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UNCOUNTABLE INTERVAL OF VARIETIES

OF INVOLUTION SEMIGROUPS SHARING

A COMMON SEMIGROUP VARIETY REDUCT

Edmond W. H. Lee

Abstract: A pair of involution semigroups sharing a common semigroup reduct of order eight is

constructed with the property that the varieties they generate bound an interval that contains an
uncountable chain. Consequently, there exist uncountably many non-finitely generated varieties of

involution semigroups sharing a common semigroup variety reduct that is finitely generated.
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1. Introduction

Recall that a unary semigroup 〈S, ∗〉 is a semigroup S equipped with a unary
operation ∗. A unary semigroup 〈S, ∗〉 that satisfies the equations

(1) (x∗)∗ ≈ x and (xy)∗ ≈ y∗x∗

is an involution semigroup. Common examples of involution semigroups include
groups 〈G,−1〉 under inversion −1 and matrix semigroups 〈Mn,

T 〉 under the usual
transposition T . An involution semigroup 〈S, ∗〉 and its semigroup reduct S are similar
in many ways, but the varieties they generate can satisfy very contrasting properties.
For instance, the variety Var〈S, ∗〉 and its semigroup variety reduct Var S can satisfy
very different equational properties; see, for example, [3, 5, 7, 8, 11, 12, 13, 16].

The lattice Linv of varieties of involution semigroups and the lattice Lsem of va-
rieties of semigroups are also well known to be highly incompatible [2, 15]. Most
notably, inclusions in Linv need not resemble those from Lsem; for example, there
exist an abundance of pairs of finite involution semigroups 〈S, ∗〉 and 〈T, ∗〉 such
that Var〈S, ∗〉 * Var〈T, ∗〉 and Var S ⊆ Var T [9]. Even in cases when the inclu-
sion Var〈S, ∗〉 ⊆ Var〈T, ∗〉 holds, the intervals [Var〈S, ∗〉,Var〈T, ∗〉] and [Var S,Var T]
need not be similar. This is well illustrated by the following example.

Example 1 (Lee [14]). There exist involution semigroups 〈S, ∗〉 and 〈T, ∗〉 of or-
der four such that the interval [Var〈S, ∗〉,Var〈T, ∗〉] contains an infinite chain even
though its semigroup variety reduct [Var S,Var T] is just the chain Var S ⊂ Var T of
order two.

It is of fundamental interest to ask if there exists an example possessing more ex-
treme properties: either [Var〈S, ∗〉,Var〈T, ∗〉] is uncountable or [Var S,Var T] is trivial,
that is, Var S = Var T. Surprisingly, the answer to this seemingly elusive question is
affirmative, and the construction of such an example is the main goal of the present
article.
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Theorem 2. There exist involution semigroups 〈S8, ∗〉 and 〈S8,~〉, sharing a com-
mon semigroup reduct S8 of order eight, such that the interval [Var〈S8, ∗〉,Var〈S8,~〉]
contains an uncountable chain.

It follows that the variety Var〈S8,~〉 has uncountably many subvarieties. In con-
trast, the variety Var〈S8, ∗〉 has only four subvarieties.

Since there exist only countably many finitely generated varieties, uncountably
many varieties in the interval [Var〈S8, ∗〉,Var〈S8,~〉] are non-finitely generated.

Corollary 3. There exist uncountably many non-finitely generated varieties of invo-
lution semigroups whose semigroup variety reduct coincides with the finitely generated
variety Var S8.

Background information is first given in Section 2. A sufficient condition is then
established in Section 3 under which an interval in Linv contains an uncountable chain.
Using this condition, the involution semigroups 〈S8, ∗〉 and 〈S8,~〉 in Theorem 2 are
constructed in Section 4.

More details on the differences between the lattices Linv and Lsem can be found
in [15, Section 1.5].

2. Preliminaries

Acquaintance with rudiments of universal algebra is assumed. Refer to the mono-
graph of Burris and Sankappanavar [1] for more information.

2.1. Words and terms. Let X be a countably infinite alphabet and X ∗ = {x∗ |
x ∈ X } be its disjoint copy. Elements of X ∪ X ∗ are called variables. The free
involution monoid over X is the free semigroup (X ∪X ∗)+, together with the empty
word ∅, with unary operation ∗ given by (x∗)∗ = x for all x ∈X ,

(x1x2 · · ·xm)∗ = x∗mx∗m−1 · · ·x∗1

for all x1, x2, . . . , xm ∈ X ∪ X ∗ ∪ {∅}, and ∅∗ = ∅. Elements of the involution
monoid (X ∪X ∗)+ ∪ {∅} are called words, while words in the monoid X + ∪ {∅}
are said to be plain.

The set of terms over X , denoted by T(X ), is the smallest set such that X ∪{∅} ⊆
T(X ); if t1, t2 ∈ T(X ), then t1t2 ∈ T(X ); and if t ∈ T(X ), then t∗ ∈ T(X ). The
subterms of a term t are then recursively defined as follows: t is a subterm of t; if
s1s2 is a subterm of t where s1, s2 ∈ T(X ), then so are s1 and s2; if s∗ is a subterm
of t where s ∈ T(X ), then so is s. The proper inclusion (X ∪X ∗)+ ⊂ T(X ) holds
and the involution axioms (1) can be used to convert any term t ∈ T(X )\{∅} into a
unique word btc ∈ (X ∪X ∗)+. For instance, bx(x3(yx∗)∗)∗zy∗c = xy(x∗)4zy∗.

Remark 4. For any subterm s of a term t, either bsc or bs∗c is a factor of btc.

2.2. Equations, deducibility, and satisfiability. An equation is an expression s ≈
t formed by terms s, t ∈ T(X )\{∅}. Specifically, a word equation is an equation u ≈ v
formed by words u,v ∈ (X ∪X ∗)+ and a plain equation is an equation u ≈ v formed
by plain words u,v ∈X +.

An equation s ≈ t is directly deducible from an equation u1 ≈ u2 if there exist a
substitution ϕ : X → T(X )\{∅} and distinct i, j ∈ {1, 2} such that ϕui is a subterm
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of s, and replacing this particular subterm ϕui of s with ϕuj results in the term t. An
equation s ≈ t is deducible from a set Σ of equations if there exists a finite sequence

s = t1, t2, . . . , tr = t

of distinct terms such that each equation ti ≈ ti+1 is directly deducible from some
equation in Σ.

An involution semigroup 〈S, ∗〉 satisfies an equation s ≈ t, or s ≈ t is satisfied
by 〈S, ∗〉 if, for any substitution ϕ : X → S, the elements ϕs and ϕt of S coincide.
Satisfaction of equations by semigroups is similarly defined. Note that equations of
semigroups are necessarily plain. A class of (involution) semigroups satisfies an equa-
tion if every (involution) semigroup in it satisfies the equation.

2.3. Equational theories and bases. For any class K of involution semigroups,
the set of equations satisfied by every involution semigroup in K, denoted by EqK, is
the equational theory of K. The set of word equations in EqK is denoted by EqW K.
An equational basis for K is any subset Σ of EqK such that every equation in EqK is
deducible from Σ.

3. Sufficient condition for continuum of subvarieties

A term u divides a term s if some substitution ϕ : X → T(X )\{∅} exists such
that ϕu is a subterm of s. It follows that a non-trivial equation s ≈ t cannot be
directly deducible from an equation u1 ≈ u2 if neither u1 nor u2 divides s.

For any set P ⊆ (X ∪X ∗)+ and any words p,q ∈ (X ∪X ∗)+, the triple
(P; p,q) is an inside-outside triple if p ∈P and q /∈P. A system S = {(Pi; pi,qi) |
i ∈ I} of inside-outside triples is independent if for any distinct j, k ∈ I neither pj

nor qj divides any term t with btc ∈Pk.

Theorem 5. Let S = {(Pi; pi,qi) | i ∈ I} be any countably infinite independent sys-
tem of inside-outside triples. Suppose that V is any variety of involution semigroups
such that for each i ∈ I the following implication holds for any word w ∈ (X ∪X ∗)+:

(2) pi ≈ w ∈ EqW V =⇒ w ∈Pi.

Then V contains an uncountable chain of subvarieties. Further, if some subvariety U
of V satisfies the equations {pi ≈ qi | i ∈ I}, then the uncountable chain is contained
in the interval [U,V].

Proof: For any set N ⊆ I, let VN denote the subvariety of V defined by {pi ≈ qi |
i ∈ N}. Since qi /∈Pi by the definition of an inside-outside triple, it follows from (2)
that pi ≈ qi /∈ EqW V. In other words,

(a) pi ≈ qi /∈ EqV for all i ∈ I.

Therefore, V 6= VN for all N ⊆ I. Seeking a contradiction, suppose that pm ≈ qm ∈
EqVN for some m /∈ N . Then there exists a finite sequence pm = t1, t2, . . . , tr =
qm of distinct terms such that each equation tj ≈ tj+1 is directly deducible from
some equation in the equational basis EqV ∪ {pi ≈ qi | i ∈ N} for VN . If every
equation tj ≈ tj+1 is directly deducible from some equation in EqV, then pm ≈
qm ∈ EqV and (a) is contradicted. Therefore, some equation tj ≈ tj+1 is directly
deducible from some equation in {pi ≈ qi | i ∈ N}. Let ` be the least index such
that t` ≈ t`+1 is directly deducible from pn ≈ qn for some n ∈ N . Then
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(b) either pn or qn divides t`.

The minimality of ` implies that each equation in {tj ≈ tj+1 | 1 ≤ j < `} is directly
deducible from some equation in EqV, whence t1 ≈ t` ∈ EqV. But since bt1c ≈
bt`c ∈ EqW V with bt1c = pm, it follows from (2) that

(c) bt`c ∈Pm.

Now m 6= n because m /∈ N and n ∈ N . Therefore, the independence of S is
contradicted by (b) and (c).

Consequently, pi ≈ qi ∈ EqVN if and only if i ∈ N . It follows that VN ⊇ VN ′

if and only if N ⊆ N ′, whence the set {VN | N ⊆ I} consists of uncountably many
subvarieties of V. A standard argument shows that this set—which is isomorphic to
the dual of the power set of I—contains an uncountable chain. Indeed, select any
bijection ϕ from I onto the rational numbers Q and, for any real number r ∈ R,
define N(r) = {i ∈ I | ϕi < r}. Then N(r) ⊂ N(r′) if and only if r < r′; in other
words, VN(r) ⊃ VN(r′) if and only if r < r′.

Now if some subvariety U of V satisfies the equations {pi ≈ qi | i ∈ I}, then
U ⊆ VN for all N ⊆ I. Therefore, the uncountable chain is contained in[U,V].

4. Construction of 〈S8,
∗〉 and 〈S8,

~〉
Let N denote the positive integers. For each i ∈ N, define the word

pi = x0t1t2x0 · x1y1x1 · x2y2x2 · · ·xiyixi · xi+1t3t4xi+1.

Let qi = x0x
∗
0pi and Pi = {pi}, so that (Pi; pi,qi) is an inside-outside triple.

Lemma 6. The system {(Pi; pi,qi) | i ∈ N} of inside-outside triples is independent.

Proof: Consider any j, k ∈ N such that j 6= k. Since qj contains the variable x0 thrice
but every variable occurs at most twice in pk, it is impossible for qj to divide any
term t with btc ∈Pk = {pk}.

Seeking a contradiction, suppose that pj divides some term t with btc ∈ Pk =
{pk}. Then by Remark 4 there exists some substitution ϕ : X → T(X )\{∅} such
that either bϕpjc or b(ϕpj)

∗c is a factor of btc = pk.

Case 1: bϕpjc is a factor of pk. Note that

bϕpjc = bϕx0cbϕt1cbϕt2cbϕx0c · bϕx1cbϕy1cbϕx1c · bϕx2cbϕy2cbϕx2c · · ·

· · · bϕxjcbϕyjcbϕxjc · bϕxj+1cbϕt3cbϕt4cbϕxj+1c

and

pk = x0t1t2x0 · x1y1x1 · x2y2x2 · · ·xkykxk · xk+1t3t4xk+1.

If one of the factors bϕx0c, bϕx1c, . . . , bϕxj+1c of bϕpjc is not a single variable, then
the word bϕpjc is of the form · · · z1z2· · · z1z2· · · for some z1, z2∈X∪X ∗ and so cannot
be a factor of pk. Therefore, every one of bϕx0c, bϕx1c, . . . , bϕxj+1c is a single variable.
Now since the prefix bϕx0cbϕt1cbϕt2cbϕx0c and the suffix bϕxj+1cbϕt3cbϕt4cbϕxj+1c
of bϕpjc are words of length at least four that begin and end with the same variable,
they must coincide with the prefix x0t1t2x0 and the suffix xk+1t3t4xk+1 of pk, respec-
tively. It follows that

bϕx1cbϕy1cbϕx1c·bϕx2cbϕy2cbϕx2c · · · bϕxjcbϕyjcbϕxjc = x1y1x1·x2y2x2 · · ·xkykxk,

which is impossible due to j 6= k.
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Case 2: b(ϕpj)
∗c is a factor of pk. Since b(ϕpj)

∗c has the same form as bϕpjc, the
argument in Case 1 can be repeated to show that the present case is also impossible.

Construction of the involution semigroups 〈S8, ∗〉 and 〈S8,~〉 requires the following
matrix semigroups under the usual matrix multiplication: the Brandt monoid

B =

{[
0 0
0 0

]
,

[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
,

[
1 0
0 1

]}
and its subsemilattice

S` =

{[
0 0
0 0

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 1

]}
.

These matrix semigroups are closed under both the usual transposition T and the
skew transposition S across the secondary diagonal:[

a b
c d

]T
=

[
a c
b d

]
and

[
a b
c d

]S
=

[
d b
c a

]
.

Note that xT = x for all x ∈ S`.

Lemma 7. Suppose that u ≈ v ∈ EqW〈S`, S〉. Then the set of variables occurring
in u coincides with the set of variables occurring in v.

Proof: Suppose that x is a variable that occurs in u but not in v. Generality is not
lost by assuming that x ∈ X . Let ϕ : X → S` be the substitution that maps x
to
[
1 0
0 0

]
and any other variable to

[
1 0
0 1

]
. Then

ϕu =



[
0 0

0 0

]
if x∗ is in u,

[
1 0

0 0

]
otherwise;

ϕv =



[
0 0

0 1

]
if x∗ is in v,

[
1 0

0 1

]
otherwise.

Therefore, the contradiction ϕu 6= ϕv is obtained.

Lemma 8. Let i ∈ N be odd. Suppose that pi ≈ w ∈ EqB for some w ∈X +. Then
w = pi.

Proof: A plain word u ∈ X + is an isoterm for a semigroup S if the following impli-
cation holds for every word w ∈X +:

u ≈ w ∈ Eq S =⇒ u = w.

Jackson ([4, proof of Theorem 4.1]) has shown that pi is an isoterm for the semi-
group B′×B′′, where B′=

{[
0 0
0 0

]
,
[
1 0
0 0

]
,
[
0 1
0 0

]
,
[
0 0
1 0

]
,
[
0 0
0 1

]}
and B′′=

{[
0 0
0 0

]
,
[
0 1
0 0

]
,
[
1 0
0 1

]}
are subsemigroups of B. It follows that pi is also an isoterm for B.

Lemma 9. Let i ∈ N be odd. Suppose that pi ≈ w ∈ EqW{〈B, T 〉, 〈S`, S〉} for some
w ∈ (X ∪X ∗)+. Then w = pi.

Proof: Since pi ≈ w ∈ EqW〈S`, S〉 and the word pi is plain, the word w is also plain
by Lemma 7. Then pi ≈ w ∈ EqB, so that w = pi by Lemma 8.

Lemma 10. The interval
[
Var〈B, T 〉,Var{〈B, T 〉, 〈S`, S〉}

]
contains an uncountable

chain.
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Proof: By Lemma 6, the system S = {(Pi; pi,qi) | i = 1, 3, 5, . . . } of inside-
outside triples is independent. By Lemma 9, the implication (2) holds with V =
Var{〈B, T 〉, 〈S`, S〉}. Therefore, by Theorem 5, the variety V contains an uncountable
chain of subvarieties. Further, since the subvariety U = Var〈B, T 〉 of V satisfies the
equation xx∗x ≈ x and so also the equation pi ≈ qi for any i, the uncountable chain
is contained in [U,V].

Remark 11. The variety Var〈B, T 〉 has only four subvarieties [6] while the vari-
ety Var{〈B, T 〉, 〈S`, S〉} has uncountably many subvarieties [10].

Define the direct products

〈P, ∗〉 = 〈B, T 〉 × 〈S`, T 〉 and 〈P,~〉 = 〈B, T 〉 × 〈S`, S〉;

in other words, P = B × S` is an involution semigroup under any of the unary
operations (x, y)∗ = (xT , yT ) and (x, y)~ = (xT , yS).

Lemma 12. The inclusion Var〈P, ∗〉 ⊆ Var〈P,~〉 holds and consequently the interval
[Var〈P, ∗〉,Var〈P,~〉] contains an uncountable chain.

Proof: Since 〈S`, T 〉 is an involution subsemigroup of 〈B, T 〉,

Var〈P, ∗〉 = Var〈B, T 〉 ⊆ Var{〈B, T 〉, 〈S`, S〉} = Var〈P,~〉.

The result then follows from Lemma 10.

Now let S8 be the subset of P = B× S` consisting of the elements

o = (0,0), a =

([
1 0
0 0

]
,0

)
, b =

([
0 1
0 0

]
,0

)
, c =

([
0 0
1 0

]
,0

)
,

d =

([
0 0
0 1

]
,0

)
, e =

(
0,

[
1 0
0 0

])
, f =

(
0,

[
0 0
0 1

])
, i = (1,1),

where 0 =
[
0 0
0 0

]
and 1 =

[
1 0
0 1

]
. Then S8 is a subsemigroup of P that is closed under

both of the unary operations ∗ and ~. It is clear that 〈S8, ∗〉 is an amalgamation of

〈B, T 〉 ∼= 〈{o,a,b,c,d, i}, ∗〉 and 〈S`, T 〉 ∼= 〈{o,e, f, i}, ∗〉,

and that 〈S8,~〉 is an amalgamation of

〈B, T 〉 ∼= 〈{o,a,b,c,d, i},~〉 and 〈S`, S〉 ∼= 〈{o,e, f, i},~〉.

It follows that Var〈S8, ∗〉 = Var〈P, ∗〉 and Var〈S8,~〉 = Var〈P,~〉. Theorem 2 is thus a
consequence of Lemma 12.

Remark 13. Since the variety Var〈B, S〉 has uncountably many subvarieties [10], it
is natural to question whether or not Lemma 12 is also true if the varieties Var〈P, ∗〉
and Var〈P,~〉 are replaced by Var〈B, T 〉 and Var〈B, S〉. But since 〈B, T 〉 does not
satisfy the equation xx∗ ≈ x∗x of 〈B, S〉 while 〈B, S〉 does not satisfy the equa-
tion xx∗x ≈ x of 〈B, T 〉, the varieties Var〈B, T 〉 and Var〈B, S〉 exclude one another,
and certainly do not bound a non-empty interval.
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