian by [6, Lemma 4.1].

For the second assertion, let φ : R1 × · · · × Rl → R and ψ : S1 × · · · × Sm → R be
two ring isomorphisms, in which Ri’s and Sj ’s are indecomposable iso-Artinian rings
and l,m ∈ N. For each 1 ≤ i ≤ l and 1 ≤ j ≤ m, set Ai = φ(0×· · ·×0×Ri×0×· · ·×0)
and Bj = ψ(0× · · · × 0× Sj × 0× · · · × 0). Then

R = A1 ⊕ · · · ⊕Al = B1 ⊕ · · · ⊕Bm

and each Ai as well as each Bj is indecomposable as an ideal, because Ri’s and Sj ’s
are indecomposable as rings. Now, by [12, Lemma 3.8], l = m and Ai = Bσ(i) for some
permutation σ of the set {1, . . . , l}. It follows that Ri ∼= Sσ(i) for every i = 1, . . . , l.

Let NilR denote the nilradical of R.

Lemma 2.7. Let R be an iso-Artinian ring. Then the following statements hold.

(i) NilR is nilpotent.
(ii) Every two distinct minimal prime ideals of R are coprime.

Proof: (i) follows by [4, Proposition 2.3].

(ii) Let p and q be two distinct minimal prime ideals of R, and let A := R/p×R/q. By
Lemma 2.2, p and q belong to AssR, and so R/p and R/q are principal ideal domains
by Proposition 2.3. Since A is the product of two principal ideal domains, we can
conclude that every ideal of A is isomorphic to a direct summand of A. Thus, by [3,
Theorem 2.3], there exist prime ideals P1, . . . , Pk ofA such thatA ∼= A/P1×· · ·×A/Pk,
and Pi’s are comparable or coprime. By applying Lemma 2.6 and [6, Lemma 4.1], we
can conclude that k = 2, A/p ∼= A/Pσ(1), and A/q ∼= A/Pσ(2) for some permutation σ
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of the set {1, 2}. As every ring homomorphism between two quotient rings of A is an
A-homomorphism, we conclude that

p = AnnA(A/p) = AnnA(A/Pσ(1)) = Pσ(1).

Similarly, we have q = Pσ(2). Since p and q are two distinct minimal primes, they are
not comparable and therefore coprime.

The next result provides a simple criterion for an iso-Artinian ring to be indecom-
posable.

Lemma 2.8. An iso-Artinian ring R is indecomposable if and only if MinR is a
singleton.

Proof: First, assume that R is decomposable. Then, there is a natural number t ≥ 2
and rings R1, . . . , Rt such that R ∼= R1 × · · · × Rt. This, in particular, implies that
MinR has at least t elements.

Next, assume that MinR = {p1, . . . , pt}, with t ≥ 2. Note that by Lemma 2.2,
MinR is finite. By Lemma 2.7(ii), every two distinct elements p and q of MinR are
coprime, and so pk + qk = R for every natural number k. By Lemma 2.7(i), NilR is
nilpotent, and hence pk1 · · · pkt = 0 for some natural number k. Now, the Chinese
remainder theorem ([1, Proposition 1.10]) yields

R ∼= R/0

∼= R/(pk1 · · · pkt )

∼= R/(pk1 ∩ · · · ∩pkt )

∼= (R/pk1)× · · · × (R/pkt ),

and so R is decomposable.

Although any local ring is indecomposable, the indecomposable iso-Artinian ring Z
shows that MinR cannot be replaced by MaxR in the above lemma.

Using Proposition 2.3 and Lemma 2.8, we can completely determine the spectrum
of an iso-Artinian local ring.

Corollary 2.9. Let (R,m) be an iso-Artinian local ring. Then SpecR = {p,m},
where p is the unique minimal prime ideal of R. Moreover, if m contains a regular
element, then p =

⋂∞
i=1 m

i and p 6= m.

Proof: Since R is local, it is indecomposable. Hence, Lemma 2.8 yields that R has a
unique minimal prime ideal p. Proposition 2.3 implies that SpecR = MinR∪MaxR =
{p,m}.

Now, assume that m contains a regular element. By Lemma 2.4, m is principal
and is generated by a regular element z. For every natural number i, we show that
there is no ideal between mi and mi−1. Clearly, m/mi is the unique prime ideal of
the ring R/mi, and m/mi is cyclic. Hence, by Cohen’s theorem, R/mi is a Noetherian
ring. As dimR/mi = 0, by [1, Theorem 8.5], we deduce that R/mi is Artinian. Hence,
by [1, Proposition 8.8], R/mi is a special ring, and so R/mi,m/mi, . . . ,mi−1/mi, 0 are
the only ideals of R/mi. Thus, there is no ideal strictly between mi and mi−1.

Set r =
⋂∞
i=1 m

i. We show that r is prime. Let a and b be two elements of R \ r.
We show that ab 6∈ r. There are natural numbers l and t such that a ∈ ml \ml+1 and
b ∈ mt \ mt+1. Thus, by the above argument, ml = Ra + ml+1 and mt = Rb + mt+1.
So,

ml+t = mlmt = (Ra+ ml+1)(Rb+ mt+1) ⊆ Rab+ ml+t+1.
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Suppose that ab ∈ ml+t+1. Then ml+t = ml+t+1, and so zl+t = rzl+t+1 for some r ∈ R.
Since z is regular, we get rz = 1, which is a contradiction. Consequently ab /∈ ml+t+1,
and so ab 6∈ r. If r = m, then z ∈ m2, and so z = rz2 for some r ∈ R. As z is regular,
we deduce that z is a unit, a contradiction. Therefore r = p.

Next, we state the following easy observation.

Lemma 2.10. Let p and q = Rz be two prime ideals of a ring R with p ( q. Then
pq = pz = p.

Proof: Clearly, pq = pz ⊆ p. If x ∈ p, then x = rz for some r ∈ R. Since z 6∈ p, we
have r ∈ p. Hence x = rz ∈ pz, and the proof is complete.

Finally, we are ready to prove Theorem 1.1. This theorem is analogous to the
classical decomposition theorem for Artinian rings, which was proved by Akizuki and
Cohen.

Proof of Theorem 1.1: Based on Lemma 2.6 and [6, Lemma 4.1], we can conclude
that R is iso-Artinian if and only if it is uniquely isomorphic to the direct product
of finitely many indecomposable iso-Artinian rings. Hence, to complete the proof, it
remains to establish that every indecomposable iso-Artinian ring A takes on one of
the six given forms.

Let A be an indecomposable iso-Artinian ring. We note that dimA ≤ 1 by Propo-
sition 2.3, and as A is indecomposable, by Lemma 2.8, MinA has a unique element p.
Hence NilA = p, and so p is nilpotent by Lemma 2.7(i). The proof is broken into two
cases.

Case 1: dimA = 0.
Then SpecA = {p}. If A is Noetherian, then A is Artinian (type (i)). If A is not

Noetherian, then type (ii) occurs.

Case 2: dimA = 1.
Lemma 2.2 implies that p ∈ AssA, and so A/p is a principal ideal domain by

Proposition 2.3. As dimA = 1, it follows that p is not maximal, and so A/p is not a
field. If p = 0, then A is a non-field principal ideal domain (type (iii)).

In the rest of the proof, we may and do assume that p 6= 0. Assume that A is
Noetherian. We claim that MinA  AssA. Suppose on the contrary MinA = AssA.
Let m be a maximal ideal of A. Then p ( m, and so m contains a regular element.
Now, Lemma 2.4 implies that m = Az for some regular element z. By Lemma 2.10, it
follows that p = mp. By localizing at m and applying Nakayama’s lemma, it follows
that pAm = 0. Thus pAn = 0 for every maximal ideal n of A, and so p = 0. We have
arrived at a contradiction, and so type (iv) occurs.

Next, suppose that A is not Noetherian. Then either type (v) or type (vi) occurs.

3. Examples

In this section, we present examples that demonstrate the occurrence of types (ii),
(iv), (v), and (vi) stated in Theorem 1.1. These examples are provided in Exam-
ples 3.1, 3.3, 3.4, and 3.7. Furthermore, we illustrate with some examples that the
condition “iso-Artinian” in types (ii), (v), and (vi) of Theorem 1.1 cannot be relaxed;
see Examples 3.2, 3.5, and 3.8.

Specifically, our first example demonstrates the occurrence of type (ii) in Theo-
rem 1.1 and provides an instance of an iso-Artinian ring that is not iso-Noetherian.
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Example 3.1. Let F be a field and R = F [x1, x2, x3, . . . ], where xixj = 0 for
each i, j ∈ N. Clearly, R is a local ring with the unique prime ideal m = 〈x1, x2, . . . 〉.
Since m2 = 0, we can deduce that R can be expressed as R = F ⊕

(⊕
i∈N Fxi

)
. Thus,

R is an F -vector space with a countable basis and any ideal I of R can be written
as F (Γ), where Γ is a countable set.

Now, consider a descending chain of ideals of R:

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · .
If there exists an Ij isomorphic to F (Γ) with Γ finite, then the chain is stationary. If
there is no such ideal Ij , then we must have I1 ∼= I2 ∼= · · · . This shows that R is an
iso-Artinian ring.

However, R is not iso-Noetherian. To see this, for each natural number k, let
Jk := 〈x1, x2, . . . , xk〉. Then Jk is an F -vector space of dimension k, and the chain

J1 ⊆ J2 ⊆ · · · ⊆ Jk ⊆ · · ·
does not stabilize up to isomorphism. Hence, R is not iso-Noetherian and, conse-
quently, not Noetherian.

We now present an example of a non-iso-Artinian local ring with a nilpotent max-
imal ideal.

Example 3.2. Let F be a field and R = F [x1, x2, x3, . . . ], where xixj = 0 and
x3
i = 0 for all natural numbers i < j. Clearly, R is a non-Noetherian local ring with

the unique prime ideal m = 〈x1, x2, . . . 〉 and m3 = 0. For each natural number k, set
Jk := 〈xk, xk+1, . . . 〉. These ideals form the following descending chain:

J1 ) J2 ) · · · ) Jk ) · · · .
It is easy to see that xk ∈ (0 :R Jk+1) \ (0 :R Jk). Since isomorphic modules have the
same annihilator, this chain does not stabilize up to isomorphism. Thus, R satisfies
all conditions in type (ii) of Theorem 1.1 except the iso-Artinian condition.

Let J(R) denote the Jacobson radical of R. Recall that a ring R is said to be perfect
if R/J(R) is a semisimple ring and J(R) is t-nilpotent. A ring R is called subperfect
if its total ring of fractions is a perfect ring. An R-module M is called iso-Artinian if
every descending chain of submodules of M terminates up to isomorphism.

Next, we provide an example of rings of type (iv) in Theorem 1.1. It is well
known that every Artinian ring is perfect. This raises the question of whether ev-
ery iso-Artinian ring is also perfect. However, the following example shows that an
iso-Artinian ring may not even be subperfect. Furthermore, as every Artinian ring is
Cohen–Macaulay, one may conjecture that any Noetherian iso-Artinian ring is also
Cohen–Macaulay. Nevertheless, the next example demonstrates that this is not true.

Example 3.3. Let F be a field and R = F [[X,Y ]]/〈XY, Y 2〉. Let x and y denote the
residue classes of X and Y in R, and set m = 〈x, y〉 and p = Ry. As 0 = 〈x, y2〉∩p is a
minimal primary decomposition of the zero ideal of R, it follows that AssR = {p,m},
and so MinR ( AssR. It is easy to verify that (0 :R y) = m, and so p is a simple
R-module. We prove the following claim:

Claim. Let J be an ideal of R such that J∩p = 0. Then J is an iso-Artinian R-module.

Proof: As R/p is a principal ideal domain and (J + p)/p is an ideal of R/p, it follows
that (J + p)/p is an iso-Artinian R/p-module. Thus, (J + p)/p is also iso-Artinian as
an R-module. Note that the set of R-submodules of (J + p)/p coincides with the set
of its R/p-submodules, and every R/p-homomorphism between two ideals of R/p is
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also an R-homomorphism. Since J ∼= J/J ∩ p ∼= (J + p)/p, we deduce that J is an
iso-Artinian R-module.

Next, we show that R is iso-Artinian. Let

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · ·

be a descending chain of ideals of R. Assume that I`∩p = 0 for some natural number `.
Then I` is an iso-Artinian R-module by the above claim. This implies that the chain
must be stationary up to isomorphism. Now, assume that I` ∩ p = p for all natural
numbers `. Since m = p⊕Rx, we can easily see that I` = p⊕ (I`∩Rx). By the above
claim, I`∩Rx is an iso-Artinian R-module for all ` ∈ N. As I1∩Rx is an iso-Artinian
R-module, there is a natural number k and R-isomorphisms φi : Ik ∩Rx→ Ik+i ∩Rx
for all i ≥ 1. In view of the expression for I`, φi can be extended to an R-isomorphism
ψi : Ik → Ik+i for all i ≥ 1. Hence, the chain must be stationary up to isomorphism,
which implies that R is iso-Artinian.

Since MinR ( AssR, [9, Lemma 2.2] implies that R is not subperfect. Additionally,
since MinR ( AssR, we deduce that R is not Cohen–Macaulay.

We follow by giving an example of rings of type (v) in Theorem 1.1.

Example 3.4. Let F be a field and R be the quotient of the algebra F [[x1, x2, . . . ]]
modulo the relations {

x1xi = 0 for all i ≥ 2,

xixj = 0 for all i ≥ 2 and j ≥ 2.

Set p = 〈x2, x3, . . . 〉 and m = 〈x1, x2, . . . 〉. Clearly, p2 = 0. It follows that p is the
unique minimal prime ideal of R, and m is the unique maximal ideal of R. It is easy
to check that m = Rx1 ⊕ p, (0 :R x1) = p, (0 :R x2) = m, and Soc(R) = p. Hence,
MinR ( AssR. We have m = Rx1⊕

(⊕
i>1 Fxi

)
, and Rx1

∼= R/p is a principal ideal
domain. Thus, by the equivalence of the conditions 3(ii) and 4(iii) of [3, Theorem 4.5],
there exists 0 6= x ∈ R such that every proper ideal of R is semisimple or is isomorphic
to Rx ⊕ J , where J ⊆ Soc(R). Every semisimple ideal of R is contained in Soc(R),
which is an F -vector space with a countable basis. Thus, by an argument similar
to that given in Example 3.1, we can show that R is iso-Artinian. Clearly, R is not
Noetherian.

In the following example, we demonstrate that the condition of being “iso-Artinian”
in type (v) of Theorem 1.1 cannot be relaxed.

Example 3.5. Let F be a field and R be the quotient of the algebra F [[x, y1, y2, . . . ]]
modulo the relations 

xyi = 0 for all i ≥ 1,

yiyj = 0 for all j > i,

y3
i = 0 for all i ≥ 2,

y2
1 = 0.

Set p = 〈y1, y2, . . . 〉 and m = 〈x, y1, y2, . . . 〉. As p3 = 0, it follows that p is the unique
minimal prime ideal of R. Since R/p ∼= F[[x]] is a DVR, we deduce that dimR = 1. It
is easy to check that p = (0 :R x) and m = (0 :R y1), and so MinR ( AssR. Clearly,
R is not Noetherian.
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We will now show that R is not iso-Artinian. To do this, let Jk = 〈y2k, y2k+1, . . . 〉,
and consider the following descending chain of ideals in R:

J1 ) J2 ) J3 ) · · · .

Suppose Jk∼=Jk+1 for some k∈N. It is clear that y2k+1∈(0 :R Jk+1), but y2k+1 6∈ (0 :R
Jk). This contradicts the fact that isomorphic modules have the same annihilator.
Thus, R satisfies all conditions in type (v) of Theorem 1.1 except for being iso-
Artinian.

Our next example shows that type (vi) in Theorem 1.1 can occur. To present it,
we need the following lemma.

We recall that a ring R is a chain ring if the set of ideals of R is totally ordered
with respect to inclusion (this is equivalent to the condition that the set of principal
ideals of R is totally ordered with respect to inclusion). It is well known that a chain
ring is local. A chain domain is called a valuation domain.

Lemma 3.6. Let A be a DVR with the maximal ideal Az. Let K be the field of
fractions of A, and set R = A+ xK[[x]], p = xK[[x]], and m = Az + p. Then

(i) R is a valuation domain.

(ii) R is a non-Noetherian domain, m = Rz, and dimR = 2.

(iii) SpecR = {0, p,m}.
(iv)

⋂∞
i=1 m

i = p.

Proof: (i) Since R is a subring of K[[x]], it follows that R is a domain. Let f and g be
two non-zero elements of R. As K[[x]] is a DVR, without loss of generality, we may
assume that g|f in K[[x]], that is, f = hg for some h ∈ K[[x]]. We want to show that
f |g or g|f in R. Let h = h0 + h1x+ h2x

2 + · · · . If h0 = 0, then

h = x(h1 + h2x+ · · · ) ∈ xK[[x]] ⊆ R,

and so g|f in R, and we are done. Next, assume that h0 6= 0. Since A is a valuation
domain, we have either h0 ∈ A or h−1

0 ∈ A. We break the proof into two cases:

Case 1: h0 ∈ A. Then h = h0 + x(h1 + h2x+ · · · ) ∈ R, and so g|f in A, and we are
done again.

Case 2: h−1
0 ∈ A. As h0 is non-zero, h is an invertible element in K[[x]]. Clearly,

h−1 has the form

h−1 = h−1
0 + l1x+ l2x

2 + · · · = h−1
0 + x(l1 + l2x+ · · · ) ∈ R.

So, from h−1f = g, we deduce that f |g in R. This means that R is a valuation domain.

(ii) By [5, Corollary 14(a)], we conclude that dimR = 2. By [5, Proposition 6], m is
the unique maximal ideal of R. Since R is a valuation domain and z /∈ p, it follows
that p ⊆ Rz. Hence, m = Az + p ⊆ Rz, and so m = Rz. If R were Noetherian,
then Krull’s principal ideal theorem would imply that dimR = htm ≤ 1. So, R is
non-Noetherian.

(iii) Obviously, p is a prime ideal of R. Suppose that R possesses a prime ideal q
other than the prime ideals 0, p, and m. As R is a valuation domain, either p ( q
or q ( p. Thus, we can conclude that either the chain 0 ( p ( q ( m or the
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chain 0 ( q ( p ( m exists, implying that dimR ≥ 3. Since, by (ii), dimR = 2, we
deduce that SpecR = {0, p,m}.

(iv) For a proper ideal I of a chain ring T , by [10, Lemma 1.3, Chapter II], either some
power of I is zero or

⋂∞
i=1 I

i is a prime ideal of T . Since R is a domain and m 6= 0,
no power of m is zero, and so

⋂∞
i=1 m

i is a prime ideal of R. As R is non-Noetherian,
Lemma 2.5 asserts that

⋂∞
i=1 m

i 6= 0. If
⋂∞
i=1 m

i = m, then m = m2, which implies
that m = 0 by Nakayama’s lemma. Thus,

⋂∞
i=1 m

i = p.

Example 3.7. Let A, K, R, p, and m = Rz be as in the lemma above. By Lemma 3.6,
R is a non-Noetherian valuation domain of dimension two, and

⋂∞
i=1 m

i = p. Set I =
Rx2, D = R/I, and p̄ = p/I. Since every factor of a chain ring is again a chain ring,
the ring D is a chain ring as well. As SpecR = {0, p,m}, it follows that SpecD =
{p̄,m/I}. Lemma 2.10 yields that mp = p. Since p is non-zero, by Nakayama’s lemma,
it follows that p is not finitely generated. This implies that the ideal p̄ is also not
finitely generated.

We claim that D is an iso-Artinian ring. Since z + I is a regular element of D,
we have that m/I is not an associated prime ideal of D. On the other hand, we can
verify that p̄ = (0 :D (x + I)), and so p̄ ∈ AssD. Hence, MinD = AssD. Suppose
that we have a decreasing chain of ideals

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

in D. Assume that p̄ ( Ij for every j ∈ N. Since R/p ∼= A is a DVR, it follows
that {0} ∪ {mi/p | i ∈ N0} is the set of all ideals of R/p. It can be easily checked
that each Ij is a power of the maximal ideal m/I, and hence they are principal and
generated by a power of the regular element z + I. Therefore, they are isomorphic
to D, and the chain stops up to isomorphism.

Now, assume that there is a natural number j1 such that Ij1 ⊆ p̄. If Ij = p̄ for
all j ≥ j1, then we are done. So, without loss of generality, we may assume that
Ij1 ( p̄. Let ȳ ∈ p̄ \ Ij1 . Then Ij1 ( Dȳ ( p̄, because D is a chain ring. As p̄ȳ = 0,
we see that Dȳ is a well-defined D/p̄-module. Note that D/p̄ ∼= R/p is a DVR.
Thus, by the structure theorem for finitely generated modules over a principal ideal
domain, every decreasing chain of submodules of the D/p̄-module Dȳ must stop up
to isomorphism after a finite number of steps. This forces the chain to stop up to
isomorphism. Note that D-submodules of Dȳ coincide with its D/p̄-submodules.

Our last example below shows that the condition of being “iso-Artinian” in type (vi)
of Theorem 1.1 cannot be relaxed.

Example 3.8. Let R be the quotient of the algebra Z[x1, x2, . . . ] modulo the relations{
xixj = 0 for all j > i,

x3
i = 0 for all i ≥ 1.

Set p = 〈x1, x2, . . . 〉. As p3 = 0, it follows that p is the unique minimal prime ideal
of R. It is easy to see that p = (0 :R x2

1), so p ∈ AssR. On the other hand, it
is straightforward to check that the zero ideal of R is p-primary. Thus, Z(R) = p,
which implies that AssR = {p} = MinR. Clearly, R is not Noetherian. Let Jk =
〈x2k, x2k+1, . . . 〉 for all k ∈ N. With the same argument as in Example 3.5, we see that
the following descending chain of ideals of R does not terminate up to isomorphism:

J1 ) J2 ) J3 ) · · · .
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Hence, R satisfies all conditions in type (vi) of Theorem 1.1 except for being iso-
Artinian.

We have not provided an example to show that the condition of being “iso-Artinian”
in type (iv) of Theorem 1.1 cannot be relaxed. In fact, we conclude the paper by
proposing the following question:

Question 3.9. Let R be a one-dimensional Noetherian ring with a unique minimal
prime ideal p such that R/p is a principal ideal domain and MinR ( AssR. Is R
necessarily iso-Artinian?
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