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PORCUPINE-QUOTIENT GRAPHS, THE FOURTH PRIMARY

COLOR, AND GRADED COMPOSITION SERIES OF LEAVITT

PATH ALGEBRAS

Lia Vaš

Abstract: If E is a directed graph, K is a field, and I is a graded ideal of the Leavitt path alge-

bra LK(E), then I is completely determined by a pair (H,S) of two sets of vertices of E, called an
admissible pair, and one writes I = I(H,S) in this case. The ideal I is graded isomorphic to the

Leavitt path algebra of the porcupine graph of (H,S) and the quotient LK(E)/I is graded isomorphic

to the Leavitt path algebra of the quotient graph of (H,S). We present a construction which gen-
eralizes both the porcupine and the quotient constructions and enables one to consider quotients of

graded ideals: if (H,S) and (G,T ) are admissible pairs such that (H,S) ≤ (G,T ) (in the sense which
corresponds exactly to I(H,S) ⊆ I(G,T )), we define the porcupine-quotient graph (G,T )/(H,S)

such that its Leavitt path algebra is graded isomorphic to the quotient I(G,T )/I(H,S).

Using the porcupine-quotient construction, the existence of a graded composition series of LK(E)
is equivalent to the existence of a finite increasing chain of admissible pairs of E, starting with the

trivial pair and ending with the improper pair, such that the quotient of two consecutive pairs is

cofinal (a graph is cofinal exactly when its Leavitt path algebra is graded simple). We characterize the
existence of such a chain with a set of conditions on E which also provides an algorithm for obtaining

a composition series. The conditions are presented in terms of four types of vertices which are all

“terminal” in a certain sense. Three of the four types are often referred to as the three primary colors
of Leavitt path algebras. The fourth primary color in the title of this paper refers to the fourth type

of vertices. As a corollary of our results, every unital Leavitt path algebra has a graded composition

series.
We show that the existence of a composition series of E is equivalent to the existence of a suitably

defined composition series of the graph monoid ME as well as a composition series of the talented
monoid MΓ

E . We also show that an ideal of MΓ
E is minimal exactly when it is generated by the

element of MΓ
E corresponding to a terminal vertex. We characterize graphs E such that only one

or only two out of three possible types (periodic, aperiodic, or incomparable) appear among the

composition factors of MΓ
E .
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1. Introduction

If E is a directed graph and K a field, the Leavitt path algebra LK(E) is naturally
graded by the group of integers. The lattice of graded LK(E)-ideals corresponds to
the lattice of pairs of certain sets of vertices called the admissible pairs (we review the
relevant definition in Subsection 2.4). The ideal I(H,S) corresponding to an admissi-
ble pair (H,S) is graded isomorphic to the Leavitt path algebra of a graph introduced
in [18] which is called the porcupine graph. The porcupine graph resembles the older
construction of a hedgehog graph ([1, Definitions 2.5.16 and 2.5.20]) except that the
“spines” added to the “body” determined by H ∪ S are longer (Example 2.2 illus-
trates this), so the name “porcupine” was chosen to reflect that. While the Leavitt
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path algebra of the hedgehog of (H,S) is isomorphic to I(H,S), this isomorphism
does not have to be graded. In contrast, the Leavitt path algebra of the porcupine
of (H,S) is graded isomorphic to I(H,S).

One can also define the quotient graph E/(H,S) ([1, Definition 2.4.14]) in such a
way that the quotient LK(E)/I(H,S) is graded isomorphic to the Leavitt path algebra
of E/(H,S). In Section 3, we introduce a graph construction which generalizes both
the porcupine and the quotient graph constructions and enables one to represent the
quotient of two graded ideals as the Leavitt path algebra of this newly defined graph.
Specifically, if (H,S) and (G,T ) are admissible pairs such that (H,S) ≤ (G,T ) (in
the sense which corresponds exactly to I(H,S) ⊆ I(G,T )), we define the porcupine-
quotient graph (G,T )/(H,S) (Definition 3.1) and show that its Leavitt path algebra
is graded isomorphic to the quotient I(G,T )/I(H,S) (Theorem 3.6).

We also consider two pre-ordered monoids, ME and MΓ
E , originated in relation

to some classification questions (see, for example, [3], [5], [7], and [8]). The graph
monoid ME is isomorphic to the monoid V(LK(E)) of the isomorphism classes of
finitely generated projective modules. The natural grading of a Leavitt path algebra
induces an action of the infinite cyclic group Γ = ⟨t⟩ ∼= Z on the graded isomor-
phism classes of finitely generated graded projective LK(E)-modules and there is a
Γ-isomorphism of the monoid VΓ(LK(E)) of such graded isomorphism classes and the
monoid MΓ

E , also known as the talented monoid or the graph Γ-monoid. In particular,
the following lattices are isomorphic: the lattice of order-ideals of ME , the lattice of
Γ-order-ideals of MΓ

E , the lattice of graded ideals of LK(E), and the lattice of admis-
sible pairs of E. By Proposition 3.7, if (G,T )/(H,S) is the porcupine-quotient graph
of two admissible pairs of E, then M(G,T )/(H,S) is isomorphic to the quotient of the

order-ideals corresponding to (G,T ) and (H,S) and MΓ
(G,T )/(H,S) is isomorphic to the

quotient of the Γ-order-ideals corresponding to (G,T ) and (H,S).
We say that LK(E) has a graded composition series if there is a finite and increasing

chain of graded ideals, starting with the trivial ideal and ending with the improper
ideal, such that the quotient of each two consecutive ideals is graded simple. Since a
Leavitt path algebra is graded simple if and only if the underlying graph is cofinal
(see Subsection 2.2 for a review of this concept), Theorem 3.6 enables us to relate
the existence of a graded composition series of LK(E) with the existence of a finite
and increasing chain of admissible pairs, starting with the trivial pair and ending
with the improper pair, such that the porcupine-quotient of two consecutive pairs is
cofinal. If such a chain exists, we say that E has a composition series. Theorem 3.6
and Proposition 3.7 imply Corollary 4.3 stating that the following conditions are
equivalent.

(1) E has a composition series.

(2) LK(E) has a graded composition series.

(3) ME has a composition series.

(4) MΓ
E has a composition series.

We aim to characterize the existence of the above composition series by a set of con-
ditions on E which can be directly checked and which produce a specific composition
series and achieve that in Theorem 6.5. In order to obtain this result, we start with
Section 5, in which we introduce a type of vertices which are “terminal” in the same
sense as the vertices of any of the three types below.

• A sink is a vertex which emits no edges. A sink connects to no other vertex in
the graph except, trivially, to itself.



Porcupine-quotient graphs and composition series 47

• A cycle without exits is a cycle whose vertices emit only one edge to another
vertex in the cycle. The vertices in such a cycle do not connect to any vertices
outside of the cycle.

• An extreme cycle is a cycle such that the range of every exit from the cycle
connects back to a vertex in the cycle. The vertices in such a cycle c connect
only to the vertices on cycles in the same “cluster” as c.

The significance of these three groups of vertices lies in the fact that the Leavitt path
algebra of a finite graph is graded simple exactly when there is a unique “cluster” of
vertices of one of the three types above. Because of this, the three graphs below are
the three quintessential examples of graphs with the above three types of vertices.
The authors of [1] refer to the Leavitt path algebras of these three graphs as the three
primary colors of Leavitt path algebras.

• // • // • • // • • dd • ddqq
��
QQ

However, if the graph is not finite, its Leavitt path algebra can be graded simple
without having exactly one cluster of the three types of vertices as above. For example,
the Leavitt path algebra of the graph below is graded simple and the graph has neither
cycles nor sinks.

• ??
��
• ??

��
• ??

��
•

In Definition 5.3, we introduce terminal paths as the infinite paths whose vertices
are terminal in the same sense as the above three types. According to this definition,
every infinite path of the above graph is terminal. In Definition 5.5, we make the
concept of a “cluster” more formal. In Theorem 5.7, we characterize graded simplicity
of a Leavitt path algebra LK(E) by a set of conditions on E which are direct to check
and which are given in terms of the existence of exactly one cluster of the four types of
terminal vertices. The existence of the fourth type does not contradict the trichotomy
principle ([1, Proposition 3.1.14]), but it refines it: it distinguishes between sinks and
terminal paths. The results of the last two sections illustrate that this distinction is
a useful one.

In Theorem 6.5, we present a set of conditions on E which are equivalent to E hav-
ing a composition series. Such conditions are constructive in the following sense: given
a graph, one can construct a chain of admissible pairs such that the porcupine-quotient
graphs of two consecutive pairs are cofinal and check if such a chain terminates after
finitely many steps. Informally, such a chain is obtained by iteratively cutting the
terminal vertices (and their breaking sets if E is not row-finite). A direct corollary of
Theorem 6.5 is that every unital Leavitt path algebra has a graded composition series
(Corollary 6.6).

Using the natural order ≤ and the action of Γ on MΓ
E , one can categorize each

element of MΓ
E as exactly one of the following three types: periodic, aperiodic, and

incomparable. If all nonzero elements of a Γ-order-ideal I of MΓ
E have the same type,

I is said to be of that type also. In Theorem 7.4, we show that a Γ-order-ideal I of MΓ
E

is minimal exactly when I is generated by the element [v] of MΓ
E corresponding to a

terminal vertex v and that I is periodic (respectively, aperiodic or comparable) exactly
when [v] is such also. In Theorem 7.5 and Corollary 7.6, we characterize graphs E
such that only two or only one of those three types appear among the composition
factors of MΓ

E . In one of these cases, our work generalizes results from [10] formulated
only for finite graphs.
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2. Prerequisites

2.1. Graded rings. A ring R (not necessarily unital) is graded by a group Γ if
R =

⊕
γ∈Γ Rγ for additive subgroups Rγ and if RγRδ ⊆ Rγδ for all γ, δ ∈ Γ. The

elements of the set
⋃

γ∈Γ Rγ are said to be homogeneous. A left ideal I of a graded

ring R is graded if I =
⊕

γ∈Γ I ∩ Rγ . Graded right ideals and graded ideals are
defined similarly. A graded ring is graded simple if there are no nontrivial and proper
two-sided graded ideals (note that we do not require it to be graded Artinian).

A ring R is an involutive ring, or a ∗-ring, if there is an anti-automorphism ∗ : R →
R of order 2. If R is also a K-algebra for some commutative ∗-ring K, then R is a
∗-algebra if (kx)∗ = k∗x∗ for all k ∈ K and x ∈ R. If R is a Γ-graded ring with
involution, it is a graded ∗-ring if R∗

γ ⊆ Rγ−1 .
A ring R is locally unital if for every finite set F ⊆ R there is an idempotent u ∈ R

such that xu = ux = x for every x ∈ F . A Γ-graded ring R is graded locally unital
if for every finite set F ⊆ R (of homogeneous elements) there is a homogeneous
idempotent u ∈ R such that xu = ux = x for every x ∈ F . The statements with and
without the part in parentheses are equivalent.

2.2. Graphs and properties of vertex sets. If E is a directed graph, we let E0

denote the set of vertices, E1 denote the set of edges, and s and r denote the source
and the range maps of E. A sink of E is a vertex which emits no edges and an infinite
emitter is a vertex which emits infinitely many edges. A vertex of E is regular if it is
neither a sink nor an infinite emitter. The graph E is row-finite if it has no infinite
emitters and E is finite if it has finitely many vertices and edges.

A path is a single vertex or a sequence of edges e1e2 · · · en for some positive integer n
such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. The length |p| of a path p is 0 if p is
a vertex and it is n if p is a sequence of n edges. The set of vertices on a path p is
denoted by p0.

The functions s and r extend to paths naturally. A path p is closed if s(p) = r(p).
A cycle is a closed path such that different edges in the path have different sources.
A cycle has an exit if a vertex on the cycle emits an edge which is not an edge of the
cycle. A cycle c is extreme if c has exits, and for every path p with s(p) ∈ c0 there is
a path q such that r(p) = s(q) and r(q) ∈ c0.

An infinite path is a sequence of edges e1e2 · · · such that r(en) = s(en+1) for
n = 1, 2, . . . Just as for finite paths, we use p0 for the set of vertices of an infinite
path p. To emphasize that a path is infinite, we denote it by a Greek letter in Sections 5
to 7.

Let E≤∞ be the set of infinite paths or finite paths ending in a sink or an infinite
emitter. A vertex v is cofinal if for each p ∈ E≤∞ there is w ∈ p0 such that v ≥ w
and E is cofinal if each vertex is cofinal.

If u, v ∈ E0 are such that there is a path p with s(p) = u and r(p) = v, we write
u ≥ v. For V ⊆ E0, the set T (V ) = {u ∈ E0 | v ≥ u for some v ∈ V } is called
the tree of V , and, following [19], we use R(V ) to denote the set {u ∈ E0 | u ≥ v
for some v ∈ V } called the root of V . To emphasize that the tree and the root of V
are considered in the graph E, we use TE(V ) and RE(V ). If V = {v}, we use T (v)
for T ({v}) and R(v) for R({v}). The requirement that a cycle c with an exit is extreme
can be written as T (c0) ⊆ R(c0) (compare with the requirement in Definition 5.3).

A subset H of E0 is said to be hereditary if T (H) ⊆ H. The set H is saturated
if v ∈ H for any regular vertex v such that r(s−1(v)) ⊆ H. For every V ⊆ E0,
the intersection of all saturated sets of vertices which contain V is the smallest sat-
urated set which contains V . This set is the saturated closure of V . The saturated
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closure V of T (V ) is both hereditary and saturated and it is the smallest hereditary
and saturated set which contains V .

The saturated closure of V is the union of the sets Λn(V ), n = 0, 1, . . . , defined
by Λ0(V ) = V and Λn+1(V ) = Λn(V ) ∪ {v ∈ E0 | v is regular and r(s−1(v)) ⊆
Λn(V )}. The proof is analogous to the proof of [1, Lemma 2.0.7]: if Λ(V ) denotes the
union

⋃∞
n=0 Λn(V ), it is direct to check that Λ is saturated, that it contains V , and

that it is contained in every saturated set which contains V . This description is used
in the proof of the next lemma.

Lemma 2.1. Let E be any graph, V ⊆ E0, and H ⊆ E0 be a hereditary set such that
V ⊆ H ⊆ R(T (V )). For v ∈ H, let Pv(T (V )) be the set of paths originating at v and
terminating at a vertex of T (V ) such that no vertex, except the range, is in T (V ).
The following conditions are equivalent.

(1) H = V .
(2) The set H−T (V ) does not contain infinite emitters and every infinite path with

vertices in H contains a vertex of T (V ).
(3) The set Pv(T (V )) is finite for every v ∈ H.

Proof: The implication (1) ⇒ (2) follows directly from the description of V in terms
of Λn(T (V )).

The contrapositive of the implication (2) ⇒ (3) is rather direct since if Pv(T (V ))
is infinite for some v ∈ H, then there is either an infinite emitter on some of the paths
in Pv(T (V )) or there is an infinite path with all of its vertices in H − V .

To show (3) ⇒ (1), assume that (3) holds and let nv = max{|p| | p ∈ Pv(T (V ))}
for v ∈ H. If nv = 0, then v ∈ T (V ) ⊆ V . If nv > 0, then v is regular and, for
each e ∈ s−1(v), r(e) ∈ H, and nr(e) < nv. By induction, we can conclude that

r(e) ∈ V . As V is saturated, v ∈ V . This shows that H ⊆ V . As the other direction
is assumed to hold, (1) holds.

2.3. Leavitt path algebra. If K is any field, the Leavitt path algebra LK(E) of E
over K is a free K-algebra generated by the set E0 ∪E1 ∪{e∗ | e ∈ E1} such that for
all vertices v, w and edges e, f ,

(V) vw = 0 if v ̸= w and vv = v,

(E1) s(e)e = er(e) = e,

(E2) r(e)e∗ = e∗s(e) = e∗,

(CK1) e∗f = 0 if e ̸= f and e∗e = r(e),

(CK2) v =
∑

e∈s−1(v) ee
∗ for each regular vertex v.

The elements of LK(E) are of the form
∑n

i=1 kipiq
∗
i for some n, paths pi and

qi, and ki ∈ K, for i = 1, . . . , n where v∗ = v for v ∈ E0 and p∗ = e∗n · · · e∗1 for a

path p=e1 · · · en. The algebra LK(E) is an involutiveK-algebra with
(∑n

i=1 kipiq
∗
i

)∗
=∑n

i=1 k
∗
i qip

∗
i where ki 7→ k∗i is any involution on K. In addition, LK(E) is graded

locally unital (with the finite sums of vertices as the local units), and LK(E) is unital
if and only if E0 is finite, in which case

∑
v∈E0 v is the identity.

