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NEWTON–OKOUNKOV BODIES AND PICARD NUMBERS

ON SURFACES

Julio-José Moyano-Fernández, Matthias Nickel, and Joaquim Roé

Abstract: We study the shapes of all Newton–Okounkov bodies ∆v(D) of a given big divisor D on

a surface S with respect to all rank 2 valuations v of K(S).
We obtain upper bounds for, and in many cases we determine exactly, the possible numbers of

vertices of the bodies ∆v(D). The upper bounds are expressed in terms of Picard numbers and they

are birationally invariant, as they do not depend on the model S̃ where the valuation v becomes a

flag valuation.

We also conjecture that the set of all Newton–Okounkov bodies of a single ample divisor D
determines the Picard number of S, and prove that this is the case for Picard number 1, by an

explicit characterization of surfaces of Picard number 1 in terms of Newton–Okounkov bodies.
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1. Introduction

Newton–Okounkov bodies were introduced by A. Okounkov ([24]) as a tool in rep-
resentation theory; later, K. Kaveh and A. G. Khovanskii ([17, 18]) on the one hand,
and R. Lazarsfeld and M. Mustaţă ([23]) on the other, developed a general theory
with applications to both convex and algebraic geometry. Very quickly they gained a
central role in the asymptotic theory of linear series on projective varieties, and they
have been used to address questions of arithmetic geometry, combinatorics, Diophan-
tine approximation, mirror symmetry, and representation theory; see S. Boucksom’s
excellent exposition [3] for the general theory. Blum and Jonsson ([2]), Boucksom
and Chen ([4]), Fang, Fourier, and Littelmann ([10]), Harada and Kaveh ([15]), or
Rietsch and Williams ([25]) are a sample of recent applications.

To every big divisor D on a normal projective variety X of dimension d, and to ev-
ery valuation v of the field K(X) of rank d, one associates a convex body in Rd, called
the Newton–Okounkov body ∆v(D) of D with respect to v; it contains all normalized
values of divisors in the complete linear systems |kD|, k ≫ 0. Its volume agrees (up
to a factor of d!) with the volume of D for every v, but its shape depends on the
valuation v. A lot of effort has been put into trying to understand this dependence,
and more generally the information encoded in the shapes of Newton–Okounkov bod-
ies (see [20], [6], [9], [14], and [26]). By works of Lazarsfeld and Mustaţă ([23])
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and Jow ([16]), we know that the collection of all Newton–Okounkov bodies of D
is a complete numerical invariant of D, and by work of Küronya, Lozovanu, and
Maclean ([20]), we know that on a surface S all Newton–Okounkov bodies are poly-
gons.

Every valuation v of maximal rank of the field K(S) can be built from a smooth

flag of subvarieties on some (smooth) birational model S̃ → S of S, and it is often
simpler to focus on flags living on S itself: the proof of polygonality of two-dimensional
Newton–Okounkov bodies, for instance, relies on the flag construction (and Zariski
decompositions). It follows from the proof that the number of vertices of a Newton–
Okounkov polygon with respect to a smooth flag on S is at most 2ρ(S) + 2, where
ρ(S) is the Picard number of S. However, this bound is often not sharp; in [27], the
third author and T. Szemberg determined the number of vertices a Newton–Okounkov
polygon may have, where D is required to be ample, S is smooth, and the valuation
is induced by a smooth flag on S.

The main thrust of the present work is to showcase the benefits of considering
valuations determined by flags on higher models S̃ and not just on S. Although
this does often lead to slightly more involved arguments, one in fact gains clarity
as statements become simpler; this is the case for instance in our first main result.
It could be expected that, since higher smooth models S̃ → S have larger Picard
number, the number of vertices of Newton–Okounkov polygons with respect to flags
lying on S̃ could grow; somewhat surprisingly, this is not the case:

Theorem A. Let S be a smooth projective algebraic surface, and let D be a big
Cartier divisor on S. For every rank 2 valuation v of K(X), the Newton–Okounkov
body ∆v(D) has at most 2ρ(S) + 2 vertices.

There are geometric restrictions which usually make it impossible to attain the
maximal number of vertices 2ρ(S)+2 with flags lying on S; see [27]. These restrictions
loosen when we consider arbitrary valuations of maximal rank, and we in fact hope
they disappear:

Theorem B. Let S be a smooth projective algebraic surface with Picard number ρ(S)=
1, and let D be an ample Cartier divisor on S. There exist rank 2 valuations v3, v4
of K(S), such that the Newton–Okounkov body ∆vk(D) has exactly k vertices.

