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Abstract: We study the (uniform) strong subdifferentiability of norms of Banach spaces P(NX,Y ∗)
of all continuous N -homogeneous polynomials and tensor products of Banach spaces, namely

X⊗̂π · · · ⊗̂πX and ⊗̂πs,NX. Among other results, we characterize when the norms of spaces P(N`p, `q),

P(N lM1
, lM2

), and P(Nd(w, p), lM2
) are strongly subdifferentiable. Analogous results for multilinear

mappings are also obtained. Since strong subdifferentiability of a dual space implies reflexivity, we

improve some known results in [38, 48, 49] (in the spirit of Pitt’s compactness theorem) on the
reflexivity of spaces of N -homogeneous polynomials and N -linear mappings. Concerning the projec-

tive (symmetric) tensor norms, we provide positive results by considering the subsets U and Us of

elementary tensors on the unit spheres of X⊗̂π · · · ⊗̂πX and ⊗̂πs,NX, respectively. Specifically, we

prove that the norms of ⊗̂πs,N `2 and `2⊗̂π · · · ⊗̂π`2 are uniformly strongly subdifferentiable on Us
and U , and that the norms of c0⊗̂πsc0 and c0⊗̂πc0 are strongly subdifferentiable on Us and U in
the complex case.
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1. Introduction

The main aim of this paper is to study the strong subdifferentiability of the norm
of Banach spaces of N -homogeneous polynomials P(NX) and (their predual) sym-
metric tensor products ⊗̂πs,NX. To do so, the following characterization of strong
subdifferentiability given in [43, Theorem 1.2] (see also [47]) is a very useful tool: the
norm ‖ · ‖ of a Banach space X is strongly subdifferentiable at a point x ∈ SX if and
only if for every ε > 0 there exists δ = δ(ε, x) > 0 such that

(1.1) dist(x∗, D(x)) < ε whenever x∗ ∈ BX∗ satisfies x∗(x) > 1− δ,

where D(x) := {x∗ ∈ SX∗ : x∗(x) = 1}. For more information and examples concern-
ing Banach spaces with strongly subdifferentiable norm, see Subsection 2.1.

As we will detail in the subsequent sections, the characterization (1.1) appears in
a natural way as a kind of Bishop–Phelps–Bollobás property for functionals in X∗.
The relation between the denseness of norm-attaining mappings and the geometry
of the underlying spaces arises in the area from the very beginning. In his pioneer
work [55], Lindenstrauss exhibits some geometrical properties of Banach spaces X
and Y , which guarantee that the set of norm-attaining linear operators in L(X,Y ) is
dense in the whole space. He also showed that the lack of extreme points of the unit
ball of the domain space (which is, of course, a geometrical property of the space)
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plays a fundamental role when trying to obtain examples of spaces for which the set of
norm-attaining operators is not dense in the whole space. Since then, this relation be-
tween the theory of norm-attaining mappings and the geometry of Banach spaces has
appeared naturally [15, 53]. In particular, it appears in the context of Bishop–Phelps–
Bollobás type theorems. Roughly speaking, the Bishop–Phelps–Bollobás theorem (the
quantitative version of the well known result of Bishop and Phelps [13] due to Bollo-
bás [14]) states that, whenever (x∗0, x0) ∈ SX∗ × SX satisfies x∗0(x0) ≈ 1, there exists
(x∗1, x1) ∈ SX∗ × SX such that x∗1(x1) = 1, x∗1 ≈ x∗0, and x1 ≈ x0.

Acosta, Aron, Garćıa, and Maestre ([3]) were the first to study a possible exten-
sion of the Bishop–Phelps–Bollobás theorem to the context of linear operators. As
expected, some geometrical properties of the spaces (like the approximate hyperplane
series property defined and studied there) appear as sufficient conditions for the valid-
ity of a Bishop–Phelps–Bollobás theorem for linear operators. For more information
on Bishop–Phelps–Bollobás type results (in the linear, multilinear, and polynomial
context), we refer the reader to [1, 3, 4, 5, 20, 21, 24, 64] and the references therein.
We also send the reader to two recent surveys on the topic [2, 25].

Recently, in the framework of Bishop–Phelps–Bollobás type theorems for linear
operators and multilinear mappings, strong subdifferentiability, uniform smoothness,
and uniform convexity of the norm of a Banach space have been considered (see,
for instance, [31, 32, 33, 54]). Having this in mind, we intend to relate the strong
subdifferentiability of the norms of P(NX) and ⊗̂πs,NX with some Bishop–Phelps–
Bollobás type properties for polynomials (all the definitions will be given in Section 2).
In Theorem A we show that, under certain hypotheses on the underlying space X,
the strong subdifferentiability of the space P(NX) of N -homogeneous polynomials is
equivalent to a polynomial version of (1.1). Moreover, a vector-valued version of this
equivalence is addressed. We use this result to characterize the strong subdifferentia-
bility of the norms of spaces of polynomials between some classical sequence spaces,
such as `p, Orlicz spaces, and Lorentz spaces. Following the same ideas, we replicate
the process in the multilinear context (see Theorem B and Corollary B). These results
can be seen as a continuation in the line of study of the classical Pitt’s compactness
theorem in the polynomial and multilinear setting. Let us briefly explain this last
assertion: Pitt’s theorem (for reflexive `q spaces) affirms that every bounded linear
operator from `p into `q is compact if and only if 1 < q < p < ∞, and this is also
equivalent to the reflexivity of the space L(`p, `q) (this last result can be found, for
instance, in [62]). In [10], some versions of Pitt’s theorem for operators between reflex-
ive Lorentz and Orlicz sequence spaces are established; as in the classical scenario,
the fact that every bounded linear operator between Lorentz and Orlicz sequence
spaces is compact is equivalent to the reflexivity of the space of linear operators. In
the polynomial and multilinear context, Pitt’s type theorems have been addressed
by many authors (see [6, 38, 48, 49, 52, 60], among others). In this setting, it is
natural to replace the compactness with weak sequential continuity of polynomials
and multilinear mappings (recall that these notions are equivalent for linear opera-
tors defined on reflexive spaces). For instance, in [60] (see also [6]) it is proved that
every N -homogeneous polynomial from `p into `q is weakly sequentially continuous if
and only if Nq < p, and this is equivalent to the reflexivity of the space P(N `p, `q)
of N -homogeneous polynomials from `p into `q. Some results in this line were also
addressed in [38, 48, 49] in the more general setting of Lorentz and Orlicz sequence
spaces. Now, as strong subdifferentiability of a dual space is a stronger property than
reflexivity (see Remark 2.6 below), it seems natural to ask if the weak sequential
continuity of every N -homogeneous polynomial from `p into `q is equivalent to the
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strong subdifferentiability of the space P(N`p, `q). The same question makes sense
for N -homogeneous polynomials between Lorentz and Orlicz sequence spaces. Our
results show that this is indeed the case, not only in the polynomial but also in the
multilinear context.

In Section 4, we study the dual version of the polynomial property (1.1) and obtain
some results on the strong subdifferentiability of elementary tensors on projective
symmetric tensor products. As the involved tools and reasonings also apply to the
multilinear context, we obtain positive results on the strong subdifferentiability of
elementary tensors on the projective tensor product of classical spaces such as c0
and `2.

Our results should be compared with those in [16, 40], where the authors studied
Gâteaux and Fréchet differentiability of the norm of spaces of symmetric tensor prod-
ucts and homogeneous polynomials in relation to w∗-(strongly) exposing and strongly
norm-attaining points in these spaces.

2. Preliminary material and main results

In this section, we give the basic concepts we will use throughout the paper and
state our main results. First, we set the notation and recall some known properties
that will appear in what follows. All Banach spaces considered here are over the
real field R or over the complex field C. We denote BX , SX , and X∗, the closed
unit ball, the unit sphere, and the topological dual of a Banach space X. We de-
note by P(NX,Y ) the Banach space of all continuous N -homogeneous polynomi-
als from X into Y endowed with the supremum norm, while Pwsc(

NX,Y ) stands
for the Banach space of all weakly sequentially continuous N -homogeneous poly-
nomials from X into Y . The Banach space of all continuous N -linear mappings
from X1 × · · · × XN into Y , endowed with the supremum norm, will be denoted
by L(X1 × · · · ×XN , Y ), while the space of all continuous N -linear symmetric map-
pings from X × · · · × X to Y will be denoted by Ls(NX,Y ). When Y = K is
the scalar field, we will omit it and write P(NX), Pwsc(

NX), L(X1 × · · · × XN ),
and Ls(NX). Given P ∈ P(NX,Y ) we consider P t : Y ∗ → P(NX,K), the trans-
pose of P , given by (P ty∗)(x) := y∗P (x) for every x ∈ X and every y∗ ∈ Y ∗. For
P ∈ P(NX,Y ), we set NA(P ) := {x ∈ SX : ‖P (x)‖ = ‖P‖}.

We recall the following well known properties of Banach spaces. A Banach space X
is strictly convex (SC, for short) if∥∥∥∥x+ y

2

∥∥∥∥ < 1 whenever x, y ∈ SX , x 6= y.

The modulus of convexity of a Banach space X is defined for each ε ∈ (0, 2] by

δX(ε) := inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ BX , ‖x− y‖ > ε

}
,

and X is said to be uniformly convex (UC, for short) if δX(ε) > 0 for ε ∈ (0, 2]. The
modulus of smoothness of a Banach space X is defined for each τ > 0 by

ρX(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ

}
,

and X is said to be uniformly smooth (US, for short) if limτ→0 ρX(τ)/τ = 0. It is a
well known result of Šmulian that X is uniformly convex if and only if X∗ is uniformly
smooth and both properties imply reflexivity. We say that a Banach space X has the
Kadec–Klee property if the weak and norm topologies coincide on SX . Analogously,
X∗ has the w∗-Kadec–Klee property if the weak∗ and norm topologies coincide on SX∗ .
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We will say that X has the sequential Kadec–Klee property if ‖xn−x0‖ → 0 whenever

‖xn‖ → ‖x0‖ and xn
w−→ x0 (analogously, we define the sequential w∗-Kadec–Klee

property). It is worth mentioning that the reader could find the above definition
a little bit confusing since, in the literature, many authors refer to the sequential
Kadec–Klee property simply as the Kadec–Klee property.

A Banach space X is said to have the approximation property (for short, AP) (re-
spectively, compact approximation property (for short, CAP)) if for every compact
subset C of X and every ε > 0 there is a finite-rank (respectively, compact) opera-
tor T : X → X such that ‖Tx− x‖ 6 ε for every x ∈ C. It is immediate that the AP
implies the CAP. However, it is known that there exists a Banach space that has the
CAP but does not have the AP [68].

In the next subsections, we focus on some relevant properties and tools.

2.1. Strong subdifferentiability. The following notions (specifically, Definitions 2.1
and 2.3 below) are the central ones in the present paper.

Definition 2.1. We say that the norm ‖ · ‖ of a Banach space X is strongly subdif-
ferentiable (SSD, for short) at x ∈ SX when the one-sided limit

(2.1) lim
t→0+

‖x+ th‖ − 1

t

exists uniformly in h ∈ BX . When it holds for every x in a subset U ⊆ SX we say
that X is SSD on U , and when it holds for every x ∈ SX we simply say that X is
SSD. A careful reader should realize immediately that a norm is Fréchet differentiable
if and only if it is both Gâteaux and SSD. In other words, SSD is what is missing in
Gâteaux to be Fréchet.

It is well known that, for an arbitrary x ∈ SX , the above limit exists in every
direction h and that

(2.2) τ(x, h) := lim
t→0+

‖x+ th‖ − 1

t
= max{Rex∗(h) : x∗ ∈ D(x)} (h ∈ X),

where D(x) is the set of all normalized support functionals for BX at x. That is,

D(x) := {x∗ ∈ SX∗ : x∗(x) = 1}.
This means that the norm of X is SSD at x ∈ SX if and only if

(2.3) lim
t→0+

sup

{
‖x+ th‖ − 1

t
− τ(x, h) : h ∈ BX

}
= 0.

As we mentioned in the introduction, Franchetti and Payá ([43]) proved the following
result, which is an analogue of the characterization for Fréchet differentiability proved
by Šmulian ([66]).

Theorem 2.2 ([43, Theorem 1.2]). Let X be a Banach space. The norm of X is
SSD at x ∈ SX if and only if, given ε > 0, there exists δ(ε, x) > 0 such that whenever
x∗(x) > 1− δ(ε, x) for some x∗ ∈ BX∗ , the distance dist(x∗, D(x)) < ε.

In other words, the norm of X is SSD at x ∈ SX if and only if x strongly exposes the
setD(x). That is, the distance dist(x∗n, D(x)) tends to zero for any sequence (x∗n)∞n=1 ⊆
BX∗ with Rex∗n(x)→ 1 as n→∞.

For background on the study of strong subdifferentiability of the norm, we refer
the reader to [8, 22, 23, 42, 45, 46, 47, 50]. For a systematic study on the topic, we
suggest [36, 43]. Here, we shall only mention some examples of classical Banach spaces
with SSD norm: it is known that every finite-dimensional Banach space is SSD. Since
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a Banach space X is uniformly smooth if and only if its norm is uniformly Fréchet
differentiable on SX , it is clear that every uniformly smooth Banach space is SSD;
for instance, the sequence spaces `p with 1 < p <∞ are SSD. It is worth mentioning
that if a dual space X∗ is SSD, then X is reflexive (see [43, Theorem 3.3]); hence
`1 and `∞ are not SSD. The sequence spaces c0 and d∗(w, 1) (predual of Lorentz
sequence space) are examples of non-reflexive SSD Banach spaces. There are other
examples of non-reflexive spaces with an SSD norm, for instance, the predual of the
Hardy space H1 and the predual of the Lorentz space Lp,1(µ). Moreover, if X is a
predual of a Banach space with the w∗-Kadec–Klee property, then X is SSD (see
[32, Proposition 2.6]). On the other hand, it is known that if X is SSD, then X is an
Asplund space (see [43, 47]). It is worth mentioning that there are spaces whose norms
are nowhere SSD [36, Theorem III.1.9 and Proposition III.4.5] (the second one states
that H1(D) is nowhere SSD except at 0). Also, the `1-norm is SSD exactly at finitely
supported vectors ([45, Example 1.1] and [42, Theorem 6]). By [28, Theorem A], for
every space with a fundamental biorthogonal system, there exists a dense subspace
with an SSD norm (see [27] for more instances in this line).

We now deal with a uniform and, at the same time, localized version of strong
subdifferentiability. It was proved in [43, Proposition 4.1] that a Banach space X
is uniformly smooth if and only if the limit in (2.1) is also uniform in x ∈ SX (we
already mentioned in the above paragraph that if X is uniformly smooth, then X is
SSD). Since uniform smoothness is a quite restrictive property, we consider the case
where the limit in (2.1) is uniform in x ∈ U for some subset U ⊂ SX .

Definition 2.3. Given a set U ⊆ SX , we say that the norm of a Banach space X is
uniformly strongly subdifferentiable on U (USSD on U , for short) if the limit (2.1) is
uniform for h ∈ BX and x ∈ U . In other words, the norm of X is USSD on U if and
only if

(2.4) lim
t→0+

sup

{
‖x+ th‖ − 1

t
− τ(x, h) : h ∈ BX , x ∈ U

}
= 0.

A relation between numerical range and uniform strong subdifferentiability was
established in [61]. Also, the uniform strong subdifferentiability of the norm of JB∗-
triples was studied in [12] (see also [11]), where it is proved that if X is a JB∗-triple,
then X is USSD on the set of non-zero tripotents of X. However, we could not find a
systematic study of this property in the literature.

2.2. (Symmetric) tensor products. The projective tensor product between the
Banach spaces X1, . . . , XN , denoted by X1⊗̂π · · · ⊗̂πXN , is defined as the completion
of the algebraic tensor product X1 ⊗ · · · ⊗XN endowed with the norm

‖z‖π := inf

{ n∑
i=1

‖x1i ‖ · · · ‖xNi ‖ : z =

n∑
i=1

x1i ⊗ · · · ⊗ xNi
}
,

where the infimum is taken over all representations of z of the form
∑n
i=1 x

1
i⊗· · ·⊗xNi .

It is well known that the tensor product between X1, . . . , XN linearizes continuous
N -linear mappings on X1 × · · · ×XN . Indeed, we have the isometric isomorphism

(X1⊗̂π · · · ⊗̂πXN )∗ = L(X1 × · · · ×XN ),

where the duality is given by

LA(z) = 〈z,A〉 =

∞∑
i=1

A(x1i , . . . , x
N
i ),
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for A ∈ L(X1 × · · · × XN ) and z =
∑∞
i=1 x

1
i ⊗ · · · ⊗ xNi ∈ X1⊗̂π · · · ⊗̂πXN . More-

over, for multilinear mappings with values in a dual space Y ∗ we have the isometric
isomorphism

((X1⊗̂π · · · ⊗̂πXN )⊗̂πY )∗ = L(X1 × · · · ×XN , Y
∗),

with the duality given by

LA(z) = 〈z,A〉 =

∞∑
j=1

∞∑
i=1

A(x1j,i, . . . , x
N
j,i)(yj),

for A ∈ L(X1 × · · · ×XN , Y
∗) and z =

∑∞
j=1 vj ⊗ yj , where (yj)j ⊂ Y and (vj)j ⊂

X1⊗̂π · · · ⊗̂πXN with vj =
∑∞
i=1 x

1
j,i ⊗ · · · ⊗ xNj,i. It is well known that the closed

unit ball of X1⊗̂πX2 is the closed convex hull of BX1
⊗ BX2

. That is, BX1⊗̂πX2
=

co(BX1
⊗BX2

).
On the other hand, the symmetric projective tensor product of X, denoted by

⊗̂πs,NX, is the completion of the linear space ⊗s,NX generated by{⊗Nx : x ∈ X}
(here, ⊗Nx stands for the elementary tensor x⊗ N· · · ⊗ x) endowed with the norm

‖z‖πs,N := inf

{ n∑
i=1

|λi|‖xi‖N : z =

n∑
i=1

λi ⊗N xi

}
,

where the infimum is taken over all the possible representations of z of that form. The
symmetric projective tensor product linearizes continuous homogeneous polynomials.
In general, the identity

((⊗̂πs,NX)⊗̂πY )∗ = P(NX,Y ∗)

holds isometrically, with the duality given by

LP (z) = 〈z, P 〉 =

∞∑
j=1

∞∑
i=1

λj,iP (xj,i)(yj)

for P ∈ P(NX,Y ∗) and z =
∑∞
j=1 vj ⊗ yj for (yj)j ⊂ Y and (vj)j ⊂ ⊗̂πs,NX with

vj =
∑∞
i=1 λj,i ⊗N xj,i. We also have that B⊗̂πs,NX

= aco({⊗Nx : x ∈ SX}), where

aco(C) stands for the absolute convex hull of the set C.
We refer the reader to the first chapters of the books [35, 63] for an introduction

to tensor products (see also [37]), and to Floret’s survey article [41] for symmetric
tensor products.

2.3. Orlicz and Lorentz sequence spaces. We briefly recall the definitions and
some properties of Orlicz and Lorentz sequence spaces. These spaces, as well as
`p spaces, will provide examples of applications of our main results. An Orlicz func-
tion M is a continuous non-decreasing and convex function defined for t > 0 such
that M(0) = 0, M(t) > 0 for every t > 0, and limt→∞M(t) = ∞. The Orlicz se-
quence space lM associated to an Orlicz function M is the space of all sequences of
scalars x = (ai)i with

∑
iM(|ai|/ρ) < ∞ for some ρ > 0. The space lM equipped

with the Luxemburg norm

‖x‖ = inf

{
ρ > 0 :

∞∑
i=1

M(|ai|/ρ) 6 1

}
is a Banach space. An Orlicz function M is said to satisfy the ∆2-condition at zero if

lim sup
t→0

M(2t)

M(t)
<∞.
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The canonical vectors {en}n form a symmetric basic sequence in lM and a basis
for the subspace hM ⊂ lM consisting of those sequences x = (ai)i ∈ lM such that∑
iM(|ai|/ρ) <∞ for every ρ>0. The equality lM =hM holds if and only if M sat-

isfies the ∆2-condition at zero. Let

(2.5) αM = sup

{
p > 0 : sup

0<t,λ61

M(λt)

M(λ)tp
<∞

}
and

(2.6) βM = inf

{
q > 0 : inf

0<t,λ61

M(λt)

M(λ)tq
> 0

}
.

It is known that 1 6 αM 6 βM 6∞, and βM <∞ if and only if M satisfies the ∆2-
condition at zero. Moreover, the space lM is reflexive if and only if βM <∞ and αM >
1 or, equivalently, M and its dual function M∗(u) = max{tu −M(t) : 0 < t < ∞}
satisfy the ∆2-condition at zero. It is also known that lM has the (uniform) Kadec–
Klee property if and only if M satisfies the ∆2-condition at zero. A detailed study
of these and other properties of Orlicz sequence spaces can be found, for instance,
in [58].

Other properties in which we are particularly interested are uniform convexity and
uniform smoothness. In [19, Theorem 2.38] it is shown that the space lM endowed
with the Orlicz norm

‖x‖0 = sup

{ ∞∑
i=1

aibi :

∞∑
i=1

M(|bi|) 6 1

}
is uniformly convex if and only if M satisfies the ∆2-condition at zero and M is
uniformly convex on [0, πM (1)], where πM (α) = inf{t > 0 : M∗(p(t)) > α} (here, p is
the right derivative of M), i.e., given ε > 0 there exists δ > 0 such that

M

(
t+ s

2

)
6 (1− δ)M(t) +M(s)

2

for all s, t ∈ [0, πM (1)] satisfying |s− t| > εmax{s, t}. Since (lM , ‖ · ‖) = (lM∗ , ‖ · ‖0)∗

isometrically, we obtain necessary and sufficient conditions for the uniform smoothness
of lM endowed with the Luxemburg norm.

We now focus our attention on Lorentz sequence spaces. Let 1 6 p < ∞ and
v = (vi)i be a non-increasing sequence of positive numbers such that v1 = 1, limi vi =
0, and

∑
i vi = ∞. The Lorentz sequence space d(v, p) is the Banach space of all

sequences x = (ai)i such that

‖x‖ = sup
π

( ∞∑
i=1

vi |aπ(i)|p
) 1
p

<∞,

where the supremum is taken over all permutations π of the set of positive integers. It
is well known that d(v, p) is reflexive if and only if 1 < p <∞. Note that the canonical
vectors {en}n form a symmetric basic sequence in d(v, p). In [18, Theorem 2] it is
proved that d(v, p) has the sequential Kadec–Klee property if 1 < p <∞. Moreover,
in [7] it is shown that d(v, p) (1 < p <∞) is uniformly convex if and only if

inf
n

∑2n
i=1 vi∑n
i=1 vi

= k > 1.

For basic properties of Lorentz sequence spaces, we refer the reader to [58].
As we will see below, Theorem A relates the strong subdifferentiability of the

space of homogeneous polynomials with the study of weakly sequentially continuous
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polynomials. In that sense, the lower and upper indices of a Banach space X defined
by Gonzalo and Jaramillo in [49] will appear naturally in our context, since they are
closely related to the study of weakly sequentially continuous polynomials. We are
particularly interested in the values of these indices for Orlicz and Lorentz sequence
spaces, computed by Gonzalo in [48]. First, we recall the definition of lower and
upper indices of a Banach space X. A sequence (xn)n in X is said to have an upper
p-estimate (1 6 p <∞) if there exists a constant C such that∥∥∥∥ n∑

n=1

anxn

∥∥∥∥ 6 C

( n∑
n=1

|an|p
) 1
p

for every n-tuple of scalars a1, . . . , an. A Banach space X has property Sp if every
weakly null semi-normalized basic sequence in X has a subsequence with an upper
p-estimate. The lower index of X is defined as

l(X) = sup{p > 1 : X has property Sp}.

Analogously, using lower q-estimates (instead of upper p-estimates) the property Tq
can be defined and the upper index of X is defined as

u(X) = inf{q > 1 : X has property Tq}.

It is not difficult to see that l(`p) = u(`p) = p for 1 < p <∞. As we already mentioned,
in [48] the author computes the values of lower and upper indices for Orlicz and
Lorentz sequence spaces. In the case of Orlicz spaces, it is shown that l(hM ) = αM
and u(hM ) = βM , where αM and βM are the lower and upper Boyd indices defined
in (2.5) and (2.6). Since we are interested in reflexive Orlicz spaces and, in that case,
the equality lM = hM holds, we will use that l(lM ) = αM and u(lM ) = βM . For
Lorentz sequence spaces, we believe that the exact values of both lower and upper
indices are not known. On the one hand, it is known that l(d(v, p)) = p for 1 < p <∞.
On the other hand u(d(v, p)) > r∗(v)p, where

r(v) = inf{s ∈ [1,∞] : v ∈ `s} and
1

r(v)
+

1

r∗(v)
= 1.

2.4. Motivation and tools. Recall that the Bishop–Phelps–Bollobás theorem states
that, given ε > 0, there exists η(ε) > 0 such that whenever (x∗0, x0) ∈ SX∗ × SX sat-
isfies |x∗0(x0)| > 1− η(ε) there exists (x∗1, x1) ∈ SX∗ × SX such that

|x∗1(x1)| = 1, ‖x∗1 − x∗0‖ < ε, and ‖x1 − x0‖ < ε.

Note that the characterization of SSD stated in Theorem 2.2 is a kind of Bishop–
Phelps–Bollobás theorem in which the point x0 is fixed and the η in the definition
depends not only on ε > 0 but also on the fixed point x0. In that sense, this property is
referred to as the local Bishop–Phelps–Bollobás point property, since we fix a point and
the η is localized. This property and its dual counterpart (where, instead of a point,
a linear functional is fixed and the function η depends on ε and the fixed functional)
were defined and studied in the context of linear and multilinear mappings.

For the sake of clarity, let us define the local Bishop–Phelps–Bollobás properties in
the context of N -linear mappings. As we are going to deal with the SSD of spaces of
polynomials and symmetric projective tensor products, we also define the polynomial
versions of such properties. We follow the notation in [32, 33, 34].
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Definition 2.4. Let N ∈ N and X,X1, . . . , XN , Y be Banach spaces.

(i) The local Bishop–Phelps–Bollobás point property (Lp,p, for short).

The pair (X1 × · · · × XN , Y ) has the Lp,p if, given ε > 0 and (x1, . . . , xN ) ∈
SX1

× · · · × SXN , there exists η(ε, x1, . . . , xN ) > 0 such that whenever A ∈
L(X1 × · · · ×XN , Y ) with ‖A‖ = 1 satisfies

‖A(x1, . . . , xN )‖ > 1− η(ε, x1, . . . , xN ),

there exists B ∈ L(X1 × · · · ×XN , Y ) with ‖B‖ = 1 such that

‖B(x1, . . . , xN )‖ = 1 and ‖B −A‖ < ε.

The pair (X,Y ) has the N -homogeneous polynomial Lp,p if, given ε > 0 and
x ∈ SX , there exists η(ε, x) > 0 such that whenever P ∈ SP(NX,Y ) satisfies

‖P (x)‖ > 1 − η(ε, x), there exists Q ∈ P(NX,Y ) such that ‖Q(x)‖ = 1 and
‖P −Q‖ < ε.

(ii) The local Bishop–Phelps–Bollobás operator property (Lo,o, for short).

The pair (X1 × · · · × XN , Y ) has the Lo,o if, given ε > 0 and A ∈ L(X1 ×
· · · × XN , Y ) with ‖A‖ = 1, then there exists η(ε,A) > 0 such that whenever
(x1, . . . , xN ) ∈ SX1

× · · · × SXN satisfies

‖A(x1, . . . , xN )‖ > 1− η(ε,A),

there exists (x01, . . . , x
0
N ) ∈ SX1

× · · · × SXN such that

‖A(x01, . . . , x
0
N )‖ = 1 and ‖x0i − xi‖ < ε

for every i = 1, . . . , N .

The pair (X,Y ) has the N -homogeneous polynomial Lo,o if, given ε > 0 and
P ∈ P(NX,Y ) with ‖P‖ = 1, there exists η(ε, P ) > 0 such that whenever x ∈
SX satisfies ‖P (x)‖ > 1− η(ε, P ), there exists x0 ∈ SX such that ‖P (x0)‖ = 1
and ‖x0 − x‖ < ε.

Let us briefly explain the connection between these local Bishop–Phelps–Bollobás
type properties and the geometry of the underlying Banach spaces. In the first place,
as an easy consequence of Theorem 2.2, we have the following:

• X is SSD if and only if the pair (X,K) has the Lp,p;

• X∗ is SSD if and only if the pair (X,K) has the Lo,o.

When dealing with vector-valued linear and multilinear operators, we have only one
of the implications in the above equivalences.

• If the pair (X1×· · ·×XN , Y ) has the Lp,p, then Xi is SSD for every i = 1, . . . , N
(see [33, Proposition 2.3]). The converse does not hold (see [32, Remark 3.3]).

• If the pair (X1×· · ·×XN , Y ) has the Lo,o, then X∗i is SSD for every i = 1, . . . , N
(see [33, Proposition 2.3]). The converse does not hold (see [24, Theorem 2.1]).

At this point, we are ready to point out our major motivation in the study of SSD
of the spaces of N -homogeneous polynomials and symmetric tensor products. Since
the projective tensor product of two Banach spaces X1 and X2 linearizes the space
of bilinear forms on X1 ×X2, the following questions come up naturally:

(Q1) Does the pair (X1 ×X2,K) have the Lp,p if and only if X1⊗̂πX2 is SSD?

(Q2) Does the pair (X1 ×X2,K) have the Lo,o if and only if (X1⊗̂πX2)∗ is SSD?

Concerning these questions, we observe the following facts.
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Fact 2.5. Let X and X1, . . . , XN be Banach spaces.

(i) By the linearization property of X1⊗̂π · · · ⊗̂πXN (or ⊗̂πs,NX), it is straightfor-

ward that if X1⊗̂π · · · ⊗̂πXN (respectively, ⊗̂πs,NX) is SSD, then the pair (X1×
· · · ×XN ,K) has the Lp,p (respectively, (X,K) has the N -homogeneous polyno-
mial Lp,p). The converse does not hold: consider N = 2 and X1 = X2 = `2 [33,
Corollary 2.8].

(ii) Suppose that X1 has the AP. If X1 is strictly convex or has the sequential Kadec–
Klee property, then (X1×X2,K) has the Lo,o if and only if the pair (X1⊗̂πX2,K)
has the Lo,o (equivalently, L(X1, X

∗
2 ) is SSD) [34].

Our goal is to obtain differentiability properties of symmetric tensor products and
their dual spaces, which are the spaces of homogeneous polynomials. In that sense, a
polynomial version of Fact 2.5(ii) would be helpful to obtain a relation between the
SSD of the norm of (⊗̂πs,NX)∗ = P(NX) and the N -homogeneous polynomial Lo,o.
A similar argument could be reproduced to obtain the SSD of the norm of the sym-
metric tensor product ⊗̂πs,NX from a pair (X,K) having the N -homogeneous poly-
nomial Lp,p. Unfortunately (or not), we cannot expect that since, as we state in
Fact 2.5(i), even in the case when N = 2 the SSD of the (symmetric) projective
tensor product cannot be deduced from the Lp,p properties. This point is where the
SSD (or USSD) on certain subsets are considered as the link between a differentia-
bility property of the symmetric tensor product and the (uniform) N -homogeneous
polynomial Lp,p.

2.5. Main results. We now state our main results, which will be proved in Sec-
tions 3 and 4. Although we are mainly interested in differentiability properties of
spaces of homogeneous polynomials and symmetric tensor products, we also state
some results in the context of multilinear mappings and (full, non-symmetric) projec-
tive tensor products. We focus first on the relation between the SSD of the norm of
the space of homogeneous polynomials and the N -homogeneous polynomial Lo,o (see
Definition 2.4).

Theorem A. Let N ∈ N, let X be a Banach space with the CAP and the sequen-
tial Kadec–Klee property, and let Y be a uniformly convex Banach space. Then, the
following are equivalent.

(a) P(NX,Y ∗) is SSD.

(b) The pair ((⊗̂πs,NX)⊗̂πY,K) has the Lo,o (for linear functionals).

(c) P(NX,Y ∗) is reflexive.

(d) P(NX,Y ∗) = Pwsc(
NX,Y ∗).

(e) The pair (X,Y ∗) has the N -homogeneous polynomial Lo,o.

As a consequence of the previous equivalence, we deduce the SSD of spaces of
homogeneous polynomials between `p, Lorentz and Orlicz sequence spaces. In view
of Theorem A, necessary and sufficient conditions for Orlicz and Lorentz sequence
spaces to be reflexive, sequential Kadec–Klee property, uniformly convex or uniformly
smooth were stated in Subsection 2.3.

Corollary A. Let 1 < p, q < ∞ and let M1, M2 be Orlicz functions such that
1 < αMi , βMi <∞ for i = 1, 2. Suppose that lM2 is uniformly smooth.

(i) P(N `p) is SSD if and only if N < p.

(i) P(N `p, `q) is SSD if and only if Nq < p.

(iii) P(N lM1) is SSD if and only if N < αM1 .

(iv) P(N lM1
, lM2

) is SSD if and only if NβM2
< αM1

.
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(v) P(Nd(w, p)) is SSD if and only if N < p.

(vi) P(Nd(w, p), lM2
) is SSD if and only if NβM2

< p.

Note that the equivalence between (a) and (b) in Theorem A follows immediately
from the fact that the pair (X,K) has the Lo,o if and only if X∗ is SSD. The impli-
cation (b) ⇒ (c) is trivial since, as we already mentioned in Definition 2.1, strongly
subdifferentiable dual spaces are reflexive. The equivalence (c) ⇔ (d) is essentially
contained in [59] (see also [52]), where it is proved that, if X, Y are reflexive and
X has the CAP, then P(NX,Y ) is reflexive if and only if P(NX,Y ) = Pwsc(

NX,Y ).
The implications (d) ⇒ (e) ⇒ (a) are left for the next section; in the first one we
need the sequential Kadec–Klee property of the space X, while the second holds for
every reflexive Banach space X and every uniformly convex Banach space Y .

Remark 2.6. Let us make some relevant observations related to the previous theorem.

(i) In view of Theorem A and Corollary A, it is natural to ask if there exists
some reflexive Banach space which is not SSD. In [65, Example 2], there is
an example of a reflexive Banach space Z (a renorming of `2) which is strictly
convex but is not midpoint locally uniformly rotund (for its definition, see the
article mentioned above). Then Z∗ is reflexive and is not SSD. Indeed, by [32,
Theorem 2.5], if a dual space X∗ is SSD, then X is strictly convex if and only
if X is midpoint locally uniformly rotund. This example shows that strong
subdifferentiability is a stronger property than reflexivity for dual spaces.

(ii) Note that any of the statements in the previous theorem imply that the space X
is reflexive. It is worth mentioning that the reflexivity of the space Y is necessary
for (e) ⇒ (a). Indeed, if X is a finite-dimensional space, then the pair (X,Y )
has the N -homogeneous polynomial Lo,o for every Banach space Y (the proof
is analogous to [24, Theorem 2.4], where the statement is proved for linear op-
erators). Then, if X is finite-dimensional and Y is non-reflexive, the pair (X,Y )
has the N -homogeneous polynomial Lo,o and P(NX,Y ) is not SSD. Moreover,
in order to obtain examples of spaces X and Y such that P(NX,Y ∗) is SSD,
the norms of X∗ and Y ∗ necessarily need to be SSD (see, for instance, the proof
of [34, Theorem B]).

(iii) In view of the previous remark, it is natural to ask if, in Theorem A, the uniform
convexity of Y can be relaxed to “Y ∗ is SSD”. We do not know if we can change
the uniform convexity hypothesis, which we use in the proof of (e) ⇒ (a).

(iv) If Y is reflexive and every P ∈ P(NX,Y ∗) attains its norm, then P(NX,Y ∗) is
reflexive by James’ theorem.

(v) A bounded linear operator defined on a reflexive Banach space is compact if and
only if it maps weakly convergent sequences into norm convergent sequences.
Having this in mind, it might be worth mentioning that item (d) in Theorem A
is not equivalent to saying that every P ∈ P(NX,Y ∗) is a compact polynomial,
provided that N > 2 (recall that P ∈ P(NX,Y ∗) is compact if it maps the unit
ball of X into a relatively compact set of Y ∗). For instance, N -homogeneous
polynomials from `2 to K are compact but P(N`2) is not reflexive, provided
that N > 2.

(vi) As we already mentioned in the introduction, our results should be compared
with those in [16, 40]. For instance, in [40, Theorem 2.4] Ferrera proved that,
given a real Banach space X, the norm of P(NX) is Fréchet differentiable at P ∈
SP(NX) if and only if P strongly attains its norm, which means that there exists
x0 ∈ SX such that if (xn)n ⊆ SX satisfies |P (xn)| → 1 as n → ∞, then
dist(xn, x0) or dist(xn,−x0) tends to zero. Similar results were obtained in [16],
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where Boyd and Ryan characterized Fréchet and Gâteaux differentiability of the
norm of spaces of homogeneous polynomials (and symmetric tensor products)
in terms of w∗-(strong) exposition of points in the unit ball. Note from the
equivalence (a) ⇔ (e) in Theorem A that, assuming that X has the CAP and
the sequential Kadec–Klee property, the norm of P(NX) is SSD at every norm-
one P ∈ P(NX) if and only if |P (xn)| → 1 as n→∞ implies dist(xn, NA(P ))→
0 for every norm-one P ∈ P(NX).

We now state the multilinear counterpart of Theorem A and Corollary A.

Theorem B. Let N ∈ N and X1, . . . , XN be reflexive Banach spaces with Schauder
bases such that X1, . . . , XN−1 have the sequential Kadec–Klee property and XN is
uniformly convex. Then, the following are equivalent.

(a) The norm of L(X1 × · · · ×XN ) = L(X1 × · · · ×XN−1, X
∗
N ) is SSD.

(b) The pair (X1⊗̂π · · · ⊗̂πXN ,K) has the Lo,o (for linear functionals).

(c) L(X1 × · · · ×XN ) is reflexive.

(d) L(X1 × · · · ×XN−1, X
∗
N ) = Lwsc(X1 × · · · ×XN−1, X

∗
N ).

(e) The pair (X1 × · · · ×XN ,K) has the Lo,o (for multilinear forms).

Theorem B provides the following characterizations applied for some specific Ba-
nach spaces. We refer the reader again to Subsection 2.3 for background on these
spaces.

Corollary B. Let 1 < p1, . . . , pN , q < ∞ and let M1, . . . ,MN+1 be Orlicz functions
satisfying the ∆2-condition and 1 < αM1

, βM1
, . . . , αMN+1

, βMN+1
<∞. Suppose also

that lMN+1
is uniformly smooth.

(i) L(`p1 × · · · × `pN ) is SSD if and only if 1
p1

+ · · ·+ 1
pN

< 1.

(ii) L(`p1 × · · · × `pN , `q) is SSD if and only if 1
p1

+ · · ·+ 1
pN

< 1
q .

(iii) L(lM1
× · · · × lMN

) is SSD if and only if 1
αM1

+ · · ·+ 1
αMN

< 1.

(iv) L(lM1 × · · · × lMN
, lMN+1

) is SSD if and only if 1
αM1

+ · · ·+ 1
αMN

< 1
βMN+1

.

(iv) L(d(w1, p1)× · · · × d(wN , pN )) is SSD if and only if 1
p1

+ · · ·+ 1
pN

< 1.

(vi) L(d(w1, p1)×· · ·×d(wN , pN ), lMN+1
) is SSD if and only if 1

p1
+· · ·+ 1

pN
< 1

βMN+1
.

As we did following the statement of Theorem A, we now make some observations
regarding the proof of the equivalence in Theorem B. The equivalence (a) ⇔ (b) and
the implication (b) ⇒ (c) are, as in the polynomial case, immediate. Note that, in
contrast with Theorem A, we require that X1, . . . , XN have Schauder bases, which
is stronger than the compact approximation property hypothesis. The reason is that
the equivalence (c) ⇔ (d) is proved in [38, Theorem 1 and Corollary 2] under this
stronger assumption. Hence, we only need to prove implications (d) ⇒ (e) ⇒ (a),
which we leave for the next section.

We now focus on the (uniform) strong subdifferentiability of symmetric (respec-
tively, full) projective tensor products from the polynomial (respectively, multilin-
ear) Lp,p. We consider the following subsets of X1⊗̂π · · · ⊗̂πXN and ⊗̂πs,NX, respec-
tively,

U := {x1 ⊗ · · · ⊗ xN : ‖x1‖ = · · · = ‖xN‖ = 1} ⊆ SX1⊗̂π···⊗̂πXN
and

Us := {⊗Nx : ‖x‖ = 1} ⊆ S⊗̂πs,NX ,
and we invoke Definitions 2.1 and 2.3 on the (uniform) SSD at a subset of the unit
sphere.
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Theorem C. In the symmetric projective tensor setting, the following statements
hold.

(i) ⊗̂πs,N `2 is USSD on Us for any N ∈ N.

(ii) c0⊗̂πsc0 is SSD on Us (in the complex case).

In the (full, non-symmetric) projective tensor setting, we have the following.

(iii) `2⊗̂π
N· · ·⊗̂π`2 is USSD on U for any N ∈ N.

(iv) c0⊗̂πc0 is SSD on U (in the complex case).

3. On the strong subdifferentiability of P(NX,Y ∗) and
L(X1 × · · · ×XN , Y ∗)

In this section, we prove Theorems A and B and their respective corollaries. In Sub-
section 3.2, we show that, under the assumption of X being uniformly convex (we re-
quire neither the CAP nor the sequential Kadec–Klee property), the N -homogeneous
polynomial Lo,o is equivalent to each N -homogeneous polynomial strongly expos-
ing a certain set (a property which is formally stronger than the SSD of the norm
of P(NX,Y ∗)). Finally, in Subsection 3.3, we make a diagram showing the implica-
tions between all the properties appearing in the previous sections, and the hypotheses
needed in each implication.

3.1. Proofs of Theorem A and Theorem B. We focus first on the proofs of Theo-
rems A and B. As we already mentioned, we only need to prove implications (d)⇒ (e)
⇒ (a) in both theorems.

Proof of Theorem A: We begin with (d) ⇒ (e). We are going to prove that if X is
reflexive and has the sequential Kadec–Klee property, then the pair (X,Y ∗) has the
N -homogeneous polynomial Lo,o for weakly sequentially continuous polynomials. That
is, given ε > 0 and P ∈ Pwsc(

NX,Y ∗) with ‖P‖ = 1, there exists η(ε, P ) > 0 such
that whenever x ∈ SX satisfies ‖P (x)‖ > 1− η(ε, P ) there exists x0 ∈ SX such that

‖P (x0)‖ = 1 and ‖x0 − x‖ < ε.

We argue by contradiction. Suppose that there are ε0 > 0, P0 ∈ Pwsc(
NX,Y ∗) with

‖P0‖ = 1, and (xn)n∈N ⊆ BX such that

(3.1) 1 > ‖P0(xn)‖ > 1− 1

n
and dist(xn,NA(P0)) > ε0 > 0.

Since X is reflexive, we may assume that there exists x0 ∈ BX such that xn
w−→ x0.

Given that P0 is weakly sequentially continuous, we have P0(xn)
‖·‖−−→ P0(x0). By

using (3.1), we get that ‖P0(x0)‖ = 1 and, therefore, x0 ∈ SX . AsX has the sequential
Kadec–Klee property, (xn)∞n=1 converges to x0 in norm, which is a contradiction.

Now we focus on the implication (e) ⇒ (a). Given a norm-one polynomial P ∈
P(NX,Y ∗) and ε > 0, we want to find δ > 0 such that

‖P + tQ‖ − 1

t
− τ(P,Q) < ε

for every 0 < t < δ and every Q ∈ P(NX,Y ∗) with ‖Q‖ = 1. Since Y is uniformly con-
vex, in view of the characterization of uniform convexity given in [54, Theorem 2.1],
we can take 0 < η̃(ε) < ε such that, if (y∗, y0) ∈ SY ∗×SY satisfies |y∗(y0)| > 1− η̃(ε),
then there exists y1 ∈ SY such that |y∗(y1)| = 1 and ‖y1 − y0‖ < ε. We will see that

δ =
η
(
2−1η̃

(
ε
2

)
, P
)

2
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works for our purposes, where η(ε, P ) > 0 is the one in hypothesis (e). Observe
that, without loss of generality, we may assume that 0 < η(ε, P ) < ε. In particular,
δ < 2−2η̃

(
ε
2

)
. For any Q with ‖Q‖ = 1 and 0 < t < δ fixed, take xt ∈ SX such that

‖(P + tQ)(xt)‖ = ‖P + tQ‖. Such an xt exists because hypothesis (e) implies that
every polynomial attains its norm. Then, we have

‖P (xt)‖ = ‖(P + tQ− tQ)(xt)‖ = ‖(P + tQ)(xt)− tQ(xt)‖

> ‖P + tQ‖ − t > 1− t− t > 1− 2δ = 1− η
(

2−1η̃

(
ε

2

)
, P

)
,

and, by hypothesis, there is z ∈ SX such that

‖P (z)‖ = 1 and ‖xt − z‖ < 2−1η̃

(
ε

2

)
.

Consider yt ∈ SY such that

(P + tQ)(xt)(yt) = ‖(P + tQ)(xt)‖ = ‖P + tQ‖.
Then,

‖P + tQ‖ − 1

t
− τ(P,Q) 6

Re[(P + tQ)(xt)(yt)]− Re[P (xt)(yt)]

t
− τ(P,Q)

= Re[Q(xt)(yt)]− τ(P,Q).

(3.2)

Now, from the inequalities

Re[P (xt)(yt)] = Re[(P + tQ− tQ)(xt)(yt)]

= Re[(P + tQ)(xt)(yt)]− Re[tQ(xt)(yt)]

> ‖P + tQ‖ − t > 1− 2t > 1− 2δ > 1− 2−1η̃

(
ε

2

)
and

|Re [P (z)(yt)]− Re[P (xt)(yt)]| 6 ‖P (z)− P (xt)‖ 6 ‖z − xt‖ 6 2−1η̃

(
ε

2

)
,

we deduce that

|P (z)(yt)| > Re[P (z)(yt)] > Re[P (xt)(yt)]− 2−1η̃

(
ε

2

)
> 1− η̃

(
ε

2

)
.

Then, by uniform convexity of Y , there exists y ∈ SY such that P (z)(y) = ‖P (z)‖ = 1
and ‖y − yt‖ < ε/2. Finally, since

τ(P,Q) > Re[Q(z)(y)],

going back to (3.2) we see that

‖P + tQ‖ − 1

t
− τ(P,Q) 6 Re[Q(xt)(yt)]− Re[Q(z)(y)]

6 Re[Q(xt)(yt)]− Re[Q(z)(yt)]+Re[Q(z)(yt)]− Re[Q(z)(y)]

6 ‖xt − z‖+ ‖yt − y‖ <
ε

2
+
ε

2
= ε,

whenever 0 < t < δ, which is the desired statement.

Proof of Theorem B: Let us begin with the implication (d) ⇒ (e). Arguing by con-
tradiction, exactly as in the proof of Theorem A, we observe that the pair (X1 ×
· · · ×XN−1, X

∗
N ) has the Lo,o for weakly sequentially continuous mappings. That is,

the statement in Definition 2.4(ii) holds for every A ∈ Lwsc(X1 × · · · ×XN−1, X
∗
N ).
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Assuming (d), this implies that the pair (X1 × · · · × XN−1, X
∗
N ) has the Lo,o. Take

ε > 0 and a norm-one N -linear form A ∈ L(X1 × · · · × XN ), and let η(·, Ã) > 0
be the one in the definition of property Lo,o for the pair (X1 × · · · × XN−1, X

∗
N ),

where Ã(x1, . . . , xN−1)(xN ) = A(x1, . . . , xN ). As XN is uniformly convex, there ex-
ists 0 < η̃(ε) < ε such that if (x∗N , xN ) ∈ SX∗N × SXN satisfies |x∗N (xN )| > 1 − η̃(ε),

then there exists x1N ∈ SXN such that |x∗N (x1N )| = 1 and ‖x1N − xN‖ < ε. Suppose
that

|A(x1, . . . , xN )| > 1− 1

2
η

(
η̃(ε)

2N
, Ã

)
.

We have

‖Ã(x1, . . . , xN−1)‖ > |Ã(x1, . . . , xN−1)(xN )| > 1− η
(
η̃(ε)

2N
, Ã

)
and, by the Lo,o property for the pair (X1×· · ·×XN−1, X

∗
N ), there exists a norm-one

element (x11, . . . , x
1
N−1) ∈ SX1

× · · · × SXN−1
such that

‖Ã(x11, . . . , x
1
N−1)‖ = 1 and ‖xi − x1i ‖ <

η̃(ε)

2N
, i = 1, . . . , N − 1.

As a consequence,∣∣|Ã(x11, . . . , x
1
N−1)(xN )| − |Ã(x1, . . . , xN−1)(xN )|

∣∣
6 |A(x11, . . . , x

1
N−1, xN )−A(x1, . . . , xN−1, xN )|

6 ‖x1N−1 − xN−1‖+ · · ·+ ‖x11 − x1‖

6
η̃(ε)

2

and, hence,

|Ã(x11, . . . , x
1
N−1)(xN )| > |Ã(x1, . . . , xN−1)(xN )| − η̃(ε)

2
> 1− η̃(ε).

Then, there exists x1N ∈ SXN such that

|Ã(x11, . . . , x
1
N−1)(x1N )| = 1 and ‖xN − x1N‖ < ε.

In summation,

|A(x11, . . . , x
1
N−1, x

1
N )| = 1 and ‖xi − x1i ‖ < ε, i = 1, . . . , N,

as desired.
Now we prove (e)⇒ (a). Given ε > 0 and A ∈ L(X1×· · ·×XN ), we will find δ > 0

such that
‖A+ tL‖ − 1

t
− τ(A,L) < Nε

for every 0 < t < δ and every L ∈ L(X1 × · · · ×XN ) with ‖L‖ = 1 (recall (2.2) and

(2.3)). We will see that δ := η(ε,A)
2 > 0 does the job, where η(ε,A) > 0 is the one in

the definition of property Lo,o (see Definition 2.4(ii)). For any L and 0 < t < δ fixed,
take xt = (xt1, . . . , x

t
N ) ∈ SX1

× · · · × SXN such that (A+ tL)(xt) = ‖A+ tL‖. Then,
we have

ReA(xt) = Re[(A+ tL)(xt)]− Re[tL(xt)]

> ‖A+ tL‖ − t > 1− t− t > 1− η(ε,A),
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and, by hypothesis, there exists zt = (zt1, . . . , z
t
N ) ∈ SX1

×· · ·×SXN with ‖xti−zti‖ < ε
and A(zt) = 1. That is, the linear functional defined as the evaluation in zt belongs
to the set D(A) of support functionals at A. Then,

‖A+ tL‖ − 1

t
− τ(A,L) =

Re[(A+ tL)(xt)]− 1

t
− τ(A,L)

6
Re[(A+ tL)(xt)]− Re[A(xt)]

t
− τ(A,L)

= Re[L(xt)]− τ(A,L) 6 Re[L(xt)]− Re[L(zt)] < Nε,

which proves the desired statement.

Now, we move towards the proof of Corollary A. In view of the equivalence (a)⇔ (d)
in Theorem A, and taking into account that all the Banach spaces considered in
Corollary A satisfy the hypotheses of the theorem (see Subsection 2.3), we only need
to check that the space of N -homogeneous polynomials coincides with the space of
weakly sequentially continuous N -homogeneous polynomials. The following remark
will be useful in the proof of the corollary.

Remark 3.1. In [51, Remark 3] the authors show that if X has a quotient isomorphic
to `p and N > p, then P(NX) 6= Pwsc(

NX). Following the same ideas we can see
that, if `p is isomorphic to a quotient of X, `q is isomorphic to a subspace of Y and
Nq > p, then P(NX,Y ) 6= Pwsc(

NX,Y ). Indeed, let π : X → `p be a quotient map
and take a bounded sequence (xn)n in X such that π(xn) = en, where {en} is the
canonical basis of `p. Since X does not contain a copy of `1, by Rosenthal’s theorem
we know that (xn)n admits a weakly Cauchy subsequence (xnj )j . Consider the weakly

null sequence in X given by yj = xn2j − xn2j+1 and the polynomial Q ∈ P(N `p, `q)
defined by

Q(a1, a2, . . . , aj , . . . ) = (aNn2
, aNn4

, . . . , aNn2j
, . . . )

(here we use the fact that Nq > p). Finally, let i : `q → Y be an isomorphism
onto its image and consider P = i ◦ Q ◦ π ∈ P(NX,Y ). Noting that ‖P (yj)‖ =
‖i(Q(en2j

− en2j+1
))‖ 6→ 0, we conclude that P is not weakly sequentially continuous.

Proof of Corollary A: For `p-spaces it is known that P(N`p) = Pwsc(
N`p) if and only

if N < p and that P(N `p, `q) = Pwsc(
N`p, `q) if and only if Nq < p (see for exam-

ple [39, Chapter 2.4]). This gives items (i) and (ii).
Let us prove items (iii) and (iv). On the one hand, by [49, Theorem 2.5 and

Corollary 2.6] we have that P(N lM1) = Pwsc(
N lM1) if N < l(lM1) = αM1 and that

P(N lM1 , lM2) = Pwsc(
N lM1 , lM2) if NβM2 = Nu(lM2) < l(lM1) = αM1 . This gives

the “if” implication in items (iii) and (iv). On the other hand, suppose that N >
αM1

. Putting p = αM1
, we have that `p is isomorphic to a quotient space of lM1

(see [57, Theorem 1 and Corollary 1]). Hence, from Remark 3.1, we deduce that
P(N lM1) 6= Pwsc(

N lM1) and, consequently, P(N lM1) is not SSD. In the vector-valued
case, suppose that NβM2 > αM1 and put p = αM1 and q = βM2 . Again by [57,
Theorem 1 and Corollary 1] we have that `p is isomorphic to a quotient space of lM1

and `q is isomorphic to a subspace of lM2
. Then, by virtue of Remark 3.1 we have

P(N lM1 , lM2) 6= Pwsc(
N lM1 , lM2), which is the desired statement.

Finally, we sketch the proof of items (v) and (vi). If N < l(d(w, p)) = p, then
P(Nd(w, p)) = Pwsc(

Nd(w, p)) by virtue of the cited results in [49]. When N > p,
given that d(w, p) has a quotient isomorphic to `p (see [56, Proposition 4]), by Re-
mark 3.1 we have that P(Nd(w, p)) 6= Pwsc(

Nd(w, p)). The proof of (vi) is analogous
to that of (iv).
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Alternatively, for the “only if” parts, one could use that under the hypotheses of
Remark 3.1, P(N `p, `q) is a subspace of P(NX,Y ). Thus, if Nq > p, this space cannot
be reflexive.

Proof of Corollary B: As in the proof of Corollary A, we only need to check that,
in each case, the space of N -linear mappings coincides with the space of weakly
sequentially continuousN -linear mappings (or, equivalently, that the space ofN -linear
mappings is reflexive). Note that, as in Corollary A, the spaces considered satisfy the
hypotheses of Theorem B. Items (i) and (ii) follow from the fact that L(`p1 × · · · ×
`pN , `q) = Lwsc(`p1×· · ·×`pN , `q) if and only if 1

p1
+· · ·+ 1

pN
< 1

q (see [39, Chapter 2.4]).

The “if” part of items (iii) and (iv) follows from [38, Lemma], where it is proved that
if

1

l(X1)
+ · · ·+ 1

l(XN )
<

1

u(XN+1)
,

then every N -linear mapping in L(X1 × · · · ×XN , XN+1) is weakly sequentially con-
tinuous.

The “only if” implication follows applying a multilinear version of Remark 3.1.
Specifically, it can be proved that if `pi , i = 1, . . . , N , is isomorphic to a quotient
of Xi, `q is isomorphic to a subspace of XN+1 and

1

p1
+ · · ·+ 1

pN
>

1

q
,

then L(X1 × · · · × XN , XN+1) 6= Lwsc(X1 × · · · × XN , XN+1). Or, as before, one
could see that L(`p1 × · · · × `pN , `q) is a subspace of L(X1 × · · · ×XN , XN+1). The
details are left to the reader. Finally, items (v) and (vi) follow by applying the same
arguments.

3.2. Strongly exposing polynomials. Before carrying out a deeper analysis of
the existing relation between the N -homogeneous polynomial Lo,o and strong subd-
ifferentiability, let us recall some definitions needed for this subsection. For an N -ho-
mogeneous polynomial P ∈ P(NX,Y ∗) with ‖P‖ = 1, we define the set

C(P ) := co{(⊗Nx)⊗ y : x ∈ SX , y ∈ SY , and P (x)(y) = 1},

which clearly satisfies C(P ) ⊆ D(P ) = {ϕ ∈ SP(NX,Y ∗)∗ : ϕ(P ) = 1}. Note that when
N = 1, X is reflexive and Y = K we have that C(P ) = D(P ), but the equality does not
hold in general. As we already mentioned in Subsection 2.1, the norm of P(NX,Y ∗) is
SSD at P if and only if P strongly exposes D(P ). Our aim in this section is to establish
some relations between the N -homogeneous polynomial Lo,o, strong exposition of the
set C(P ) and strong subdifferentiability of the norm of P(NX,Y ∗). As a byproduct,
we obtain a result on the denseness of norm-attaining symmetric tensor products, in
the same line as [26].

Remark 3.2. Let X, Y be Banach spaces and P ∈ SP(NX,Y ∗). If P strongly ex-

poses C(P ), then the norm of P(NX,Y ∗) is SSD at P since C(P ) ⊆ D(P ). In
particular, if P strongly exposes C(P ) for every P ∈ SP(NX,Y ∗), then the norm

of P(NX,Y ∗) is SSD.

Implication (e) ⇒ (a) of Theorem A shows that, without any assumption on the
space X, the N -homogeneous polynomial Lo,o of the pair (X,K) imply that P(NX)
is SSD. In other words, the N -homogeneous polynomial Lo,o is stronger than strong
subdifferentiability. In view of the previous remark, it is natural to ask if there is a
relation between the N -homogeneous polynomial Lo,o and the situation when every
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P ∈ SP(NX,Y ∗) strongly exposes the set C(P ). In Theorem 3.4 below, we prove that if
the underlying spaces are uniformly convex, these properties are in fact equivalent. In
order to do this, we prove an auxiliary lemma which relates the N -homogeneous poly-
nomial Lo,o with the denseness of norm-attaining symmetric tensors. This result, inter-

esting on its own, should be compared with [26, Theorem 3.8]. Recall that z ∈ ⊗̂πs,NX
attains its projective symmetric norm if there are bounded sequences (λn)∞n=1 ⊆ K
and (xn)∞n=1 ⊆ BX such that ‖z‖πs,N =

∑∞
n=1 |λn| and z =

∑∞
n=1 λn ⊗N xn. In

such a case, we say that the tensor z is norm-attaining. We denote by NAπ(⊗̂πs,NX)

the set of all z ∈ ⊗̂πs,NX such that z attains its projective symmetric norm. Analo-

gously, z ∈ (⊗̂πs,NX)⊗̂πY attains its projective norm if there are bounded sequences
(λn)∞n=1 ⊆ K, (xn)∞n=1 ⊆ BX and (yn)∞n=1 ⊆ BY such that z =

∑∞
n=1 λn(⊗Nxn)⊗ yn

with ‖z‖π =
∑∞
n=1 |λn|. As expected, we denote by NAπ((⊗̂πs,NX)⊗̂πY ) the set of

norm-attaining tensors.

Lemma 3.3. Let X and Y be reflexive Banach spaces.

(i) If the pair (X,K) has the N -homogeneous polynomial Lo,o, then

NAπ(⊗̂πs,NX)
‖·‖π,s,N

= ⊗̂πs,NX.

In fact, given ε > 0 and z ∈ S⊗̂πs,NX , if P0 ∈ SP(NX) satisfies 1 = 〈P0, z〉, there

exists w ∈ NAπ(⊗̂πs,NX) such that ‖w − z‖πs,N < ε and ‖w‖πs,N = 〈P0, w〉.
(ii) If Y is uniformly convex and the pair (X,Y ∗) has the N -homogeneous polyno-

mial Lo,o, then

NAπ((⊗̂πs,NX)⊗̂πY )
‖·‖π

= (⊗̂πs,NX)⊗̂πY.

In fact, given ε > 0 and z ∈ S(⊗̂πs,NX)⊗̂πY , if P0 ∈ SP(NX,Y ∗) satisfies 1 =

〈P0, z〉, there exists w ∈ NAπ((⊗̂πs,NX)⊗̂πY ) such that ‖w − z‖π < ε and
‖w‖π = 〈P0, w〉.

Proof: For the proof of (i), we follow ideas from [29, Proposition 4.3]. Let z ∈ ⊗̂πs,NX
with ‖z‖ = 1 and ε > 0 be given and fix δ > 0 (which will be chosen appropriately
later). We can find P0 ∈ P(NX) such that ‖P0‖ = 〈P0, z〉 = 1. Let z′ =

∑m
j=1 λj⊗Nxj

with λj > 0, (xj)j ⊂ BX and m ∈ N be such that

m∑
j=1

λj 6 1 + η(δ, P0)2 and ‖z − z′‖ < η(δ, P0)2,

where η(δ, P0) > 0 is the one given in the definition of the N -homogeneous polyno-
mial Lo,o of the pair (X,K). Note that

1 + η(δ, P0)2 >
m∑
j=1

λj > Re

m∑
j=1

λj〈P0,⊗Nxj〉 > 1− η(δ, P0)2,

which implies that
∑m
j=1 λj(1− Re〈P0,⊗Nxj〉) < 2η(δ, P0)2. Now, defining

A = {i ∈ {1, . . . ,m} : 1− Re〈P0,⊗Nxi〉 < η(δ, P0)}

and noting that

η(δ, P0)
∑

j∈{1,...,m}\A

λj 6
∑

j∈{1,...,m}\A

λj(1− Re〈P0,⊗Nxj〉) < 2η(δ, P0)2,
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we deduce
∑
j∈{1,...,m}\A λj < 2η(δ, P0). By the N -homogeneous polynomial Lo,o of

the pair (X;K), for each j ∈ A we can take uj ∈ SX so that

|P0(uj)| = 1 and ‖uj − xj‖ < δ.

Write P0(uj) = θj ∈ T for each j ∈ A. Note that ‖ ⊗N uj − ⊗Nxj‖ < NN+1

N ! δ for
each j ∈ A (see, for instance, [26, Lemma 2.2]). Moreover, for each j ∈ A,

Re θj = Re〈P0,⊗Nuj〉 > (1− η(δ, P0))− NN+1

N !
δ,

which implies that |1 − θj | <
√

2
(
η(δ, P0) + NN+1

N ! δ
)

for each j ∈ A (if we consider

the real scalar field, then θj would be 1). If we let w =
∑
j∈A λjθ

−1
j ⊗N uj , then

‖w − z‖ 6 ‖w − z′‖+ ‖z′ − z‖

6

∥∥∥∥∑
j∈A

λjθ
−1
j ⊗

N uj −
m∑
j=1

λj ⊗N xj

∥∥∥∥+ η(δ, P0)2

6

∥∥∥∥∑
j∈A

λjθ
−1
j ⊗

N uj −
∑
j∈A

λj ⊗N uj

∥∥∥∥
+

∥∥∥∥∑
j∈A

λj(⊗Nuj −⊗Nxj)
∥∥∥∥+ 2η(δ, P0) + η(δ, P0)2

< (1 + η(δ, P0)2)

(√
2

(
η(δ, P0) +

NN+1

N !
δ

)
+
NN+1

N !
δ

)
+ 2η(δ, P0) + η(δ, P0)2.

On the one hand, choosing δ > 0 small enough we obtain ‖w − z‖ < ε. On the other
hand, noticing that ‖w‖ = 〈P0, w〉 =

∑
j∈A λj we deduce that w attains its norm.

We briefly sketch the proof of (ii), which is analogous to the previous one. In what
follows, we denote ‖·‖ both projective and symmetric projective norms, since it is clear
by context. Let ε> 0 and z ∈ S(⊗̂πs,NX)⊗̂πY be given, and consider P0 ∈ SP(NX,Y ∗)
such that 1 = 〈P0, z〉. Take the element z′ =

∑m
j=1

(∑n
i=1 λj,i⊗N xj,i

)
⊗yj with λj,i >

0, xj,i ⊂ BX , and yj ∈ BY such that

m∑
j=1

n∑
i=1

λj,i 6 1 + min

{
η

(
δY (δ/2)

2
, P0

)
,
δY (δ/2)

2

}2

=: 1 + η̃(δ, P0)2

and ‖z − z′‖ < η̃(δ, P0)2, where δ > 0 is fixed (and chosen appropriately below) and
δY (·) is the modulus of uniform convexity of Y . It can be seen that

m∑
j=1

n∑
i=1

λj,i(1− ReP0(xj,i)(yj)) < 2η̃(δ, P0)2.

Then, defining

A = {(j, i) ∈ {1, . . . ,m} × {1, . . . , n} : 1− ReP0(xj,i)(yj) < η̃(δ, P0)}

we have ∑
(j,i)/∈A

λj,i < 2η̃(δ, P0).
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Now, on the one hand, by the N -homogeneous polynomial Lo,o of the pair (X,Y ∗),
for each (j, i) ∈ A we can take uj,i ∈ SX so that

‖P0(uj,i)‖ = 1 and ‖uj,i − xj,i‖ <
δY (δ/2)

2
.

On the other hand, for each (j, i) ∈ A we have

|P0(uj,i)(yj)| > |P0(xj,i)(yj)| − ‖uj,i − xj,i‖

> ReP0(xj,i)(yj)− ‖uj,i − xj,i‖

> 1− η̃(δ, P0)− δY (δ/2)

2
> 1− δY (δ/2)

2
− δY (δ/2)

2

and, since Y is uniformly convex, by [54, Theorem 2.1] there exists vj ∈ SY such that

|P0(uj,i)(vj)| = 1 and ‖vj − yj‖ < δ.

Then, putting θj,i = P0(uj,i)(vj), the norm-attaining tensor which approximates z is

w =
∑

(j,i)∈A

( n∑
i=1

λj,iθ
−1
j,i ⊗

N uj,i

)
⊗ vj .

Now, we are ready to prove the mentioned equivalence between the N -homogeneous
polynomial Lo,o and strong exposition of the set C(P ).

Theorem 3.4. Let X and Y be uniformly convex Banach spaces. The pair (X,Y ∗)
has the N -homogeneous polynomial Lo,o if and only if P strongly exposes C(P ) for
every P ∈ SP(NX,Y ∗).

Proof: Suppose first that (X,Y ∗) has the N -homogeneous polynomial Lo,o. In view
of implication (e) ⇒ (a) of Theorem A, P(NX,Y ∗) is SSD (here we use the uniform
convexity of Y ). Hence, it is enough to show that C(P ) andD(P ) coincide for each P ∈
P(NX,Y ∗) with ‖P‖ = 1. To this end, let φ ∈ D(P ). Since P(NX,Y ∗) is reflexive we
have φ ∈ (⊗̂πs,NX)⊗̂πY and, by Lemma 3.3, we know that given ε > 0 there exists

φ′ =
∑m
j=1

(∑n
i=1 λj,i ⊗N uj,i

)
⊗ vj in (⊗̂πs,NX)⊗̂πY satisfying

‖φ′‖ = 〈P, φ′〉 =

m∑
j=1

n∑
i=1

λj,i and ‖φ− φ′‖ < ε,

where λj,i > 0, uj,i ∈ SX , and vj ∈ SY for each (j, i) ∈ {1, . . . ,m} × {1, . . . , n}. This

implies that φ
′′

:= φ
′

‖φ′‖ =
∑m
j=1

∑n
i=1

( λj,i
‖φ′‖ ⊗

N uj,i
)
⊗ vj ∈ C(P ) and

‖φ
′′
− φ‖ =

∥∥∥∥ φ
′

‖φ′‖
− φ

‖φ′‖
− φ

(
1− 1

‖φ′‖

)∥∥∥∥
6
‖φ′ − φ‖
‖φ′‖

+ ‖φ‖
(
|‖φ′‖ − 1|
‖φ′‖

)
<

ε

1− ε
+

ε

1− ε
=

2ε

1− ε
.

Thus, D(P ) ⊆ C(P ) and we are done.
Now, let us see the reverse implication. Suppose, by contradiction, that (X,Y ∗)

does not satisfy theN -homogeneous polynomial Lo,o. Then, there exists P ∈P(NX,Y ∗)
with ‖P‖ = 1 and ε0 > 0 such that, for every n ∈ N, there exists xn ∈ SX with

(3.3) 1− 1

n
6 ‖P (xn)‖ 6 1 and dist(xn,NA(P )) > ε0 > 0.

Take yn ∈ SY and θn ∈ T so that

|P (xn)(yn)| = P (xn)(θnyn) > 1− 1

n
.
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Since P strongly exposes C(P ), we have that dist((⊗Nxn)⊗ θnyn, C(P ))→ 0. With-
out loss of generality, we assume that, for every n ∈ N,

dist((⊗Nxn)⊗ θnyn, C(P )) 6
1

n
.

For each n ∈ N, take λ1,n, . . . , λsn,n > 0, u1,n, . . . , usn,n ∈ SX and v1,n, . . . , vsn,n ∈ SY
to be such that

(I)

sn∑
j=1

λj,n = 1,

(II) P (uj,n)(vj,n) = 1 for every j = 1, . . . , sn, and

(III)

∥∥∥∥(⊗Nxn)⊗ θnyn −
sn∑
j=1

λj,n(⊗Nuj,n)⊗ vj,n
∥∥∥∥ < 1

n
.

Now, let us take x∗n ∈ SX∗ and y∗n ∈ SY ∗ to be such that x∗n(xn) = 1 and y∗n(yn) = θ−1n
for every n ∈ N. Then

Re

sn∑
j=1

λj,nx
∗
n(uj,n)Ny∗n(vj,n) = Re

〈
(x∗n)N ⊗ y∗n,

sn∑
j=1

λj,n(⊗Nuj,n)⊗ vj,n
〉

(III)

> Re〈(x∗n)N ⊗ y∗n, (⊗Nxn)⊗ θnyn〉 −
1

n
= 1− 1

n
.

By a standard convex combination argument, there exists tn ∈ {1, . . . , sn} such that
zn := utn,n ∈ SX and wn := vtn,n ∈ SY satisfy

Rex∗n(zn)Ny∗n(wn) > 1− 1

n
.

Taking n0 ∈ N large enough so that(
1− 1

n0

) 1
N

> 1− δX(ε0/2),

we have

|x∗n0
(zn0)| > 1− δX(ε0/2),

which implies, by the uniform convexity of X, that ‖θzn0
−xn0

‖ < ε0 for some θ ∈ T.
But ‖P (θzn0

)‖ = 1 from (II) above, which yields a contradiction with (3.3).

Remark 3.5. It is worth noting that if X has the CAP and the sequential Kadec–Klee
property, and Y is uniformly convex, then the following are equivalent:

(a) P(NX,Y ∗) is SSD.

(b) (X,Y ∗) has the N -homogeneous polynomial Lo,o.

(c) P strongly exposes C(P ) for every P ∈ SP(NX,Y ∗).
Indeed, implication (a) ⇒ (b) follows from Theorem A (here we use the CAP and
Kadec–Klee properties of the space X), while (b) ⇒ (c) follows from the first im-
plication in the proof of Theorem 3.4. Finally, implication (c) ⇒ (a) is Remark 3.2.
In view of Theorem 3.4, we have that the equivalence (b) ⇔ (c) holds whenever
Y is uniformly convex and X is uniformly convex or has the CAP and the sequen-
tial Kadec–Klee property. Since there exist uniformly convex spaces failing the CAP
(see, for instance, [67]), Theorem 3.4 applies to Banach spaces which are not in the
hypotheses of Theorem A.
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3.3. Diagram with implications. In order to sum up all the properties we have
discussed in the previous subsections, we provide diagrams that show the connections
between them and the required hypotheses.

Let X,Y,X1, . . . , XN be reflexive Banach spaces, and consider the following state-
ments:

(A) P(NX,Y ∗) is SSD.

(B) The pair ((⊗̂πs,NX)⊗̂πY,K) has the Lo,o (for linear functionals).

(C) P(NX,Y ∗) is reflexive.

(D) P(NX,Y ∗) = Pwsc(
NX,Y ∗).

(E) The pair (X,Y ∗) has the N -homogeneous polynomial Lo,o.

(F) P strongly exposes C(P ) for every P ∈ SP(NX,Y ∗),
and

(A′) The norm of L(X1 × · · · ×XN ) = L(X1 × · · · ×XN−1, X
∗
N ) is SSD.

(B′) The pair (X1⊗̂π · · · ⊗̂πXN ,K) has the Lo,o (for linear functionals).

(C′) L(X1 × · · · ×XN ) is reflexive.

(D′) L(X1 × · · · ×XN−1, X
∗
N ) = Lwsc(X1 × · · · ×XN−1, X

∗
N ).

(E′) The pair (X1 × · · · ×XN ,K) has the Lo,o (for multilinear forms).

Then the following implications hold:

(A)

(B)

(C) (D) (E) (F)

X: CAP

X: seq. KK

Y : UC

X: UC

and

(A′)

(B′)

(C′) (D′) (E′)
X1,...,XN : Schauder basis X1,...,XN−1: seq. KK

XN : UC

4. On the (uniform) strong subdifferentiability of X⊗̂πY
and ⊗̂πs,NX

In this section, we establish a connection between the strong subdifferentiability of
(symmetric) projective tensor products and the Bishop–Phelps–Bollobás point type
properties, which are the dual counterpart of Lo,o properties. Let us briefly clarify the
point properties we will deal with throughout the section. In [31] (see also [30]), the
authors defined and studied the Bishop–Phelps–Bollobás point property (BPBpp, for
short) for linear and bilinear operators. We state this property in the next definition
and extend it to the polynomial setting.
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Definition 4.1. Let N ∈ N and X,X1, . . . , XN , Y be Banach spaces. We say that the
pair (X1×· · ·×XN , Y ) has the BPBpp if, given ε > 0, there exists η(ε) > 0 such that,
whenever A ∈ L(X1×· · ·×XN , Y ) with ‖A‖ = 1 and (x1, . . . , xN ) ∈ SX1 ×· · ·×SXN
satisfy

‖A(x1, . . . , xN )‖ > 1− η(ε),

there is a new N -linear mapping B ∈ L(X1 × · · · ×XN , Y ) with ‖B‖ = 1 such that

‖B(x1, . . . , xN )‖ = 1 and ‖B −A‖ < ε.

Analogously, we say that the pair (X,Y ) has the N -homogeneous polynomial BPBpp
if, given ε > 0, there exists η(ε) > 0 such that whenever P ∈ P(NX,Y ) with ‖P‖ = 1
and x ∈ SX satisfy ‖P (x)‖ > 1− η(ε), there exists Q ∈ P(NX,Y ) with ‖Q‖ = 1 such
that ‖Q(x)‖ = 1 and ‖P −Q‖ < ε.

Note that these properties are the uniform versions of properties Lp,p from Def-
inition 2.4, in the sense that the η does not depend on the points (x1, . . . , xN ) ∈
SX1
× · · · × SXN and x ∈ SX but only on ε > 0. Using these Bishop–Phelps–Bollobás

point type properties as tools, we will derive some strong subdifferentiability results

for the Banach spaces `2⊗̂π
N· · ·⊗̂π`2, ⊗̂πs,N`2, c0⊗̂πc0, and c0⊗̂πsc0 from BPBpp

and Lp,p type results (see Subsection 4.2 below).
It is not difficult to see that, both in the above definition and in Definition 2.4(i),

we can take ‖A‖ and ‖P‖ less than or equal to one (not necessarily ‖A‖ = ‖P‖ = 1)
by making a standard change of parameters. We will make use of this fact without
any explicit mention.

4.1. The tools. We start this section by proving the tool we need to prove the
results in Theorem C. It is known that the pair (X,K) has the BPBpp for linear
functionals if and only if X is uniformly smooth (see [31, Proposition 2.1]). Note that
the uniform smoothness of X is equivalent to saying that the norm of X is USSD
on U = SX (recall Definition 2.3). Our next result is a localization of the above
mentioned characterization.

Proposition 4.2. Let X be a Banach space and U ⊆ SX . Then the following are
equivalent.

(a) The norm of X is USSD on U .

(b) The pair (X,K) has the BPBpp for the set U . That is, given ε > 0, there exists
η(ε) > 0 such that whenever x∗1 ∈ SX∗ and u ∈ U satisfy |x∗1(u)| > 1 − η(ε),
there exists x∗2 ∈ SX∗ such that |x∗2(u)| = 1 and ‖x∗1 − x∗2‖ < ε.

Proof: Suppose that the norm of X is USSD on the set U . Given ε > 0, let δ > 0 be
such that, if 0 < t < δ, then

‖u+ tz‖ − 1

t
− τ(u, z) <

ε

2

for every (u, z) ∈ U × BX (recall (2.4)). We will show that the pair (X,K) has the
BPBpp for the set U with η(ε) := δε

4 > 0. Suppose that this is not the case. Then,
there exist u ∈ U and x∗ ∈ SX∗ such that Rex∗(u) > 1 − η(ε) and ‖x∗ − x̃∗‖ >
ε for every x̃∗ ∈ SX∗ satisfying x̃∗(u) = 1. Then, D(u) and x∗ + εBX∗ are w∗-
compact, convex, and disjoint sets. Now, by the Hahn–Banach separation theorem,
there exists z ∈ SX such that

τ(u, z) = max{Re x̃∗(z) : x̃∗ ∈ D(u)}
6 min{Re(x∗ + εz∗)(z) : z∗ ∈ BX∗} = Rex∗(z)− ε.
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Then, for t = δ
2 we have

ε

2
>
‖u+ tz‖ − 1

t
− τ(u, z) >

Rex∗(u+ tz)− 1

t
− Rex∗(z) + ε

=
Rex∗(u)− 1

t
+ ε

>
1− η − 1

t
+ ε =

−η
t

+ ε =
−δε

4

2

δ
+ ε =

ε

2
,

which is a contradiction. The other implication is analogous to [31, Proposition 2.1].

Although Proposition 4.2 may seem artificial at first glance, it is useful to relate
the BPBpp (for multilinear operators and homogeneous polynomials) with the geom-
etry of the (symmetric) tensor products. From now on, given X,X1, . . . , XN Banach
spaces, we fix notation as follows:

U := {x1 ⊗ · · · ⊗ xN : ‖xj‖ = 1} ⊆ SX1⊗̂π···⊗̂πXN ;

Us := {⊗Nx : ‖x‖ = 1} ⊆ S⊗̂πs,NX .

Proposition 4.3. Let X,X1, . . . , XN be Banach spaces.

(i) X1⊗̂π · · · ⊗̂πXN is USSD on U if and only if (X1×· · ·×XN ,K) has the BPBpp.

(ii) ⊗̂πs,NX is USSD on Us if and only if (X,K) has the N -homogeneous polyno-
mial BPBpp.

Proof: A simple linearizing argument shows that (X1 × · · · ×XN ,K) has the BPBpp
if and only if (X1⊗̂π · · · ⊗̂πXN ,K) has the BPBpp for the set U . This means that
the statement follows from Proposition 4.2. A similar argument can be applied in the
polynomial context.

When dealing with (non-necessarily uniform) strong subdifferentiability of tensor
products, we have the analogous local version of Proposition 4.3. Recall the definition
of the N -homogeneous polynomial Lp,p in Definition 2.4.

Proposition 4.4. Let X,X1, . . . , XN be Banach spaces.

(i) X1⊗̂π · · · ⊗̂πXN is SSD on U if and only if (X1 × · · · ×XN ,K) has the Lp,p.

(ii) ⊗̂πs,NX is SSD on Us if and only if (X,K) has the N -homogeneous polyno-
mial Lp,p.

Proof: The proofs of items (i) and (ii) are analogous. Hence we only prove (i). The
pair (X1×· · ·×XN ,K) fails the Lp,p if and only if there is (x1, . . . , xN ) ∈ SX1 ×· · ·×
SXN and a sequence of norm-one N -linear forms Ln : X1 × · · · ×XN → K, such that

Ln(x1, . . . , xN ) −→ 1 and dist(Ln, D(x1, . . . , xN )) −→/ 0,

where D(x1, . . . , xN ) = {L ∈ L(X1 × · · · × XN ,K) : L(x1, . . . , xN ) = ‖L‖ = 1}. In
terms of projective tensor products, there is an element u = x1 ⊗ · · · ⊗ xN ∈ U and
a sequence of norm-one linear functionals ϕn ∈ (X1⊗̂π · · · ⊗̂πXN )∗ (each ϕn is the
functional associated to Ln) such that

ϕn(u) −→ 1 and dist(ϕn, D(u)) −→/ 0,

which is equivalent to the norm of X1⊗̂π · · · ⊗̂πXN not being SSD at u.
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4.2. Proof of Theorem C. Now we are ready to proceed to the proof of Theorem C.
On the one hand, in Theorem 4.5 we prove that if X,X1, . . . , XN are Banach spaces
with micro-transitive norms (see the definition in the paragraph below), then (X1 ×
· · ·×XN ,K) and (X,K) have the multilinear and N -homogeneous polynomial BPBpp,
respectively. Since Hilbert spaces have micro-transitive norms, this result together
with Proposition 4.3 gives items (i) and (iii) of Theorem C. On the other hand, we
prove that the pair (c0,C) has the 2-homogeneous Lp,p by observing that, roughly
speaking, a 2-homogeneous polynomial P on c0 is almost finite whenever it almost
attains its norm. In fact, we will provide a slightly stronger result with codomain a
finite-dimensional Hilbert space. This, together with Proposition 4.4, proves item (ii).
Item (iv) follows from the result in [20] where it is proved that (c0 × c0,C) has the
bilinear Lp,p. It might be worth mentioning that `N1 ⊗̂πY is SSD if and only if Y is

SSD since `N1 ⊗̂πY = `N1 (Y ) (see, for instance, [43, Proposition 2.2]).

4.2.1. The BPBpp on spaces with micro-transitive norms. Given a Hausdorff
topological group G with identity e and a Hausdorff space T , we say an action G×T →
T is micro-transitive if for every x ∈ T and every neighborhood U of e in G the
orbit Ux is a neighborhood of x in T . In terms of Banach spaces, we say that the
norm of a Banach space is micro-transitive if its group of surjective isometries acts
micro-transitively on its unit sphere. Equivalently, we have that the norm of a Banach
space is micro-transitive if and only if there is a function β : (0, 2) → R+ such that
if x, y ∈ SX satisfy ‖x − y‖ < β(ε), then there is a surjective isometry T ∈ L(X,X)
satisfying T (x) = y and ‖T − Id‖ < ε (see [17, Proposition 2.1]).

Theorem 4.5. Let X,X1, . . . , XN be Banach spaces with micro-transitive norms and
Z an arbitrary Banach space. Then the following results hold.

(i) The pair (X1 × · · · ×XN , Z) has the BPBpp.

(ii) The pair (X,Z) has the N -homogeneous polynomial BPBpp.

Proof: Let us first prove item (i). For simplicity, we prove the case N = 2. By [17,
Collorary 2.13], X1 and X2 are uniformly convex and uniformly smooth. Then, it
follows from [5, Theorem 2.2] that (X1 × X2, Z) has the Bishop–Phelps–Bollobás
property with ε 7→ η(ε). Let A ∈ L(X1 × X2, Z) with ‖A‖ = 1 and ‖A(x1, x2)‖ >
1− η′(ε) for some x1 ∈ SX1

and x2 ∈ SX2
, where

η′(ε) = η

(
min

{
ε

3
, βX1

(
ε

3

)
, βX2

(
ε

3

)})
.

Here, βX1 , βX2 : (0, 2)→ R+ are functions induced from the micro-transitivity of the

norms X1 and X2, respectively. Then there are B̃ ∈ L(X1 × X2, Z) and (x̃1, x̃2) ∈
SX1
× SX2

such that

• ‖B̃‖ = ‖B̃(x̃1, x̃2)‖ = 1,

• max{‖x1 − x̃1‖, ‖x2 − x̃2‖} < min
{
βX1

(
ε
3

)
, βX2

(
ε
3

)}
,

• ‖B̃ −A‖ < ε
3 .

Let Tj ∈ L(X1, X1), j = 1, 2, be surjective isometries such that

Tj(xj) = x̃j and ‖Tj − IdXj‖ <
ε

3
(j = 1, 2).

Define B(x, y) = B̃(T1(x), T2(y)) for every (x, y) ∈ X1 × X2. Then it is routine to
check that ‖B‖ = ‖B(x1, x2)‖ = 1 and ‖A−B‖ 6 ε.
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The proof of (ii) follows the same line as the previous one. Using again the fact
that a Banach space X with micro-transitive norm is uniformly convex and taking [4,
Theorem 3.1] into account, we deduce that (X,Z) has the Bishop–Phelps–Bollobás
property with ε 7→ η(ε). Hence, if P ∈ P(NX,Z) with ‖P‖ = 1 is such that

‖P (x0)‖ > 1− η
(

min

{
ε

N + 1
, βX

(
ε

N + 1

)})
for some x0 ∈ SX , then there exist Q̃ ∈ P(NX,Z), ‖Q̃‖ = 1, and x̃0 ∈ SX such that

‖Q̃(x̃0)‖ = 1, ‖x0 − x̃0‖ <
ε

N + 1
, and ‖P − Q̃‖ < ε

N + 1
.

Finally, letting T ∈ L(X,X) be a surjective isometry such that T (x0) = x̃0 and

‖T − IdX‖ < ε
N+1 , we consider Q(x) = Q̃(T (x)), which attains its norm at x0 ∈ SX

and approximates P . The details are left to the reader.

The previous theorem together with Proposition 4.3 shows that if X,X1, . . . , XN

are Banach spaces with micro-transitive norms, then X1⊗̂π · · · ⊗̂πXN is USSD on U
and ⊗̂πs,NX is USSD on Us. Although we stated the result for Banach spaces with
micro-transitive norms, the existence of Banach spaces with micro-transitive norms
other than Hilbert spaces remains an open problem.

4.2.2. The Lp,p for 2-homogeneous polynomials on c0. In order to prove the
2-homogeneous polynomial Lp,p for the pair (c0, H), with H a finite-dimensional
complex Hilbert space, we need the following key result which is motivated by [9,
Proposition 2]. For a subset A of N, let us denote by πA the natural projection
from c0 onto `A∞.

Proposition 4.6. Consider the complex space c0 and a complex Hilbert space H.
Given x0 ∈ Sc0 and ε > 0, there exists η(ε, x0) > 0 such that ‖P − P ◦ πA‖ < ε for
any P ∈ P(2c0, H) with ‖P‖ = 1 and ‖P (x0)‖ > 1 − η(ε, x0), where A := {i ∈ N :
|x0(i)| = 1}.

Proof: Suppose that ‖P (x0)‖ > 1 − ε0. We will see that ε0 > 0 can be chosen de-
pending on x0 and ε > 0 in such a way that ‖P − P ◦ πA‖ < ε. For simplicity, and
without loss of generality, we will suppose that A = {1, . . . , n}. Now, consider

y = (0, . . . , 0, yn+1, yn+2, . . . ) ∈ Bc0 .

Then, for every λ ∈ C, |λ| = 1−max{|x0(i)| : i > n}, we have

(4.1) ‖P (x0)± 2P̌ (x0, λy) + λ2P (y)‖ = ‖P (x0 ± λy)‖ 6 1.

Then,

‖P (x0) + λ2P (y)‖ 6 1.

Note that

‖P (x0)‖2 + 2 Re〈P (x0), λ2P (y)〉+ |λ|4‖P (y)‖2 = ‖P (x0) + λ2P (y)‖2 6 1,

where 〈·, ·〉 is the inner product on H. By choosing λ so that 〈P (x0), λ2P (y)〉 is purely
imaginary we deduce

(‖P (x0)‖2 + |λ|4‖P (y)‖2)
1
2 6 1.

Since ‖P (x0)‖ > 1− ε0, we have ((1− ε0)2 + |λ|4‖P (y)‖2)
1
2 6 1 and, consequently,

(4.2) ‖P (y)‖ 6
√

2ε0 − ε20
|λ|2

=: β1(ε0).



On the SSD of homogeneous polynomials and tensor products 135

Now, returning to (4.1),

‖P (x0) + 2λP̌ (x0, y)‖ − ‖λ2P (y)‖ 6 ‖P (x0)± 2P̌ (x0, λy) + λ2P (y)‖ 6 1.

Then, from the estimate (4.2), we deduce that

‖P (x0) + 2λP̌ (x0, y)‖ 6 1 + |λ|2β1(ε0).

Note again that

‖P (x0)‖2 + 2 Re〈P (x0), 2λP̌ (x0, y)〉+ 4|λ|2‖P̌ (x0, y)‖2 6 (1 + |λ|2β1(ε0))2.

Choosing λ so that 〈P (x0), 2λP̌ (x0, y)〉 is purely imaginary we have

‖P (x0)‖2 + 4|λ|2‖P̌ (x0, y)‖2 6 (1 + |λ|2β1(ε0))2,

from which we deduce (using again the fact that ‖P (x0)‖ > 1− ε0) that

(4.3) ‖P̌ (x0, y)‖ < 1

2|λ|
((1 + |λ|2β1(ε0))2 − (1− ε0)2)

1
2 =: β2(ε0).

Given any x ∈ c0, let us call xA = πA(x) = (x1, . . . , xn, 0, . . . ) and xA
c

= x− xA.
Note that

P (xA0 ) = P (x0 − xA
c

0 ) = P (x0)− 2P̌ (x0, x
Ac

0 ) + P (xA
c

0 )

and, hence,

1− ε0 < ‖P (x0)‖ = ‖P (xA0 ) + 2P̌ (x0, x
Ac

0 )− P (xA
c

0 )‖ < ‖P (xA0 )‖+ 2β2(ε0) + β1(ε0).

This gives ‖P (xA0 )‖ > 1 − ε0 − 2β2(ε0) − β1(ε0) =: 1 − β3(ε0). In particular, this
shows that ‖P ◦ πA‖ > 1 − β3(ε0). Using the finite dimensionality of `A∞, we take
u = (u1, . . . , un, 0, 0, . . . ) an element of Sc0 such that ‖(P ◦ πA)(u)‖ = ‖P ◦ πA‖.
Applying the maximum modulus principle, we may assume that |u1| = · · · = |un| = 1.
Moreover, by a simple change of variables we may assume u = (1, . . . , 1, 0, 0, . . . ).

Using the fact that ‖P (u)‖ > 1 − β3(ε0) and arguing as in (4.3), we can prove
that ‖P̌ (uA, y)‖ < β4(ε0) for every y = (0, . . . , 0, yn+1, . . . ) ∈ Bc0 for some β4(ε0) > 0
satisfying that β4(ε0)→ 0 as ε0 → 0.

Next, let us consider the basis of Cn,

z1 = (1, . . . , 1),

z2 = (1,−n+ 1, 1, . . . , 1),

...

zn = (1, . . . , 1,−n+ 1),

and zj = (zj , 0, . . . ) ∈ c0. Given (x1, . . . , xn) ∈ Cn it can be checked that

(4.4) (x1, . . . , xn) =
1

n
(x1 + · · ·+ xn)z1 +

1

n

n∑
j=2

(x1 − xj)zj .

Now, for any (x1, . . . , xn) ∈ B`n∞ and any y = (0, . . . , 0, yn+1, . . . ) ∈ Bc0 ,

P (x1, . . . , xn, yn+1, . . . ) = P (x1, . . . , xn, 0 . . . ) + 2P̌ ((x1, . . . , xn, 0 . . . ), y) + P (y).

By virtue of (4.4),

P̌ ((x1, . . . , xn, 0 . . . ), y) =
1

n
(x1 + · · ·+ xn)P̌ (z1, y) +

1

n

n∑
j=2

(x1 − xj)P̌ (zj , y).
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If we call ψj(·) = 2
n P̌ (zj , ·), then we have

P (x1, . . . , xn, yn+1, . . . ) = P (x1, . . . , xn, 0, . . . ) + (x1 + · · ·+ xn)ψ1(y)

+

n∑
j=2

(x1 − xj)ψj(y) + P (y).
(4.5)

There is a little abuse of notation: we write ψj(y) instead of ψj(yn+1, yn+2, . . . ) (and
we will keep this notation).

Let us prove that ‖ψj‖ is small for j = 2, . . . , n. We only consider the case j = 2,
the other cases being analogous. From equation (4.5), choosing x2 = eiθ (for any
real θ) and xj = 1 if j 6= 2, we deduce

P (1, eiθ, 1, . . . , 1, 0, . . . ) + (1− eiθ)ψ2(y)

= P (1, eiθ, 1, . . . , 1, yn+1, . . . )− (n− 1 + eiθ)ψ1(y)− P (y).

Then,

‖P (1, eiθ, 1, . . . , 1, 0, . . . ) + (1− eiθ)ψ2(y)‖

6 1 + n‖ψ1(y)‖+ ‖P (y)‖ < 1 + 2β4(ε0) + β1(ε0).

That is,

‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖2 + 2 Re〈P (1, eiθ, 1, . . . , 1, 0, . . . ), (1− eiθ)ψ2(y)〉

+ ‖(1− eiθ)ψ2(y)‖2 6 (1 + 2β4(ε0) + β1(ε0))2.

As we can vary the argument of y (independent of θ), we deduce that

‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖2 + ‖(1− eiθ)ψ2(y)‖2 6 (1 + 2β4(ε0) + β1(ε0))2

and, since it holds for every y ∈ Bc0 , then

‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖2 + |1− eiθ|2‖ψ2‖2 6 (1 + 2β4(ε0) + β1(ε0))2.

Therefore,

|1− eiθ|2 ‖ψ2‖2 6 (1 + 2β4(ε0) + β1(ε0))2 − ‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖2

= 1− ‖P (1, . . . , 1, 0, . . . )‖2︸ ︷︷ ︸
(I)

+ ‖P (1, . . . , 1, 0, . . . )‖2 − ‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖2 + β5(ε0),

where 1 + β5(ε0) := (1 + 2β4(ε0) + β1(ε0))2. Given that ‖P (1, . . . , 1, 0, . . . )‖ = ‖P ◦
πA‖ > 1− β3(ε0), we have (I) < 2β3(ε0)− β3(ε0)2.

Define f(θ) = ‖P (1, . . . , 1, 0, . . . )‖2 − ‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖2 and g(θ) =
|1 − eiθ|, and note that g(θ) = 2 sin(θ/2) for θ > 0. It is worth noting that θ 7→
‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖ is differentiable at θ = 0 (because P is holomorphic and
P (1, eiθ, 1, . . . , 1, 0, . . . ) 6→ 0 when θ → 0). Note that from L’Hôpital’s rule we have

(4.6) lim
θ→0+

f(θ)

g(θ)2
= lim
θ→0+

−2‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖
(
d
dθ‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖

)
4 sin(θ/2) cos(θ/2)

.
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On the one hand, it is clear that

lim
θ→0+

d
dθ‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖

cos(θ/2)
= 0

since ‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖ has a local maximum at θ = 0 and, consequently,

d

dθ
‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖∣∣

θ=0

= 0.

On the other hand, applying again L’Hôpital’s rule we have

lim
θ→0+

‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖
sin(θ/2)

= lim
θ→0+

2 d
dθ‖P (1, eiθ, 1, . . . , 1, 0, . . . )‖

cos(θ/2)
= 0.

Then, going back to (4.6) we obtain that

(4.7) lim
θ→0+

f(θ)

g(θ)2
= 0.

Take θ0 > 0 such that |1 − eiθ0 |2 = 4 sin2(θ0/2) = γ(ε0) := (2β3(ε0) − β3(ε0)2 +

β5(ε0))
1
2 . Then we obtain

γ(ε0)‖ψ2‖2 6 γ(ε0)2 + f(2 arcsin(γ(ε0)1/2/2)),

from which we deduce that

‖ψ2‖2 6 γ(ε0) +
f(2 arcsin(γ(ε0)1/2/2))

γ(ε0)
−−−→
ε0→0

0.

The limit
f(2 arcsin(γ(ε0)1/2/2))

γ(ε0)
=

f(θ0)

g(θ0)2
−−−→
ε0→0

0

follows from (4.7) and the fact that θ0 goes to 0 as ε0 → 0. As we already mentioned,
we can obtain the same bounds for ψ3, . . . , ψn. Then, looking at (4.5), we conclude
that there is some ε0 = η(ε, x0) > 0 such that

‖P (x1, . . . , xn, yn+1, . . . )− P (x1, . . . , xn, 0, . . . )‖ < ε

for every (x1, . . . , xn) ∈ B`n∞ and y = (0, . . . , 0, yn+1, . . . ) ∈ Bc0 . This proves the
statement.

Now, we are ready to state and prove the main result of this subsection. Before
that, let us note that if X and Y are finite-dimensional Banach spaces, the pair (X,Y )
has the 2-homogeneous polynomial Lp,p. Indeed, it follows by contradiction using the
compactness of the unit ball BP(2X,Y ).

Theorem 4.7. For a finite-dimensional Hilbert space H, the pair (c0, H) has the
2-homogeneous polynomial Lp,p in the complex case.

Proof: Let ε > 0 and x0 ∈ Sc0 be fixed. Consider the finite set A := {i ∈ N :
|x0(i)| = 1}. Since `A∞ and H are finite-dimensional, we can consider η̃(ε, xA0 ) > 0
from the 2-homogeneous polynomial Lp,p for the pair (`A∞, H). We may assume that
(1− ε)η̃(ε, xA0 ) < ε. Suppose that

‖P (x0)‖ > 1−min

{
η

(
min

{
(1− ε)η̃(ε, xA0 )

2
, ε

}
, x0

)
,

(1− ε)η̃(ε, xA0 )

2

}
,

where η(·, x0) > 0 is chosen from Proposition 4.6. Then we have that

‖P − P ◦ πA‖ < min

{
(1− ε)η̃(ε, xA0 )

2
, ε

}
.
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Thus,

‖P ◦ πA(x0)‖ = ‖P (x0) + (P ◦ πA(x0)− P (x0))‖

>

(
1− (1− ε)η̃(ε, xA0 )

2

)
− ‖P − P ◦ πA‖

>

(
1− (1− ε)η̃(ε, xA0 )

2

)
− (1− ε)η̃(ε, xA0 )

2
= 1− (1− ε)η̃(ε, xA0 ).

This implies that there exists Q ∈ P(2`A∞, H) with ‖Q‖ = 1 such that

‖Q(xA0 )‖ = 1 and ‖Q− P ◦ πA‖ < ε,

where P ◦ πA is viewed as an element of P(2`A∞, H). Define Q ∈ P(2c0, H) as the
natural extension of Q to c0. That is, Q(x) = Q(xA). Note that ‖Q‖ = ‖Q(x0)‖ = 1
and

‖Q− P‖ 6 ‖Q− P ◦ πA‖+ ‖P ◦ πA − P‖ < 2ε,

which completes the proof.

Notice that the hypothesis of H being finite-dimensional was only used to af-
firm that the pair (`A∞, H) has the 2-homogeneous polynomial Lp,p. In other words,
if (`A∞, H) has the 2-homogeneous polynomial for a finite set A and an infinite-
dimensional Hilbert space H, then Theorem 4.7 would also hold for infinite-dimen-
sional Hilbert spaces.

4.3. Vector-valued polynomial Lp,p. In the previous subsection, we deduce some
differentiability properties of projective (symmetric) tensor products from Lp,p prop-
erties for scalar-valued polynomials and multilinear operators. In this subsection, we
focus on the N -homogeneous polynomial Lp,p in the vector-valued case, although
we cannot always get differentiability properties of tensor products from the vector-
valued Lp,p (see the comment below Corollary 4.9). Recall that a Banach space Y
has the property β with constant 0 6 ρ < 1 if there exist {yi : i ∈ I} ⊂ SY and
{y∗i : i ∈ I} ⊂ SY ∗ such that

• y∗i (yi) = 1 for all i ∈ I,

• |y∗i (yj)| 6 ρ < 1 for all i, j ∈ I with i 6= j,

• ‖y‖ = supi∈I |y∗i (y)| for all y ∈ Y .

Classic examples of Banach spaces satisfying the property β are c0 and `∞. This
property was introduced by Lindenstrauss in [55], in order to obtain examples of
spaces Y such that the set of norm-attaining operators on L(X,Y ) is dense in the
whole space, for every Banach space X. In [32, Proposition 2.8] it is proved that if
X is SSD and Y has property β, then the pair (X,Y ) has the Lp,p. Next, we prove
the polynomial version of this result.

Proposition 4.8. Let X, Y be Banach spaces. If Y has property β and (X,K) has
the N -homogeneous polynomial Lp,p, then (X,Y ) has the N -homogeneous polyno-
mial Lp,p.

Proof: Let ε ∈ (0, 1) and x0 ∈ SX be fixed. Suppose that P ∈ P(NX,Y ) with ‖P‖ = 1
satisfies

‖P (x0)‖ > 1−min{η(ε̃, x0), ε̃)},
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where η is the one in the definition of the N -homogeneous polynomial Lp,p for the
pair (X,K) and

ε̃ :=

(
1− ρ

4

)
ε > 0,

where 0 6 ρ < 1 is the constant in the definition of property β. Let us take α0 ∈ Λ
such that

|(P ty∗α0
)(x0)| = |y∗α0

(P (x0))| > 1− η(ε̃, x0).

Then, there exists Q ∈ P(NX,K) with ‖Q‖ = 1 such that

|Q(x0)| = 1 and ‖Q− P ty∗α0
‖ < ε̃.

Let us define P̃ : X → Y by

P̃ (x) := P (x) + ((1 + ε)Q− P ty∗α0
)(x)yα0

and note that ‖P̃ −P‖ < ε+ ε̃. We will now prove that P̃ attains its norm at x0. For
every x ∈ X, we have that

[P̃ ty∗α0
](x) = y∗α0

(P̃ (x)) = (1 + ε)Q(x),

which shows that P̃ ty∗α0
= (1 + ε)Q. On the other hand, if α 6= α0 and x ∈ BX , then

‖[P̃ ty∗α](x)‖ 6 ‖P‖+ |y∗α(yα0
)|(ε‖Q‖+ ‖Q− P ty∗α0

‖)

< 1 + ρ(ε+ 2ε̃) = 1 + ε

(
ρ+

(1− ρ)ρ

2

)
< 1 + ε.

This shows that ‖P̃‖ = ‖P̃ ty∗α0
‖ = |y∗α0

(P̃ (x0))|; hence P̃ attains its norm at x0 as
desired. Therefore, the pair (X,Y ) has the N -homogeneous polynomial Lp,p.

As an immediate consequence of the previous proposition, we have the following.

Corollary 4.9. Let N ∈ N be given.

(i) If X is a finite-dimensional Banach space, then the pairs (X, c0) and (X, `∞)
have the N -homogeneous polynomial Lp,p.

(ii) The pairs (`2, c0) and (`2, `∞) have the N -homogeneous polynomial Lp,p.

(iii) The pairs (c0, c0) and (c0, `∞) have the 2-homogeneous polynomial Lp,p in the
complex case.

In view of the isometry ((⊗̂πs,N`2)⊗̂π`1)∗ = P(N`2, `∞), the results in Proposi-
tions 4.3 and 4.4, and the fact that (`2, `∞) has the N -homogeneous polynomial Lp,p,

it is natural to ask if (⊗̂πs,N`2)⊗̂π`1 is SSD on the set of elementary tensors. However,
it is easy to see that this is not possible since the norm of `1 is not SSD. Although
in general these notions cannot be related in the vector-valued case, next we show
that when the codomain is a Banach space with micro-transitive norm they do have
a relation.

Proposition 4.10. Let X be a Banach space and Y a Banach space with micro-
transitive norm. The pair (X,Y ∗) has the N -homogeneous polynomial Lp,p if and

only if ⊗̂πs,NX⊗̂πY is SSD on the set V := {⊗Nx⊗ y : ‖x‖ = ‖y‖ = 1}.

Proof: First, we will show that the N -homogeneous polynomial Lp,p property im-

plies that the space ⊗̂πs,NX⊗̂πY is SSD on V . Analogously to what we did in
Proposition 4.2 with the uniform strong subdifferentiability, it can be proved that
⊗̂πs,NX⊗̂πY is SSD on V if and only if (⊗̂πs,NX⊗̂πY,K) has the Lp,p for the set V .
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Let η be the one in the definition of the N -homogeneous polynomial Lp,p for the
pair (X,Y ∗), η̃ the one in the definition of the BPBpp for the pair (Y,K), and β(ε)
the one in the definition of the micro-transitivity property of Y ∗ (see, for instance,
[17, Proposition 3.4]). Given ε, let ϕ ∈ (⊗̂πs,NX⊗̂πY )∗, ‖ϕ‖ = 1, and ⊗Nx0⊗y0 ∈ V
be such that

(4.8) ϕ(⊗Nx0 ⊗ y0) > 1−min

{
η

(
β(ε)

2
, x0

)
, η̃

(
β(ε)

2

)}
.

We want to show that there is ψ ∈ (⊗̂πs,NX⊗̂πY )∗, ‖ψ‖ = 1, with

ψ(⊗Nx0 ⊗ y0) = 1 and ‖ψ − ϕ‖ < 2ε.

Because of the duality ((⊗̂πs,NX)⊗̂πY )∗ = P(NX,Y ∗), there is a norm-one poly-
nomial P ∈ P(NX,Y ∗) such that P (x)(y) = ϕ(⊗Nx ⊗ y). By (4.8) we have that

P (x0)(y0) > 1 − η̃
(β(ε)

2

)
and, since the pair (Y,K) has the BPBpp, there exists

y∗0 ∈ SY ∗ such that

y∗0(y0) = 1 and ‖y∗0 − P (x0)‖ < β(ε)

2
.

On the other hand, given that ‖P (x0)‖ > 1 − η
(β(ε)

2 , x0
)
, there exists a norm-one

polynomial Q ∈ P(NX,Y ∗) such that

‖Q(x0)‖ = 1 and ‖Q− P‖ < β(ε)

2
.

Therefore, we have ‖y∗0−Q(x0)‖ < β(ε) and this implies that there exists a surjective
isometry T : Y ∗ → Y ∗ such that T (Q(x0)) = y∗0 and ‖T − IdY ∗ ‖ < ε. Finally, define

Q̃ : X → Y ∗ by Q̃(x) = T (Q(x)) and note that

Q̃(x0)(y0) = 1 and ‖Q̃− P‖ 6 ‖Q̃−Q‖+ ‖Q− P‖ < 2ε.

Thus, if ψ ∈ (⊗̂πs,NX⊗̂πY )∗, ‖ψ‖ = 1, is the linear functional associated to Q̃, we
have

ψ(⊗Nx0 ⊗ y0) = 1 and ‖ψ − ϕ‖ < 2ε,

which is the desired statement.
Now, suppose that the pair (X,Y ∗) does not have the N -homogeneous polyno-

mial Lp,p. We want to show that (⊗̂πs,NX⊗̂πY,K) does not have the Lp,p for the
set V . By hypothesis, there are x0 ∈ SX , ε > 0, and (Pj)j ⊆ P(NX,Y ∗) norm-one
polynomials such that

(4.9) ‖Pj(x0)‖ → 1 and dist(Pj , {P ∈ SP(NX,Y ∗) : ‖P (x0)‖ = 1}) > ε.

Composing each Pn with a suitable isometry Tn : Y ∗ → Y ∗, we may assume that
Pn(x0) is a multiple of a fixed y∗0 ∈ SY ∗ . Choose y0 ∈ SY so that y∗0(y0) = 1. For
each j ∈ N define ϕj ∈ (⊗̂πs,NX⊗̂πY )∗ as the linearization of Pj . Then ‖ϕj‖ =
‖Pj‖ = 1, |ϕj(⊗Nx0 ⊗ y0)| = ‖Pj(x0)‖ → 1, and equation (4.9) implies that

dist(ϕj , {ψ ∈ (⊗̂πs,NX⊗̂πY )∗ : |ψ(⊗Nx0 ⊗ y0)| = 1}) > ε.

Therefore, (⊗̂πs,NX⊗̂πY,K) does not have the Lp,p for the set V , as we wished.

As a consequence, we obtain the following corollary.

Corollary 4.11. If H is a Hilbert space, the following results hold.

(i) The space (⊗̂πs,NH)⊗̂πH is SSD on the set V = {⊗Nx⊗ y : ‖x‖ = ‖y‖ = 1}.
(ii) If, in addition, H is complex and finite-dimensional, the space (c0⊗̂πsc0)⊗̂πH

is SSD on the set V = {⊗2x⊗ y : ‖x‖ = ‖y‖ = 1}.
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4.4. A negative result on bilinear symmetric forms. It is a well known fact that
the polarization formula gives an isomorphism between the space of N -homogeneous
polynomials P(NX,Z) and the space of N -linear symmetric mappings Ls(NX,Z).
Moreover, in some spaces this isomorphism is in fact an isometry. This is the case
when X is a Hilbert space. Then, it is natural to ask if it is possible to obtain similar
results to the ones obtained before when we deal with symmetric forms instead of
polynomials. In this short subsection, we will show, with a simple counterexample,
that in Proposition 4.3(ii) we cannot replace the N -homogeneous polynomial BPBpp
with a similar property using the N -linear symmetric BPBpp.

Let us begin with some proper definitions and remarks. We say that the pair (X,Z)
has the N -linear symmetric Bishop–Phelps–Bollobás point property (N -linear sym-
metric BPBpp, for short) if, given ε > 0, there exists η(ε) > 0 such that whenever
A ∈ Ls(NX,Z), ‖A‖ = 1, and (x1, . . . , xN ) ∈ SX × · · · × SX satisfy

‖A(x1, . . . , xN )‖ > 1− η(ε),

there exists B ∈ Ls(NX,Z) with ‖B‖ = 1 such that

‖B(x1, . . . , xN )‖ = 1 and ‖B −A‖ < ε.

When dealing with symmetric multilinear forms, we have the linear isometry

Ls(NX) = (⊗̂πs,NX)∗,

where we endow the N -fold symmetric tensor product with the (full, non-symmetric)
projective norm π. Thus, it is reasonable to wonder if an analogous result to Propo-
sition 4.3 holds, and we can relate the N -linear symmetric BPBpp with USSD on
the set Us = {⊗Nx : ‖x‖ = 1} (considering the projective norm π). By Theorem C,
⊗̂πs,N `2 is USSD on the set Us (recall that for Hilbert spaces the projective norm
and the symmetric projective norm coincide). However, as shown below, `2 does not
enjoy the BPBpp for N -linear symmetric mappings. Therefore, a proposition similar
to Proposition 4.3 replacing polynomials with symmetric multilinear mapping cannot
be obtained.

Example 4.12. The pair (`2,K) fails the bilinear symmetric BPBpp. Moreover, the
pair (`22,K) fails this property.

Proof: Suppose, on the contrary, that the pair (`22,K) has the bilinear symmetric
BPBpp and consider A : `22× `22 → K the symmetric bilinear form given by the matrix(

1 0
0 1

)
.

Given 0 < ε < 1, let 0 < η(ε) < 1 be the one in the definition of the bilinear symmetric
BPBpp. Let a, b > 0 be such that a2 + b2 = 1 and

A((a, b), (a,−b)) = a2 − b2 > 1− η(ε).

Then, there is a symmetric norm-one bilinear form B with

|B((a, b), (a,−b))| = 1 and ‖A−B‖ < ε.

Now, let (
d1 d3
d3 d2

)
be the matrix associated with B. Since ‖B‖ = 1, we have that |d1| and |d2| cannot
exceed 1. Therefore,

|d1 a2 − d2 b2| = |B((a, b), (a,−b))| = 1 = a2 + b2
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implies that d1 = −d2 and |d1| = |d2| = 1. Then, ‖A − B‖ > 1, which is the desired
contradiction.

In contrast with this negative result, it is worth mentioning that complex Hilbert
spaces have the BPBpp for several classes of operators: self-adjoints, anti-symmetric,
unitary, normal, compact normal, compact, and Schatten–von Neumann operators
(see [21, Theorem 3.1]). They also have the Bishop–Phelps–Bollobás property for
symmetric bilinear mappings and Hermitian bilinear mappings and, in the real case,
they have the Bishop–Phelps–Bollobás property for symmetric bilinear mapping
(see [44]). Also, although Hilbert spaces fail to have the bilinear symmetric BPBpp,
the pair (`d2,K) enjoys a local Bishop–Phelps–Bollobás type property for symmetric
bilinear forms by compactness.
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[61] A. Rodŕıguez Palacios, A numerical range characterization of uniformly smooth Banach

spaces, Proc. Amer. Math. Soc. 129(3) (2001), 815–821. DOI: 10.1090/S0002-9939-00-05621-5.

https://doi.org/10.1090/mbk/052
http://dx.doi.org/10.1006/jmaa.1996.0224
http://dx.doi.org/10.1007/978-1-4471-0869-6
http://dx.doi.org/10.4064/sm151-1-1
http://dx.doi.org/10.1285/i15900932v17p153
http://dx.doi.org/10.1007/BF01197144
http://dx.doi.org/10.1093/qmath/hat004
http://dx.doi.org/10.2140/pjm.1978.79.99
http://dx.doi.org/10.2140/pjm.1978.79.99
http://dx.doi.org/10.4153/CMB-1980-002-9
http://dx.doi.org/10.1017/S0305004197001898
http://dx.doi.org/10.1017/S0305004197001898
http://dx.doi.org/10.1016/j.aim.2023.109005
http://dx.doi.org/10.1016/j.aim.2023.109005
http://dx.doi.org/10.1016/j.jfa.2022.109746
http://dx.doi.org/10.1016/j.jfa.2022.109746
http://dx.doi.org/10.4153/CJM-2013-009-2
http://dx.doi.org/10.1007/BF02759700
http://dx.doi.org/10.1007/BF02761463
http://dx.doi.org/10.1007/BF02764715
http://dx.doi.org/10.4064/sm-16-2-173-182
http://dx.doi.org/10.4064/sm-16-2-173-182
https://doi.org/10.1090/S0002-9939-00-05621-5


On the SSD of homogeneous polynomials and tensor products 145

[62] W. H. Ruckle, Reflexivity of L(E,F ), Proc. Amer. Math. Soc. 34(1) (1972), 171–174. DOI: 10.

2307/2037920.

[63] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math.,
Springer-Verlag London, Ltd., London, 2002. DOI: 10.1007/978-1-4471-3903-4.

[64] D. Sain, Smooth points in operator spaces and some Bishop–Phelps–Bollobás type theorems in

Banach spaces, Oper. Matrices 13(2) (2019), 433–445. DOI: 10.7153/oam-2019-13-32.
[65] M. A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233(2)

(1978), 155–161. DOI: 10.1007/BF01421923.
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