If we consider K to be trivially graded by Z, LK(E) is naturally graded by Z so
that the n-component LK(E)n is the K-linear span of the elements pq∗ for paths p, q
with |p| − |q| = n. This grading and the involutive structure make LK(E) into a
graded ∗-algebra.

If R is a K-algebra which contains elements pv for v ∈ E0, and xe and ye for e ∈ E1

such that the five axioms hold for these elements, the universal property of LK(E)
states that there is a unique algebra homomorphism ϕ : LK(E) → R such that ϕ(v) =
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pv, ϕ(e) = xe, and ϕ(e∗) = ye (see [1, Remark 1.2.5]). If R is Z-graded and pv ∈ R0

for v ∈ E0, xe ∈ R1 and ye ∈ R−1 for e ∈ E1, then ϕ is graded. By the graded
uniqueness theorem ([1, Theorem 2.2.15]), such graded map ϕ is injective if pv ̸= 0
for v ∈ E0. If R is involutive and ϕ is such that ye = x∗

e, then ϕ is a ∗-homomorphism
(i.e., ϕ(x∗) = ϕ(x)∗ for every x ∈ LK(E)).

2.4. The quotient and the porcupine graphs. If H is hereditary and saturated,
a breaking vertex of H is an element of the set

BH = {v ∈ E0 −H | v is an infinite emitter and 0 < |s−1(v) ∩ r−1(E0 −H)| < ∞}.
For each v ∈ BH , let vH stand for v −

∑
ee∗ where the sum is taken over e ∈

s−1(v) ∩ r−1(E0 −H).
An admissible pair is a pair (H,S) where H ⊆ E0 is hereditary and saturated

and S ⊆ BH . For an admissible pair (H,S), the ideal I(H,S) generated by H ∪{vH |
v ∈ S} is graded since it is generated by homogeneous elements. It is the K-linear
span of the elements pq∗ for paths p, q with r(p) = r(q) ∈ H and the elements pvHq∗

for paths p, q with r(p) = r(q) = v ∈ S (see [15, Lemma 5.6]). Conversely, for a graded
ideal I, H = I ∩ E0 is hereditary and saturated and for S = {v ∈ BH | vH ∈ I},
I = I(H,S) ([15, Theorem 5.7], also [1, Theorem 2.5.8]). If S = ∅, we shorten (H, ∅)
to H and I(H, ∅) to I(H).

The set of admissible pairs is a lattice with respect to the relation

(H,S) ≤ (G,T ) if H ⊆ K and S ⊆ G ∪ T

(see [1, Proposition 2.5.6] for the meet and the join of this lattice). The correspon-
dence (H,S) 7→ I(H,S) is a lattice isomorphism of this lattice and the lattice of
graded ideals.

An admissible pair (H,S) gives rise to the quotient graph E/(H,S), defined so that

(E/(H,S))0 = E0 −H ∪ {v′ | v ∈ BH − S},
(E/(H,S))1 = {e ∈ E1 | r(e) /∈ H} ∪ {e′ | e ∈ E1 and r(e) ∈ BH − S},

and with s and r the same as in E on E1∩(E/(H,S))1 and s(e′) = s(e), r(e′) = r(e)′.
The algebras LK(E)/I(H,S) and LK(E/(H,S)) are graded isomorphic (see [15, The-
orem 5.7]).

An admissible pair (H,S) also gives rise to the porcupine graph P(H,S) defined as
follows. Let

F1(H,S) = {e1 · · · en is a path of E | r(en) ∈ H, s(en) /∈ H ∪ S} and

F2(H,S) = {p is a path of E | r(p) ∈ S, |p| > 0}.

For each e ∈ (F1(H,S) ∪ F2(H,S)) ∩ E1, let we be a new vertex and fe a new edge
such that s(fe) = we and r(fe) = r(e). Continue this process inductively as follows.
For each path p = eq where q ∈ F1(H,S)∪F2(H,S) and |q| > 0, add a new vertex wp

and a new edge fp such that s(fp) = wp and r(fp) = wq. One defines the vertices
and edges of P(H,S) as follows:

P 0
(H,S) = H ∪ S ∪ {wp | p ∈ F1(H,S) ∪ F2(H,S)} and

P 1
(H,S) = {e ∈ E1 | s(e) ∈ H} ∪ {e ∈ E1 | s(e) ∈ S, r(e) ∈ H}

∪ {fp | p ∈ F1(H,S) ∪ F2(H,S)}.
The s and r maps are the same as in E for the common edges and they are defined as
above for the new edges. The algebras LK(P(H,S)) and I(H,S) are graded isomorphic
(see [18, Theorem 3.3]).
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We exhibit some examples of porcupine and quotient graphs below. Example 3.2
contains further examples of porcupine graphs.

Example 2.2. Let E be the first graph below, let H = {v}, and let S = BH = {w}.
In this case, the quotient graph is the second graph below. We have that F1(H,S) =
{e3, e2e3, e1e2e3} and F2(H,S) = {e1}. The porcupine graph is the third graph below.

• e1 // •w 55//
)) ##

e2

��

•v

•
e3

==

// •

• e1 // • e2 // • // •

•
fe1
// • 66//

(( �� • •
fe3
oo •

fe2e3
oo •

fe1e2e3
oo

Next, let E be the first graph below and let H consists of the sink of E. The
quotient graph of (H, ∅) is the second and the porcupine graph is the third graph
below. We also note that the hedgehog graph (see [1, Definition 2.5.16]) is the fourth
graph below.

•:: // • •:: // • // • // • // • •
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��

◦

��
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The comparison of the porcupine and the hedgehog illustrates the point from the
introduction: the hedgehog graph of an admissible pair can have more “spines” and
they are short (all of length 1) and the porcupine graph can have fewer “spines” and
they can be (and often are) of length larger than 1.

In addition, let F be the first graph below and let G be its sink. The second graph
below is the quotient graph and the third graph below is the porcupine graph of (G, ∅).
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While the hedgehog graph of G is the same as the hedgehog graph of H from the
previous example, we can see that the two corresponding porcupine graphs are very
different. This illustrates how the porcupine graph retains more information from the
original graph than the hedgehog graph does.

We finish this subsection with an observation and a lemma. If R is a ring, J is
its ideal which is locally unital as a ring, and I an ideal of J , then I is an ideal
of R. Indeed, if x ∈ I and r ∈ R, there is u ∈ J which is a local unit for x so that
xr = (xu)r = (xu)(ur) ∈ IJ ⊆ I. Similarly, rx ∈ I. By an analogous argument, if Γ
is any group, R is a Γ-graded ring, J is a graded ideal of R which is (graded) locally
unital as a ring, and if I is a graded ideal of J , then I is a graded ideal of R.
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For a Leavitt path algebra, finite sums of vertices are homogeneous local units.
Every (graded) ideal is (graded) isomorphic to a Leavitt path algebra by the porcupine
graph construction, so it is also (graded) locally unital. Thus, the above observation
proves the following lemma.

Lemma 2.3. If E is any graph and I is a (graded) ideal of LK(E), then any (graded)
ideal of I is a (graded) ideal of LK(E).

2.5. Pre-order monoids and their order-ideals. An abelian monoid M with a
reflexive and transitive relation (a pre-order) ≥ is a pre-ordered monoid if x ≥ y
implies x+ z ≥ y + z for all x, y, z ∈ M . A submonoid I of a pre-ordered monoid M
is an order-ideal of M if x + y ∈ I implies x ∈ I and y ∈ I (equivalently, x ≥ y
and x ∈ I implies y ∈ I).

If Γ is a group and M a pre-ordered monoid with a left action of Γ, then M
is a pre-ordered Γ-monoid if x ≥ y implies γx ≥ γy for all x, y ∈ M and γ ∈ Γ. A
Γ-submonoid I of a pre-ordered Γ-monoidM which is an order-ideal is a Γ-order-ideal.

2.6. The graph monoid and the talented monoid. For any infinite emitter v
of a graph E and any finite and nonempty Z ⊆ s−1(v), let qvZ = v −

∑
e∈Z ee∗. The

graph monoid ME is the free abelian monoid on generators [v] for v ∈ E0 and [qvZ ] for
infinite emitters v and nonempty and finite sets Z ⊆ s−1(v) subject to the relations

[v] =
∑

e∈s−1(v)

[r(e)], [v] = [qvZ ] +
∑
e∈Z

[r(e)], and [qvZ ] = [qvW ] +
∑

e∈W−Z

[r(e)],

where v is a vertex which is regular for the first relation and an infinite emitter for the
second pair of relations in which Z ⊊ W are finite and nonempty subsets of s−1(v).
The map [v] 7→ [vLK(E)] and [qvZ ] 7→ [qvZLK(E)] extends to an isomorphism γE ofME

and V(LK(E)) by [1, Corollary 3.2.11].
If Γ = ⟨t⟩ is the infinite cyclic group on t, the talented monoid or the graph

Γ-monoid MΓ
E is the free abelian Γ-monoid on the same generators as ME subject to

the relations

[v] =
∑

e∈s−1(v)

t[r(e)], [v] = [qvZ ] +
∑
e∈Z

t[r(e)], and [qvZ ] = [qvW ] +
∑

e∈W−Z

t[r(e)],

where v, Z, and W have the same properties as for the defining relations of ME .
While the monoid ME can register only whether two vertices are connected, the
“talent” of MΓ

E is to register the lengths of paths between vertices: if p is a path
of length n, the relation [s(p)] = tn[r(p)] + x holds in MΓ

E for some x ∈ MΓ
E . If

VΓ(LK(E)) is the monoid of the graded isomorphism classes [P ] of finitely generated
graded projective right R-modules P with the addition [P ]+[Q] = [P⊕Q] and the left
Γ-action (γ, [P ]) 7→ [(γ−1)P ], then the map [v] 7→ [vLK(E)] and [qvZ ] 7→ [qvZLK(E)]
extends to an isomorphism γΓ

E of MΓ
E and VΓ(LK(E)) ([4, Proposition 5.7]).

3. Porcupine-quotient graph

In this section, we generalize the constructions of the quotient and the porcupine
graphs by introducing the porcupine-quotient graph corresponding to the quotient
of one admissible pair with respect to another admissible pair. By Theorem 3.6,
the Leavitt path algebra of this graph is graded isomorphic to the quotient of two
corresponding graded ideals.

If H ⊆ G are two sets of vertices of E, let

BG
H = {v ∈ E0 −H | v is an infinite emitter and 0 < |s−1(v) ∩ r−1(G−H)| < ∞}.
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Definition 3.1. If (H,S) and (G,T ) are two admissible pairs of a graph E such that
(H,S) ≤ (G,T ), we let

F1(G−H,T − S) = {e1e2 · · · en is a path of E |
r(en) ∈ G−H, s(en) /∈ (G−H) ∪ (T − S)} and

F2(G−H,T − S) = {p is a path of E | r(p) ∈ T − S, |p| > 0}.
The porcupine-quotient graph (G,T )/(H,S) of (G,T ) with respect to (H,S) is

defined as follows. The set of vertices of (G,T )/(H,S) is the set

(G−H) ∪ (T − S) ∪ {wp | p ∈ F1(G−H,T − S) ∪ F2(G−H,T − S)}
∪ {v′ | v ∈ ((G ∪ T )− S) ∩BG

H}.
The set of edges of (G,T )/(H,S) is the set

{e ∈ E1 | r(e) ∈ G−H and either s(e) ∈ G−H or s(e) ∈ T − S}
∪{fp | p ∈ F1(G−H,T−S)∪F2(G−H,T−S)}∪{e′ | r(e) ∈ ((G∪T )−S)∩BG

H}.

The source and range of an edge of (G,T )/(H,S) which is also in E1 are the same
as in E.

If e ∈ E1∩(F1(G−H,T−S)∪F2(G−H,T−S)), we let s(fe) = we and r(fe) = r(e).
If p = eq where e ∈ E1, q ∈ F1(G −H,T − S) ∪ F2(G −H,T − S), and |q| > 0, let
s(fp) = wp and r(fp) = wq.

If r(e) ∈ ((G ∪ T ) − S) ∩ BG
H , we let r(e′) = r(e)′. If r(e) ∈ (G − S) ∩ BG

H and
if s(e) ∈ (G − H) ∪ (T − S), we let s(e′) = s(e). If s(e) /∈ (G − H) ∪ (T − S), then
either s(e) /∈ G ∪ T or s(e) ∈ T ∩ S. In either case, e ∈ F1(G−H,T − S) and we let
s(e′) = we. If r(e) ∈ (T −S)∩BG

H , then e ∈ F2(G−H,T −S) and we let s(e′) = we.
If S = T = ∅, we write (G, ∅)/(H, ∅) shorter as G/H.

If (G,T ) = (E0, ∅), the porcupine-quotient graph is the quotient graph E/(H,S)

since F1(E
0 −H, ∅) = F2(E

0 −H, ∅) = ∅, BE0

H = BH , and (E0 − S) ∩BH = BH − S
so the added vertices and edges are exactly as in E/(H,S).

If (H,S)=(∅, ∅), the porcupine-quotient graph is the porcupine graph P(G,T ) since

F1(G − ∅, T − ∅) = F1(G,T ), F2(G − ∅, T − ∅) = F2(G,T ), and (G ∪ T ) ∩ BG
∅ = ∅

because if v is an infinite emitter in G ∪ T , then v emits infinitely many edges to G,
so v is not in BG

∅ .
We present some examples illustrating the construction.

Example 3.2. (1) Let E be the graph

•u0
•v0 •w0

•u1

e //

OO

•v1
g //

h

OO

•w1

OO

and let H = {w0, w1} and G = H ∪ {v0, v1}. Then, G/H is the graph

•v0

•
fe

// •v1

h

OO

The quotient I(G)/I(H) is generated, as a graded ∗-algebra, by three elements
of degree 0, v0 + I(H), v1 + I(H), and ee∗ + I(H), two elements of degree 1,
e + I(H) and h + I(H), and one element of degree 2, eh + I(H). The Leavitt
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path algebra of the porcupine-quotient graph is generated by three elements
of degree 0, v0, v1, and fe(fe)∗, two elements of degree 1, fe and h, and the
path feh of degree 2. The correspondence mapping the generators of LK(G/H)
to the generators of I(G)/I(H) in the order listed above extends to a graded
∗-homomorphism LK(G/H) → I(G)/I(H) (this also follows from the proof of
Theorem 3.6).

The porcupine graph of H is

•w0

•
feg

// •
fg

// •w1

OO

and the quotient graph E/G is

•u0

•u1

OO

The chain ∅ ≤ H ≤ G ≤ E0 is such that the porcupine-quotient graph of each
two consecutive terms is cofinal.

(2) Let E be the graph

•ve 77 44//
**   •w

For H = {w} and BH = {v}, (H, {v})/(H, ∅) is the graph

•
feee

// •
fee

// •
fe

// •v
If g1, g2, . . . are the edges v emits to w, the porcupine graph of (H, ∅) is

•
feeg1

// •
feg1
// •

fg1

  
•

feeg2
// •

feg2
// •

fg2
// •w

•
feeg3

// •
feg3
// •

fg3

>>

•
The quotient E/(H, {v}) is •ve 77 . The chain (∅, ∅) ≤ (H, ∅) ≤ (H, {v}) ≤
(E0, ∅) is such that the porcupine-quotient graph of each two consecutive terms
is cofinal.

The following example generalizes the last example and exhibits a scenario appear-
ing in the proof of Theorem 6.5.

Example 3.3. Let E be any graph and H be a hereditary and saturated set with
BH nonempty. Let S ⊊ S ∪ {v} ⊆ BH . We describe the porcupine-quotient (H,S ∪
{v})/(H,S). As BH

H = ∅, no vertices of the form v′ are present. We also have that
F1(∅, {v}) = ∅, so the only vertices of this graph beside v are the vertices of the
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form wp for p ∈ F2(∅, {v}). The vertex v is a sink and each vertex of the form wp

emits only one edge. For each p ∈ F2(∅, {v}) there is only one path from wp to v
and there are neither cycles, nor infinite emitters, nor infinite paths in this graph. By
Lemma 2.1, condition (3)(a) of Theorem 5.7 holds. Hence, (H,S ∪ {v})/(H,S) is
cofinal.

Remark 3.4. The porcupine-quotient graph versus the relative quotient graph. If E is
any graph and H and G are two hereditary and saturated sets of vertices such that
H ⊆ G, the authors of [10] define the quotient Q of G with respect to H as the graph
with

Q0 = G−H and Q1 = {e ∈ E1 | s(e) ∈ G, r(e) /∈ H}
and s and r relations the same as in E. This construction is different from the
porcupine-quotient G/H, so we refer to it as the relative quotient. Even if E is
row-finite, the two constructions are different since the vertices of the porcupine-
quotient G/H are not only the vertices of G−H but also the vertices of the form wp

for p ∈ F1(G−H) = {p = e1 · · · en | r(en) ∈ G−H, s(en) /∈ G}. For example, if E is
the graph from part (1) of Example 3.2 and H and G as in that example, then the
porcupine-quotient graph is

•v0

•
fe

// •v1

h

OO

and the relative quotient graph is

•v0

•v1

h

OO

While the porcupine-quotient graph retains the information on the number of paths
ending in G−H, this information is lost in the relative quotient graph. By Example 3.2
(and, also, by Theorem 3.6), the Leavitt path algebra of the porcupine-quotient is
graded isomorphic to the quotient I(G)/I(H). We claim that the Leavitt path algebra
of the relative quotient is not isomorphic to I(G)/I(H).

The quotient I(G)/I(H) is generated, as a graded ∗-algebra, by the six elements
listed in Example 3.2. As a ∗-algebra, it is ∗-isomorphic to M3(K). On the other hand,
the Leavitt path algebra of the relative quotient has only three generators v0, v1, and h
as a ∗-algebra and it is isomorphic to M2(K). The algebras M2(K) and M3(K) are
not isomorphic.

In [10], the relative quotients are considered only as the underlying graphs of
their talented monoids. The talented monoids of the relative and the porcupine-quo-
tients are isomorphic, so both constructions can be used. However, when the talented
monoids are considered with their order-units, the constructions are different. Exam-
ple 4.5 contains more details of this last point.

Before proving Theorem 3.6, we prove an auxiliary lemma which generalizes [1,
Theorem 2.4.8].

Lemma 3.5. If E is any graph, (H,S) and (G,T ) are admissible pairs such that
(H,S) ≤ (G,T ), and v ∈ BG, then vG ∈ I(H,S) if and only if v ∈ S and v does not
emit any edges to G−H.
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Proof: To show the implication (⇒), assume that vG ∈ I(H,S). If v does not emit
any edges to G−H, then v ∈ BH and vH = vG ∈ I(H,S), which implies that v ∈ S
by [1, Theorem 2.4.8]. If v emits some edges to G − H, let e be one of them. As
vG ∈ I(H,S), e∗vGe = e∗e = r(e) ∈ I(H,S). By [1, Theorem 2.4.8], r(e) ∈ H, which
is a contradiction because r(e) ∈ G−H.

The converse (⇐) holds since v ∈ S implies that vH ∈ I(H,S) by [1, Theorem 2.4.8]
and s−1(v) ∩ r−1(G−H) = ∅ implies that vG = vH .

Theorem 3.6. If (H,S) and (G,T ) are admissible pairs of a graph E such that
(H,S) ≤ (G,T ), then the algebras LK((G,T )/(H,S)) and I(G,T )/I(H,S) are graded
isomorphic.

Proof: To shorten the notation in the proof, we let I = I(H,S), Ev = s−1(v) ∩
r−1(G−H) for any v ∈ E0, and, if Ev is finite and nonempty, we let

vG−H =
∑
e∈Ev

ee∗.

We define a map ϕ : LK((G,T )/(H,S)) → I(G,T )/I by mapping the vertices of
(G,T )/(H,S) as follows:

v
� // v +I if v ∈ (G−H)−BG

H ∪ (G ∩ S),

v
� // vG−H +I if v ∈ ((G ∪ T )− S)) ∩BG

H ,

v � // vG +I if v ∈ (T − S)−BG
H ,

wp � // pp∗ +I if p ∈ F1(G−H,T − S),

wp � // pr(p)Gp∗ +I if p ∈ F2(G−H,T − S),

v′ � // v − vG−H +I if v ∈ (G− S) ∩BG
H ,

v′
� // vG − vG−H +I if v ∈ (T − S) ∩BG

H .

One directly checks that the union of the sets in the if-parts of the first three cases is
indeed (G−H)∪ (T −S). Note also that v ∈ (G−S)∩BG

H ; then v ∈ BH and v does
not emit edges outside of G, so v − vG−H = vH . If v ∈ (T − S) ∩ BG

H , then v ∈ BH

and vG − vG−H = vH . Thus,

ϕ(v′) = vH + I

for any v ∈ ((G ∪ T )− S) ∩BG
H and the last two lines of the above definition can be

condensed into one. While the longer, “noncondensed” definition of ϕ(v′) increases
clarity of some parts of the following proof, we occasionally use also the “condensed”
version.

We define ϕ on the edges of (G,T )/(H,S) by

e
� // (e+ I)ϕ(r(e)) if e ∈ E1,

fp � // (e+ I)ϕ(r(fp)) if p=eq ∈ F1(G−H,T − S)∪F2(G−H,T − S), e∈E1,

e′ � // (e+ I)ϕ(r(e)′) if r(e) ∈ ((G ∪ T )− S) ∩BG
H ,

and we define ϕ on the set of ghost edges by ϕ(g∗) = ϕ(g)∗ for any edge g of the
graph (G,T )/(H,S).

Extending ϕ to a graded ∗-homomorphism. One directly checks that the axioms (V)
and (CK1) hold and that the part of (E1) involving the range function holds for the
images of the vertices and edges of the porcupine-quotient graph. If e is an edge of
both the porcupine-quotient graph and of E, one checks that ϕ(s(e))(e + I) = e + I
so that ϕ(s(e))ϕ(e) = ϕ(s(e))(e+ I)ϕ(r(e)) = (e+ I)ϕ(r(e)) = ϕ(e).
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Let p = eq ∈ F1(G − H,T − S) for an edge e and a path q. If |q| > 0, then
ϕ(s(fp))ϕ(fp) = ϕ(wp)(e + I)ϕ(wq) = eqq∗e∗eqq∗ + I = eqq∗ + I = (e + I)(qq∗ +
I) = (e + I)ϕ(wq) = ϕ(fp). If |q| = 0, then ϕ(s(fe))ϕ(fe) = ϕ(we)(e + I)ϕ(r(e)) =
(ee∗e + I)ϕ(r(e)) = (e + I)ϕ(r(e)) = ϕ(fe). Checking that ϕ(s(fp))ϕ(fp) = ϕ(fp)
for p ∈ F2(G−H,T − S) is similar.

If e′ is defined and if s(e′) = s(e), then

ϕ(s(e′))ϕ(e′) = ϕ(s(e))(e+ I)ϕ(r(e)′) = (e+ I)ϕ(r(e)′) = ϕ(e′).

If e′ is defined and if e ∈ F1(G−H,T − S), so that s(e′) = we, then

ϕ(s(e′))ϕ(e′) = (ee∗ + I)(e+ I)ϕ(r(e)′) = (e+ I)ϕ(r(e)′) = ϕ(e′).

If e′ is defined and if e ∈ F2(G−H,T − S) so that s(e′) = we, then

ϕ(s(e′))ϕ(e′)=er(e)Ge∗er(e)H+I=er(e)Gr(e)H+I=er(e)H+I=(e+I)ϕ(r(e)′)=ϕ(e′).

This shows that (E1) holds. By the definition of ϕ on the ghost edges, (E1) holding
implies that (E2) also holds. So, it remains to check (CK2).

If v ∈ E0 is a regular vertex of (G,T )/(H,S), then either v is a regular vertex
of E which is in G −H (hence it does not emit all of its edges to H), or v ∈ G ∩ S,
or v ∈ ((G ∪ T ) − S) ∩ BG

H . In any case, the set Ev is nonempty and finite. Let us
partition Ev into two sets, Ev1 = Ev ∩ r−1((G−S)∩BG

H) and Ev2 = Ev −Ev1. Note
that either of these two sets can possibly be empty, but not both. If either of them
is empty, let 0 stand for

∑
e∈∅ ee

∗. In (G,T )/(H,S), v emits the edges e ∈ Ev and e′

for e ∈ Ev1 and we have that∑
e∈Ev

ϕ(e)ϕ(e∗) +
∑

e∈Ev1

ϕ(e′)ϕ((e′)∗)

=
∑
e∈Ev

(e+ I)ϕ(r(e))(e∗ + I) +
∑

e∈Ev1

(e+ I)ϕ(r(e)′)(e∗ + I)

=
∑

e∈Ev1

(er(e)G−He∗ + I) +
∑

e∈Ev2

(er(e)e∗ + I) +
∑

e∈Ev1

(e(r(e)− r(e)G−H)e∗ + I)

=

( ∑
e∈Ev1

er(e)G−He∗ +
∑

e∈Ev2

ee∗ +
∑

e∈Ev1

ee∗ −
∑

e∈Ev1

er(e)G−He∗

)
+ I

=
∑
e∈Ev

ee∗ + I = vG−H + I.

It remains to show that ϕ(v) = vG−H + I in any of the three possibilities for v.
If v is a regular vertex of E which is in G−H, then ee∗∈I for every e∈s−1(v) ∩

r−1(H), so

ϕ(v) = v + I =
∑

e∈s−1(v)

ee∗ + I =
∑
e∈Ev

ee∗ + I = vG−H + I.

If v ∈ G ∩ S, then v does not emit any edges outside of G so v − vG−H = vH ∈ I.
Thus, ϕ(v) = v + I = vG−H + I.

If v ∈ ((G ∪ T )− S) ∩BG
H , ϕ(v) = vG−H + I by the definition of ϕ.
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As the vertices of the form v′ are not regular in the porcupine-quotient, it remains to
check (CK2) for the vertices of the form wp for p ∈ F1(G−H,T−S)∪F2(G−H,T−S).
If p = eq for e ∈ E1 and |q| > 0, then wp emits only fp, and

ϕ(fp)ϕ((fp)∗) = (e+ I)ϕ(wq)(e∗ + I) = eqq∗e∗ + I = pp∗ + I = ϕ(wp)

for p ∈ F1(G−H,T − S) and

ϕ(fp)ϕ((fp)∗) = (e+ I)ϕ(wq)(e∗ + I) = eqr(p)Gq∗e∗ + I = pr(p)Gp∗ + I = ϕ(wp)

for p ∈ F2(G−H,T − S).
If p = e ∈ F1(G−H,T − S) and if r(e) ∈ (G− S)∩BG

H , then we emits two edges,
fe and e′, and

ϕ(fe)ϕ((fe)∗)+ϕ(e′)ϕ((e′)∗)=er(e)G−He∗+e(r(e)−r(e)G−H)e∗+I=ee∗+I = ϕ(we).

If p = e ∈ F1(G−H,T − S) and r(e) /∈ (G− S) ∩BG
H , then we emits only fe and

ϕ(fe)ϕ((fe)∗) = ee∗ + I = ϕ(we).

If p = e ∈ F2(G−H,T −S) and r(e) ∈ (T −S)∩BG
H , then we emits fe and e′ and

ϕ(fe)ϕ((fe)∗) + ϕ(e′)ϕ((e′)∗) = er(e)G−He∗ + e(r(e)G − r(e)G−H)e∗ + I

= er(e)Ge∗ + I = ϕ(we).

If p = e∈F2(G−H,T−S) and r(e) /∈(T−S)∩BG
H , then ϕ(fe)ϕ((fe)∗) = er(e)Ge∗+I =

ϕ(we).
This shows that all five axioms hold for the images of vertices, edges, and ghost

edges of (G,T )/(H,S). By the universal property, ϕ extends to a unique homomor-
phism, which we denote also by ϕ, of LK((G,T )/(H,S)). The map ϕ is a ∗-homomor-
phism since the images of vertices are self-adjoint and by the definition of ϕ on the
ghost edges. The map ϕ is graded because the vertices are mapped to the elements of
degree 0 and the edges to the elements of degree 1.

Showing injectivity. To use the graded uniqueness theorem and conclude that ϕ is
injective, we need to check that the images of the vertices are not in I. This is clear
for the vertices in (G−H)−BG

H ∪ (G ∩ S) because they are in E0 −H, so they are
not elements of I. By Lemma 3.5, ϕ(v) = vG + I ̸= I for v ∈ (T − S) − BG

H and
ϕ(v′) = vH + I ̸= I as v /∈ S for v ∈ ((G ∪ T )− S) ∩BG

H .
If v ∈ ((G ∪ T )− S) ∩BG

H , assuming that ϕ(v) = vG−H + I = I, then this implies
that r(e) = e∗ee∗e = e∗vG−He ∈ I for any e ∈ Ev. This is a contradiction since
r(e) /∈ H by the definition of Ev.

Assuming that pp∗ ∈ I for some p ∈ F1(G−H,T−S), we have that r(p) = p∗pp∗p ∈
I, which is a contradiction as r(p) ∈ G −H. Similarly, assuming that pr(p)Gp∗ ∈ I
for some p ∈ F2(G − H,T − S), we have that r(p)G = p∗pr(p)Gp∗p ∈ I, which is a
contradiction by Lemma 3.5 as r(p) ∈ T − S.

Showing surjectivity. As ϕ is a ∗-homomorphism, to show surjectivity of ϕ it is suffi-
cient to show that p+ I is in the image of ϕ for every path p such that r(p) ∈ G, and
that pr(p)G + I is in the image of ϕ for every path p such that r(p) ∈ T . We refer to
these conditions as cases 1 and 2.

Case 1 for paths of zero length. For p = v ∈ G, we consider two cases: v ∈ ((G−S)−
BG

H) ∪ (G ∩ S) and v ∈ (G − S) ∩ BG
H . In the first case, ϕ(v) = v + I if v /∈ H and

ϕ(0) = I = v+I if v ∈ H. In the second case, ϕ(v+v′) = vG−H+v−vG−H+I = v+I.

Case 2 for paths of zero length. If p = v ∈ T , we consider three cases: v ∈ (T−S)−BG
H ,

v ∈ (T − S) ∩ BG
H , and v ∈ S ∩ T . In the first case, ϕ(v) = vG + I by the definition

of ϕ. In the second case, ϕ(v + v′) = vG−H + vG − vG−H + I = vG + I.
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If v ∈ S ∩ T , then either vH = vG and v /∈ BG
H or v ∈ BG

H . In the first case,
ϕ(0) = I = vH + I = vG + I. In the second case, the set Ev is nonempty and finite,
vG − vG−H = vH ∈ I, and e is in F1(G−H,T − S) for every e ∈ Ev. Thus,

ϕ

(∑
e∈Ev

we

)
=
∑
e∈Ev

ϕ(we) =
∑
e∈Ev

ee∗ + I = vG−H + I = vG + I.

Case 1 for paths of positive lengths. If r(p) ∈ H, then p ∈ I and ϕ(0) = p + I. So,
consider a path p with r(p) ∈ G−H. Let p = eq with e ∈ E1, and either q = e1e2 · · · en
for some n ≥ 1 or q = r(e). We use induction and assume that q + I = ϕ(x) for
some x ∈ LK((G,T )/(H,S)).

As r(p) ∈ G−H, let us consider whether there is a prefix (possibly improper) of p
which is in F1(G−H,T −S) or whether every prefix of p is not in F1(G−H,T −S).
In the first case, we consider the cases when the prefix in F1(G−H,T −S) is ee1 · · · ei
for some i ≤ n and when the prefix is e (in which case |q| is possibly zero).

If ee1 · · · ei ∈ F1(G−H,T − S), for some i ≤ n, then

ϕ(fee1···eix) = (e+ I)ϕ(we1···ei)ϕ(x) = ee1 · · · ei(e1 · · · ei)∗q + I

= ee1 · · · eiei+1 · · · en + I = eq + I = p+ I.

If e ∈ F1(G − H,T − S), we check whether r(e) ∈ (G − S) − BG
H ∪ (G ∩ S),

r(e) ∈ (G−S)∩BG
H and q has positive length, or r(e) ∈ (G−S)∩BG

H and q has zero
length. In the first case,

ϕ(fe)ϕ(x) = (e+ I)ϕ(r(e))(q + I) = er(e)q + I = p+ I.

In the second case, note that r(e1)∈G−H as r(e)=s(e1) ∈ G−H and G is hereditary.
Hence,

ϕ(fe)ϕ(x)=(e+I)ϕ(r(e))(q+I)=er(e)G−Hq+I = ee1e
∗
1e1e2 · · · en+I = eq+I = p+I.

In the third case,

ϕ(e) + ϕ(e′) = (e+ I)ϕ(r(e)) + (e+ I)ϕ(r(e)′)

= (e+ I)(r(e)G−H + r(e)− r(e)G−H + I) = er(e) + I = e+ I.

If each prefix of p is not in F1(G − H,T − S), then either r(e) ∈ G − H and
s(e) ∈ (G − H) ∪ (T − S), or r(e) /∈ G − H, r(ei) ∈ G − H, and s(ei) ∈ T − S for
some i ≥ 1, in which case we let i be the largest such i ≤ n.