Conversely, if S is a smooth projective algebraic surface with Picard number ρ(S) >
1, then there exist rank 2 valuations v such that ∆v(D) has at least five vertices.

In fact, we propose the following:

Conjecture. Let S be a smooth projective algebraic surface, and let D be an ample
Cartier divisor on S. For every natural number k, 3 ≤ k ≤ 2ρ(S) + 2, there exists a
rank 2 valuation v of K(S), such that the Newton–Okounkov body ∆v(D) has exactly
k vertices.

Theorem B on one hand shows that the upper bound can always be attained if
the Picard number is 1 (generalizing results of [6, 14] for P2) and on the other hand
characterizes surfaces with Picard number 1 in terms of Newton–Okounkov bodies.
Our conjecture means that we expect both facts to generalize for arbitrary Picard
number, and so that Newton–Okounkov bodies determine Picard numbers.

One sees in Theorem A that if D is the pullback of a divisor by a birational
morphism S → S′ of smooth projective surfaces, then the Picard number of S′ (smaller
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than that of S) may be used to bound the number of vertices of Newton–Okounkov

bodies of D. This suggests that curves contracted by the maps S
|kD|
99K PN (which

are birational to the image for large k and big D) “should not count” in the Picard
number upper bound; the appropriate notion is the following.

Definition 1.1. Let S be a smooth projective surface, and D a big and nef Cartier
divisor on S. We define the Picard number of S relative to D, or simply the Picard
number of D, written ρD(S), as the Picard number of S minus the number of irre-
ducible curves C on S with C · D = 0. (If D is big but not nef, we define ρD(S)
as ρPD

(S), where PD is the positive part in the Zariski decomposition of D; see
Definition 2.5.)

In Section 2 we show that this Picard number is invariant under pullback by bi-
rational morphisms; this allows us to extend the notion to singular surfaces using
resolution of singularities. Then we can prove a stronger version of Theorem A.

Theorem A#. Let S be a normal projective algebraic surface, and let D be a big
Cartier divisor on S. Then for every rank 2 valuation v on K(S), the Newton–
Okounkov body ∆v(D) has at most 2ρD(S) + 2 vertices.

It is plausible that the conjecture above holds for big (not necessarily ample) divi-
sors replacing ρ with ρD, but we have little evidence to support this assertion.

In the proofs of Theorems A# and B we use the description of Newton–Okounkov
polygons in terms of Zariski decompositions introduced by Lazarsfeld and Mustaţă
in [23] and we also employ techniques from [20] and [27]. However, these techniques

do not immediately carry over to valuations whose flags live in higher models S̃ → S.
One important fact that comes to our help is that curves orthogonal to D never
contribute vertices to a polygon ∆v(D); cf. Lemma 3.1. We also investigate Newton–
Okounkov bodies with respect to smooth flags on a fixed model, but since our objective
is to apply this study to higher models S̃ → S, it becomes essential to pay attention to
“contracted curves”, i.e., irreducible curves whose intersection number with the given
big divisor D is not positive. Flags whose divisorial part does intersect D positively
turn out to behave in a way similar to smooth flags, which allows us to extend some
results of [27] for ample divisors to the general setting of big divisors, with suitable
modifications to take care of contracted curves. We attach to every big divisor D on a
smooth surface S a number mv(D), computed in terms of configurations of negative
curves (Definition 4.1), and invariant under pullbacks, which allows us to describe all
Newton–Okounkov bodies of D whose flag lives on a given model and intersects D
positively:

Theorem C. On every smooth projective surface S, for every big divisor D and
every integer δ with 3 ≤ δ ≤ mv(D), there exists a smooth flag Y• in S such that the
Newton–Okounkov polygon ∆Y•(D) has exactly δ vertices.

On every normal projective surface S, for every big and nef divisor D, there is a
model S̃ → S and a flag Y• = {S̃ ⊃ C ⊃ {p}} such that D · π(C) > 0 and ∆Y• is a
k-gon if and only if 3 ≤ k ≤ mv(D).

If D is big but not nef, a version of the second statement still holds, only replac-
ing D · π(C) with PD · π(C), where PD stands for the positive part in the Zariski
decomposition D = PD +ND.



6 J.-J. Moyano-Fernández, M. Nickel, J. Roé

The number mv(D) is usually smaller than 2ρD(S)+2, so there are still geometric
restrictions making it impossible to reach the maximum number of vertices; this can
only be achieved by using flags (on some model S̃ → S) whose divisorial part does not
intersect (the pullback of) D. These contracted or infinitesimal flags are extremely
interesting, and are the ones allowing us to prove Theorem B, but it is also challenging
to work with them; in particular, it seems that the path to proving the conjecture
above should go through the construction of adequate infinitesimal flags, which we
were unable to do at this point.

