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Abstract: We study gradient flows of general functionals with linear growth with very weak as-

sumptions. Classical results concerning characterisation of solutions require differentiability of the

Lagrangian, as for the time-dependent minimal surface equation, or a special form of the Lagrangian
as in the total variation flow. We propose to study this problem using duality techniques, give a

general definition of solutions, and prove their existence and uniqueness. This approach also allows
us to reduce the regularity and structure assumptions on the Lagrangian.
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1. Introduction

In this paper, we are interested in the study of gradient flows of general functionals
with linear growth. The setting is as follows: suppose that Ω ⊂ RN is an open bounded
set with Lipschitz boundary and that f ∈ C(Ω×RN ) is a convex function. Then, we
study the gradient flow of the functional

F (u) =

∫
Ω

f(x,Du)

defined over BV (Ω) ∩ L2(Ω), i.e., the evolution equation{
ut(t, x) = div(∂ξf(x,Du(t, x))) in (0, T )× Ω;

u(0, x) = u0(x) in Ω,

where u0∈L2(Ω), subject to Neumann or Dirichlet boundary conditions. Here, ∂ξf de-
notes the subdifferential of f in the second variable. A typical example of a La-
grangian f(x, ξ) in this framework is the nonparametric area integrand f(x, ξ) =√

1 + ‖ξ‖2, whose associated problem is the time-dependent minimal surface equa-
tion, which has been studied in [16] and [24]. The corresponding steady-state problem
is the nonparametric Plateau problem−div

(
∇u√

1 + |∇u|2

)
= 0 in Ω;

u = ϕ on ∂Ω.

This problem has been studied, using a combination of techniques from geometric
measure theory and PDEs, by many authors including Federer, Fleming, De Giorgi,
Bombieri, Giusti, Miranda, Nitsche, and Serrin. The monographs [17] and [20] are a
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good reference. Another example is the evolution problem for plastic antiplanar shear
studied in [27], which corresponds to the plasticity functional f given by

f(ξ) =


1

2
‖ξ‖2 if ‖ξ‖ ≤ 1;

‖ξ‖ − 1

2
if ‖ξ‖ ≥ 1.

The evolution problem for the Lagrangian f , which does not include the nonparamet-
ric area integrand but includes the plasticity functional, was studied in [22].

A different type of example is the total variation flow, see for instance [7], and its
anisotropic variant [25]. In the classical total variation flow, the Lagrangian is given
by the formula f(x, ξ) = |ξ|, and in particular it is not differentiable at 0. Also, the
corresponding 1-Laplacian operator

∆1u := −div

(
Du

|Du|

)
is strongly degenerate. For this reason, the techniques used for the study of the total
variation flow are entirely different from the regular case; for instance compare the def-
initions of solutions to the total variation flow and for gradient flows for differentiable
functionals of linear growth given in [7, Chapters 2 and 6].

Our main goal is to apply a duality-based method to provide a unified framework
for the study of the total variation flow and other linear growth functionals. In the
case of a general linear growth functional, the classical results in [7] (see also [4], [5],
and [6]) require that the Lagrangian f is differentiable at zero in the second variable,
which is clearly not satisfied for the total variation flow. We give a general definition of
solutions, which agrees with the known notions of solutions for the classical problems,
and prove existence and uniqueness of solutions. The method we propose also reduces
the assumptions needed and gives a more streamlined and simplified proof.

Throughout the whole paper, we assume that Ω is a bounded Lipschitz domain
in RN and f ∈ C(Ω× RN ) is the Lagrangian which is convex in the second variable
and linearly coercive. We work with only two assumptions regarding the Lagrangian:

(A1) There exists M > 0 such that

|f(x, ξ)| ≤M(1 + |ξ|) for all (x, ξ) ∈ Ω× RN .
(A2) The following limit exists:

f0(x, ξ) = lim
t→0+

tf(x, ξ/t)

and it defines a function which is symmetric in ξ and jointly continuous in (x, ξ).

These conditions are similar to the assumptions (Lin) and (Con) given in [12]
regarding optimality conditions for solutions to minimisation problems involving lin-
ear growth functionals. They are, however, significantly weaker than the assumptions
used typically in the study of gradient flows of functionals with linear growth, where
one either assumes a special form of the functional (e.g. for the total variation flow or
its anisotropic version) or C1 regularity of f . Let us compare our assumptions with
the assumptions (H1)–(H5) given in [7, Chapter 6]: we assume condition (H1) except
for the differentiability of f ; we assume condition (H2); and we do not assume condi-
tions (H3)–(H5). We also only require the boundary of the domain to be Lipschitz. In
particular, our method not only generalises known results to new situations, but also
provides a uniform framework which covers both the case of the (anisotropic) total
variation flow and the case of functionals of class C1.
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Under the assumptions (A1)–(A2), we study the Neumann and Dirichlet prob-
lems for gradient flows of general functionals of linear growth (we also remark on the
Cauchy problem on the whole space). The Dirichlet problem for the total variation
flow has been studied extensively in the literature, see for instance [3] and [7], and its
anisotropic case was considered in [25] and [14]. The Dirichlet problem for general
linear growth functionals, under more restrictive assumptions which include differen-
tiability of f , was also studied in [7]. On the other hand, the Neumann problem has so
far only been studied in very specific cases, such as the isotropic total variation flow
(see [7] and [21]), that are entirely new in the general setting. We give a definition
of weak solutions in the general case, prove existence and a characterisation of weak
solutions, and highlight what the general definition looks like when specified to the
important special cases.

The structure of the paper is as follows. In Section 2, we recall the necessary
definitions and results concerning BV functions, Anzellotti pairings, and functions of
a measure. We also prove Proposition 2.7, which is a crucial estimate on the Anzellotti
pairing in terms of the asymptotic function of f . Then, in Section 3 we study the
Neumann problem; we characterise the subdifferential of the functional associated
to the gradient flow and use it to obtain a characterisation of weak solutions. In
Section 4, we make an analogous reasoning for the Dirichlet problem. In both cases,
we complement the reasoning with several examples, and we discuss how to adapt
our technique for the Cauchy problem on the whole space.

2. Preliminaries

2.1. BV functions and Anzellotti pairings. Due to the linear growth condition
on the Lagrangian, the natural energy space to study the problem is the space of
functions of bounded variation. Let us recall several facts concerning functions of
bounded variation (for further information we refer to [1], [19], or [28]). Throughout
the whole paper, we assume that Ω ⊂ RN is an open bounded set with Lipschitz
boundary.

Definition 2.1. A function u∈L1(Ω) whose partial derivatives in the sense of distri-
butions are measures with finite total variation in Ω is called a function of bounded
variation. The space of such functions will be denoted by BV (Ω). In other words,
u ∈ BV (Ω) if and only if there exist Radon measures µ1, . . . , µN defined in Ω with
finite total mass in Ω and ∫

Ω

uDiϕdx = −
∫

Ω

ϕdµi

for all ϕ ∈ C∞0 (Ω), i = 1, . . . , N . Thus, the distributional gradient of u (denoted Du)
is a vector-valued measure with finite total variation

|Du|(Ω) = sup

{∫
Ω

udivϕdx : ϕ ∈ C∞0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω

}
.

The space BV (Ω) is endowed with the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω).

For u∈BV (Ω), the distributional gradient Du is a Radon measure that decomposes
into its absolutely continuous and singular parts Du = Dau + Dsu. Then Dau =
∇uLN , where ∇u is the Radon–Nikodym derivative of the measure Du with respect

to the Lebesgue measure LN . There is also the polar decomposition Dsu =
−−→
Dsu|Dsu|,
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where |Dsu| is the total variation measure of Dsu. We denote by νu := dDu
d|Du| the

Radon–Nikodym derivative of the measure Du with respect to the measure |Du|.
We shall need several results from [9] (see also [23]). Following [9], let

Xp(Ω) = {z ∈ L∞(Ω;RN ) : div(z) ∈ Lp(Ω)}.

Definition 2.2. For z∈Xp(Ω) and u∈BV (Ω)∩Lp′(Ω), define the functional (z, Du) :
C∞0 (Ω)→ R by the formula

〈(z, Du), ϕ〉 = −
∫

Ω

uϕdiv(z) dx−
∫

Ω

u z · ∇ϕdx.

The following result collects some of the most important properties of the pair-
ing (z, Du), formally defined only as a distribution on Ω.

Proposition 2.3. The distribution (z, Du) is a Radon measure in Ω. Moreover,

(2.1)

∣∣∣∣∫
B

(z, Du)

∣∣∣∣ ≤ ∫
B

|(z, Du)| ≤ ‖z‖∞
∫
B

|Du|

for any Borel set B ⊆ Ω. In particular, (z, Du) is absolutely continuous with respect
to |Du|. Furthermore,∫

Ω

(z, Dw) =

∫
Ω

z · ∇w dx ∀w ∈W 1,1(Ω) ∩ L∞(Ω)

so (z, Du) agrees on Sobolev functions with the dot product of z and ∇u.

By (2.1), the measure (z, Du) has a Radon–Nikodym derivative with respect to |Du|

θ(z, Du, ·) :=
d[(z, Du)]

d|Du|

which is a |Du|-measurable function from Ω to R such that∫
B

(z, Du) =

∫
B

θ(z, Du, x)|Du|

for any Borel set B ⊆ Ω. We also have that

‖θ(z, Du, ·)‖L∞(Ω,|Du|) ≤ ‖z‖L∞(Ω;RN ).

In [9], a weak trace on ∂Ω of the normal component of z ∈ Xp(Ω) is defined. Specifi-
cally, it is proved that there exists a linear operator γ : X(Ω)→ L∞(∂Ω) such that

‖γ(z)‖∞ ≤ ‖z‖∞,
γ(z)(x) = z(x) · νΩ(x) for all x ∈ ∂Ω if z ∈ C1(Ω,RN ),

νΩ being the unit outward normal on ∂Ω. We shall denote γ(z)(x) by [z, νΩ](x).
Moreover, the following Green’s formula, relating the function [z, νΩ] and the mea-
sure (z, Dw), was proved in the same paper.

Theorem 2.4. For all z ∈ Xp(Ω) and u ∈ BV (Ω) ∩ Lp′(Ω), we have

(2.2)

∫
Ω

udiv(z) dx+

∫
Ω

(z, Du) =

∫
∂Ω

u[z, νΩ] dHN−1.

Moreover, as a consequence of [8, Proposition 2.2 and Theorem 3.6] (see also [11]
and [15]), we have the following result.
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Theorem 2.5. Suppose that u ∈ BV (Ω) and z ∈ X1(Ω). Then,

(2.3)
d[(z, Du)]

d|Du|
(x) = lim

ρ→0+
lim
r→0+

1

2rωN−1ρN−1

∫
Cr,ρ(x,νu(x))

z(y) · νu(x) dy

for |Du|-a.e. x ∈ Ω. Here,

Cr,ρ(x, α) := {ξ ∈ RN : |(ξ − x) · α| < r, |(ξ − x)− [(ξ − x) · α]α| < ρ}, α ∈ SN−1.

Furthermore,

(2.4) [z, νΩ](x) = lim
ρ→0+

lim
r→0+

1

2rωN−1ρN−1

∫
Cr,ρ(x,νΩ(x))

z(y) · νΩ(x) dy

for HN−1-a.e. x ∈ ∂Ω.

By writing

z ·Dsu := (z, Du)− (z · ∇u) dLN ,
we see that z·Dsu is a bounded measure. Furthermore, in [7] it is proved that z·Dsu is
absolutely continuous with respect to |Dsu| (and, thus, it is a singular measure with
respect to LN ), and

|z ·Dsu| ≤ ‖z‖∞|Dsu|.
As a consequence of [9, Theorem 2.4], we have that

if z ∈ Xp(Ω) ∩ C(Ω;RN ), then z ·Dsu = (z ·
−−→
Dsu) d|Dsu|.

2.2. Function of a measure. In order to consider the relaxed energy we recall the
definition of a function of a measure (see for instance [10] or [16]). Let f : Ω×RN → R
be a Carathéodory function such that

(2.5) |f(x, ξ)| ≤M(1 + ‖ξ‖) ∀ (x, ξ) ∈ Ω× RN ,

for some constant M ≥ 0. Furthermore, we assume that f possesses an asymptotic
function, i.e., for almost all x ∈ Ω there exists the finite limit

lim
t→0+

tf

(
x,
ξ

t

)
= f0(x, ξ).

It is clear that the function f0(x, ξ) is positively homogeneous of degree one in ξ, i.e.,

f0(x, sξ) = sf0(x, ξ) for all x, ξ, and s > 0.

Throughout the paper, we will assume that f0 is symmetric, i.e.,

(2.6) f0(x,−ξ) = f0(x, ξ) for all ξ ∈ RN and all x ∈ Ω.

It is easy to see that

(2.7) if f(x, η)− f(x, ξ) ≥ z · (η − ξ), then f0(x, η)− f0(x, ξ) ≥ z · (η − ξ).

Let us recall that, by definition of the subgradient,

z ∈ ∂ξf(x, ξ) ⇐⇒ f(x, η)− f(x, ξ) ≥ z · (η − ξ) ∀ η ∈ RN .

Then, (2.7) means that

z ∈ ∂ξf(x, ξ) =⇒ z ∈ ∂ξf0(x, ξ).
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We denote by M(Ω;RN ) the set of all RN -valued bounded Radon measures on Ω.
Given µ ∈M(Ω;RN ), we consider its Lebesgue decomposition

µ = µa + µs,

where µa is the absolutely continuous part of µ with respect to the Lebesgue mea-
sure LN , and µs is singular with respect to LN . We denote by µa(x) the density of the
measure µa with respect to LN and by (dµs/d|µ|s)(x) the density of µs with respect
to |µ|s.

Given µ ∈M(Ω;RN ), we define µ̃ ∈M(Ω;RN+1) by

µ̃(B) := (µ(B),LN (B)),

for every Borel set B ⊂ RN . Then, we have

µ̃ = µ̃a + µ̃s = µ̃a(x)LN+1 + µ̃s = (µa(x), χΩ)LN+1 + (µs, 0).

Hence, we have

|µ̃s| = |µs|, dµ̃s

d|µ̃s|
=

(
dµs

d|µs|
, 0

)
|µs|-a.e.

For µ∈M(Ω;RN ) and f satisfying the above conditions, we define the measure f(x, µ)
on Ω as

(2.8)

∫
B

f(x, µ) :=

∫
B

f(x, µa(x)) dx+

∫
B

f0

(
x,

dµs

d|µ|s
(x)

)
d|µ|s

for any Borel set B ⊂ Ω. In formula (2.8) we may write (dµ/d|µ|)(x) instead
of (dµs/d|µ|s)(x), because the two functions are equal |µ|s-a.e.

Another way of looking at the measure f(x, µ) is the following. Let us consider the

function f̃ : Ω× RN × [0,+∞)→ R defined as

f̃(x, ξ, t) :=

f
(
x,
ξ

t

)
t if t > 0;

f0(x, ξ) if t = 0.

As is proved in [10], if f is a Carathéodory function satisfying (2.5), then one has∫
B

f(x, µ) =

∫
B

f̃

(
x,
dµ

dα
(x),

dLN

dα
(x)

)
dα,

where α is any positive Borel measure such that |µ|+ LN � α.
Now, we will apply the general theory of a function of a measure to the particular

case µ = Du, where u ∈ BV (Ω). Let f be a function satisfying (2.5). Then for
every u ∈ BV (Ω) we have the measure f(x,Du) defined by∫

B

f(x,Du) =

∫
B

f(x,∇u(x)) dx+

∫
B

f0(x,
−−→
Dsu(x)) d|Dsu|

for any Borel set B ⊂ Ω. Since we assume that Ω has a Lipschitz boundary, and
therefore f(x, ξ) is defined also for x ∈ ∂Ω, we may consider the functionalG inBV (Ω)
defined by

G(u) :=

∫
Ω

f(x,Du) +

∫
∂Ω

f0(x, νΩ(x)[ϕ(x)− u(x)]) dHN−1,

where ϕ ∈ L1(∂Ω) is a given function and νΩ is the outer unit normal to ∂Ω. It is

proved in [10] that, if f̃(x, ξ, t) is continuous on Ω×RN × [0,+∞) and convex in (ξ, t)
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for each fixed x ∈ Ω, then G is the greatest functional on BV (Ω) which is lower
semicontinuous with respect to the L1(Ω)-convergence and satisfies

G(u) ≤
∫

Ω

f(x,∇u(x)) dx

for all functions u ∈ C1(Ω)∩W 1,1(Ω) with u = ϕ on ∂Ω. Let us remark that the above

result is proved in [7, Lemma 6.3] assuming only that f̃(x, ξ, t) is lower semicontinuous
on Ω× RN × [0,+∞).

Finally, we recall a version of the Reshetnyak continuity theorem suitable for our
purposes, proved in [12, Theorem 3.10]. We recall it in full generality, when Ω is
allowed to be an unbounded subset of RN ; since we work in bounded domains, in this
paper it will be enough to apply it in the case ρ ≡ 1.

Theorem 2.6. Suppose that Ω ⊂ RN is an open set such that ∂Ω has zero Lebesgue
measure. Moreover, assume that f : Ω×RN → R satisfies (A2) and |f(x, ξ)| ≤ ψ(x)+
M |ξ| with ψ ∈ L1(Ω) (for bounded domains this condition reduces to (A1)). Let µk
be a sequence of finite vector-valued Radon measures on Ω which weakly* converges
to µ. If there holds

lim
k→∞

|(ρLn, µk)|(Ω) = |(ρLn, µ)|(Ω)

for some positive ρ ∈ L1(Ω) bounded away from zero on every bounded subset of Ω,
we have

lim
k→∞

[∫
Ω

f

(
·, dµ

a
k

dLn

)
dx+

∫
Ω

f0

(
·, dµ

s
k

d|µsk|

)
d|µsk|

]

=

∫
Ω

f

(
·, dµ

a

dLn

)
dx+

∫
Ω

f0

(
·, dµ

s

d|µs|

)
d|µs|.

2.3. Estimates in terms of f0. In this subsection, we show a pointwise estimate
of the Radon–Nikodym derivative of (z, Du) with respect to |Du| and related objects
in terms of the asymptotic function f0 of the functional f . Recall that the conjugate
function f∗ : Ω×RN → (−∞,+∞] of f (with respect to the ξ-variable) is defined as

f∗(x, ξ∗) := sup
ξ∈RN

[ξ∗ · ξ − f(x, ξ)].

Proposition 2.7. Suppose that Ω ⊂ RN has a Lipschitz boundary and that f sat-
isfies (A1) and (A2). Then, for all u ∈ BV (Ω) ∩ Lp′(Ω) and z ∈ Xp(Ω) such that
f∗(·, z) <∞ holds LN -a.e. on Ω, we have

f0

(
·, dDu
d|Du|

)
≥ d[(z, Du)]

d|Du|
|Du|-a.e. in Ω,(2.9)

f0

(
·, dD

su

d|Dsu|

)
≥ d[z ·Dsu]

d|Dsu|
|Dsu|-a.e. in Ω,(2.10)

and

f0(·, νΩ)|u| ≥ −[z, νΩ]u HN−1-a.e. on ∂Ω.(2.11)

Proof: By the definition of the conjugate function, we have

tf

(
x,
ξ

t

)
≥ z(x) · ξ − tf∗(x, z(x)) for all (x, ξ) ∈ Ω× RN and all t > 0.
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Let t→ 0. Then, by assumption (A2), we get

f0(x, ξ) ≥ z(x) · ξ for all ξ ∈ RN ,
whenever x ∈ Ω is such that f∗(x, z(x)) is finite. By the assumption that f∗(·, z) <∞
LN -a.e. in Ω, we have

(2.12) z(x) ∈ ∂ξf0(x, 0) for LN -a.e. x ∈ Ω.

Now, equation (2.3) implies that for |Du|-a.e. x0 ∈ Ω we have

(2.13)
d[(z, Du)]

d|Du|
(x0) = lim

ρ→0+
lim
r→0+

1

2rωN−1ρN−1

∫
Cr,ρ(x0,νu(x))

z(y) · νu(x0) dy.

Fix an x0 ∈ Ω satisfying (2.13). By equation (2.12) and [12, Lemma 5.4], for any ε > 0
there exists δ > 0 such that

z(x) ∈ Nε(∂ξf0(x0, 0)) for LN -almost x ∈ Ω such that |x− x0| < δ,

where Nε(∂ξf0(x0, 0)) denotes the ε-neighbourhood of the set ∂ξf
0(x0, 0). Thus,

by (2.13) there exists ξ0 ∈ Nε(∂ξf0(x0, 0)) such that

d[(z, Du)]

d|Du|
(x0) = ξ0νu(x0).

Consequently, we can find a subgradient ξ∗ ∈ ∂ξf0(x0, 0) with |ξ0 − ξ∗| ≤ ε. Hence

d[(z, Du)]

d|Du|
(x0) = ξ0νu(x0) ≤ ξ∗νu(x0) + ε|νu(x0)| ≤ f0(x0, νu(x0)) + ε|νu(x0)|.

We conclude the proof of (2.9) by letting ε → 0. The property (2.10) is a conse-
quence of (2.9), bearing in mind the decomposition of the measure into its absolutely
continuous part with respect to the Lebesgue measure and its singular part.

Finally, let us prove (2.11). By (2.4), for HN−1-a.e. x0 ∈ ∂Ω we have

(2.14) [z, νΩ](x0) = lim
ρ→0+

lim
r→0+

1

2rωN−1ρN−1

∫
Cr,ρ(x0,νΩ(0))

z(y) · νΩ(x0) dy.

Fix an x0 ∈ ∂Ω satisfying (2.14). Working as in the first part of the proof, we obtain
that given ε > 0, there exists δ > 0 such that

z(x) ∈ Nε(∂ξf0(x0, 0)) for HN−1-almost x ∈ ∂Ω, such that |x− x0| < δ,

so by (2.14) there exists ξ0 ∈ Nε(∂ξf0(x0, 0)) such that

[z, νΩ](x0) = ξ0νΩ(x0).

Consequently, we can find a subgradient ξ∗ ∈ ∂ξf0(x0, 0) with |ξ0 − ξ∗| ≤ ε. Hence,

−[z, νΩ](x0)u(x0) = −ξ0νΩ(x0)u(x0) = (ξ∗ − ξ0)νΩ(x0)u(x0)− ξ∗νΩ(x0)u(x0)

≤ ε|u(x0)| − ξ∗νΩ(x0)u(x0) ≤ ε|u(x0)|+ f0(x0, νΩ(x0))|u(x0)|,

where the last inequality is a consequence of ξ∗ ∈ ∂ξf0(x0, 0) and (2.6). We conclude
the proof of inequality (2.11) by letting ε→ 0.

Remark 2.8. The main motivation for Proposition 2.7 and its proof is [12, Corol-
lary 5.3], in which a similar result is shown for the up-to-boundary Anzellotti pairing
introduced in [12]. However, let us point out that we could not apply this result
directly, because the up-to-boundary pairing from [12] is only comparable with the
standard Anzellotti pairing in the case div(z) = 0. Therefore, we decided to give a di-
rect proof using the results of Anzellotti concerning the pointwise behaviour of (z, Du)
and [z, νΩ].
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3. The Neumann problem

Recall that throughout the whole paper we assume that Ω is an open bounded
subset of RN with Lipschitz boundary, where N ≥ 2. Moreover, the Lagrangian f ∈
C(Ω×RN ) is convex in the variable ξ and satisfies conditions (A1) and (A2). In this
section, we study the Neumann problem

(3.1)


ut(t, x) = div(∂ξf(x,Du(t, x))) in (0, T )× Ω;

∂u

∂η
= 0 on (0, T )× ∂Ω;

u(0, x) = u0(x) in Ω,

where u0 ∈ L2(Ω). In the case when f ∈ C1(Ω × RN ), the subdifferential is single-
valued and the problem reduced to the classical case

(3.2)


ut(t, x) = div a(x,Du(t, x)) in (0, T )× Ω;

a(x,Du(t, x)) · νΩ = 0 on (0, T )× ∂Ω;

u(0, x) = u0(x) in Ω,

where a(x, ξ) = ∂ξf(x, ξ). Another important special case is when f(x, ξ) = |ξ|, when
we recover the total variation flow

(3.3)



ut(t, x) = div

(
Du(t, x)

|Du(t, x)|

)
in (0, T )× Ω;

Du(t, x)

|Du(t, x)|
· νΩ = 0 on (0, T )× ∂Ω;

u(0, x) = u0(x) in Ω.

For a comprehensive study of problem (3.3) see [2] or [7]. Due to the fact that in
general the subdifferential ∂ξf(x,Du(t, x)) might not be single-valued, we need to
give a suitable definition of weak solutions, and our approach is closer to the one used
for problem (3.3) than the one for problem (3.2). In particular, our definition will be
based on the existence of a suitable vector field z∈X2(Ω), which replaces the possibly
multivalued object ∂ξf(x,Du(t, x)).

Consider the energy functional FN : L2(Ω)→ [0,+∞] associated with problem (3.1)
and defined by

FN (u) :=


∫

Ω

f(x,Du) if u ∈ BV (Ω) ∩ L2(Ω);

+∞ if u ∈ L2(Ω) \BV (Ω).

We have that FN is convex and lower semicontinuous with respect to the L2(Ω)-con-
vergence. Then, by the theory of maximal monotone operators (see [13]) there is a
unique strong solution of the abstract Cauchy problem{

u′(t) + ∂FN (u(t)) 3 0, t ∈ [0, T ];

u(0) = u0.

To characterise the subdifferential of FN , we introduce the following operator.
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Definition 3.1. We say that (u, v) ∈ AN if and only if u, v ∈ L2(Ω), u ∈ BV (Ω),
and there exists a vector field z ∈ X2(Ω) such that the following conditions hold:

z ∈ ∂ξf(x,∇u) LN -a.e. in Ω;(3.4)

− div(z) = v in D′(Ω);(3.5)

z ·Dsu = f0(x,Dsu) = f0(x,
−−→
Dsu)|Dsu| as measures;(3.6)

[z, νΩ] = 0 HN−1-a.e. on ∂Ω.(3.7)

Note that this definition covers both the case of the total variation flow and convex
differentiable functionals with linear growth; in the case of the total variation flow,
f(x, ξ) = ‖ξ‖, we have f = f0 and the subdifferential condition means that ‖z‖∞ ≤ 1
(and similarly for the anisotropic TV flow studied in [25] on the whole RN ). In the
differentiable case, we have z = ∇ξf(x, ξ) a.e. We will revisit these examples at the
end of this section.

Our main goal in this section is to prove that AN coincides with the subdifferen-
tial of FN and study some consequences of this result. To get this characterisation,
we need to use the version of the Fenchel–Rockafellar duality theorem given in [18,
Remark III.4.2].

Let U , V be two Banach spaces and let A : U → V be a continuous linear operator.
Denote by A∗ : V ∗ → U∗ its dual. Then, if the primal problem is of the form

(P) inf
u∈U
{E(Au) +G(u)},

then the dual problem is defined as the maximisation problem

(P*) sup
p∗∈V ∗

{−E∗(−p∗)−G∗(A∗p∗)},

where E∗ and G∗ are the Legendre–Fenchel transformations (conjugate functions)
of E and G respectively, i.e.,

E∗(u∗) := sup
u∈U
{〈u, u∗〉U,U∗ − E(u)}.

Theorem 3.2 (Fenchel–Rockafellar duality theorem). Assume that E and G are
proper, convex, and lower semicontinuous. If there exists u0 ∈ U such that E(Au0) <
∞, G(u0) <∞, and E is continuous at Au0, then

inf (P) = sup (P*)

and the dual problem (P*) admits at least one solution. Moreover, the optimality
conditions between these two problems are given by

A∗p∗ ∈ ∂G(u) and − p∗ ∈ ∂E(Au),

where u is a solution of (P) and p∗ is a solution of (P*).

In the case when there is no solution to the dual problem, instead of optimality
conditions we have the ε-subdifferentiability property of minimising sequences; see
[18, Proposition V.1.2]: for any minimising sequence un for (P) and a maximiser p∗

of (P*), we have

0 ≤ E(Aun) + E∗(−p∗)− 〈Aun,−p∗〉V,V ∗ ≤ εn,(3.8)

0 ≤ G(un) +G∗(A∗p∗)− 〈un, A∗p∗〉U,U∗ ≤ εn(3.9)

with εn → 0.
We now show a simple technical lemma concerning the convex conjugate of a

function defined on an intersection of two Banach spaces.
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Lemma 3.3. Let X, Y be two Banach spaces and suppose that G : X ∩ Y → R is a
functional which satisfies the bound

(3.10) G(u) ≤ `(u),

with ` : X ∩ Y → R a convex function such that

(3.11) |`(u)| ≤ `0(‖u‖Y )

for a nondecreasing function `0 : [0,+∞)→R. Then, if G∗(u∗)<∞, we have that u∗ ∈
Y ∗.

Proof: For any u ∈ X ∩ Y , set

Lu∗(u) := 〈u, u∗〉X∩Y,(X∩Y )∗ .

It is clearly a linear functional. By the definition of the convex conjugate, we have

Lu∗(u) ≤ G∗(u∗) +G(u).

By the assumptions (3.10) and (3.11), we have

Lu∗(u) ≤ G∗(u∗) + `(u) ≤ G∗(u∗) + `0(‖u‖Y ).

The same inequality holds for −u, so

|Lu∗(u)| ≤ G∗(u∗)+ ≤ `0(‖u‖Y ).

Now, Lu∗ : X ∩ Y → R is linear and ` is a convex function, so by the Hahn–Banach
theorem (in the form presented e.g. in [26]) there exists a linear extension L of Lu∗

to Y such that |L(u)| ≤ `(u). Hence, if ||u||Y ≤ 1, we have

|L(u)| ≤ G∗(A∗u∗) + `0(1)

and consequently L is continuous. Therefore, L is represented by an element of Y ∗,
hence Lu∗ is as well, and we conclude that u∗ ∈ Y ∗.

We now proceed with the characterisation of the operator AN .

Lemma 3.4. Under the assumptions (A1)–(A2), we have

AN ⊂ ∂FN .

Proof: Let (u, v)∈AN and z∈X2(Ω) satisfying (3.4)–(3.7). Given w∈L2(Ω)∩BV (Ω),
by (3.4) we have

(3.12) f(x,∇w(x))− f(x,∇u(x)) ≥ z(x) · (∇w(x)−∇u(x)) LN -a.e. in Ω.

Then, since z ∈ X2(Ω) satisfies (3.4)–(3.7), applying Green’s formula (2.2) and bearing
in mind properties (2.10) and (3.12), we have∫

Ω

(w − u) v dx = −
∫

Ω

div(z)(w − u) dx =

∫
Ω

(z, Dw)−
∫

Ω

(z, Du)

=

∫
Ω

z · ∇w dx+

∫
Ω

z ·Dsw −
∫

Ω

z · ∇u dx−
∫

Ω

z ·Dsu

≤
∫

Ω

f(x,∇w) dx−
∫

Ω

f(x,∇u) dx+

∫
Ω

z ·Dsw −
∫

Ω

f0(x,Dsu)

≤
∫

Ω

f(x,∇w) dx−
∫

Ω

f(x,∇u) dx+

∫
Ω

f0(x,Dsw)−
∫

Ω

f0(x,Dsu)

=

∫
Ω

f(x,Dw)−
∫

Ω

f(x,Du),

which concludes the proof.
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Theorem 3.5. Under the assumptions (A1)–(A2), we have

∂FN = AN ,
and D(AN ) is dense in L2(Ω).

Proof: Step 1. By Lemma 3.4, we have that the operator AN is monotone and con-
tained in ∂FN . The operator ∂FN is maximal monotone. Then, if AN satisfies the
range condition, by Minty’s theorem we would also have that the operator AN is
maximal monotone, and consequently ∂FN = AN . In order to finish the proof, we
need to show that AN satisfies the range condition, i.e.,

(3.13) given g ∈ L2(Ω), ∃u ∈ D(AN ) s.t. u+AN (u) 3 g.
We can rewrite the above as

u+AN (u) 3 g ⇐⇒ (u, g − u) ∈ AN ,
so we need to show that there exists a bounded vector field z ∈ X2(Ω) such that the
following conditions hold:

z ∈ ∂ξf(x, ξ) LN -a.e. in Ω;

−div(z) = g − u in Ω;

z ·Dsu = f0(x,Dsu) as measures;

[z, νΩ] = 0 HN−1-a.e. on ∂Ω.

We are going to prove (3.13) by means of the Fenchel–Rockafellar duality theorem. We
set U = W 1,1(Ω)∩L2(Ω), V = L1(∂Ω,HN−1)×L1(Ω;RN ), and the operator A : U →
V is defined by the formula

Au = (u|∂Ω,∇u).

Clearly, A is a linear and continuous operator. Moreover, the dual spaces to U and V
are

U∗ = (W 1,1(Ω) ∩ L2(Ω))∗, V ∗ = L∞(∂Ω,HN−1)× L∞(Ω;RN ).

We denote the points p ∈ V in the following way: p=(p0, p), where p0 ∈ L1(∂Ω,HN−1)
and p ∈ L1(Ω;RN ). We will also use a similar notation for points p∗ ∈ V ∗. Then, we
set E : L1(∂Ω,HN−1)× L1(Ω;RN )→ R by the formula

E(p0, p) = E0(p0) + E1(p), E0(p0) = 0, E1(p) =

∫
Ω

f(x, p) dx.

We also define G : W 1,1(Ω) ∩ L2(Ω)→ R as

G(u) :=
1

2

∫
Ω

u2 dx−
∫

Ω

ug dx.

Step 2. We now consider the convex conjugates E∗ and G∗. Notice that G∗ only
enters the calculation via A∗p∗. First, observe that whenever u∗ ∈ U∗ is such that
G∗(u∗) < ∞, it holds that u∗ ∈ L2(Ω); to this end, we apply Lemma 3.3 to the
spaces X = W 1,1(Ω) and Y = L2(Ω), with

`(u) := G(u) =
1

2

∫
Ω

u2 dx−
∫

Ω

ug dx

and the upper bound `0 given by

`0(t) = ‖g‖L2(Ω)t+
1

2
t2,

which yields the claim.
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Now, take any p∗ = (p∗0, p
∗) ∈ L∞(∂Ω,HN−1) × L∞(Ω;RN ) in the domain of A∗

with G∗(A∗p∗) < ∞. By the previous paragraph, it holds that A∗p∗ ∈ L2(Ω). Since
the dual of the gradient is minus divergence, we get

(3.14) A∗p∗ = −div(p∗).

In particular, p∗ ∈ X2(Ω). Therefore, if G∗(A∗p∗) <∞, for any u ∈W 1,1(Ω)∩L2(Ω)
we may apply Green’s formula (2.2) and get∫

Ω

u (A∗p∗) dx = 〈u,A∗p∗〉U,U∗ = 〈Au, p∗〉V,V ∗ =

∫
∂Ω

p∗0 u dHN−1 +

∫
Ω

p∗ · ∇u dx

=

∫
∂Ω

p∗0 u dHN−1 −
∫

Ω

udiv(p∗) dx+

∫
∂Ω

u[p∗, νΩ] dHN−1

= −
∫

Ω

udiv(p∗) dx+

∫
∂Ω

u(p∗0 + [p∗, νΩ]) dHN−1.

By (3.14), the integrals over Ω cancel out, so∫
∂Ω

u(p∗0 + [p∗, νΩ]) dHN−1 = 0

for all u∈W 1,1(Ω)∩L2(Ω). Since the trace operator onW 1,1(Ω) is onto L1(∂Ω,HN−1),
by considering truncations we see that after a restriction to W 1,1(Ω)∩L∞(Ω) its im-
age is L∞(∂Ω,HN−1). Therefore, after a restriction to W 1,1(Ω) ∩ L2(Ω) its image is
dense in L1(∂Ω,HN−1), because it contains L∞(∂Ω,HN−1). In particular, we have∫

∂Ω

w(p∗0 + [p∗, νΩ]) dHN−1 = 0

for w in a dense subset of L1(∂Ω,HN−1). Hence,

(3.15) p∗0 = −[p∗, νΩ] HN−1-a.e. on ∂Ω.

We now turn to the functional E∗. Since the variables are separated, we have that
E∗ = E∗0 + E∗1 , and it is clear that the functional E∗0 : L∞(∂Ω,HN−1)→ R ∪ {∞} is
given by the formula

E∗0 (p∗0) =

{
0 if p∗0 = 0;

+∞ if p∗0 6= 0.

The functional E∗1 : L∞(Ω;RN ) → [0,∞] is given by the formula (see [18, Proposi-
tion IV.1.2])

E∗1 (p∗) =

∫
Ω

f∗(x, p∗) dx.

Here, it is possible that f∗ takes the value +∞ (in fact, for 1-homogeneous functionals,
it only takes the values 0 and +∞).

Step 3. Consider the energy functional GN : L2(Ω)→ (−∞,+∞] defined by

GN (v) :=

{
FN (v) +G(v) if v ∈ BV (Ω) ∩ L2(Ω);

+∞ if v ∈ L2(Ω) \BV (Ω).

This functional is the extension of the functional E ◦ A + G, which is well defined
for functions in W 1,1(Ω)∩L2(Ω), to the space BV (Ω)∩L2(Ω). Since GN is coercive,
convex, and lower semicontinuous, the primal minimisation problem

min
v∈L2(Ω)

GN (u) = min
v∈BV (Ω)∩L2(Ω)

{E(Av) +G(v)}
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admits a solution u. Also, for u0 ≡ 0 we have E(Au0) = 0 <∞, G(u0) = 0 <∞, and
E is continuous at 0. Then, by the Fenchel–Rockafellar duality theorem, we have

(3.16) inf (P) = sup (P*)

and

(3.17) the dual problem (P*) admits at least one solution,

where the dual problem is

sup
p∗∈L∞(∂Ω,HN−1)×L∞(Ω;RN )

{−E∗0 (−p∗0)− E∗1 (−p∗)−G∗(A∗p∗)}.

Keeping in mind the above calculations, we set Z to be the subset of V ∗ such that
the dual problem does not immediately return −∞, namely

Z = {p∗ ∈ L∞(∂Ω,HN−1)× L∞(Ω;RN ) : div(p∗) ∈ L2(Ω), p∗0 = 0}.
Hence, we may rewrite the dual problem as

sup
p∗∈Z

{−E∗1 (−p∗)−G∗(A∗p∗)}.

Now, let us take a sequence un ∈W 1,1(Ω) which has the same trace as u and con-
verges strictly to u, a minimiser of GN , and also un → u in L2(Ω); then, it is a
minimising sequence in (P). Since by (3.16) and (3.17) there is no duality gap and
there exists a solution to the dual problem, we can now apply to this sequence the
ε-subdifferentiability property given in (3.8) and (3.9). Let p∗ be a solution to the
dual problem. By equation (3.9), for every w ∈ L2(Ω) we have

G(w)−G(un) ≥ 〈(w − un), A∗p∗〉U,U∗ − εn.
Hence, since A∗p∗ ∈ L2(Ω),

G(w)−G(u) ≥ 〈(w − u), A∗p∗〉U,U∗ = 〈(w − u), A∗p∗〉L2(Ω),

and consequently,
A∗p∗ ∈ ∂L2(Ω)G(u) = {u− g}.

Therefore, by (3.14) we get

(3.18) − div(p∗) = u− g.
Also, by the definition of Z and taking into account that p∗0 = −[p∗, νΩ], we get

[−p∗, νΩ] = 0 HN−1-a.e. on ∂Ω.

Therefore, since the boundary term disappears, equation (3.8) gives

0 ≤
∫

Ω

f(x,∇un) dx+

∫
Ω

f∗(x, p∗) dx− 〈∇un,−p∗〉L1(Ω;RN ),L∞(Ω;RN ) ≤ εn,

which we rewrite as

(3.19) 0 ≤
∫

Ω

f(x,∇un) dx+

∫
Ω

f∗(x, p∗) dx ≤
∫

Ω

∇un · (−p∗) dx+ εn.

Keeping in mind that −div(p∗) = u− g and again using the fact that the trace of un
is fixed and equal to the trace of u, by Green’s formula we get∫

Ω

∇un · p∗ dx = −
∫

Ω

un div(p∗) dx =

∫
Ω

un (u− g) dx.

Then, applying again Green’s formula, we have

lim
n→∞

∫
Ω

∇un · p∗ dx =

∫
Ω

u(u− g) dx = −
∫

Ω

udiv(p∗) dx =

∫
Ω

(p∗, Du).
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But then, passing to the limit in equation (3.19), by the Reshetnyak theorem (Theo-
rem 2.6) we get that∫

Ω

f(·,∇u) dx+

∫
Ω

f0

(
·, dD

su

d|Dsu|

)
d|Dsu|+

∫
Ω

f∗(x, p∗) dx

=

∫
Ω

−p∗ · ∇u dx+

∫
Ω

(−p∗, Du)s.

From this, the required results on the absolutely continuous part and the singular
part follow. Indeed, by the definition of the dual function∫

Ω

f(·,∇u) dx+

∫
Ω

f∗(x, p∗) dx ≥
∫

Ω

−p∗ · ∇u dx,

and by Proposition 2.7 we get that∫
Ω

f0

(
·, dD

su

d|Dsu|

)
d|Dsu| ≥

∫
Ω

(−p∗, Du)s,

so both of these inequalities have to be equalities. But the first one means exactly
that −p∗ ∈ ∂ξf(x,∇u), so (3.4) holds for the choice z = −p∗, and the second one
means that −p∗ ·Dsu = f0(x,Dsu), hence (3.6) holds. We already have the divergence
constraint (3.5) by (3.18) and the boundary constraint (3.7) is incorporated in the
definition of the dual problem.

Finally, by [13, Proposition 2.11], we have

D(∂FN ) ⊂ D(FN ) = BV (Ω) ∩ L2(Ω) ⊂ D(FN )
L2(Ω)

⊂ D(∂FN )
L2(Ω)

,

from which follows the density of the domain.

Our concept of solution of the Neumann problem (3.1) is the following:

Definition 3.6. Given u0 ∈ L2(Ω), we say that u is a weak solution of the Neumann

problem (3.1) in [0, T ], if u ∈ C([0, T ];L2(Ω)) ∩W 1,2
loc (0, T ;L2(Ω)), u(0, ·) = u0, and

for almost all t ∈ (0, T )

ut(t, ·) +ANu(t, ·) 3 0.

In other words, u(t) ∈ BV (Ω) and there exists a vector field z(t) ∈ X2(Ω) such that
the following conditions hold:

z(t) ∈ ∂ξf(x,∇u(t)) LN -a.e. in Ω;

ut(t) = div(z(t)) in D′(Ω);

z(t) ·Dsu(t) = f0(x,Dsu(t)) = f0(x,
−−−−→
Dsu(t))|Dsu(t)| as measures;

[z(t), νΩ] = 0 HN−1-a.e. on ∂Ω.

Then, using the classical theory of maximal monotone operators (see for in-
stance [13]), as a consequence of Theorem 3.5 we have the following existence and
uniqueness theorem.

Theorem 3.7. Under the assumptions (A1)–(A2), for any u0 ∈ L2(Ω) and all T > 0
there exists a unique weak solution of the Neumann problem (3.1) in [0, T ].

Let us now briefly discuss what the general Definition 3.6 looks like when specified
to the most important special cases.
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Example 3.8. Take f(x, ξ) = |ξ|, which is the Lagrangian corresponding to the
total variation flow. Then, the condition that the vector field z lies in the respective
subdifferential a.e. implies that ‖z‖∞ ≤ 1. Therefore, given u0 ∈ L2(Ω), a function u
is a weak solution to the Neumann problem for the total variation flow in [0, T ], if

u ∈ C([0, T ];L2(Ω))∩W 1,2
loc (0, T ;L2(Ω)), u(0, ·) = u0, and for almost all t ∈ (0, T ) we

have u(t) ∈ BV (Ω) and there exist vector fields z(t) ∈ X2(Ω) with‖z(t)‖∞ ≤ 1 such
that the following conditions hold:

ut(t) = div(z(t)) in D′(Ω);

(z(t), Du(t)) = |Du(t)| as measures;

[z(t), νΩ] = 0 HN−1-a.e. on ∂Ω.

For the anisotropic total variation flow, i.e., when f(x, ξ) is 1-homogeneous with
respect to the second variable and comparable to the Euclidean norm, the condition
that ‖z(t)‖∞ ≤ 1 is replaced by an estimate on the polar norm of z(t) and the total
variation is computed with respect to an anisotropy.

Example 3.9. Suppose that f is a convex differentiable function of ξ with continuous
gradient for each fixed x ∈ Ω. Then, since the subdifferential of f with respect to ξ
contains only a single element, we denote

a(x, ξ) := ∇ξf(x, ξ)

and the definition of solutions reduces to the following one: given u0 ∈ L2(Ω), a
function u is a weak solution to the Neumann problem for the gradient flow of F
in [0, T ], if u ∈ C([0, T ];L2(Ω))∩W 1,2

loc (0, T ;L2(Ω)), u(0, ·) = u0, and for almost all t ∈
(0, T ) we have u(t) ∈ BV (Ω), a(x,∇u(t)) ∈ X2(Ω), and the following conditions hold:

ut(t) = div(a(x,∇u(t))) in D′(Ω);

a(x,∇u(t)) ·Dsu(t) = f0(x,Dsu(t));

[a(x,∇u(t)), νΩ] = 0 HN−1-a.e. on ∂Ω.

Remark 3.10. Working similarly as in the previous results in this section, we can
get a characterisation of solutions to the Cauchy problem in RN . The energy func-
tional FC : L2(RN )→ [0,+∞] takes the form

FC(u) :=


∫
RN

f(x,Du) if u ∈ BV (RN ) ∩ L2(RN );

+∞ if u ∈ L2(RN ) \BV (RN ).

Assuming that f satisfies a growth condition similar to (A1), i.e., |f(x, ξ)| ≤ ψ(x) +
M |ξ| with ψ ∈ L1(RN ), there exists a unique strong solution of the abstract Cauchy
problem

(3.20)

{
u′(t) + ∂FC(u(t)) 3 0, t ∈ [0, T ];

u(0) = u0.

If we additionally assume that condition (A2) holds, one can prove that the charac-
terisation of the subdifferential of FC takes the following form: (u, v) ∈ ∂FC if and
only if u, v ∈ L2(RN ), u ∈ BV (RN ), and there exists a vector field z ∈ X2(RN ) such
that the following conditions hold:

z ∈ ∂ξf(x,∇u) LN -a.e. in RN ;

− div(z) = v in RN ;

z ·Dsu = f0(x,Dsu) as measures.
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Given u0 ∈L2(RN ), we say that u is a weak solution of the Cauchy problem (3.20)

in [0, T ], if u ∈ C([0, T ];L2(RN )) ∩W 1,2
loc (0, T ;L2(RN )), u(0, ·) = u0, and for almost

all t ∈ (0, T ) we have u(t) ∈ BV (RN ) and there exist vector fields z(t) ∈ X2(RN )
such that the following conditions hold:

z(t) ∈ ∂ξf(x,∇u(t)) LN -a.e. in RN ;

ut(t) = div(z(t)) in D′(RN );

z(t) ·Dsu(t) = f0(x,Dsu(t)) = f0(x,
−−−−→
Dsu(t))|Dsu(t)| as measures.

Then, for all u0 ∈ L2(RN ) and all T > 0 there exists a unique weak solution to the
Cauchy problem (3.20) in [0, T ].

4. The Dirichlet problem

Recall that throughout the whole paper we assume that Ω is an open bounded
subset of RN with Lipschitz boundary, where N ≥ 2. Moreover, the Lagrangian f ∈
C(Ω×RN ) is convex in the variable ξ and satisfies conditions (A1) and (A2). In this
section, we study the Dirichlet problem

(4.1)


ut(t, x) = div(∂ξf(x,Du(t, x))) in (0, T )× Ω;

u(t) = h on (0, T )× ∂Ω;

u(0, x) = u0(x) in Ω,

where u0 ∈ L2(Ω) and h ∈ L1(∂Ω,HN−1). Similarly as in the previous section, when
f ∈C1(Ω×RN ), the subdifferential is single-valued and when we set a(x, ξ) = ∂ξf(x, ξ)
the problem reduces to the classical case

ut(t, x) = div a(x,Du(t, x)) in (0, T )× Ω;

u(t) = h on (0, T )× ∂Ω;

u(0, x) = u0(x) in Ω

treated in [4] (see also [7]), under slightly more restrictive assumptions than the ones
used in this paper, and for the choicef(x, ξ) = |ξ| we recover the total variation flow

ut(t, x) = div

(
Du(t, x)

|Du(t, x)|

)
in (0, T )× Ω;

u(t) = h on (0, T )× ∂Ω;

u(0, x) = u0(x) in Ω

that was studied in [3]. As previously, our definition will be designed similarly to the
one for the total variation flow, using a vector field z ∈ X2(Ω) to replace the possibly
multivalued gradient ∂ξf(x,Du(t, x)).

Consider the energy functional Fh : L2(Ω)→ [0,+∞] associated with problem (4.1)
and defined by

Fh(u) :=


∫

Ω

f(x,Du) +

∫
∂Ω

f0(x, νΩ)|h− u| dHN−1 if u ∈ BV (Ω) ∩ L2(Ω);

+∞ if u ∈ L2(Ω) \BV (Ω).

Note that by (2.6) the integral on the boundary can be written in the form

f0(x, (h− u)νΩ) = f0(x, νΩ)|h− u|.
Recall that by the results in [10] (see Subsection 2.2), under the assumption that
g̃(x, ξ, t) is continuous on Ω×RN × [0,+∞) and convex in (ξ, t) for each fixed x, the
functional Fh is lower semicontinuous with respect to the L1-convergence. Moreover,
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since Fh is convex, by the theory of maximal monotone operators (see [13]) there is
a unique strong solution of the abstract Cauchy problem{

u′(t) + ∂Fh(u(t)) 3 0, t ∈ [0, T ];

u(0) = u0.

To characterise the subdifferential of Fh, we define the following operator.

Definition 4.1. We say that (u, v) ∈ Ah if and only if u, v ∈ L2(Ω), u ∈ BV (Ω),
and there exists a vector field z ∈ X2(Ω) such that the following conditions hold:

z ∈ ∂ξf(x,∇u) LN -a.e. in Ω;(4.2)

− div(z) = v in Ω;(4.3)

z ·Dsu = f0(x,Dsu) as measures;(4.4)

[z, νΩ] ∈ sign(h− u)f0(x, νΩ) HN−1-a.e. on ∂Ω.(4.5)

Lemma 4.2. Under the assumptions (A1)–(A2), we have

Ah ⊂ ∂Fh.
Proof: Let (u, v)∈Ah and z∈X2(Ω) satisfying (4.2)–(4.5). Given w∈L2(Ω)∩BV (Ω),
by (4.2) we have

(4.6) f(x,∇w(x))− f(x,∇u(x)) ≥ z(x) · (∇w(x)−∇u(x)), LN -a.e. in Ω.

Then, since z ∈ X2(Ω) satisfies (4.2)–(4.5), applying Green’s formula (2.2) and bearing
in mind properties (2.10), (2.11), and (4.6), we have∫
Ω

(w − u) v dx = −
∫

Ω

div(z)(w − u) dx

=

∫
Ω

(z, Dw)−
∫
∂Ω

w[z, νΩ] dHN−1 −
∫

Ω

(z, Du) +

∫
∂Ω

u[z, νΩ] dHN−1

=

∫
Ω

z · ∇w dx+

∫
Ω

z ·Dsw −
∫

Ω

z · ∇u dx−
∫

Ω

z ·Dsu

−
∫
∂Ω

(w − h)[z, νΩ] dHN−1 +

∫
∂Ω

(u− h)[z, νΩ] dHN−1

≤
∫

Ω

f(x,∇w) dx−
∫

Ω

f(x,∇u) dx+

∫
Ω

z ·Dsw −
∫

Ω

f0(x,Dsu)

−
∫
∂Ω

(w − h)[z, νΩ] dHN−1 −
∫
∂Ω

f0(x, νΩ)|h− u| dHN−1

≤
∫

Ω

f(x,∇w) dx+

∫
Ω

f0(x,Dsw)−
∫

Ω

f(x,∇u) dx−
∫

Ω

f0(x,Dsu)

+

∫
∂Ω

f0(x, νΩ)|h− w| dHN−1 −
∫
∂Ω

f0(x, νΩ)|h− u| dHN−1

=

∫
Ω

f(x,Dw) +

∫
∂Ω

f0(x, νΩ)|h− w| dHN−1

−
∫

Ω

f(x,Du)−
∫
∂Ω

f0(x, νΩ)|h− u| dHN−1

= Fh(w)−Fh(u),

which concludes the proof.
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Theorem 4.3. Suppose that f0(x, νΩ) ≥ 0 HN−1-a.e. on ∂Ω. Then, under the as-
sumptions (A1)–(A2) we have

∂Fh = Ah,
and D(Ah) is dense in L2(Ω).

Proof: Step 1. As in the proof of Theorem 3.5, we only need to show that Ah satisfies
the range condition, i.e.,

(4.7) given g ∈ L2(Ω), ∃u ∈ D(Ah) s.t. u+Ah(u) 3 g.

We can rewrite the above as

u+Ah(u) 3 g ⇐⇒ (u, g − u) ∈ Ah,

so we need to show that there exists a bounded vector field z ∈ X2(Ω) such that the
following conditions hold:

z ∈ ∂ξf(x, ξ) LN -a.e. in Ω;

− div(z) = g − u in Ω;

z ·Dsu = f0(x,Dsu) as measures;

[z, νΩ] ∈ sign(h− u)f0(x, νΩ) HN−1-a.e. on ∂Ω.

As in the proof of Theorem 3.5, we will prove (4.7) by means of the Fenchel–Rockafellar
duality theorem. We will employ the same function spaces and operator A as in
that proof. We will also use the same functionals E1 and G, the only difference
being that the functional E0 now incorporates the Dirichlet boundary condition. For
convenience, we briefly present the whole framework again.

We set U = W 1,1(Ω) ∩ L2(Ω), V = L1(∂Ω,HN−1) × L1(Ω;RN ), and the opera-
tor A : U → V is defined by the formula

Au = (u|∂Ω,∇u).

Note that A is a linear and continuous operator and the dual spaces to U and V are

U∗ = (W 1,1(Ω) ∩ L2(Ω))∗, V ∗ = L∞(∂Ω,HN−1)× L∞(Ω;RN ).

We denote the points p ∈ V in the following way: p = (p0, p), where p0∈L1(∂Ω,HN−1)
and p ∈ L1(Ω;RN ). We will also use a similar notation for points p∗ ∈ V ∗. Then, we
set E : L1(∂Ω,HN−1)× L1(Ω;RN )→ R by the formula

E(p0, p) = E0(p0) + E1(p),

E0(p0) =

∫
∂Ω

f0(x, νΩ)|p0 − h| dHN−1,

E1(p) =

∫
Ω

f(x, p) dx.

We also set G : W 1,1(Ω) ∩ L2(Ω)→ R by

G(u) :=
1

2

∫
Ω

u2 dx−
∫

Ω

ug dx.

Step 2. Since G is defined by the same formula as in the proof of Theorem 3.5, we
again have that whenever u∗ ∈ U∗ is such that G∗(u∗) <∞, it holds that u∗ ∈ L2(Ω).
Moreover, since the operator A is defined by the same formula as in the proof of
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Theorem 3.5, for any p∗ ∈ D(A∗) with G∗(A∗p∗) < ∞ conditions (3.14) and (3.15)
remain true, so

(4.8) A∗p∗ = − div(p∗)

and

p∗0 = −[p∗, νΩ] HN−1-a.e. on ∂Ω.

Now, observe that E∗ = E∗0 + E∗1 , and compute the convex conjugate of the func-
tional E0. The functional E∗0 : L∞(∂Ω,HN−1)→ R ∪ {∞} is given by the formula

(4.9) E∗0 (p∗0) =


∫
∂Ω

h p∗0 dHN−1 if |p∗0| ≤ f0(x, νΩ) HN−1-a.e. on ∂Ω;

+∞ otherwise.

In fact, we only need to observe that

E∗0 (p∗0) = sup
p0∈L1(∂Ω,HN−1)

{∫
∂Ω

p0 p
∗
0 dHN−1 −

∫
∂Ω

f0(x, νΩ)|p0 − h| dHN−1

}

= sup
p0∈L1(∂Ω,HN−1)

{∫
∂Ω

(p0 − h) p∗0 dHN−1 +

∫
∂Ω

h p∗0 dHN−1

−
∫
∂Ω

f0(x, νΩ)|p0 − h| dHN−1

}
,

and then formula (4.9) follows due to our assumption that f0(x, νΩ) ≥ 0.
The functional E∗1 : L∞(Ω;RN ) → [0,∞] was already computed in the proof of

Theorem 3.5 and is given by the formula

E∗1 (p∗) =

∫
Ω

f∗(x, p∗) dx.

Step 3. Now, we will apply the Fenchel–Rockafellar duality theorem to the primal
problem of the form

inf
u∈U
{E(Au) +G(u)}

with E and G defined as above. For u0 ≡ 0 we have E(Au0) =
∫
∂Ω
|h| dHN−1 < ∞,

G(u0) = 0 <∞, and E is continuous at 0. Then, by the Fenchel–Rockafellar duality
theorem we have

(4.10) inf (P) = sup (P*)

and

(4.11) the dual problem (P*) admits at least one solution,

where the dual problem is given by

sup
p∗∈L∞(∂Ω,HN−1)×L∞(Ω;RN )

{−E∗0 (−p∗0)− E∗1 (−p∗)−G∗(A∗p∗)}.

Keeping in mind the above calculations, we set Z to be the subset of V ∗ such that
the dual problem does not immediately return −∞, namely

Z = {p∗ ∈ L∞(∂Ω,HN−1)×X2(Ω) : f∗(·, p∗) <∞ LN -a.e. in Ω;

|p∗0| ≤ f0(x, νΩ) HN−1-a.e. on ∂Ω; p∗0 = −[p∗, νΩ]}.
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Hence, we may rewrite the dual problem as

sup
p∗∈Z

{−E∗0 (−p∗0)− E∗1 (−p∗)−G∗(A∗p∗)},

so finally the dual problem takes the form

sup
p∗∈Z

{∫
∂Ω

h p∗0 dHN−1 +

∫
Ω

f∗(x, p∗) dx−G∗(A∗p∗)
}
.

In fact, in light of the constraint p∗0 = −[p∗, νΩ], we may simplify the dual problem
a bit: observe that the constraint that |p∗0| ≤ f0(x, νΩ) HN−1-a.e. on ∂Ω in the dual
problem follows from the other two conditions due to property (2.11).

Now, consider the energy functional Gf : L2(Ω)→ (−∞,+∞] defined by

Gf (v) :=

{
Fh(v) +G(v) if v ∈ BV (Ω) ∩ L2(Ω);

+∞ if v ∈ L2(Ω) \BV (Ω).

As in the proof of Theorem 3.5, this functional is the extension of the functional E ◦
A+G (well defined for functions in W 1,1(Ω) ∩ L2(Ω)) to the space BV (Ω) ∩ L2(Ω).
Since Gh is coercive, convex, and lower semicontinuous, the minimisation problem

min
v∈L2(Ω)

Gh(v)

admits a solution u and we have

min
v∈L2(Ω)

Gh(v) = min
v∈U
{E(Av) +G(v)}.

Let us take a sequence un ∈ W 1,1(Ω) which has the same trace as u and converges
strictly to u, a minimiser of Gh, and also un → u in L2(Ω); then, it is a minimising
sequence in (P). Since we have (4.10) and (4.11), we may use the ε-subdifferentiability
property of minimising sequences given in (3.8) and (3.9). Let p∗ be a solution of the
dual problem. By equation (3.9), for every w ∈ L2(Ω), we have

G(w)−G(un) ≥ 〈(w − un), A∗p∗〉U,U∗ − εn.
Since G∗(A∗p∗) <∞, we have that A∗p∗ ∈ L2(Ω). Hence,

G(w)−G(u) ≥ 〈(w − u), A∗p∗〉U,U∗ = 〈(w − u), A∗p∗〉L2(Ω),

and consequently,
A∗p∗ ∈ ∂L2(Ω)G(u) = {u− g}.

Therefore, by (4.8) we get

(4.12) − div(p∗) = u− g.
On the other hand, equation (3.8) gives

0 ≤
∫
∂Ω

(f0(x, νΩ)|un − h|+ p∗0(un − h)) dHN−1

+

∫
Ω

f(x,∇un) dx+

∫
Ω

f∗(x, p∗) dx− 〈∇un,−p∗〉L1(Ω;RN ),L∞(Ω;RN ) ≤ εn.

Because the trace of un is fixed (and equal to the trace of u), the integral on ∂Ω
does not change with n; hence, it has to equal zero. Thus, keeping in mind that
p∗0 = [−p∗, νΩ] and f0(x, νΩ) ≥ 0, we get

(4.13) [−p∗, νΩ] ∈ sign(h− u)f0(x, νΩ) HN−1-a.e. on ∂Ω.

Hence, we have

(4.14) 0 ≤
∫

Ω

f(x,∇un) dx+

∫
Ω

f∗(x, p∗) dx ≤
∫

Ω

∇un · (−p∗) dx+ εn.
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Finally, keeping in mind that −div(p∗) = u − g and again using the fact that the
trace of un is fixed and equal to the trace of u, by the Gauss–Green formula we get∫

Ω

∇un · p∗ dx = −
∫

Ω

un div(p∗) dx+

∫
∂Ω

un[p∗, νΩ] dHN−1

=

∫
Ω

un(u− g) dx+

∫
∂Ω

u[p∗, νΩ] dHN−1.

Then, applying again the Gauss–Green formula, we have

lim
n→∞

∫
Ω

∇un · p∗ dx =

∫
Ω

u(u− g) dx+

∫
∂Ω

u[p∗, νΩ] dHN−1

= −
∫

Ω

udiv(p∗) dx+

∫
∂Ω

u[p∗, νΩ] dHN−1 =

∫
Ω

(p∗, Du).

But then, passing to the limit in equation (4.14), by the Reshetnyak theorem (Theo-
rem 2.6) we get that∫

Ω

f(·,∇u) dx+

∫
Ω

f0

(
·, dD

su

d|Dsu|

)
d|Dsu|+

∫
Ω

f∗(x, p∗) dx

=

∫
Ω

−p∗ · ∇u dx+

∫
Ω

(−p∗, Du)s.

From this, the required results on the absolutely continuous part and the singular
part follow. Indeed, by the definition of the dual function∫

Ω

f(·,∇u) dx+

∫
Ω

f∗(x, p∗) dx ≥
∫

Ω

−p∗ · ∇u dx,

and by Proposition 2.7 we get that∫
Ω

f0

(
·, dD

su

d|Dsu|

)
d|Dsu| ≥ −

∫
Ω

p∗ ·Dus,

so both of these inequalities have to be equalities. But the first one means exactly that
−p∗ ∈ ∂ξf(x,∇u), which implies (4.2) for the choice z = −p∗, and the second one
means that −p∗ ·Dus = f0(x,Dsu), so (4.4) holds. We already have the divergence
constraint (4.3) by (4.12) and the boundary constraint (4.5) follows from (4.13).

Finally, by [13, Proposition 2.11] we have

D(∂Fh) ⊂ D(Fh) = BV (Ω) ∩ L2(Ω) ⊂ D(Fh)
L2(Ω)

⊂ D(∂Fh)
L2(Ω)

,

from which follows the density of the domain.

Our concept of solutions of the Dirichlet problem (4.1) is the following:

Definition 4.4. Given u0 ∈ L2(Ω), we say that u is a weak solution of the Dirichlet

problem (4.1) in [0, T ], if u ∈ C([0, T ];L2(Ω)) ∩W 1,2
loc (0, T ;L2(Ω)), u(0, ·) = u0, and

for almost all t ∈ (0, T )

ut(t, ·) +Ahu(t, ·) 3 0.
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In other words, u(t) ∈ BV (Ω) and there exists a vector field z(t) ∈ X2(Ω) such that
the following conditions hold:

z(t) ∈ ∂ξf(x,∇u(t)) LN -a.e. in Ω;

ut(t) = div(z(t)) in D′(Ω);

z(t) ·Dsu(t) = f0(x,Dsu(t)) = f0(x,
−−−−→
Dsu(t))|Dsu(t)| as measures;

[z(t), νΩ] ∈ sign(h− u(t))f0(x, νΩ) HN−1-a.e. on ∂Ω.

Then, using the classical theory of maximal monotone operators (see for in-
stance [13]), as a consequence of Theorem 4.3 we have the following existence and
uniqueness theorem.

Theorem 4.5. Suppose that f0(x, νΩ) ≥ 0 HN−1-a.e. on ∂Ω. Then, under the as-
sumptions (A1)–(A2), for any u0 ∈ L2(Ω) and all T > 0 there exists a unique weak
solution of the Dirichlet problem (4.1) in [0, T ].

Definition 4.4 agrees with the classical definitions for the total variation flow and
functionals of class C1 similarly as in Examples 3.8 and 3.9, with the only difference in
the last condition (on the boundary behaviour). Below, we present another example,
which concerns the gradient flow of the area functional.

Example 4.6. In the particular case of the nonparametric area integrand

f(x, ξ) =
√

1 + ‖ξ‖2,

we have f0(x, ξ) = |ξ| and a(x, ξ) = ∂ξf(x, ξ) = ξ√
1+|ξ|2

. Therefore, the definition of

a weak solution to the time-dependent minimal surface equation

(4.15)


ut(t, x) = div

(
Du(t, x)√

1 + |Du(t, x)|2

)
in (0, T )× Ω;

u(t) = h on (0, T )× ∂Ω;

u(0, x) = u0(x) in Ω

takes the following form. Given u0 ∈ L2(Ω), we say that u is a weak solution of

the Dirichlet problem (4.15) in [0, T ], if u ∈ C([0, T ];L2(Ω)) ∩ W 1,2
loc (0, T ;L2(Ω)),

u(0, ·) = u0, and for almost all t ∈ (0, T ) we have u(t) ∈ BV (Ω) and there exist
vector fields z(t) ∈ X2(Ω) such that the following conditions hold:

z(t) ∈ ∇u(t, x)√
1 + |∇u(t, x)|2

LN -a.e. in Ω;

ut(t) = div(z(t)) in D′(Ω);

z(t) ·Dsu(t) = |Dsu(t)| as measures;

[z(t), νΩ] ∈ sign(h− u(t)) HN−1-a.e. on ∂Ω.

This concept of solution coincides with the one given by Demengel and Temam in [16]
for the nonparametric area integrand. Moreover, our existence result (Theorem 4.5)
agrees with [16, Theorem 3.1]. Let us note that the characterisation of solutions in [16]
was also obtained using convex duality, but with a different technique from the one
presented in this paper.



364 W. Górny, J. M. Mazón

Acknowledgements. The first author has been partially supported by the Aus-
trian Science Fund (FWF), grant 10.55776/ESP88, and the OeAD-WTZ project CZ
01/2021. The second author has been partially supported by the Conselleria d’Inno-
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