In the first case, if r(e) /∈ (G − S) ∩ BG
H , then ϕ(e) = (e + I)ϕ(r(e)) = (e +

I)(r(e) + I) = e + I so ϕ(ex) = eq + I = p + I. If r(e) ∈ (G − S) ∩ BG
H , then

ϕ(e+ e′) = er(e)G−H + er(e)− er(e)G−H + I = e+ I so ϕ((e+ e′)x) = eq+ I = p+ I.
In the second case, if i > 1, then ee1 · · · ei−1 ∈ F2(G−H,T − S) and

ϕ(fee1···ei−1x) = ee1 · · · ei−1s(ei)
Ge∗i−1 · · · e∗1e1 · · · en + I

= ee1 · · · ei−1s(ei)
Gei · · · en+I=ee1 · · · ei−1ei · · · en+I=eq+I=p+ I,

where s(ei)
Gei = s(ei)ei = ei because ei has its range in G. Similarly, if i = 1, then

ϕ(fex) = er(e)Gq + I = eq + I = p+ I.

Case 2 for paths of positive lengths. For p= eq with r(p)∈ T , e∈E1, and q a path
of E, we also use induction, so let us assume that ϕ(x) = q + I for some x ∈
LK((G,T )/(H,S)).

If r(p) ∈ T − S, then p ∈ F2(G−H,T − S) and

ϕ(feqx) = (e+ I)ϕ(wq)(q + I) = eqr(p)Gq∗q + I = pr(p)G + I.



60 L. Vaš

If r(p) ∈ S ∩ T , then either r(p) emits no edges to G−H and r(p)G = r(p)H ∈ I
so that ϕ(0) = pr(p)G + I, or r(p) emits nonzero and finitely many edges to G −H
and pg ∈ F1(G−H,T −S) for every g ∈ Er(p). As r(p)G − r(p)G−H = r(p)H ∈ I, we
have that

ϕ

 ∑
g∈Er(p)

fpgx

 =
∑

g∈Er(p)

(e+ I)ϕ(wqg)(q + I)

=
∑

g∈Er(p)

eqgg∗q∗q + I = eqr(p)G−H + I = pr(p)G + I.

This shows that ϕ is surjective, and concludes the proof.

3.1. The graph monoid and the talented monoid of a porcupine-quotient
graph. In this section (as well as in Sections 4 and 7), Γ is the infinite cyclic group on
a generator t. By [1, Theorems 3.6.23 and 2.5.8] and [4, Theorem 5.11] the following
four lattices are isomorphic.

(1) The lattice of admissible pairs of E.

(2) The lattice of graded ideals of LK(E).

(3) The lattice of order-ideals of ME .

(4) The lattice of Γ-order-ideals of MΓ
E .

Let us recall these isomorphisms. If (H,S) is an admissible pair of a graph E,
let I(H,S) be the graded ideal of LK(E) generated by {v | v ∈ H} ∪ {vH | v ∈
S}, let J(H,S) be the order-ideal of ME generated by {[v] | v ∈ H} ∪ {[vH ] |
v ∈ S}, and let JΓ(H,S) be the Γ-order-ideal of MΓ

E generated by the same el-
ements as J(H,S). The element (H,S) of the first lattice corresponds to the ele-
ments I(H,S), J(H,S), and JΓ(H,S) of the second, the third, and the fourth lattice,
respectively.

The natural isomorphism γE : ME → V(LK(E)) (see Subsection 2.6) maps the
generators of J(H,S) to the elements which generate V(I(H,S)). So, the restriction
of γE to J(H,S), mapping J(H,S) to V(I(H,S)), is onto. Hence, this restriction is an
isomorphism. The same argument applies in the graded case and so the restriction of
γΓ
E : MΓ

E → VΓ(LK(E)) to JΓ(H,S) is an isomorphism of JΓ(H,S) and VΓ(I(H,S)).
By [1, Proposition 3.6.17] (formulated for any ring generated by idempotents), there

is a canonical injective homomorphism ω :V(LK(E))/V(I(H,S))→V(LK(E)/I(H,S))
such that [u] + V(I(H,S)) 7→ [u + I(H,S)] for an idempotent u of LK(E). We re-
view the argument from the proof of [1, Theorem 3.6.23] showing that ω is onto.
For v ∈ E0 − H and Z ⊆ s−1(v) ∩ r−1(E0 − H) finite but possibly empty, the el-
ements of the form [v −

∑
e∈Z ee∗ + I(H,S)] generate V(LK(E)/I(H,S)). As such

elements are in the image of ω, ω is onto.
It is direct to check that [1, Proposition 3.6.17] holds for Γ-graded rings gen-

erated by homogeneous idempotents and so there is an injective homomorphism
ωΓ : VΓ(LK(E))/VΓ(I(H,S)) → VΓ(LK(E)/I(H,S)) of pre-ordered Γ-monoids map-
ping [u] + VΓ(I(H,S)) 7→ [u + I(H,S)] for a homogeneous idempotent u of LK(E).
The same argument for showing that ω is onto applies to ωΓ, so ωΓ is an isomorphism.

We use similar arguments to show the proposition below. We use the above defini-
tions of J(H,S) and JΓ(H,S) for an admissible pair (H,S) in the statement of the
proposition.



Porcupine-quotient graphs and composition series 61

Proposition 3.7. If (H,S) and (G,T ) are admissible pairs of a graph E such that
(H,S) ≤ (G,T ), then there is a pre-ordered monoid isomorphism

M(G,T )/(H,S)
∼= J(G,T )/J(H,S)

and a pre-ordered Γ-monoid isomorphism

MΓ
(G,T )/(H,S)

∼= JΓ(G,T )/JΓ(H,S).

Proof: We have that M(G,T )/(H,S)
∼= V(LK((G,T )/(H,S))) ∼= V(I(G,T )/I(H,S)),

where the first isomorphism is γ(G,T )/(H,S)) and the second is induced by the iso-
morphism from Theorem 3.6. By [1, Proposition 3.6.17], there is a canonical in-
jective homomorphism ω : V(I(G,T ))/V(I(H,S)) → V(I(G,T )/I(H,S)) such that
[u]+V(I(H,S)) 7→ [u+I(H,S)] for any idempotent u of I(G,T ). The elements of the
form [v−

∑
e∈Z ee∗+I(H,S)], where v ∈ G−H and Z ⊆ s−1(v)∩r−1(G−H) is finite

but possibly empty, generate V(I(G,T )/I(H,S)) and such elements are in the image
of ω. Thus, ω is onto. Lastly, V(I(G,T ))/V(I(H,S)) ∼= J(G,T )/J(H,S) since the
restrictions of γE to J(G,T ) and J(H,S) respectively are isomorphisms J(G,T ) →
V(I(G,T )) and J(H,S) → V(I(H,S)).

The argument for the Γ-monoids is completely analogous. The Γ-monoid ver-
sion of [1, Proposition 3.6.17] yields an injective homomorphism ωΓ : VΓ(I(G,T ))/
VΓ(I(H,S)) → VΓ(I(G,T )/I(H,S)) such that [u] + VΓ(I(H,S)) 7→ [u+ I(H,S)] for
any homogeneous idempotent u of I(G,T ). The map ωΓ is onto by the same argument
as for ω. Thus, we have the isomorphisms

MΓ
(G,T )/(H,S)

∼= VΓ(LK((G,T )/(H,S))) ∼= VΓ(I(G,T )/I(H,S))

∼= VΓ(I(G,T ))/VΓ(I(H,S)) ∼= JΓ(G,T )/JΓ(H,S),

where the first one is γ(G,T )/(H,S), the existence of the second follows from Theo-

rem 3.6, the third is the inverse of ωΓ, and the last one is induced by the restrictions
of γΓ

E .

4. Composition series of graphs

If E is any graph and K a field, a (graded) composition series of length n of LK(E)
is a chain of (graded) ideals

{0} = I0 ⪇ I1 ⪇ · · · ⪇ In = LK(E)

such that the (graded) algebra Ii+1/Ii is (graded) simple for all i = 0, . . . , n − 1.
By Lemma 2.3, requiring that Ii is a (graded) ideal of Ii+1 for all i = 0, . . . , n − 1
is equivalent to requiring that Ii is a (graded) ideal of the entire algebra. The alge-
bra LK(E) has a (graded) composition series if there is a positive integer n such that
LK(E) has a (graded) composition series of length n. We also note that increasing,
not necessarily finite, chains of graded ideals with simple quotients of specific type
were considered in [13, Theorem 6.4].

Theorem 3.6 enables us to characterize the existence of a graded composition series
in purely graph-theoretic terms using the following definition.

A graph E has a composition series of length n if there is a chain of admissible pairs

(∅, ∅) = (H0, S0) ⪇ (H1, S1) ⪇ · · · ⪇ (Hn, Sn) = (E0, ∅)
such that the porcupine-quotient graph (Hi+1, Si+1)/(Hi, Si) is cofinal for all i =
0, . . . , n − 1. If Si = ∅ for all i, we write the above chain shorter as ∅ = H0 ⪇ H1 ⪇
· · · ⪇ Hn = E0. The graph E has a composition series if E has a composition series
of length n for some positive integer n.
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For example, let E be the graph from part (1) of Example 3.2 and H and G be
as in the same example. Then ∅ ≤ H ≤ G ≤ E0 is a composition series of E. If E
is the graph from part (2) of Example 3.2 and H is as in that same example, then
(∅, ∅) ≤ (H, ∅) ≤ (H,BH) ≤ (E0, ∅) is a composition series of E.

Theorem 3.6 has the following direct corollary.

Corollary 4.1. If E is any graph, the following conditions are equivalent.

(1) The algebra LK(E) has a graded composition series.
(2) The graph E has a composition series.

The existence of a composition series of a graph is equivalent to the existence of
such series of both the porcupine and the corresponding quotient graph, as we show
next. We note that a similar claim has been shown for Γ-refinement monoids in [10,
Lemma 2.11].

Proposition 4.2. If (H,S) is an admissible pair of a graph E, then E has a compo-
sition series if and only if P(H,S) and E/(H,S) have composition series.

Proof: By Corollary 4.1, it is sufficient to consider the graded ideals and graded
composition series of the related Leavitt path algebras. Let I = I(H,S).

If {0} = I0 ⪇ · · · ⪇ In = LK(E) is a graded composition series of LK(E), then
it is direct to check that {0} = I0 ∩ I ⪇ · · · ⪇ In ∩ I = I produces a graded
composition series of I. Each term of this series is graded isomorphic to a graded
ideal of LK(P(H,S)) and these graded ideals constitute a graded composition series of
LK(P(H,S)). It is also direct to check that {I} = (I0 + I)/I ⪇ · · · ⪇ (In + I)/I =
LK(E)/I is a graded composition series of LK(E)/I. Each term of this series is graded
isomorphic to a graded ideal of LK(E/(H,S)) and the images of the terms of the series
constitute a graded composition series of LK(E/(H,S)).

Conversely, if {0} = I ′0 ⪇ · · · ⪇ I ′n = LK(P(H,S)) is a graded composition series
of LK(P(H,S)), the images Ii of I ′i for i = 0, . . . , n under the graded isomorphism
of LK(P(H,S)) and I produce a graded composition series of I. Similarly, if {0} = J ′

0 ⪇
· · · ⪇ J ′

m = LK(E/(H,S)) is a graded composition series of LK(E/(H,S)), it uniquely
determines the graded ideals {I} = J0/I ⪇ · · · ⪇ Jm/I = LK(E)/I of LK(E)/I,
which constitute a graded composition series of LK(E)/I. The ideals I0, . . . , In =
J0, . . . , Jm are graded ideals of LK(E) by Lemma 2.3 and so

{0} = I0 ⪇ I1 ⪇ · · · ⪇ In = I = J0 ⪇ J1 ⪇ · · · ⪇ Jm = LK(E)

is a graded composition series of LK(E).

A composition series of length n of the graph monoid ME is a chain of order-ideals

{0} = I0 ⪇ I1 ⪇ · · · ⪇ In = ME

such that the monoid Ii+1/Ii is simple (i.e., without any nontrivial and improper
order-ideals) for all i = 0, . . . , n − 1. The monoid ME has a composition series if
ME has a composition series of length n for some positive integer n.

We recall that Γ is the infinite cyclic group on a generator t. A composition series
of length n of the talented monoid MΓ

E is a chain of Γ-order-ideals

{0} = I0 ⪇ I1 ⪇ · · · ⪇ In = MΓ
E

such that the Γ-monoid Ii+1/Ii is simple (i.e., without any nontrivial and improper
Γ-order-ideals) for all i = 0, . . . , n − 1. The monoid MΓ

E has a composition series if
MΓ

E has a composition series of length n for some positive integer n.
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By [14, Theorem 3.25], if MΓ
E has a composition series, then any two composition

series have the same length (and the composition factors are isomorphic up to a
permutation). This implies the second part of the following corollary.

Corollary 4.3. If E is any graph, the conditions from Corollary 4.1 are equivalent
to either of the conditions below.

(3) The monoid ME has a composition series.
(4) The Γ-monoid MΓ

E has a composition series.

If these equivalent conditions hold, then each composition series of E, of ME and
of MΓ

E, and each graded composition series of LK(E) have the same length.

Proof: The first sentence follows directly from Proposition 3.7. Any two composition
series of E of lengths m and n respectively give rise to two composition series of MΓ

E

by Proposition 3.7. By [14, Theorem 3.25], m = n. Analogous arguments can be used
for graded composition series of LK(E) and for composition series of ME .

By [14, Theorem 3.29], if MΓ
E has a composition series, then there are no strictly

increasing or strictly decreasing infinite chains of Γ-order-ideals. This result, Corol-
lary 4.3, and Proposition 3.7 have the following corollary.

Corollary 4.4. If E is any graph and if there is a sequence (Hn, Sn), n = 0, 1, . . . ,
of admissible pairs of E such that either

(∅, ∅) ⪇ (H0, S0) ⪇ (H1, S1) ⪇ · · · or (E0, ∅) ⪈ (H0, S0) ⪈ (H1, S1) ⪈ · · ·

holds and the chain never becomes constant, then E does not have a composition
series.

Proof: Consider the Γ-order-ideals of the admissible pairs to obtain an infinite chain
of either strictly increasing or strictly decreasing Γ-order-ideals of MΓ

E using Propo-
sition 3.7. By [14, Theorem 3.29], MΓ

E does not have a composition series. By Corol-
lary 4.3, E does not have a composition series.

If E is a row-finite graph, the authors of [10] define a composition series of MΓ
E

analogously as we do above (see [10, Definition 2.8]) but relate it to admissible pairs
of E using the relative quotients (see Remark 3.4), not the porcupine-quotients. The
next example illustrates the differences between the two quotients on the Γ-monoid
level if the order-units are considered.

Example 4.5. Let E, G, and H be as in part (1) of Example 3.2. Recall that
∅ ≤ H ≤ G ≤ E0 is a graded composition series of E. The three related porcupine-
quotients are

•w0

•weg // •wg // •w1

OO
•v0

•we // •v1

OO
•u0

•u1

OO

with corresponding Leavitt path algebras being graded isomorphic toM4(K)(0, 1, 2, 3),
M3(K)(0, 1, 2), and M2(K)(0, 1) respectively. The usual matrix algebras are consid-
ered as graded algebras here and the grading is given by: x ∈ Mn(K) is in the m-th
component ofMn(K)(k1, . . . , kn) if xij ∈ Km−ki+kj

for all i, j = 1, . . . , n (more details
can be found in [9, Section 1.3] or [17, Section 2.1]). In this example, the numbers in
parentheses following the usual matrix algebra notation correspond to the lengths of
paths of the graphs ending at the sink of the graphs (see [11, Proposition 5.1]).
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The algebras M4(K)(0, 1, 2, 3), M3(K)(0, 1, 2), and M2(K)(0, 1) are graded isomor-
phic to the three quotients of graded ideals I(H)/I(∅), I(G)/I(H), and LK(E)/I(G)
by Theorem 3.6. On the other hand, the three relative quotients are

•w0

•w1

OO
•v0

•v1

OO
•u0

•u1

OO

and the Leavitt path algebras of these graphs are graded isomorphic to M2(K)(0, 1).
Thus, the algebras of the first two relative quotients are not isomorphic to the quo-
tients I(H) and I(G)/I(H) respectively.

The talented monoid of any of the six graphs above is isomorphic to Z+[t, t−1]
consisting of Laurent polynomials with nonnegative integer coefficients. However, if
we consider the talented monoids together with their order-units (see [9, Section 3.6.1],
[17, Section 2.5], or [12, Section 1.1] for relevant definitions), the triple

(Z+[t, t−1], 1 + t−1 + t−2 + t−3), (Z+[t, t−1], 1 + t−1 + t−2), and (Z+[t, t−1], 1 + t−1)

is different from the triple

(Z+[t, t−1], 1 + t−1), (Z+[t, t−1], 1 + t−1), and (Z+[t, t−1], 1 + t−1).

5. The four-color characterization of graded simple Leavitt path
algebras

We set aside the consideration of composition series until Section 6. In this section,
we introduce the fourth type of vertices, which are terminal in the same sense as the
sinks and the vertices of cycles which are either without exits or extreme, and show
Theorem 5.7.

By [1, Lemma 3.7.10], every vertex of a graph with finitely many vertices connects
to a sink, a cycle with no exits, or an extreme cycle. However, in a graph with infinitely
many vertices, that does not have to happen, as it is the case for the graph below.

• ??
��
• ??

��
• ??

��
•

The following proposition generalizes [1, Lemma 3.7.10] to graphs of arbitrary
cardinality.

Proposition 5.1. If E is any graph, each vertex of E connects to a sink, an extreme
cycle, or a cycle without exits, or it is on an infinite path containing the vertices v0 >
v1 > · · · .
Proof: Let v0 ∈ E0 be arbitrary. If v0 is a sink or on a cycle which is extreme or
without exits, the claim holds for v0. Otherwise, if v0 is on a cycle c, then c has an
exit but it is not extreme. So, there is a path p0 with s(p0) = v0 and r(p0) /∈ R(v0).
If v0 is not on a cycle and as v0 is not a sink, v0 emits edges and we let p0 = e for
any e ∈ s−1(v0). In either case, v1 = r(p0) /∈ R(v0), so v0 > v1.

Then consider v1. If v1 is a sink, on a cycle without exits or on an extreme cycle,
the claim holds for v1 and, hence, for v0 also. If not, then either v1 is on a cycle
emitting a path p1 such that r(p1) /∈ R(v1), or v1 is not on a cycle and it emits an
edge, in which case we let p1 be that edge. In either case, v2 = r(p1) ∈ T (v1)−R(v1),
which implies that v0 > v1 > v2. Continuing this process either terminates after
finitely many steps, resulting in a path from v0 to a sink or a cycle which is either
extreme or without exits, or the process does not terminate after finitely many steps
and we obtain an infinite path containing vertices with the required properties.
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By Proposition 5.1, the cofinality of a graph E can be characterized in terms of
the equivalence relation of E≤∞ given by

p ∼ q if R(p0) = R(q0).

Corollary 5.2. A graph E is cofinal if and only if the relation ∼ has only one
equivalence class.

Proof: If E is cofinal and p, q ∈ E≤∞, then p0 ⊆ R(q0) by the cofinality of every
vertex of p0, so R(p0) ⊆ R(q0). Symmetrically, R(q0) ⊆ R(p0).

To show the converse, let v ∈ E0 and p ∈ E≤∞. By Proposition 5.1, there is an
element q of E≤∞ such that v ∈ q0. Since R(p0) = R(q0), v ∈ R(p0), which shows
that v is cofinal.

5.1. Terminal paths. The following definition leads us to the “fourth primary color”.

Definition 5.3. An infinite path α of a graph E is terminal if no element of T (α0)
is an infinite emitter or on a cycle and if every infinite path β with s(β) ∈ α0 is such
that T (β0) ⊆ R(β0).

If α is a terminal path, then T (α0) ⊆ R(α0) holds. This implies that T (α0) contains
no sinks.

Any infinite path in each of the two graphs below is terminal. Note that no vertex
of the first graphs has a bifurcation. However, in the second graph, every vertex has
a bifurcation.

• // • // • // • • ??
��
• ??

��
• ??

��
•

An infinite path containing infinitely many vertices does not have to be terminal.
Indeed, no infinite path is terminal in any of the three graphs below.

•
�� // •

�� // •
�� // •

��

• 66//
(( �� • 66//

(( �� • 66//
(( �� •

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

Lemma 5.4 shows some properties of terminal paths.

Lemma 5.4. Let E be any graph and let α be a terminal path of E.

(1) Every infinite path β originating at a vertex of α is terminal and α ∼ β.
(2) If β is an infinite path which contains a vertex v of α, then the suffix γ of β

starting at v is terminal and α ∼ β ∼ γ.

Proof: To show (1), let β be an infinite path with s(β) ∈ α0. As α is terminal and
T (β0) ⊆ T (α0), no element of T (β0) is an infinite emitter or on a cycle. If γ is an
infinite path originating at a vertex of β and p the part of β from s(β) to s(γ), then
T (γ0) ⊆ T ((pγ)0) ⊆ R((pγ)0) = R(γ0), where the second inclusion holds because α
is terminal and the last equality holds since γ0 ⊆ (pγ)0 and (pγ)0 ⊆ R(γ0). Hence,
β is terminal. If v ∈ R(α0), let u ∈ α0 be such that v ∈ R(u). As both u and s(β) are
on α, u ≥ s(β), or s(β) ≥ u. If u ≥ s(β), then u ∈ R(β0), so v ∈ R(β0). If s(β) ≥ u,
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then u ∈ T (β0). As β is terminal, u ∈ T (β0) ⊆ R(β0). Thus, v ∈ R(u) ⊆ R(β0). This
shows that R(α0) ⊆ R(β0). For the converse, let v ∈ R(β0) and let u ∈ β0 be such
that v ∈ R(u). As u ∈ T (α0) ⊆ R(α0), v ∈ R(α0). This shows that R(α0) = R(β0)
and so α ∼ β.

To show (2), assume that v and γ are as in the assumption of part (2). By part (1),
γ is terminal and α ∼ γ. As β0 ⊆ R(γ0) and γ0 ⊆ β0, R(β0) = R(γ0). So, β ∼ γ.

5.2. The four-color characterization of graded simple Leavitt path alge-
bras. Next, we formally introduce the notion of a “cluster” of vertices, mentioned in
the introduction.

Definition 5.5. A vertex v of a graph E is terminal if it is a sink, on a cycle without
exits, on an extreme cycle, or on a terminal path.

Let TE be the set of terminal vertices. If TE ̸= ∅, we define an equivalence relation
on TE by

v ≈ w if v ∈ p0 and w ∈ q0 for p, q ∈ E≤∞ such that p ∼ q.

The cluster of a terminal vertex v is the equivalence class {w ∈ TE | v ≈ w}.

It is direct to check that ≈ is reflexive, symmetric, and transitive for vertices which
are not on terminal paths. By Lemma 5.4, ≈ is transitive for vertices on terminal
paths also.

Let us consider some examples of clusters. For the first two graphs below, every
vertex is terminal and each graph has only one cluster. The sink and the vertex on
the cycle of the third graph are terminal and each is in its own one-element cluster.

•
��

:: •__
��
•__ dd • ??

��
• ??

��
• ??

��
• • •oo // • dd

Lemma 5.6 describes the cluster of any terminal vertex of a graph. By part (3) of
Lemma 5.6, if the relation ≈ is considered only on the terminal vertices which are on
extreme cycles, then it coincides with the relation from [1, Definition 3.7.1].

Lemma 5.6. Let v be a terminal vertex of a graph E and let C be its cluster. One
of the following four conditions holds.

(1) The vertex v is a sink. The element v ∈ E≤∞ contains v, it is a unique such

element of E≤∞ up to ∼, and C = {v} = T (v) = T (C). So, C = {v}.
(2) The vertex v is on a cycle c without exits. The element ccc . . . ∈ E≤∞ contains v,

it is a unique such element of E≤∞ up to ∼, and C = c0 = T (c0) = T (C). So,

C = {u} for any u ∈ c0.

(3) The vertex v is on an extreme cycle c. The element ccc . . . ∈ E≤∞ contains v, it

is a unique such element of E≤∞ up to ∼, and C = T (c0) = T (C). So, C = {u}
for any u ∈ T (c0).

(4) The vertex v is on a terminal path α. The element α ∈ E≤∞ contains v, it is
a unique such element of E≤∞ up to ∼, C = T (C) =

⋃
T (β0), where the

union is taken over terminal paths β such that α ∼ β, and C = α0 = {u} for
any u ∈ C.

Proof: If v is a sink and if v ∈ p0 for some p ∈ E≤∞, then r(p) = v and R(v) = R(p0),
so v ∼ p. Thus, if w ≈ v, then v = w, so C = {v}. As T (v) = {v}, T (C) = T ({v}) =
{v} = C and C = {v}.

If v is a vertex of a cycle c without exits and if v ∈ p0 for some p ∈ E≤∞, then the
only terminal vertices of p are the vertices in c0 and R(c0) = R(p). So, ccc . . . ∼ p.
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If w ≈ v, then w ∈ c0, so C = c0. As T (c0) = c0, T (C) = T (c0) = c0 = C, and

C = c0 = {u} for any u ∈ c0.
If v is a vertex of an extreme cycle c, then all vertices in T (v) are on extreme

cycles which have the same root as c. Hence, T (c0) ⊆ C. If v ∈ p0 for some p ∈ E≤∞,
then the only terminal vertices of p are the vertices on extreme cycles with the same
root as c. Thus, R(c0) = R(p0), which implies that ccc . . . ∼ p. If w ≈ v, then v
and w are on extreme cycles with the same roots. As the vertices of any such cycle
are in T (c0), we have that C ⊆ T (c0). We already have the converse so C = T (c0).

Thus, T (C) = T (c0) = C and C = c0 = {u} for any u ∈ T (c0).
If v is a vertex such that v ∈ α0 for some terminal path α, then no vertex of T (v)

is on a cycle and it is neither a sink nor an infinite emitter. Hence, if v ∈ p0 for
some p ∈ E≤∞, then the suffix β of p past v is a terminal path such that α ∼ β ∼ p
by part (2) of Lemma 5.4.

If w ∈ T (β0) for some terminal path β such that β ∼ α, then w ≈ v, so w ∈ C.
Conversely, if w ≈ v, then w is on some q ∈ E≤∞ such that q ∼ α. As w is a terminal
vertex, the suffix γ of q originating at w is terminal and γ ∼ q ∼ α by part (2) of
Lemma 5.4. Hence, w ∈

⋃
T (β0), where the union is taken over terminal paths β

such that β ∼ α. If U denotes this union, this shows that C = U . As U is hereditary,
we have that T (C) = T (U) = U = C.

Next, we show that C = α0. As T (α0) ⊆ C, α0 ⊆ C. If w ∈ C is arbitrary, any
infinite path originating at w has a terminal suffix β such that α ∼ β by the previous
paragraph and Lemma 2.1. Since s(α) ∈ R(β0), β contains a vertex in T (α0). This
shows that any infinite path in C contains a vertex of T (α0). Since w ∈ R(β0) =
R(α0) ⊆ R(T (α0)), we have that C ⊆ R(T (α0)). So, T (α0) ⊆ C ⊆ C ⊆ R(T (α0)).

As C contains no infinite emitters, we can use Lemma 2.1 to conclude that C = α0.
If u ∈ C, then u is the source of a terminal path γ such that γ ∼ α and the same
argument applies to γ instead of α to show that C = γ0. The relation T (γ0) ⊆ T (u)

implies that C = γ0 = T (γ0) ⊆ T (u) = {u}.

By [15, Theorem 5.7], LK(E) is graded simple if and only if E is cofinal. In
Theorem 5.7, we characterize graded simplicity of LK(E) with the properties of E
presented in terms of the four primary colors.

Theorem 5.7. Let E be a graph and K be a field. The following conditions are
equivalent.

(1) LK(E) is graded simple (equivalently, E is cofinal).

(2) The set of terminal vertices is nonempty and it consists of a single cluster C
such that E0 is the (hereditary and) saturated closure of C.

(3) Exactly one of the following holds.

(a) The set E0 is the (hereditary and) saturated closure of a sink. In this case,
E is row-finite and acyclic and E0 = R(v) for a sink v.

(b) The set E0 is the (hereditary and) saturated closure of c0 for a cycle c
without exits. In this case, E is row-finite, E0 = R(c0), and c is the only
cycle in E.

(c) The set E0 is the hereditary and saturated closure of c0 for an extreme
cycle c. In this case, every cycle of E is extreme, every infinite emitter is
on a cycle, and E0 = R(c0).

(d) The set E0 is the hereditary and saturated closure of α0 for a terminal
path α. In this case, E is acyclic and row-finite and E0 = R(α0).
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Proof: To show (1) ⇒ (2), assume that E is cofinal. If v is an infinite emitter and
r(s−1(v)) is not contained in R(v), then the saturated closure of the hereditary
set T (r(s−1(v))) − R(v) is a proper and nontrivial hereditary and saturated set, so
this cannot happen. Hence, r(s−1(v)) ⊆ R(v) so every infinite emitter is on a cycle.
Similarly, if there is a cycle c emitting a path p such that r(p) /∈ R(c0), then the
saturated closure of T (r(p)) is a proper and nontrivial hereditary and saturated set.
Hence, every cycle of E is either extreme or without exits. As an infinite emitter
cannot be on a cycle without exits, every infinite emitter is on an extreme cycle.

Next, we claim that the set TE of terminal vertices is nonempty. This is clear if a
vertex of E connects to a sink, an extreme, or a cycle, without exits. Otherwise, by
Proposition 5.1, every vertex of E is on an infinite path containing infinitely many
vertices. As every cycle is extreme or without exits and every infinite emitter is on a
cycle, this condition implies that E is a row-finite and acyclic graph. Thus, if α is an
infinite path, T (α0) contains neither vertices on cycles nor infinite emitters. Hence,
to show that α is terminal, it remains to show that T (β0) ⊆ R(β0) for any infinite
path β with s(β) ∈ α0. Assume, on the contrary, that there is v ∈ T (β0) such that
v /∈ R(β0) for one such β. In that case, the saturated closure of T (v) is nontrivial

and proper (s(β) /∈ {v} by Lemma 2.1). This is a contradiction, so α is terminal. As
α0 ⊆ TE , TE is nonempty.

If v ∈ TE , then the cluster C of v is the only cluster in E by the cofinality of E.
By Lemma 5.6, T (C) = C, so the saturated closure C of C is a nonempty hereditary
and saturated set in E0. By the cofinality of E, E0 = C.

The implication (2) ⇒ (3) follows directly from Lemma 5.6. In the case that C con-

sists of vertices on terminal paths, C = α0 for a terminal path α by Lemma 5.6, so
E0 = C implies that E0 = α0. As T (α0) ⊆ R(α0), R(T (α0)) ⊆ R(R(α0)) = R(α0).

The converse R(α0) ⊆ R(T (α0)) trivially holds and so E0 = α0 ⊆ R(T (α0)) = R(α0).
Thus, E0 = R(α0).

To show that (3) ⇒ (1), we assume that (3) is true and show that the relation ∼
has only one equivalence class. By Corollary 5.2, this implies that E is cofinal.

If (3)(a) holds, the relation E0 = {v} and Lemma 2.1 imply that there are neither
other sinks, nor infinite emitters, nor cycles, nor infinite paths. Thus, every element
of E≤∞ is a finite path ending at v. For any such path p, R(p0) = R(v), so p ∼ v.

If (3)(b) holds, the relation E0 = c0 and Lemma 2.1 imply that there are neither
sinks, nor infinite emitters, nor cycles other than c, and that any p ∈ E≤∞ consists
of a finite path reaching a vertex v of c followed by ccc . . . if c is considered to start
at v. As R(p0) = R(c0) for any such path p, p ∼ ccc . . .

If (3)(c) holds, the relation E0 = c0 and Lemma 2.1 imply that there are no
sinks, that every infinite emitter is in T (c0), and that every cycle is extreme with
vertices in T (c0). Thus, every p ∈ E≤∞ is a finite path followed by an infinite suffix
with vertices in T (c0) or a finite path ending in an infinite emitter in T (c0). As
R(p0) = R(c0) for any such path p, p ∼ ccc . . .

If (3)(d) holds, the relation E0 = α0 and Lemma 2.1 imply that there are neither
sinks, nor infinite emitters, nor cycles, and that any p ∈ E≤∞ contains a vertex
of T (α0). Let q be a path from a vertex of α0 to a vertex of p and let β be the
suffix of p originating at r(q). By Lemma 5.4, qβ is terminal and α ∼ qβ. Thus,
p ∼ β ∼ qβ ∼ α.

The corollary below follows from Theorem 5.7 and the porcupine-quotient con-
struction. We use this corollary in the proofs of Theorem 7.5 and Corollary 7.6.
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Corollary 5.8. Let E be any graph.

(1) If v is a sink or an infinite emitter not on a cycle, then there are admissible
pairs (H,S) and (G,T ) of E such that (G,T )/(H,S) is cofinal and that v is a
sink of (G,T )/(H,S).

(2) If c is a cycle of E, then there are admissible pairs (H,S) and (G,T ) of E
such that (G,T )/(H,S) is cofinal and that c is a cycle of (G,T )/(H,S) which is
extreme in (G,T )/(H,S) if c contains a vertex of another cycle of E and which
is without exits in (G,T )/(H,S) otherwise.

(3) If α is an infinite path such that T (α0) contains neither sinks, nor infinite
emitters, nor vertices on cycles, then there are admissible pairs (H,S) and
(G,T ) of E such that (G,T )/(H,S) is cofinal and that α is a terminal path
of (G,T )/(H,S).

Proof: To show (1), let G = {v}, H = r(s−1(v)) (possibly empty), and T = S = ∅.
If v is a sink, then G does not contain any infinite emitters, and if v is an infinite
emitter not in a cycle, then v is the only infinite emitter in G − H. In either case,
G∩BG

H = ∅. Thus, (G,T )/(H,S) contains no vertices of the form v′, so v is the only
sink of (G,T )/(H,S). The vertices of G−H are in R(v). If p is a path such that wp is a
vertex of (G,T )/(H,S), then wp is in the root R(G,T )/(H,S)(v) of v in (G,T )/(H,S).
Hence, ((G,T )/(H,S))0 = R(G,T )/(H,S)(v). The graph (G,T )/(H,S) is row-finite,

acyclic, and without infinite paths. By Lemma 2.1, ((G,T )/(H,S))0=T (G,T )/(H,S)(v),
so (G,T )/(H,S) is cofinal by Theorem 5.7.

To show (2), let G = c0. The set T (c0)−R(c0), possibly empty, is hereditary, so its
saturated closure H is hereditary and saturated. Let T = ∅ and S = G∩BG

H . By the
definition of S, no vertices of the form v′ are in (G,T )/(H,S). Similarly as in part (1),
((G,T )/(H,S))0 = R(G,T )/(H,S)(c0). The set ((G,T )/(H,S))0−T (G,T )/(H,S)(c0) con-
tains no infinite emitters and every infinite path with vertices in this set eventually
reaches a vertex of T (G,T )/(H,S)(c0) by the definition of G and H. By Lemma 2.1,

((G,T )/(H,S))0 = T (G,T )/(H,S)(c0), so (G,T )/(H,S) is cofinal by Theorem 5.7. If
c contains a vertex of another cycle of E, then c has exits in (G,T )/(H,S) and, as
((G,T )/(H,S))0 = R(G,T )/(H,S)(c0), c is extreme in (G,T )/(H,S). If c contains no
vertex of another cycle of E, then c is without exits in (G,T )/(H,S) by the definition
of G and H.

To show (3), let G = α0. Let V =
⋃
(T (β0) − R(β0)), where the union is taken

over infinite paths β originating in a vertex of α (possibly empty), let H = V ,
and T = S = ∅. Since G contains no infinite emitters, G ∩ BG

H = ∅, so (G,T )/(H,S)
contains no vertices of the form v′. By the definition of G and H, α is termi-
nal in (G,T )/(H,S) and ((G,T )/(H,S))0 = R(G,T )/(H,S)(T (G,T )/(H,S)(α0)). The
graph (G,T )/(H,S) is row-finite, with neither sinks nor cycles, and any infinite path
contains a vertex of T (G,T )/(H,S)(α0), so ((G,T )/(H,S))0 is the saturated closure
of T (G,T )/(H,S)(α0) by Lemma 2.1. By Theorem 5.7, ((G,T )/(H,S)) is cofinal.

As a side result, we note that Theorem 5.7 implies that purely infinite simplicity
and its graded version are equivalent for Leavitt path algebras. We review some def-
initions related to these concepts. An idempotent u of a ring R is finite if uR is not
isomorphic to a proper direct summand of itself. A simple ring R is purely infinite sim-
ple if every nontrivial one-sided ideal contains an infinite idempotent. In the graded
case, a homogeneous idempotent u of a graded ring R is finite if uR is not graded
isomorphic to a proper graded direct summand of itself. A graded simple ring R is
graded purely infinite simple if every nontrivial one-sided graded ideal contains an
infinite homogeneous idempotent (see [1, Proposition 3.8.8] for equivalent conditions
to being purely infinite simple).
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Corollary 5.9. Let E be a graph and let K be a field. The following conditions are
equivalent.

(1) The algebra LK(E) is graded purely infinite simple.
(2) The set E0 is the hereditary and saturated closure of c0 for an extreme cycle c

(i.e., E satisfies condition (3)(c) of Theorem 5.7).
(3) The graph E is cofinal, every cycle of E has an exit, and every vertex of E

connects to a cycle.
(4) The algebra LK(E) is purely infinite simple.

Proof: To show (1) ⇒ (2), assume that LK(E) is graded purely infinite simple. Then
LK(E) is graded simple, so one part of condition (3) of Theorem 5.7 holds. If condi-
tions (3)(a), (3)(b), or (3)(d) hold, then LK(E) is directly finite by [16, Theorem 4.12],
so no idempotent is infinite. This shows that condition (3)(c) necessarily has to hold.

To show the converse, (2) ⇒ (1), assume that (2) holds for E. By the graded
version of [1, Proposition 3.1.7], it is sufficient to show that for every homogeneous
and nonzero a ∈ LK(E), there are homogeneous x, y ∈ LK(E) such that xay is
an infinite idempotent. As every vertex connects to an extreme cycle, every vertex
is an infinite idempotent by [1, Proposition 3.1.6]. In addition, for a homogeneous
element a ̸= 0, there are paths p and q and 0 ̸= k ∈ K such that paq = kv for
some v ∈ E0 by [1, Theorem 2.2.11]. Thus, we can take x = k−1p and y = q.

The implication (2) ⇒ (3) follows from Theorem 5.7. Conversely, if (3) holds, then
E is cofinal, so exactly one condition from part (3) of Theorem 5.7 holds. Since every
cycle of E has an exit, it is not condition (3)(b). As every vertex of E connects to
a cycle, it is neither (3)(a) nor (3)(d). Hence, it is (3)(c) and so condition (2) of the
corollary holds.

The equivalence of (3) and (4) is shown in [2, Theorem 11].

6. Constructive characterization of a composition series

Let Sink denote the hereditary and saturated closure of the set of sinks, NE denote
the hereditary and saturated closure of the set of vertices on cycles without exits,
EC denote the hereditary and saturated closure of the set of vertices on extreme
cycles, and I(Terfin) be the ideal generated by the union Sink∪NE∪EC. For graphs
with finitely many vertices, I(Terfin) = Ilce defined as in [1, Definition 3.7.8]. The
Leavitt path algebra of the graph

• ??
��
• ??

��
• ??

��
•

is graded simple and both I(Terfin) and Ilce of this algebra are trivial.
Let Ter∞ denote the hereditary and saturated closure of the set of vertices on

terminal paths. Let Ter(E) denote the hereditary and saturated closure of Sink∪NE∪
EC∪Ter∞ (equivalently, the saturated closure of the hereditary set TE of terminal
vertices) of a graph E. If E0 is finite, I(Ter(E)) is Ilce.

Proposition 6.1. For any graph E, let C be the set of the clusters of E. For any C ∈
C, the ideal I(C) generated by C is a graded simple algebra and

I(Ter(E)) = I(Sink)⊕ I(NE)⊕ I(EC)⊕ I(Ter∞) =
⊕
C∈C

I(C).

Proof: For C ∈ C, condition (2) of Theorem 5.7 holds for the porcupine graph P(C,∅)
of C. Hence, P(C,∅) is cofinal, so I(C) is graded simple. The sets TE ∩ Sink, TE ∩NE,

TE ∩EC, and TE ∩Ter∞ are mutually disjoint and different clusters are also mutually
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disjoint. So, the proposition follows from [1, Proposition 2.4.7] stating that if Vi ⊆ E0

for i ∈ I are pairwise disjoint and ifHi = Vi for i ∈ I, then I
(⋃

i∈I Vi

)
= I
(⋃

i∈I Hi

)
=⊕

i∈I I(Hi) =
⊕

i∈I I(Vi).

Remark 6.2. In [6], the authors consider the set Pb∞ as the set of v ∈ E0 such that
T (v) contains infinitely many vertices with bifurcations or an infinite emitter and
generalize Ilce by considering its extension by the ideal generated with the set Pb∞ .
This generalization is successful in the sense that every vertex connects to an element
of Sink∪NE∪EC∪Pb∞ (see [6, Lemma 2.3]). However, the elements of the set Pb∞

may not be terminal in the sense we are interested in. Also, the set Pb∞ may not be
disjoint from EC because of the infinite emitters on extreme cycles, so we do not have
a direct sum decomposition as in [1, Theorem 3.7.9] or in the proposition above.

The lemma below exhibits a group of necessary conditions for a graph to have a
composition series.

Lemma 6.3. If a graph E has a composition series, then the following holds.

(1) Ter(E) is nonempty.
(2) The set of terminal vertices of E contains finitely many clusters.
(3) The set of breaking vertices of Ter(E) is finite.

Proof: If E0 is finite, Ter(E) is nonempty since there is either a sink, a cycle without
exits, or an extreme cycle by [1, Lemma 3.7.10]. If E0 is infinite and there are neither
sinks, nor extreme cycles, nor cycles without exits, then every vertex is on an infinite
path containing an infinite and strictly decreasing chain of vertices by Proposition 5.1.
For brevity, let us say that such an infinite path is strictly decreasing. We claim that
there is a strictly decreasing infinite path which is terminal. Assume, on the contrary,
that no strictly decreasing infinite path is terminal. We consider the following cases:
T (α0) ⊈ R(α0) for all strictly decreasing infinite paths α and T (α0) ⊆ R(α0) for some
strictly decreasing infinite path α.

In the first case, let α0 be a strictly decreasing infinite path and let H0 = α0
0. As

T (α0
0) ⊈ R(α0

0), there is a vertex v0 ∈ T (α0
0)−R(α0

0). As v0 does not connect to a sink
or a cycle which is extreme or without exits, v0 is the source of a strictly decreasing
infinite path α1. Since v0 /∈ R(α0

0), no vertex of α1 is in R(α0
0). Hence, no vertex of α0

is in T (α0
1). Thus, if we let H1 = α0

1, we have that s(α0) /∈ H1 by Lemma 2.1. Since
α0
1 ⊆ T (α0

0), we have that H1 ⊆ H0. So, H1 ⊊ H0.
As T (α0

1) ⊈ R(α0
1), there is a vertex v1 ∈ T (α0

1) − R(α0
1). Having v1, we can

obtain α2 in the same way as we obtained α1 having v0. Thus, for H2 = α0
2, we

have that H2 ⊆ H1 and s(α1) ∈ H1 −H2. By our assumptions, this process does not
terminate, so we obtain a chain H0 ⊋ H1 ⊋ H2 ⊋ · · · . Thus, E has no composition
series by Corollary 4.4 and we reach a contradiction.

In the second case, let α0 be a strictly decreasing infinite path such that T (α0
0) ⊆

R(α0
0). Since α0 is not terminal, there is v0 ∈ α0

0 such that one of the following three
conditions holds: (a) v0 emits a path whose range is in a cycle c, (b) v0 emits a path
whose range is an infinite emitter v which is not on a cycle, or (c) v0 does not connect
to infinite emitters or vertices on cycles and it emits an infinite path β such that
T (β0) ⊈ R(β0). In each case, we aim to find w0 ∈ α0

0 such that v0 /∈ H0 = {w0}.
If (a) holds, c0 ⊆ T (α0

0) implies that T (c0) ⊆ T (α0
0) ⊆ R(α0

0). The cycle c is not
extreme nor without exits, so there is a path p with s(p) ∈ c0 and r(p) /∈ R(c0).
As r(p) ∈ R(α0

0), such path p can be chosen so that w0 = r(p) ∈ α0
0 − R(c0). The

condition w0 /∈ R(c0) implies that c0 ⊈ T (w0). The vertices v0 and w0 are both
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on α0, so either v0 ≤ w0 or v0 > w0. Since v0 ∈ R(c0) and c0 ⊈ T (w0), v0 > w0. As
c0 ⊈ T (w0), c0 ⊈ H0 by Lemma 2.1. So, c0 ⊆ T (v0) implies that v0 /∈ H0.

If (b) holds, v ∈ T (α0
0) ⊆ R(α0

0), so v emits a path p with w0 = r(p) ∈ α0
0. The

vertices v0 and w0 are both on α0, so either v0 ≤ w0 or v0 > w0. Since v is not on
a cycle, v0 > w0 and v /∈ T (w0). The relation v /∈ T (w0) implies that v /∈ H0 by
Lemma 2.1. As v ∈ T (v0), we have that v0 /∈ H0.

If (c) holds, there is v ∈ β0 which emits a path with the range in T (β0)−R(β0). As
T (β0) ⊆ T (α0

0) ⊆ R(α0
0), there is a path p with s(p) = v, w0 = r(p) ∈ α0

0−R(β0). The
vertices v0 and w0 are both on α0, so either v0 ≤ w0 or v0 > w0. Since w0 /∈ R(β0)
and v0 ∈ R(β0), v0 > w0. The condition w0 /∈ R(β0) implies that no vertex of β is
in T (w0). By Lemma 2.1, v0 /∈ H0.

Let α1 be the suffix of α originating at w0. As no strictly decreasing infinite path
is terminal, we have that every suffix of α0 is not terminal. So, α1 is not terminal. In
addition, T (α0

1) ⊆ T (α0
0) ⊆ R(α0

0) ⊆ R(α0
1), so we can repeat the construction and

let v1 be a vertex of α1 with the same properties as v0 for α0. Let w1 be obtained
analogously to w0 so that v1 ∈ H0 is not in H1 = {w1}. As w1 ∈ T (w0), T (w1) ⊆
T (w0), which implies that H1 ⊆ H0. Hence, H1 ⊊ H0. Continuing in this manner, we
obtain a chainH0 ⊋ H1 ⊋ · · · which does not terminate because αn is not terminal for
each n. By Corollary 4.4, E has no composition series. So, we reach a contradiction.

As we reach a contradiction in both cases, there is a strictly decreasing infinite
path α which is terminal. So, α0 ⊆ Ter(E), implying that Ter(E) ̸= ∅.

If (2) fails, index the clusters by an infinite cardinal λ and let Hn be the hereditary
and saturated closure of the vertices in the first n clusters. The chain H0 ⊊ H1 ⊊ · · ·
does not terminate since λ is infinite. By Corollary 4.4 and this fact, E has no com-
position series.

To show part (3), note that E/(Ter(E), ∅) has a composition series by Proposi-
tion 4.2. As BTer(E) corresponds to a set of sinks in E/(Ter(E), ∅) and the number of
sinks of E/(Ter(E), ∅) is finite by part (2), BTer(E) is finite.

Using Lemma 6.3, it is not difficult to construct graphs which do not have com-
position series. For example, each of the following three graphs fails exactly one of
the three conditions of Lemma 6.3. The symbol ∞ in the last graph indicates that
a vertex emitting the edge labeled by this symbol emits infinitely many edges to the
sink of the graph.

•
�� // •

�� // •
��

• • •

•

• //

∞

OO

• //
∞

__

•
∞

gg

In addition, the graph below satisfies all three conditions of Lemma 6.3 (v0 is
a terminal vertex, the cluster {v0} is the only cluster, and the graph is row-finite,
so part (3) trivially holds). However, this graph does not have a composition series
because ∅ ≤ {v0} ≤ {v0, v1} ≤ · · · is an increasing chain such that the porcupine-
quotient graph of any two consecutive terms is cofinal.

•v2
�� // •v1

�� // •v0
��

The main result of this section, Theorem 6.5, shows that the four graphs above
have a complete list of features which obstruct the existence of a composition series
of a graph. This result also provides a way of constructing a composition series if it
exists.
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Definition 6.4. For a graph E, we define the composition quotients Fn of E as
follows.

Let F0 = E. If Ter(Fn) ⊊ F 0
n , we let

Fn+1 = Fn/(Ter(Fn), BTer(Fn)).

If Ter(Fn) = F 0
n , we let Fn+1 = Fn+2 = · · · = ∅.

Note that the case Ter(Fn) = ∅ for some n implies that Fm = Fn for every m ≥ n.

Theorem 6.5. The following conditions are equivalent for a graph E.

(1) The graph E has a composition series.
(2) The following holds.

(a) Conditions (1), (2), and (3) of Lemma 6.3 hold for the composition quo-
tient Fn for each n for which Fn ̸= ∅.

(b) There is a nonnegative integer n such that Fn+1 = ∅ and Fn ̸= ∅.

Informally, this theorem states that a composition series exists exactly when the
process of iteratively cutting the terminal vertices and the subsets of their breaking
vertices ends after finitely many steps. If a graph has a composition series, the part of
the proof showing (2) ⇒ (1) provides an algorithm for obtaining a composition series
of the graph.

Before the proof, we consider the composition quotients in some examples.

• Let E be the graph from part (1) of Example 3.2. For this graph, Ter(E) is the
saturated closure of the sinks and Ter(E) = E0. Hence, F1 = ∅. A composition
series of E can be obtained by considering the saturated closure of one of the
sinks, then the saturated closure of that sink and another one, and, finally,
the saturated closure E0 of all three sinks. For example, by considering {w0}
first, we obtain the set H from Example 3.2. Considering the saturated closure
of H ∪ {v0} next, for example, produces the set G from Example 3.2. Lastly,
the saturated closure of all three sinks is E0. This produces the composition
series ∅ ≤ H ≤ G ≤ E0 considered in Example 3.2.

• Let E be the graph from part (2) of Example 3.2. For this graph, Ter(E) = {w}
so that F1 = E/({w}, {v}) is •v77 . As Ter(F1) = {v} = F 0

1 , F2 = ∅. A
composition series of E can be produced by considering {w} = {w} without the
breaking vertex v of {w} first, then {w} together with the breaking set {v}, and,
finally, adding the terminal vertex v of F1 to the set {w} to obtain {v, w} = E0.
This produces the series (∅, ∅) ≤ ({w}, ∅) ≤ ({w}, {v}) ≤ E0 from Example 3.2.

• If E is the graph

•u1
// •u2

// •u3
//

•v1 //

OO

•v2 //

OO

•v3

OO

//

then Ter(E) = {un | n = 1, 2, . . . } so that F1 is the graph

•v1
// •v2 // •v3 //

and F 0
1 = Ter(F1). So, F2 = ∅. As all terminal vertices of E are in the same

cluster, Ter(E) can be taken to be the first term of a composition series. As F1

also has only one cluster, adding the terminal vertices of F1 to Ter(E) produces
the sequence ∅ ≤ Ter(E) ≤ E0, which is a composition series of E.
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Proof: (1) ⇒ (2). If (1) holds, then conditions (1), (2), and (3) of Lemma 6.3 hold
for E = F0 by Lemma 6.3. If F1 = ∅, then (2) holds. If F1 ̸= ∅, then F1 is a quotient
of F0, so F1 has a composition series by Proposition 4.2 and (1), (2), and (3) of
Lemma 6.3 hold for F1 by Lemma 6.3. Continuing these arguments, we obtain that
(1), (2), and (3) of Lemma 6.3 hold for Fn for each n such that Fn ̸= ∅. Hence,
(2)(a) holds.

For every n such that Fn ̸= ∅, the vertices of Fn are the vertices of E only since
the quotient used to form Fn is taken with respect to the admissible pair with the set
of all breaking vertices, so no new vertices are added when forming Fn from Fn−1.
Hence, Ter(Fn) ⊆ E0. Let H0 = Ter(E) and Hn = Hn−1 ∪ Ter(Fn) for any n such
that Fn is nonempty. Note that the saturated closure of the terminal vertices of Fn

is taken in Fn, not in E, so the set Hn includes infinite emitters which are regular
in Fn and breaking vertices of Hn−1. The set Hn is hereditary in E since every vertex
of Hn emits edges only to Hi for i ≤ n. We claim that Hn is also saturated in E.
If r(s−1(v)) ⊆ Hn for a regular vertex v ∈ E0, then either r(s−1(v)) ⊆ Hn−1 or
r(s−1(v)) ∩ Ter(Fn) ̸= ∅. In the first case, using an inductive argument and the fact
that H0 is saturated, we conclude that v ∈ Hn−1 ⊆ Hn. In the second case, v is a
regular vertex of Fn and the ranges of all edges v emitted in Fn are in Ter(Fn). As
Ter(Fn) is saturated in Fn, v ∈ Ter(Fn) ⊆ Hn.

If Fn+1 ̸= ∅, then Ter(Fn+1) ̸= ∅ by Lemma 6.3, so Hn ⊊ Hn+1. To show that
(Hn, BHn

) ≤ (Hn+1, BHn+1
), it is sufficient to check that BHn

⊆ Hn+1 ∪ BHn+1
. If

v ∈ BHn , then the set s−1(v)∩r−1(E0−Hn) is finite, nonempty and equal to the union
of the mutually disjoint sets s−1(v)∩r−1(Ter(Fn+1)) and s−1(v)∩r−1(E0−Hn+1). If
the second set is nonempty, v ∈ BHn+1

. If the second set is empty, then v is a regular
vertex of Fn+1 which emits all its edges to Ter(Fn+1). As Ter(Fn+1) is saturated
in Fn+1, v ∈ Ter(Fn+1) ⊆ Hn+1.

Since E has a composition series, the chain (∅, ∅) ≤ (H0, BH0) ≤ · · · eventually
becomes constant by Corollary 4.4. If n is the smallest such that Hn = Hn+1, then
Ter(Fn+1) = ∅, which implies that Fn+1 = ∅ by part (2)(a). Since Hn−1 ⊊ Hn,
Ter(Fn) ̸= ∅, so Fn ̸= ∅. This shows that (2)(b) holds.

(2) ⇒ (1). By (2)(b), there is n ≥ 0 such that Fn+1 = ∅ and Fn ̸= ∅. Thus,
Ter(Fn) = F 0

n ̸= ∅. Since condition (2) of Lemma 6.3 holds for Fn, there are finitely
many clusters. By Proposition 6.1, LK(Fn) is graded isomorphic to a finite sum
of graded simple algebras. As such an algebra, LK(Fn) has a graded composition
series. By Corollary 4.1, Fn has a composition series.

Condition (1) of Lemma 6.3 holds for Fn−1, so Ter(Fn−1) ̸= ∅. Since condition (2)
of Lemma 6.3 holds, Ter(Fn−1) has finitely many clusters. If m is a positive integer,
Ci are the clusters of Fn−1 for i = 1, . . . ,m, H0 = ∅, and Hi = C1 ∪ · · · ∪ Ci for
i = 1, . . . ,m, then Hm = Ter(Fn−1) and the chain

(∅, ∅) = (H0, ∅) ⪇ (H1, ∅) ⪇ (H2, ∅) ⪇ · · · ⪇ (Hm, ∅) = (Ter(Fn−1), ∅)

is a chain of admissible pairs of Fn−1. As I(Hi+1) = I(Hi)⊕ I(Ci+1) and I(Ci+1) is
graded simple by Proposition 6.1, the porcupine-quotient (Hi+1, ∅)/(Hi, ∅) is cofinal
for each i = 0, . . . ,m− 1.

By condition (3) of Lemma 6.3 for Fn−1, BTer(Fn−1) is finite. If BTer(Fn−1) =
{v1, . . . , vk}, let S0 = ∅ and Si+1 = Si ∪ {vi+1} for i = 0, . . . , k − 1. We have that
Sk = BTer(Fn−1). Let us extend the above chain by

(Ter(Fn−1), ∅) = (Ter(Fn−1), S0) ⪇ (Ter(Fn−1), S1) ⪇ · · · ⪇ (Ter(Fn−1), BTer(Fn−1)).
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The porcupine-quotient graph (Ter(Fn−1), Si+1)/(Ter(Fn−1), Si) is an acyclic and
row-finite graph with a unique sink vi+1 and without infinite paths (Example 3.3
also establishes this), so part (3)(a) of Theorem 5.7 holds by Lemma 2.1. Hence, this
porcupine-quotient is cofinal.

Consider the graded ideals corresponding to the admissible pairs of the concate-
nation of the above two chains of admissible pairs. These ideals form a graded
composition series of the algebra I((Ter(Fn−1), BTer(Fn−1))). By Corollary 4.1, the
graph P(Ter(Fn−1),BTer(Fn−1)) has a composition series. Thus, we have that both the

porcupine P(Ter(Fn−1),BTer(Fn−1)) and the quotient Fn = Fn−1/(Ter(Fn−1), BTer(Fn−1))

have composition series, so Fn−1 has a composition series by Proposition 4.2. Re-
peating these arguments shows that if Fi+1 has a composition series, then Fi has a
composition series for all i starting with i = n − 2 and ending with i = 0. Thus,
F0 = E has a composition series.

Theorem 6.5 has the following corollary.

Corollary 6.6. Every unital Leavitt path algebra has a graded composition series.

Proof: Let Fn for n ≥ 0 be the composition quotients of E. Since LK(E) is unital,
E0 is finite and so Ter(E) is nonempty by Proposition 5.1 and conditions (2) and (3)
of Lemma 6.3 trivially hold. As F1 is the quotient of E with respect to an admissible
pair with the entire breaking vertex set, F1 also has finitely many vertices and so all
three parts of Lemma 6.3 hold by the same argument. Continuing with such reasoning,
we obtain that condition (2)(a) of Theorem 6.5 holds.

As Ter(E) = Ter(F0) is nonempty and no new vertices are added when forming F1,
|F 0

0 | > |F 0
1 |. Continuing applying the same argument, we have that |F 0

i | > |F 0
i+1| for

all i such that Fi ̸= ∅. As |E0| is finite, there is a nonnegative integer n such that
Fn+1 = ∅. By taking the smallest such n, we have that Fn ̸= ∅. Thus, condition (2)(b)
of Theorem 6.5 holds.

The authors of [10] noted that if E is finite, then MΓ
E has a composition series. By

Corollaries 6.6 and 4.3, if E has finitely many vertices (but possibly contains infinite
emitters), then MΓ

E has a composition series.

7. Types of the talented monoids of cofinal porcupine-quotient
graphs

We recall that Γ denotes the infinite cyclic group generated by an element t. The
monoid MΓ

E is cancellative (by [4, Corollary 5.8]) so the natural pre-order is, in fact,
an order. By [12, Proposition 3.4], the relation x < tnx is impossible for any x ∈ MΓ

E

and any positive integer n. The remaining possibilities give rise to the following types.

• If x = tnx for some positive integer n, we say that x is periodic.
• If x > tnx for some positive integer n, we say that x is aperiodic.
• If x and tnx are incomparable for any positive integer n, we say that x is
incomparable.

If x is periodic or aperiodic, x is comparable. This terminology matches the one used
in [12]. We note that [10] uses “cyclic” for “periodic” and “non-comparable” for
“incomparable”. In our terminology, the authors of [10] define a Γ-order-ideal I of MΓ

E

to be periodic (respectively, comparable, incomparable) if its every nonzero element is
periodic (respectively, comparable, incomparable). We also say that I is aperiodic if
its every nonzero element is aperiodic.

The proofs of Lemma 7.3 and Theorem 7.4 use some results of [12] and their
corollaries which we summarize in the following proposition.
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Proposition 7.1. Let E be an arbitrary graph.

(1) ([12, Lemma 3.9 and Theorem 3.19]) If x ∈ MΓ
E is comparable, then there is a

vertex v on a cycle, a nonnegative integer n, and z ∈ MΓ
E such that x = tny+z,

where y = [v] or y = [qvZ ]. If w is a vertex such that [w] is comparable, then w
connects to a vertex in a cycle.

(2) If v ∈ E0, then [v] is a periodic element of MΓ
E if and only if v is in the saturated

closure of a finite set of vertices on cycles without exits.

(3) If v ∈ E0 is in the saturated closure of a finite set of vertices on cycles, then [v]
is comparable. If at least one of those cycles has an exit, [v] is aperiodic.

(4) The element [v] of MΓ
E is comparable for every v ∈ E0 if and only if every v ∈ E0

is in the saturated closure of a finite set of vertices on cycles.

(5) ([12, Theorems 4.2 and 4.5, and Corollary 4.7]) The monoid MΓ
E is periodic (re-

spectively, aperiodic or incomparable) if and only if [v] is periodic (respectively,
aperiodic or incomparable) for every vertex v ∈ E0.

Proof: Parts (1) and (5) follow directly from the noted results of [12].
By [12, Theorem 4.1], [v] is periodic for v ∈ E0 if and only if any path originating

at v is a prefix of a path p ending in one of finitely many cycles without exits and such
that all vertices of p are regular and every infinite path originating at v ends in a cycle
with no exits. This last condition is equivalent to v being in the saturated closure of
the vertices on finitely many cycles without exits by Lemma 2.1. This shows that (2)
holds.

If the assumption of (3) holds, let V be the set of vertices of finitely many cycles
such that v is in the saturated closure of V . Then, there is a nonnegative integer k
such that v ∈ Λk(V ), where Λk(V ) are the sets from the paragraph before Lemma 2.1.
We can choose k to be the smallest such that v ∈ Λk(V ). So, if k > 0, then v /∈
Λk−1(V ). By the definition of Λk(V ), any element of E≤∞ originating at v contains
an element of V which shows that there are only finitely many paths originating at v
and terminating in a vertex of V such that no vertex, except the range, is in V . Let
nv be the maximal element of the set of lengths of such paths and let nw be defined
analogously for any w ∈ Λi(V ) for i ≤ k. If nv = 0, then v ∈ V , so v is on a cycle
which implies that [v] is comparable. If v connects to a cycle with an exit, then one
of the cycles in V has to have an exit and [v] is aperiodic by part (2). If nv > 0,
then v is regular, k > 0, r(s−1(v)) ⊆ Λk−1(V ), and the relation nr(e) < nv holds for

every e ∈ s−1(v). Using induction, [r(e)] is comparable, so [r(e)] ≥ tme [r(e)] for some
positive integer me for every e ∈ s−1(v). Let m be the least common multiple of the
elements of {me | e ∈ s−1(v)}. Then [r(e)] ≥ tm[r(e)], which implies that

[v] =
∑

e∈s−1(v)

t [r(e)] ≥
∑

e∈s−1(v)

t tm[r(e)] = tm
∑

e∈s−1(v)

t [r(e)] = tm[v]

so that [v] is comparable. If at least one of the cycles with vertices in V has an exit,
then [r(e)] is aperiodic for some e ∈ s−1(v) and [r(e)] > tme [r(e)]. Thus, [v] > tm[v],
so [v] is aperiodic.

The implication (⇒) of (4) holds by [12, Proposition 2.2, Lemma 3.9, and Theo-
rem 3.21] and (⇐) holds by part (3).

Lemma 7.2 is used in the proof of Lemma 7.3, which is needed for Theorem 7.4.
Recall that the isomorphism of the lattice of admissible pairs of a graph E and the
lattice of Γ-order-ideals of MΓ

E maps (H,S) to the Γ-order-ideal JΓ(H,S) generated
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by {[v] | v ∈ H} ∪ {[vH ] | v ∈ S}. The inverse isomorphism maps a Γ-order-ideal I
onto (H,S) for H = {v ∈ E0 | [v] ∈ I}, and S = {v ∈ BH | [vH ] ∈ I}.

Lemma 7.2. If E is any graph, V is a set of vertices of E, H = V , and I is the Γ-
order-ideal generated by V , then H = {v ∈ E0 | [v] ∈ I} and {v ∈ BH | [vH ] ∈ I} = ∅
(i.e., I = JΓ(H, ∅)).

Proof: Let (G,S) be an admissible pair such that I = JΓ(G,S). As {[v] | v ∈ V } ⊆
I = JΓ(G,S), V ⊆ G. Since H is the smallest hereditary and saturated set con-
taining V , H ⊆ G. The converse holds since V ⊆ H implies that I ⊆ JΓ(H, ∅). As
I = JΓ(G,S), we have that (G,S) ≤ (H, ∅), which implies G ⊆ H and S ⊆ H. So,
G = H. As S ⊆ E0 −G and S ⊆ H = G, S = ∅.

Lemma 7.3 describes the Γ-order-ideal generated by a cluster and shows that such
an ideal is either periodic, aperiodic, or incomparable. Note that if v is a vertex which
is not terminal, then the Γ-order-ideal generated by [v] can contain more than one
type of elements. For example, if E is the graph

•u88 •voo // •w

then the Γ-order-ideal generated by [v] contains both [u] and [w], [u] is periodic, and
[w] is incomparable.

Some parts of Lemma 7.3 generalize [10, Theorems 3.10 and 3.11] shown for finite
graphs.

Lemma 7.3. Let E be any graph, C be a cluster of a terminal vertex, and IC be the
Γ-order-ideal of MΓ

E generated by {[v] | v ∈ C}. The following holds.

(1) The Γ-order-ideal IC is minimal and it is equal to the Γ-order-ideal generated
by [v] for any v ∈ C.

(2) If v ∈ C is such that [v] is periodic (respectively, aperiodic or incomparable),
then IC is periodic (respectively, aperiodic or incomparable).

(3) If E is cofinal, then MΓ
E is either periodic, aperiodic or incomparable: it is

periodic if C = c0 for a cycle c without exits, aperiodic if C = T (c0) for an
extreme cycle c, and incomparable if C does not contain a vertex on a cycle.

Proof: By Lemma 7.2, C = {v ∈ E0 | [v] ∈ IC} and IC = JΓ(C, ∅). By Lemma 5.6,

for every v ∈ C, {v} = C, which implies that C does not contain any nontrivial and

proper hereditary and saturated subsets. Thus, IC is minimal and JΓ({v}, ∅) = IC .
Hence, part (1) holds.

To show (2), let v ∈ C. If v is not on a cycle, v is a sink or on a terminal path
and no u ∈ C connects to a cycle. Hence, no u ∈ C connects to a cycle and so [u] is
incomparable by part (1) of Proposition 7.1. As [wp] = [r(p)] for p ∈ F1(C, ∅), every
vertex of P(C,∅) gives rise to an incomparable element of MΓ

P(C,∅)
. Thus, IC ∼= MΓ

P(C,∅)

is incomparable by part (5) of Proposition 7.1.
If v is on a cycle c, then c is either without exits or extreme. In the first case,

[u] is periodic for every u ∈ C by part (2) of Proposition 7.1. This implies that [w]
is periodic for every vertex w of P(C,∅). Thus, IC

∼= MΓ
P(C,∅)

is periodic by part (5) of

Proposition 7.1. In the second case, every element of C is on an extreme cycle and so
[u] is aperiodic for every u ∈ C by part (3) of Proposition 7.1. Thus, every element
of IC ∼= MΓ

P(C,∅)
is aperiodic by part (5) of Proposition 7.1.
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Part (3) holds by part (2) since the assumption that E0 is cofinal is equivalent
to E0 = C, which implies that MΓ

E = IC . The rest of the claim in (3) holds by the
proof of part (2).

Theorem 7.4 follows from Lemma 7.3. If E is a finite graph, parts (1)(a) and (3)(a)
have been shown in [10, Theorems 3.10 and 3.11]. We also note that (1)(c) has been
stated in [12, Corollary 4.7].

Theorem 7.4. Let E be any graph. The correspondence mapping a cluster C of E
onto the Γ-order-ideal IC generated by {[v] | v ∈ C} (equivalently, by [v] for any v ∈
C) is a bijection mapping the set of clusters of E onto the set of minimal Γ-order-
ideals. The following also holds.

(1) (a) There is a bijection between the set of cycles of E with no exits and the set
of Γ-order-ideals of MΓ

E which are periodic and minimal.

(b) The Γ-order-ideal generated by the elements [v] for v a vertex in a cycle
without exits is the largest periodic Γ-order-ideal of MΓ

E.

(c) The Γ-monoid MΓ
E is periodic if and only if E0 is the saturated closure of

the set of vertices on cycles with no exits.

(2) (a) There is a bijection between the set of the clusters of vertices of E on extreme
cycles and the set of Γ-order-ideals of MΓ

E which are aperiodic and minimal.

(b) The Γ-monoid MΓ
E is aperiodic if and only if every cycle has an exit and

every vertex of E is in the saturated closure of a finite set of vertices on
cycles.

(3) (a) There is a bijection between the set of the clusters of vertices of E which
are either sinks or on terminal paths and the set of Γ-order-ideals of MΓ

E

which are incomparable and minimal.

(b) The Γ-monoid MΓ
E is incomparable if and only if E is acyclic.

Proof: If C is a cluster of E, the ideal IC is minimal and IC = JΓ({v}, ∅) for any v ∈ C
by part (1) of Lemma 7.3. The correspondence C 7→ IC is injective since IC = ID
implies that {v ∈ E0 | [v] ∈ IC} = {v ∈ E0 | [v] ∈ ID}. As [v] ∈ IC if and only if
v ∈ C, and a similar equivalence holds for D, we have that C = D. Hence, C ⊆ D,
so for any v ∈ C, there is a path originating at v and terminating at some w ∈ D.
Since T (v) ⊆ T (C) = C, w ∈ C ∩D, which implies that C = D.

Next, we show that the correspondence C 7→ IC is onto. Let I be a minimal ideal
of MΓ

E . As I is nontrivial, [v] ∈ I for some v ∈ E0. If [v] is periodic, then v connects
to a cycle c without exits by part (2) of Proposition 7.1. Thus, {[w] | w ∈ c0} ⊆ I and
so the ideal Ic0 generated by the set {[w] | w ∈ c0} is contained in I. As I is minimal,
I = Ic0 .

If [v] is aperiodic, v connects to a cycle by part (1) of Proposition 7.1. Assuming
that all of the cycles to which v connects have no exits, consider the hereditary and
saturated closure H of their vertices. As {0} ⊊ JΓ(H, ∅) ⊆ I and I is minimal,
JΓ(H, ∅) = I, which implies that [v] ∈ JΓ(H, ∅) so that v ∈ H. By part (2) of
Proposition 7.1, [v] is periodic. Since this is a contradiction, there is a cycle c with
an exit such that c0 ⊆ T (v). So, {[w] | w ∈ c0} ⊆ I. Assuming that c emits a path p

such that r(p) /∈ R(c0), consider the set G = {r(p)}. As s(p) /∈ G, the Γ-order-
ideal generated by {[w] | w ∈ G} is nontrivial and strictly contained in I. This is
a contradiction, so no such path p exists. Hence, c is extreme. If C is the cluster
containing c0, IC ⊆ I. As I is minimal, I = IC .
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If [v] is incomparable, v is not on a cycle. If v is a sink, then I{v} ⊆ I, which
implies that I = I{v} by the minimality of I. If v is not a sink, but I contains
[w] for sink w, I = I{w} by the same argument. Hence, we can consider the case

when I contains no element of the form [w] for w a sink. For any w ∈ E0 such that
[w] ∈ I, w connects only to vertices u such that [u] ∈ I, so v does not connect to any
cycles. If v is an infinite emitter, then it is not on a cycle so the Γ-order-ideal generated
by [r(e)] for e ∈ s−1(v) is a proper and nontrivial Γ-order-subideal of I. Since this
cannot happen, v is a regular vertex. As v connects to neither sinks, nor infinite
emitters, nor cycles, v emits an infinite path α containing infinitely many vertices by
Proposition 5.1. If α is not terminal, a vertex of α emits an infinite path β which emits
a path p such that r(p) /∈ R(β0), which implies that no vertex of β0 is in T (r(p)).
By Lemma 2.1, the saturated closure H of T (r(p)) does not contain s(p). Thus, the
Γ-order-ideal generated by {[v] | v ∈ H} is strictly contained in I. As I is minimal,
this cannot happen, so α is terminal. If C is the cluster containing α0, this shows
that IC ⊆ I. As I is minimal, I = IC . This shows that the correspondence C 7→ IC is
onto.

If I is a minimal Γ-order-ideal and if I = JΓ(H,S) for some admissible pair (H,S),
then P(H,S) is cofinal, so I ∼= MΓ

P(H,S)
is either periodic, aperiodic, or incomparable by

part (3) of Lemma 7.3. This fact and the statement we just showed imply parts (1)(a),
(2)(a), and (3)(a).

To show (1)(b), let us recall that NE denotes the saturated closure of the set of
vertices on cycles without exits. Let I = JΓ(NE, ∅) so that NE = {v ∈ E0 | [v] ∈ I}.
As [v] is periodic for v ∈ NE by part (2) of Proposition 7.1, MΓ

P(NE,∅)
∼= JΓ(NE, ∅) = I

is periodic by part (5) of Proposition 7.1. If I ′ is a periodic Γ-order-ideal, then [v] is
periodic for every v ∈ E0 such that [v] ∈ I ′. By part (2) of Proposition 7.1, v ∈ NE.
Thus, [v] ∈ I, so I ′ ⊆ I. Hence, I is the largest periodic Γ-order-ideal.

Part (1)(c) follows from (1)(b) since MΓ
E is periodic if and only if MΓ

E is equal
to JΓ(NE, ∅) which is equivalent to E0 = NE.

The direction (⇒) of part (2)(b) follows from parts (4) and (2) of Proposition 7.1
and the direction (⇐) from parts (3) and (5) of Proposition 7.1.

The direction (⇒) of part (3)(b) is direct since [v] is comparable if v is on a cycle.
The converse holds since the existence of a nonzero comparable element implies the
existence of a cycle by part (1) of Proposition 7.1.

In general, MΓ
E can contain elements of all three types. For example, let E be the

graph below.

•u88 •voo //
��

DD •w

In MΓ
E , [v] is aperiodic, [u] periodic, and [w] incomparable. Note that E has a com-

position series ∅ ≤ {u} ≤ {u,w} ≤ E0 and the talented monoids of the three corre-
sponding porcupine-quotients are periodic, incomparable, and aperiodic respectively.
In Theorem 7.5 and Corollary 7.6, we characterize graphs E with the composition
series of MΓ

E having composition factors of only two types and only one type. The
authors of [10] studied conditions under which composition factors of a composition
series of MΓ

E for a finite graph E are periodic or incomparable. Without the part on
the Gelfand–Kirillov dimension, Theorem 4.2 in [10] shows that a finite graph has
this property if and only if all its cycles are disjoint. Part (1) of Theorem 7.5 implies
this result for arbitrary graphs.
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Theorem 7.5. Let E be any graph.

(1) The following are equivalent.

(a) If (H,S) and (G,T ) are admissible pairs of E such that (G,T )/(H,S) is
cofinal, then MΓ

(G,T )/(H,S) is either periodic or incomparable.

(b) The cycles of E are mutually disjoint.

(2) The following are equivalent.

(a) If (H,S) and (G,T ) are admissible pairs of E such that (G,T )/(H,S) is
cofinal, then MΓ

(G,T )/(H,S) is either aperiodic or incomparable.

(b) Every cycle of E contains a vertex of another cycle of E.

(3) The following are equivalent.

(a) If (H,S) and (G,T ) are admissible pairs of E such that (G,T )/(H,S) is
cofinal, then MΓ

(G,T )/(H,S) is either periodic or aperiodic.

(b) Every vertex of E is in the saturated closure of a finite set of vertices on
cycles.

(c) Every element of MΓ
E is periodic or aperiodic (i.e., comparable).

Proof: We show (1)(a)⇒ (1)(b) by contrapositive. Assume that c is a cycle of E which
contains a vertex of another cycle of E. If (G,T )/(H,S) is a graph as in part (2) of
Corollary 5.8, then it is cofinal and c is extreme in it. By part (3) of Lemma 7.3,
MΓ

(G,T )/(H,S) is aperiodic. Thus, (1)(a) fails.

Suppose that (1)(b) and the assumption of (1)(a) hold. As (G,T )/(H,S) is cofinal,
there is a unique cluster C in (G,T )/(H,S) by Theorem 5.7. Assume that C contains
vertices of an extreme cycle c. Then c0 ⊆ G−H because the vertices of (G,T )/(H,S)
which have the form wp or v′ or which are in T−S are not on cycles. Since c is extreme
in (G,T )/(H,S), there is an exit e from c such that r(e) ∈ G−H. Since r(e) connects
back to c in (G,T )/(H,S), there is a cycle d of (G,T )/(H,S) which contains e. Using
the same argument as for c0 ⊆ G − H, we have that d0 ⊆ G − H. Hence, c and d
are cycles of E which are not disjoint. This contradicts (1)(b), so either C consists
of vertices of a cycle without exits or C contains no vertices on cycles. In the first
case, MΓ

(G,T )/(H,S) is periodic and, in the second case, MΓ
(G,T )/(H,S) is incomparable

by part (3) of Lemma 7.3.
We show (2)(a) ⇒ (2)(b) by contrapositive. Assume that c is a cycle of E which

contains a vertex of no other cycle of E. If (G,T )/(H,S) is a graph as in part (2) of
Corollary 5.8, then it is cofinal and c is without exits in it. By part (3) of Lemma 7.3,
MΓ

(G,T )/(H,S) is periodic. Thus, (2)(a) fails.

To show (2)(b)⇒ (2)(a), assume that (2)(b) holds. Then any cofinal porcupine-quo-
tient graph (G,T )/(H,S) has no cycles without exits, so the set NE of (G,T )/(H,S)
is empty. By part (1)(b) of Theorem 7.4, no element of MΓ

(G,T )/(H,S) is periodic.

By part (3) of Lemma 7.3, MΓ
(G,T )/(H,S) is either aperiodic or incomparable. This

shows (2)(a).
We show (3)(a) ⇒ (3)(b) by contrapositive. If there is a vertex which is not in the

saturated closure of finitely many vertices on cycles, then it emits a path to either
a sink v, an infinite emitter v which is not on a cycle, or it is on an infinite path α
such that T (α0) contains neither sinks, nor infinite emitters nor vertices on cycles
by Lemma 2.1. In the first two cases, let (G,T )/(H,S) be a graph as in part (1) of
Corollary 5.8. So, (G,T )/(H,S) is cofinal and v is its sink. By part (3) of Lemma 7.3,
MΓ

(G,T )/(H,S) is incomparable. Thus, (3)(a) fails. In the third case, let (G,T )/(H,S) be
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a graph as in part (3) of Corollary 5.8. So, (G,T )/(H,S) is cofinal and α is its terminal
path. By part (3) of Lemma 7.3, MΓ

(G,T )/(H,S) is incomparable. Thus, (3)(a) fails.

To show (3)(b) ⇒ (3)(a), assume that (3)(b) holds and that (G,T )/(H,S) is
cofinal. By Theorem 5.7, there is a unique cluster C of (G,T )/(H,S) such that
((G,T )/(H,S))0 = C. By (3)(b), there are neither sinks nor terminal paths in
(G,T )/(H,S), so C contains a cycle c. If c is without exits in (G,T )/(H,S), then
MΓ

(G,T )/(H,S) is periodic and if c is extreme, MΓ
(G,T )/(H,S) is aperiodic by part (3) of

Lemma 7.3.
The equivalence of (3)(b) and (3)(c) holds by parts (4) and (5) of Proposition 7.1.

The condition that no cycle of a graph E has an exit is strictly stronger than
part (1)(b) of Theorem 7.5. By [12, Corollary 4.8], every element of MΓ

E is periodic
or incomparable if and only if no cycle of E has an exit. We also have that condi-
tion (2)(b) of Theorem 7.5 is strictly stronger than the condition that each cycle of
a graph E has an exit. This last condition is equivalent to every nonzero element
of MΓ

E being aperiodic or incomparable by [12, Corollary 4.3]. The equivalence of
parts (3)(a) and (3)(c) of Theorem 7.5 contrasts with the strictness of the two impli-
cations mentioned above.

Theorems 7.4 and 7.5 have the following corollary.

Corollary 7.6. Let E be any graph.

(1) The following are equivalent.

(a) If (H,S) and (G,T ) are admissible pairs of E such that (G,T )/(H,S) is
cofinal, then MΓ

(G,T )/(H,S) is periodic.

(b) The cycles of E are mutually disjoint and every vertex of E is in the satu-
rated closure of a finite set of vertices on cycles.

(2) The following are equivalent.

(a) If (H,S) and (G,T ) are admissible pairs of E such that (G,T )/(H,S) is
cofinal, then MΓ

(G,T )/(H,S) is aperiodic.

(b) Every cycle of E contains a vertex of another cycle of E and every vertex
of E is in the saturated closure of a finite set of vertices on cycles.

(3) The following are equivalent.

(a) If (H,S) and (G,T ) are admissible pairs of E such that (G,T )/(H,S) is
cofinal, then MΓ

(G,T )/(H,S) is incomparable.

(b) The graph E is acyclic.

Proof: Parts (1) and (2) follow directly from Theorem 7.5. If E has a cycle c, then
there are admissible pairs (G,T ) and (H,S) such that (G,T )/(H,S) is cofinal and
(G,T )/(H,S) contains c by part (2) of Corollary 5.8. Hence, MΓ

(G,T )/(H,S) is com-

parable by part (3) of Lemma 7.3. If E is acyclic, then (G,T )/(H,S) is acyclic for
any (G,T ) and (H,S) such that (G,T )/(H,S) is cofinal. Thus, MΓ

(G,T )/(H,S) is in-

comparable by part (3)(b) of Theorem 7.4 (also by part (3) of Lemma 7.3).
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[12] R. Hazrat and L. Vaš, Comparability in the graph monoid, New York J. Math. 26 (2020),

1375–1421.
[13] K. M. Rangaswamy, Leavitt path algebras with finitely presented irreducible representations,

J. Algebra 447 (2016), 624–648. DOI: 10.1016/j.jalgebra.2015.10.005.
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