It follows from our analysis that there are important qualitative differences between
the Newton–Okounkov bodies of a fixed divisorD with respect to flags whose divisorial
part has zero or non-zero intersection with D. We would like to point out that such
a distinction appeared already in the work of Choi, Park, and Won [5, Theorem 1.1],
although we are not aware of any direct connection between both phenomena, since
they work with Newton–Okounkov bodies of non-big pseudoeffective divisors, which
are just segments and thus the question of the number of points is moot for them.

The paper is organized as follows. In Section 2 we recall necessary notions and rel-
evant facts from existing literature. Section 3 is devoted to the proof of Theorem A#.
In Section 4 we study Newton–Okounkov bodies with respect to flags whose diviso-
rial part intersects D positively and prove Theorem C. In Sections 5 and 6 we study
Newton–Okounkov bodies with respect to flags whose divisorial part does not inter-
sect D; first we exhibit examples that show the differences in behavior with respect
to positively intersecting flags, and finally we prove Theorem B.

We work over the complex field.

2. Newton–Okounkov bodies on surfaces

In this section we recall the terminology used throughout the paper, according to
the conventions in [26], [6], or [14]. For a general reference on positivity the reader
is referred to [21, 22].

Let X be a normal, projective, algebraic variety of dimension n defined over the
complex numbers with function field K(X). The group of Cartier divisors on X will
be denoted as Div(X), whereas Num(X) will be the subgroup of divisors numerically
equivalent to 0, and N1(X) = Div(X)/Num(X) will be the Néron–Severi group
of X. Let us recall [21, 1.1.16]: the Néron–Severi group is a free abelian group of
finite rank ρ(X), the Picard number of X.

A Cartier divisor D on X is called big if h0(X,OX(kD)) grows like kn. This is
equivalent to saying that OX(D) has maximal Iitaka dimension. Bigness makes sense
also for Q- and R-divisors, and it only depends on the numerical equivalence class
of D; see [23, (0.3)]. The convex cone in N1(X)R of all big R-divisor classes on X is
called the big cone, and it will be denoted by Big(X).

Let v : K(X)\{0} → Zn
lex be a discrete valuation of rank n on X whose value group

is Zn endowed with the lexicographic ordering. For any such valuation and any big
divisor D on X one defines the Newton–Okounkov body of D with respect to v as

∆v(D) =

{
v(s)

k
: s ∈ H0(kD) ⊂ K(X), k ∈ N

}
,

where { · } stands for the closure with respect to the usual topology of Rn.
The simplest valuations of maximal rank, and the most used in the context of

Newton–Okounkov bodies, are defined via flags. Let us consider a flag of irreducible
subvarieties

Y• = {X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn = {p}}.
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The flag Y• is said to be full and admissible if Yi has codimension i in X and is
smooth at the point p. The point p is called the center of the flag. It is possible to
construct a discrete valuation of rank n from Y• as follows. For every ϕ ∈ K(X) we
set ϕ0 = ϕ, and

vi(ϕ) = ordYi
(ϕi−1), ϕi =

ϕi−1

g
vi(ϕ)
i

∣∣∣∣∣
Yi

for i = 1, . . . , n,

where gi is a local equation of Yi in Yi−1 around p. It is clear that vY• = (v1, . . . , vn)
defines a rank n discrete valuationK(X)\{0} → Zn

lex. Now we can define the Newton–
Okounkov body of D with respect to the flag Y• as ∆Y•(D) := ∆vY•

(D).
This definition can be extended to the case of an admissible flag on a birational

model X̃ of X, where π : X̃ → X is a proper birational morphism. Such a flag

Y• = {X̃ = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn = {p}}

is called infinitesimal if π(Y1) = π(p) and proper if codimπ(Yi) = i. If X̃ = X and
π = idX , then the flag is said to be smooth at p. The Newton–Okounkov bodies given
by infinitesimal resp. proper resp. smooth flags are called infinitesimal resp. proper
resp. smooth. By [6, Theorem 2.9], every discrete valuation of rank n, and hence every
Newton–Okounkov body, is of one of these types.

We are interested in the case n = 2. Let S be therefore a complex projective normal
surface.

Remark 2.1. For the computations of Newton–Okounkov bodies, we shall use the
Zariski decomposition of effective divisors, which needs S to be smooth; this is not
really restrictive, because passing to a resolution of singularities π : S̃ → S, one has
∆v(D) = ∆v(π

∗(D)). On the other hand, by [6, Theorem 2.9] for every rank 2

valuation v there is a model π : S̃ → S and a smooth flag Y• = {S̃ ⊃ C ⊃ {p}}
on S̃ such that v is the valuation associated to Y•. Hence we may also assume that
v is a flag valuation. Note that the choice of flag is uniquely determined on every
model where it exists: if π′ : S̃′ → S̃ is a higher model, then the restriction of π′ to
the strict transform C ′ of C in S̃′ is an isomorphism, so we have a uniquely defined
flag Y ′

• = {S̃′ ⊃ C ′ ⊃ {p′}} on S̃′ inducing the same valuation, namely the one given
by the unique point p′ on C ′ above p.

When S is smooth, every big Q-divisor D admits a Zariski decomposition D =
ND +PD, where PD (the positive part of D) is a nef Q-divisor and ND (the negative
part of D) is an effective Q-divisor with the property that, whenever kD and kND are
integral divisors, multiplication by the section defining kND induces an isomorphism

H0(S,O(kPD)) −→ H0(S,O(kD)).

Zariski decompositions can also be defined for big Q- and R-divisors. They are deter-
mined by the numerical equivalence class of D, so it makes sense to study them as
functions on the Néron–Severi space [1].

The first explicit examples of Newton–Okounkov bodies appeared in [23, Section 6].
In fact, [23, Lemma 6.3 and Theorem 6.4] gives a description of those bodies associated
to any big divisor on S, in terms of Zariski decompositions:
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Proposition 2.2 (Lazarsfeld–Mustaţă). Let D be a big divisor on a smooth projective
surface S and let Y• = {S ⊃ C ⊃ {p}} be an admissible flag on S. Let Dt = Pt +Nt

be the Zariski decomposition of Dt = D − tC, t ∈ R. Let ν be the coefficient of C
in N0, and let µ = sup{t > 0 : D − tC is big} > ν ≥ 0. Then the Newton–Okounkov
body of D with respect to Y• is given by

∆Y• = {(t, y) ∈ R2 : ν ≤ t ≤ µ, α(t) ≤ y ≤ β(t)},

where

α(t) = ordp(Nt|C), β(t) = α(t) + (C · Pt).

Remark 2.3. Since by [6, Theorem 2.9] every rank 2 valuation on a surface S is a flag

valuation on some model S̃ → S, the previous proposition holds for every Newton–
Okounkov body ∆v(D), provided that the Zariski decomposition is done on S̃.

In the study of Zariski decompositions, Bauer, Küronya, and Szemberg introduced
in [1] the concept of the Zariski chamber as a subcone building a partition of the big
cone

Big(X) =
⋃

P big ∧ nef

ΣP ,

where

ΣP = {D ∈ Big(X) : Neg(D) = Null(P )},
Neg(D) = {C : C is an irreducible component of ND},
Null(D) = {C : C is an irreducible curve with C ·D = 0}.

Note that the definitions give Neg(D) ∪ Null(D) ⊂ Null(PD) (the union may be
disjoint or not). By exploiting the Zariski chamber decomposition it is not hard to
prove that Zariski decompositions depend continously on the big divisor D:

Proposition 2.4 ([1, Proposition 1.16]). Let (Dn) be a sequence of big divisors
converging in N1(X)R to a big divisor D. If Dn = Pn+Nn is the Zariski decomposition
of Dn, and if D = P +N is the Zariski decomposition of D, then the sequences (Pn)
and (Nn) converge to P and N respectively.

This fact guarantees, for instance, that the functions α and β above are continuous,
and it will be essential for our arguments later on.

Definition 2.5. Let D be a big divisor on a projective algebraic surface S. We define
the Picard number of S relative to D, if S is smooth, as ρD(S) = ρ(S)−#Null(PD).

The definition can be extended to the case of a possibly singular normal surface S,
as follows. Observe first that the definition for smooth surfaces is invariant under
pullback by proper birational morphisms: if S is smooth and π : S̃ → S is the blowup
centered at a point p, then π∗(PD) = Pπ∗(D), and by the projection formula [11,
8.1.7],

Null(π∗(PD)) = {C̃ : C ∈ Null(D)} ∪ {Ep},
therefore

(1) #Null(π∗(D))−#Null(D) = 1 = ρ(S̃)− ρ(S).

It follows that ρπ∗D(S̃) = ρD(S). Now, if D is a big and nef divisor on a normal

surface S, we may define ρD(S) as ρπ∗(D)(S̃) for any resolution of singularities π : S̃ →
S; equation (1) guarantees that this definition does not depend on the choice of a
resolution.
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Remark 2.6. When S is smooth, as D is big, PD is big as well, and in particular
P 2
D > 0. The index theorem implies that the intersection form restricted to P⊥

D ⊃
⟨Null(PD)⟩ is negative definite, and the number of curves #Null(PD) is bounded
above by ρ(S)− 1. Therefore 1 ≤ ρD(S) ≤ ρ(S), with ρD(S) = ρ(S) if and only if D
is ample.

The description of Newton–Okounkov bodies of Proposition 2.2 was further inves-
tigated by Küronya, Lozovanu, and Maclean in [20] and by Roé and Szemberg in [27];
we summarize their results as the following theorem:

Theorem 2.7 (Küronya–Lozovanu–Maclean, Roé–Szemberg). Let D be a big divisor
on a smooth surface S, and consider a smooth flag Y• = {S ⊃ C ⊃ {p}}. Let Dt =
D − tC be with Zariski decomposition Dt = Pt + Nt as above, and let α(t), β(t)
be the functions determining the lower and upper boundaries of ∆Y•(D) given by
Proposition 2.2. Then,

(i) α(t) is a non-decreasing function [20, Theorem B].
(ii) α(t) and β(t) are piecewise linear functions with finitely many pieces [20, The-

orem B].
(iii) The function α(t) or β(t) has a point of non-differentiability at t = t0 if and only

if the negative part of Dt = D− tC acquires one or more irreducible components
at t0, i.e., for every ε > 0 the supports of Nt0 and Nt0+ε differ.

(iv) The function α(t) has a point of non-differentiability at t = t0 if and only if one
or more irreducible components acquired at t0 are contained in the connected
component of Nt0+ε that passes through p [27, Proposition 3.3].

(v) The function β(t) has a point of non-differentiability at t = t0 if and only if
one or more irreducible components acquired at t0 are contained in a connected
component of Nt0+ε that intersects C away from p [27, Proposition 3.3].

Proof: The only statement that is not immediately clear from the references is (iii).
By (iv) and (v) we only need to show that if all irreducible components acquired
at t0 do not pass through p, then one or more of them is contained in a connected
component of Nt0+ε that intersects C away from p. Finally, this is true since otherwise
the support of Nt0 and Nt0+ε would not change.

The theorem immediately extends to a normal surface as long as Y• is a smooth
flag, by computing the Zariski decomposition of the pullback of D to any resolution
of singularities of S.

The fact that Nt acquires a new irreducible component at t0 can be equivalently ex-
pressed by saying thatDt crosses a Zariski wall between chambers, i.e., Dt0 andDt0+ε

belong to different cones ΣP for every ε > 0.
These results were then used to connect the number of vertices of the Newton–

Okounkov body with the Picard number of the surface.

Corollary 2.8. Let S be a smooth surface, D a big divisor on S, and Y• = {S ⊃ C ⊃
{p}} a smooth flag. Let Dt = D− tC be with Zariski decomposition Dt = Pt +Nt as
above, and let µ = sup{t > 0 : Dt is big}.

Then ∆Y•(D) is a polygon with at most 2ρ(S) + 1 vertices. If Nµ has ρ(S) − 1
irreducible components, then ∆Y•(D) has a single rightmost vertex.

In the statement of Corollary 2.8, one can “almost” replace ρ(S) with ρD(S), as we
shall see in Theorem 3.2. This has two advantages; first, and most obvious, the bound
is sharper for non-ample D, and second, ρD(S) is invariant under proper birational
morphisms π (replacing D with π∗(D)). We include a short sketch of the proof of
Corollary 2.8, since we will use the ideas therein extensively.



10 J.-J. Moyano-Fernández, M. Nickel, J. Roé

Proof: The description of the Newton–Okounkov body in Proposition 2.2 together
with the decomposition of the big cone into Zariski chambers [1] show that the number
of vertices of ∆Y•(D) is bounded by two times the number of Zariski walls that
Dt = D − tC crosses for 0 ≤ ν < t < µ and the leftmost and rightmost vertices (at
most two of each).

Let us prove the second claim first. If Nν consists of ρ− 1 irreducible components,
then by the index theorem the divisor Pµ, which is orthogonal to all components
of Nµ, must be a multiple of a big class. Since Pµ is not big, it has to be zero, and so
∆Y•(D) has only one rightmost vertex.

Next, the minimality of the negative part in the Zariski decomposition ensures that
supp(Nt) ⊂ supp(Nµ) for 0 ≤ ν ≤ t ≤ µ. As Nµ has negative definite intersection
matrix, by the index theorem the support of Nµ can only contain ρ − 1 curves at
most, and therefore at most ρ − 1 Zariski walls are crossed. Therefore ∆Y•(D) is a
polygon with at most 2(ρ − 1) + 4 = 2ρ(S) + 2 vertices. However, if ∆Y•(D) had
exactly 2ρ(S) + 2 vertices, Nν would consist of ρ − 1 irreducible components, and
therefore ∆Y•(D) would have only one rightmost vertex, so ∆Y•(D) has at most
2ρ(S) + 1 vertices, as claimed.

Moreover, [27] shows that the bound is attained, i.e., for every positive integer ρ
there exist a smooth projective surface S, a big divisor D, and a smooth flag Y• such
that ∆Y•(D) has 2 ρ(S)+1 vertices. To do so, they determine the numbers of vertices
that can be obtained as Newton–Okounkov bodies of every ample divisor D. We
can partially extend these results of [27] to the case of non-ample divisors, applying
techniques from the theory of stable base loci on surfaces (see [1, 28]).

Given an effective divisorD, let Fix(D) denote the fixed divisor of |D| (i.e., everyD′

linearly equivalent to D satisfies D′ ≥ Fix(D) and the base locus of |D − Fix(D)|
is zero-dimensional). Let us denote by SB(D) the stable base locus of D, i.e., the
intersection of the base loci of |kD| for all k ≥ 1. We also use the notation supp(D)
for the support of an effective divisor D. The following lemma collects a few known
facts:

Lemma 2.9. Let D be a big divisor on a smooth surface S and let D = PD +ND be
its Zariski decomposition. Then

(i) The stable base locus SB(D) decomposes as SB(D) = supp(ND) ∪ SB(PD).
(i) The stable base locus SB(PD) is contained in supp(Fix(PD)), and it has no

isolated points.
(iii) The stable base locus SB(PD) is the union of some of the components of

Null(PD).
(iv) For every component E of SB(PD), the coefficient of E in Fix(kPD) is bounded,

i.e., there exists ℓ ∈ N such that for every component E of SB(PD), and ev-
ery k ≥ 0, the coefficient of E in Fix(kPD) is less than ℓ.

All these facts are due to Zariski [28]. See [1, Section 2], especially Proposition 2.5
and its proof, for a modern account with notations consistent with ours.

Notation 2.10. Let S be a projective normal surface, and assume a big divisor D
and an admissible flag Y• = {S ⊃ C ⊃ {p}} are given. We fix the following notations
for the rest of the paper.

⋄ Dt = D − tC for every t ∈ R.
⋄ Pt resp. Nt is the positive resp. negative part of the Zariski decomposition Dt =
Pt +Nt of Dt.

⋄ ν = νC(D) ∈ Q is the coefficient of C in N0.
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⋄ µ = µC(D) = sup{t > 0 : D − tC is big}.
⋄ For every (irreducible, reduced) curve Ci in the support of Nµ,

tCi = tCi(D,C) = inf{t ∈ R : ordE(Nt) > 0}.
Note that the support of every Nt with 0 ≤ t ≤ µ is contained in the support
of Nµ.

⋄ A vertex p = (t, s) of the polygon ∆Y•(D) is called leftmost, rightmost, or
interior when t = ν, t = µ, or ν < t < µ, respectively.

3. Upper bound for the number of vertices

One might expect that Newton–Okounkov bodies with respect to flags living in
birational models of S with larger Picard number could have more vertices. However,
extensive computations on blowups of P2 (see [6, 14]) have shown that this is not the
case for S = P2 and suggest that a bound similar to the ones above might hold not
only for smooth flags, but for arbitrary Newton–Okounkov polygons. In this section
we prove Theorem A#, to this effect. Simultaneously, we shall obtain a sharp bound
that extends the bound of [27] for ample divisor classes to arbitrary big divisor classes.

The main step towards the proof is the observation that, in the association of
negative curves to vertices of the polygon, described above, those curves in Null(D)
do not contribute vertices:

Lemma 3.1. Let D be a big and nef divisor on a smooth surface S, and consider the
admissible flag Y• := {S ⊃ C ⊃ {p}} on S. Let us write as above Dt = D − tC with
Zariski decomposition Dt = Pt +Nt. Let (t, s) be an interior vertex of ∆Y•(D) (i.e.,
with 0 < t < µC(D)). Then there exists a curve Fi, belonging neither to Null(D) nor
to Nt, with tFi = t.

Proof: By Theorem 2.7 we know that the supports of Nt+ε and Nt differ. Let

Nt+ε = a1F1 + · · ·+ akFk

be the negative part of Dt+ε = D− (t+ ε)C for |ε| small enough, where ai = ai(ε) is
a continuous function, piecewise linear, with a point of non-differentiability at ε = 0
(at least for some ai). Assume that Fi, . . . , Fk are the irreducible components of Nt+ε

not contained in Nt, i.e., aj(0) = 0 if and only if j ≥ i. We need to prove that at least
one of these does not belong to Null(D).

By continuity of the Zariski decomposition (see Proposition 2.4), no curve H sat-
isfying Pt · H > 0 belongs to the negative part Nt+ε for small ε. Therefore, the
components Fi, . . . , Fk all belong to Null(Pt). Next we claim that at least one curve
in Fi, . . . , Fk intersects C or a component of Nt. Indeed, if we assume by way of
contradiction that none of them does, then N ′

t+ε := a1F1 + · · ·+ ai−1Fi−1 satisfies

(Dt+ε −N ′
t+ε) · Fj =

{
(Dt+ε −Nt+ε) · Fj = 0 for j < i,

D · Fj ≥ 0 for j ≥ i;

and for any curve E not among the Fj , we have that (Dt+ε −N ′
t+ε) ·E ≥ Pt+ε ·E ≥

0, hence Dt+ε − N ′
t+ε is nef, contradicting the minimality of Nt+ε in the Zariski

decomposition.
So we can assume without loss of generality that Fi intersects either C or a com-

ponent of Nt. Then Fi does not belong to Null(D), because if it did, we would have

0 = Pt · Fi = (D − tC −Nt) · Fi = −(tC +Nt) · Fi < 0,

a contradiction.
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Theorem 3.2 (Theorem A#). Let S be a normal projective algebraic surface, and
D a big Cartier divisor on S. Then for every rank 2 valuation v on K(S), the poly-
gon ∆v(D) has at most 2 ρD(S) + 2 vertices.

Proof: Since S is normal, for every resolution of singularities π : S̃ → S one has
isomorphisms

H0(OS̃(k π
∗(D))) ∼= H0(OS(kD))

for all k. The pullback divisor π∗(D) on D is therefore big, and the valuations of

K(S̃) = K(S) applied to sections of OS(kD) and OS̃(k π
∗(D)) are the same, so

∆v(π
∗(D)) = ∆v(D). On the other hand, ρπ∗(D)(S̃) = ρD(S) by definition. So we can

replace S with S̃ and assume that S is smooth.
By the same token, since v is given by a smooth flag Y• = {S̃ ⊃ C ⊃ {p}}, on some

blowup π : S̃ → S, we may replace S with S̃ and assume that v is the flag valuation
of an admissible flag.

Now let D = PD +ND be the Zariski decomposition of D. The body ∆v(D) is a
translate of the body ∆v(PD) (a well-known fact which holds even in higher dimension;
see [19, Theorem C, 3] together with Remark 2.1). Moreover, ρD(S) = ρPD

(S); so we
can replace D with PD and assume that D is nef.

Write as above Dt = D − tC and let Dt = Pt + Nt be its Zariski decomposition
for t ∈ [0, µ]. By continuity of the Zariski decomposition, Nµ has the same support
as Nµ−ε for ε > 0 small enough. Since Pµ−ε is big and nef, by the index theorem
the number of components of Null(Pµ−ε) (which includes all components of Nµ) is at
most ρ(S)− 1. For every component E of Null(D),

0 ≤ Pµ−ε · E = D · E − µ− εC · E −Nµ−ε · E = (−µ− ε)C · E −Nµ−ε · E,

so E is either equal to C, to a component of Nµ−ε, or to a component of Null(Pµ−ε).
Since all components of Nµ−ε are components of Null(Pµ−ε), either E = C or E is a
component of Null(Pµ−ε).

We now distinguish two cases. If C is not a component of Null(D), the number of
components of Nµ which are not components of Null(D) is bounded above by

ρ(S)− 1−#Null(D) = ρD(S)− 1,

so the number of interior vertices in ∆v(D) is bounded above by 2ρD(S) − 2, and
the same argument as in the proof of Corollary 2.8 implies that the total number of
vertices is at most 2ρD(S) + 1. On the other hand, if C = E belongs to Null(D), the
number of components of Nµ which are not components of Null(D) is bounded above
by

ρ(S)− 1− (#Null(D)− 1) = ρD(S),

and the number of interior vertices in ∆v(D) is bounded above by 2ρD(S). Moreover,
again the same argument as in the proof of Corollary 2.8 shows that, if the number of
interior vertices equals 2ρD(S), then there is just one rightmost vertex, and since C is
a component of Null(D) we have β(0)− α(0) = D ·C = 0; therefore there is just one
leftmost vertex, for a total number of vertices equal to 2ρD(S) + 2. This completes
the proof.

4. Newton–Okounkov bodies with respect to D-positive flags

For the case of an ample divisor D, it was determined in [27] the possible numbers
of vertices of Newton–Okounkov bodies of D with respect to smooth flags. In this
section we extend this result to bodies of big and nef divisors on smooth surfaces,
with respect to smooth flags whose divisorial part intersects D positively. Note that
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the latter hypothesis is automatically satisfied if D is ample. As a consequence, we
can also deal with singular proper flags for ample divisors.

We begin by recalling the result of [27]. Let S be a smooth projective surface. For
a configuration of curves N = (C1, . . . , Ck) with negative definite intersection ma-
trix, let mc(N ) denote the largest number of irreducible components of a connected
subconfiguration of N , and define

mv(N ) =

{
k +mc(N ) + 4 if k < ρ(S)− 1,

k +mc(N ) + 3 if k = ρ(S)− 1.

Then the maximum number of vertices of a Newton–Okounkov body of an ample
divisorD on S is the maximum of allmv(N ) for N with negative definite intersection
matrix [27, Theorem 1.1].

Now assume D is merely big and nef rather than ample, and let Null(D) =
{E1, . . . , Eℓ}. After the results of the previous sections, it should not be a surprise
that Null(D) needs to be taken into account to define a version of mv appropriate for
the present setting.

Definition 4.1. For a configuration of curves N = (C1, . . . , Ck, E1, . . . , Eℓ) with
negative definite intersection matrix that contains all curves of Null(D), let mcD(N )
denote the largest number of irreducible components not in Null(D) which belong to
a single connected component of N . Note that the connected component may include
irreducible components belonging to Null(D), but these do not contribute to mcD.
Then we define

mvD(N ) =

{
k +mcD(N ) + 4 if k < ρD(S)− 1,

k +mcD(N ) + 3 if k = ρD(S)− 1.

We will prove below that the maximum number of vertices of a Newton–Okounkov
body of D with respect to a proper flag whose divisorial part intersects D positively
is

(2) mv(D) := max{mvD(N ) : N ⊇ Null(D), negative definite}.
It may be possible to obtain a Newton–Okounkov body ∆Y•(D) with more than
mv(D) vertices using flags Y• = {S ⊃ C ⊃ {p}} whose divisorial part C belongs
to Null(D); see Example 5.2.

If D is a big but not necessarily nef divisor, we let mv(D) = mv(PD), where PD is
the positive part in the Zariski decomposition D = PD +ND.

Lemma 4.2. Let S be a smooth projective surface, D a big and nef divisor on S, and
πp : S̃ → S be the blowup centered at a point p ∈ S. Then mv(D) = mv(π∗

p(D)).

Proof: First we observe that if Null(D) = {E1, . . . , Eℓ}, then we have Null(π∗
p(D)) =

{Ẽ1, . . . , Ẽℓ, Ep}, where for any curve E on S we will denote by Ẽ its strict transform

in S̃.
Second, a configuration of curves N = (C1, . . . , Ck, E1, . . . , Eℓ) has negative def-

inite intersection matrix on S if and only if Ñ = (C̃1, . . . , C̃k, Ẽ1, . . . , Ẽℓ, Ep) has

negative definite intersection matrix on S̃. Indeed, there is an obvious equality of
spans

⟨C̃1, . . . , C̃k, Ẽ1, . . . , Ẽℓ, Ep⟩ = ⟨π∗
p(C1), . . . , π

∗
p(Ck), π

∗
p(E1), . . . , π

∗
p(Eℓ), Ep⟩

and, since Ep is orthogonal to all pullbacks and has negative self-intersection, the
intersection form on the span ⟨π∗

p(C1), . . . , π
∗
p(Ck), π

∗
p(E1), . . . , π

∗
p(Eℓ), Ep⟩ is negative

definite if and only if it is so on ⟨C1, . . . , Ck, E1, . . . , Eℓ⟩.
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Moreover, the connected components of N which contain curves not in Null(D)

are in bijection with the connected components of Ñ which contain curves not
in Null(π∗

p(D)).
Then, for every configuration N = (C1, . . . , Ck, E1, . . . , Eℓ) with mvD(N ) =

mv(D), the configuration of strict transforms Ñ := (C̃1, . . . , C̃k, Ẽ1, . . . , