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UNCOUNTABLE INTERVAL OF VARIETIES
OF INVOLUTION SEMIGROUPS SHARING
A COMMON SEMIGROUP VARIETY REDUCT

EpmoND W. H. LEE

Abstract: A pair of involution semigroups sharing a common semigroup reduct of order eight is
constructed with the property that the varieties they generate bound an interval that contains an
uncountable chain. Consequently, there exist uncountably many non-finitely generated varieties of
involution semigroups sharing a common semigroup variety reduct that is finitely generated.
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1. Introduction

Recall that a unary semigroup (8,*) is a semigroup 8 equipped with a unary
operation *. A unary semigroup (8, *) that satisfies the equations

(1) (z*)"~z and (zy)" ~y'z"

is an involution semigroup. Common examples of involution semigroups include
groups (G, 1) under inversion ~! and matrix semigroups (M,,,T) under the usual
transposition 7. An involution semigroup (8, *) and its semigroup reduct § are similar
in many ways, but the varieties they generate can satisfy very contrasting properties.
For instance, the variety Var(8,*) and its semigroup variety reduct Var§ can satisfy
very different equational properties; see, for example, [3, 5, 7, 8, 11, 12, 13, 16].

The lattice .Z,, of varieties of involution semigroups and the lattice Zem of va-
rieties of semigroups are also well known to be highly incompatible [2, 15]. Most
notably, inclusions in .%,, need not resemble those from Zm; for example, there
exist an abundance of pairs of finite involution semigroups (8,*) and (7,*) such
that Var(8,*) ¢ Var(7,*) and Var§ C VarT [9]. Even in cases when the inclu-
sion Var(8,*) C Var(J,*) holds, the intervals [Var(S,*),Var(T,*)] and [Var$§, VarT]
need not be similar. This is well illustrated by the following example.

Example 1 (Lee [14]). There exist involution semigroups (8,*) and (7T,*) of or-
der four such that the interval [Var(8,*),Var(T,*)] contains an infinite chain even
though its semigroup variety reduct [Var8,VarTJ] is just the chain Var§ C VarT of
order two.

It is of fundamental interest to ask if there exists an example possessing more ex-
treme properties: either [Var(8,*), Var(7,*)] is uncountable or [Var 8, Var 7] is trivial,
that is, Var8§ = VarT. Surprisingly, the answer to this seemingly elusive question is
affirmative, and the construction of such an example is the main goal of the present
article.
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Theorem 2. There exist involution semigroups (Sg,*) and (8g,®), sharing a com-
mon semigroup reduct S8g of order eight, such that the interval [Var(8s,*), Var(Ss, ®)]
contains an uncountable chain.

It follows that the variety Var(8g,®) has uncountably many subvarieties. In con-
trast, the variety Var(8g, *) has only four subvarieties.

Since there exist only countably many finitely generated varieties, uncountably
many varieties in the interval [Var(Ss, *), Var(8g, ®)] are non-finitely generated.

Corollary 3. There exist uncountably many non-finitely generated varieties of invo-
lution semigroups whose semigroup variety reduct coincides with the finitely generated
variety Var 8g.

Background information is first given in Section 2. A sufficient condition is then
established in Section 3 under which an interval in .%,,, contains an uncountable chain.
Using this condition, the involution semigroups (Sg,*) and (Sg,®) in Theorem 2 are
constructed in Section 4.

More details on the differences between the lattices %, and Zem can be found
in [15, Section 1.5].

2. Preliminaries

Acquaintance with rudiments of universal algebra is assumed. Refer to the mono-
graph of Burris and Sankappanavar [1] for more information.

2.1. Words and terms. Let 2" be a countably infinite alphabet and 2™ = {a* |
x € Z'} be its disjoint copy. Elements of 2" U Z™* are called variables. The free
involution monoid over 2 is the free semigroup (2" U 27*)7, together with the empty
word &, with unary operation * given by (z*)* =z for all z € 2,

*

* * *
(122 )" = p 2y, g T

for all z1,z9,...,2, € 2 U 2Z* U {2}, and @* = &. Elements of the involution
monoid (2" U 2*)" U {2} are called words, while words in the monoid 2™ U {@}
are said to be plain.

The set of terms over 27, denoted by T(Z"), is the smallest set such that Z"U{@} C
T(Z); if t1,t2 € T(Z), then tits € T(Z); and if t € T(Z), then t* € T(Z"). The
subterms of a term t are then recursively defined as follows: t is a subterm of t; if
S1S9 is a subterm of t where s1,s2 € T(Z), then so are s; and s»; if s* is a subterm
of t where s € T(2Z"), then so is s. The proper inclusion (2" U 2™*)* C T(Z") holds
and the involution axioms (1) can be used to convert any term t € T(Z2)\{2} into a
unique word |t] € (2°U 2*)T. For instance, |z(z3(yz*)*)*2y* | = zy(z*)*2y*.

Remark 4. For any subterm s of a term t, either |[s] or |s*] is a factor of [t].

2.2. Equations, deducibility, and satisfiability. An equation is an expression s ~
t formed by terms s, t € T(Z)\{@}. Specifically, a word equation is an equation u =~ v
formed by words u, v € (2" U 27*)T and a plain equation is an equation u ~ v formed
by plain words u,v € 2°+.

An equation s & t is directly deducible from an equation u; =~ us if there exist a
substitution ¢: 2" — T(2")\{@} and distinct ¢, j € {1, 2} such that pu; is a subterm
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of s, and replacing this particular subterm yu; of s with ¢u; results in the term t. An
equation s ~ t is deducible from a set 3 of equations if there exists a finite sequence

S:tl,tg,...,tT:t

of distinct terms such that each equation t; ~ t;;; is directly deducible from some
equation in .

An involution semigroup (8,*) satisfies an equation s = t, or s & t is satisfied
by (8,*) if, for any substitution ¢: & — 8, the elements ps and ¢t of § coincide.
Satisfaction of equations by semigroups is similarly defined. Note that equations of
semigroups are necessarily plain. A class of (involution) semigroups satisfies an equa-
tion if every (involution) semigroup in it satisfies the equation.

2.3. Equational theories and bases. For any class K of involution semigroups,
the set of equations satisfied by every involution semigroup in &, denoted by Eq R, is
the equational theory of K. The set of word equations in Eq & is denoted by Eqw K.
An equational basis for R is any subset X of Eq & such that every equation in Eq R is
deducible from 3.

3. Sufficient condition for continuum of subvarieties

A term u divides a term s if some substitution ¢: 2" — T(2)\{@} exists such
that ¢u is a subterm of s. It follows that a non-trivial equation s ~ t cannot be
directly deducible from an equation u; = us if neither u; nor u, divides s.

For any set & C (2 U 2Z2*)" and any words p,q € (2 U Z*)", the triple
(Z;p,q) is an inside-outside triple if p € P and q ¢ L. A system & = {(F;; pi, qi) |
i € I} of inside-outside triples is independent if for any distinct j,k € I neither p;,
nor q; divides any term t with |t| € 7.

Theorem 5. Let G = {(Z;;pi,q;) | i € I} be any countably infinite independent sys-
tem of inside-outside triples. Suppose that V is any variety of involution semigroups
such that for each i € I the following implication holds for any wordw € (Z"U 27*)*:

(2) picweEQwV = we Z;.

Then 'V contains an uncountable chain of subvarieties. Further, if some subvariety U
of V satisfies the equations {p; ~ q; | i € I}, then the uncountable chain is contained
in the interval [U, V].

Proof: For any set N C I, let Vy denote the subvariety of V defined by {p; = q; |
i € N}. Since q; ¢ ; by the definition of an inside-outside triple, it follows from (2)
that p; = q; ¢ Eqw V. In other words,

(a) pi ~q; ¢ EQV for alli € I.

Therefore, V # Vy for all N C I. Seeking a contradiction, suppose that p,, =~ q,, €
EqVy for some m ¢ N. Then there exists a finite sequence p,, = t1,to,...,t,. =
qm of distinct terms such that each equation t; ~ t;4, is directly deducible from
some equation in the equational basis EqV U {p; =~ q; | i € N} for V. If every
equation t; ~ t;;; is directly deducible from some equation in EqV, then p,, ~
am € EqV and (a) is contradicted. Therefore, some equation t; ~ t;4 is directly
deducible from some equation in {p; ~ q; | i € N}. Let £ be the least index such
that ty ~ tyy; is directly deducible from p,, =~ q,, for some n € N. Then
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(b) either p, or q, divides t,.

The minimality of ¢ implies that each equation in {t; ~ t;41 | 1 < j < £} is directly
deducible from some equation in EqV, whence t; =~ t, € EqV. But since |[t1]| ~
|te] € Eqw V with [t1] = pm, it follows from (2) that

(c) [te] € P

Now m # n because m ¢ N and n € N. Therefore, the independence of & is
contradicted by (b) and (c).

Consequently, p; =~ q; € EQqVy if and only if 4 € N. It follows that Vy O V-
if and only if N C N’, whence the set {Vy | N C I} consists of uncountably many
subvarieties of V. A standard argument shows that this set—which is isomorphic to
the dual of the power set of I—contains an uncountable chain. Indeed, select any
bijection ¢ from I onto the rational numbers Q and, for any real number r € R,
define N(r) = {i € I | i < r}. Then N(r) C N(r') if and only if r < 7’; in other
words, V() D Vi if and only if r <7/,

Now if some subvariety U of V satisfies the equations {p; ~ q; | i € I}, then
U C Vy for all N C I. Therefore, the uncountable chain is contained in[U,V]. O

4. Construction of (8g,*) and (8s, ®)
Let N denote the positive integers. For each ¢ € N, define the word
Pi = ZoliloTo - T1Y1T1 - T2Y2 X2+ - - TiYiTi - Tit1t3taTiyr.
Let q; = zozip; and &; = {p;}, so that (Z;; pi,q;) is an inside-outside triple.
Lemma 6. The system {(Z;;pi,q:) | ¢ € N} of inside-outside triples is independent.

Proof: Consider any j, k € N such that j # k. Since q; contains the variable z thrice
but every variable occurs at most twice in py, it is impossible for q; to divide any
term t with |t] € &, = {pr}.

Seeking a contradiction, suppose that p; divides some term t with [t] € &, =
{pr}- Then by Remark 4 there exists some substitution ¢: 2" — T(Z2)\{@} such
that either [¢p;| or [(¢p;)*] is a factor of |t| = p.

Case 1: |pp;] is a factor of py. Note that

Lep;] = Lpwo] Lt ] Lpta] Loxo] - [pa] Loy ] Lomi] - [pxa]loy2]loz2] -
L Leys] Lo | - [omjv] [ets] [ ta] [oTj41]
and
Pr = Zot1teZo - T1Y1T1 - T2Y2X2 -+ TkYkTh - Th+113LaTh1.
If one of the factors |pzo], |@z1],..., [¢xj+1] of [¢p;] is not a single variable, then
the word [¢p; | is of the form - - - 2129 - - z129- - - for some 21, 20 € ZUZ™ and so cannot

be a factor of py. Therefore, every one of |pxq |, [px1],..., |px;j4+1] is asingle variable.

Now since the prefix [pxo||pt1]|[pt2]|[pzo] and the suffix [pz,11]|pts]||pta] oz t1]
of [¢p;| are words of length at least four that begin and end with the same variable,
they must coincide with the prefix zgt1taxg and the suffix x1tst4zr 41 of pi, respec-
tively. It follows that

Loz ] [pyr] a1 ]-[pxa] [ pya] lpm2] - - - [0x;] lpy;] Lox;] = vrypar-zayams - - TyRTk,
which is impossible due to j # k.
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Case 2: |(pp;)*] is a factor of py. Since |[(pp;)*] has the same form as [¢p;], the
argument in Case 1 can be repeated to show that the present case is also impossible.
O

Construction of the involution semigroups (Ss, *) and (Sg, ®) requires the following
matrix semigroups under the usual matrix multiplication: the Brandt monoid

H B B R AR P
R

These matrix semigroups are closed under both the usual transposition 7 and the
skew transposition ° across the secondary diagonal:

f ] e [

Note that 27 = z for all z € S¢.

o

= O

Lemma 7. Suppose that u ~ v € Eqw(8¢,°). Then the set of variables occurring
in u coincides with the set of variables occurring in v.

Proof: Suppose that x is a variable that occurs in u but not in v. Generality is not
lost by assuming that x € 2. Let ¢: 2 — 8¢ be the substitution that maps x
to [§ 9] and any other variable to [§9]. Then

0 0] . . 0 0] . .
if * is in u, if * is in v,

0 0 0 1

Yu = YV =

10 10
otherwise; otherwise.

0 0 0 1

Therefore, the contradiction ¢u # pv is obtained. O

Lemma 8. Leti € N be odd. Suppose that p; =~ w € EqB for some w € 2. Then
W = D;.

Proof: A plain word u € 2" is an isoterm for a semigroup § if the following impli-
cation holds for every word w € 2™ T:

uxweEqS = u=w.

Jackson ([4, proof of Theorem 4.1]) has shown that p; is an isoterm for the semi-

group B'x B, where B'={[§0].[66],[06],[78],[6 ]} and B"={[58],[66].[5 8]}
are subsemigroups of B. It follows that p; is also an isoterm for B. O

Lemma 9. Leti € N be odd. Suppose that p; ~ w € Eqw{(B,T), (8¢,°)} for some
we (2 UZ*)t. Then w = p;.

Proof: Since p; ~ w € Eqw(8¢,°) and the word p; is plain, the word w is also plain
by Lemma 7. Then p; ~ w € Eq B, so that w = p; by Lemma 8. O

Lemma 10. The interval [Var(B,T), Var{(B,T),(8¢,%)}] contains an uncountable
chain.
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Proof: By Lemma 6, the system & = {(Z%;pi,q;) | ¢ = 1,3,5,...} of inside-
outside triples is independent. By Lemma 9, the implication (2) holds with V =
Var{(B,T), (8¢,%)}. Therefore, by Theorem 5, the variety V contains an uncountable
chain of subvarieties. Further, since the subvariety U = Var(B,T) of V satisfies the

equation zz*x ~ x and so also the equation p; ~ q; for any 7, the uncountable chain
is contained in [U, V]. O

Remark 11. The variety Var(B,T) has only four subvarieties [6] while the vari-
ety Var{(B,T), (8¢,°)} has uncountably many subvarieties [10].

Define the direct products
(P,)=(B,T) x (8¢,7) and (P,®) =(B,T) x (8¢,%);

in other words, P = B x 8/ is an involution semigroup under any of the unary
operations (z,y)* = (¢, y") and (z,9)® = («7,y%).

Lemma 12. The inclusion Var(P,*) C Var(P,®) holds and consequently the interval
[Var(®,*), Var(P, ®)] contains an uncountable chain.

Proof: Since (8¢,T) is an involution subsemigroup of (B, ),
Var(P,*) = Var(B,T) C Var{(B,T), (8¢,%)} = Var(P, ®).
The result then follows from Lemma 10. 0

Now let Sg be the subset of P = B x 8¢ consisting of the elements

(b ) o (B o) e ()
() -6 ) B e

where 0 = [§9] and 1 = [} 9]. Then 8g is a subsemigroup of P that is closed under
both of the unary operations * and ®. It is clear that (8g,*) is an amalgamation of

(B,7) = ({0,A,B,C,D,1},*) and (8¢,7) = ({0,E,F,1},%),
and that (8g,®) is an amalgamation of
(B,7) = ({0,A,B,¢,D,1},®) and (8¢,°) = ({0, E,F,1},®).
It follows that Var(8s,*) = Var(P,*) and Var(8g,®) = Var(P,®). Theorem 2 is thus a

consequence of Lemma 12.

Remark 13. Since the variety Var(B,®) has uncountably many subvarieties [10], it
is natural to question whether or not Lemma 12 is also true if the varieties Var(P,*)
and Var(P,®) are replaced by Var(B,T) and Var(B,“). But since (B,) does not
satisfy the equation xz* =~ z*z of (B,°) while (B,®) does not satisfy the equa-
tion zz*z ~ x of (B,T), the varieties Var(B,”) and Var(B,) exclude one another,
and certainly do not bound a non-empty interval.
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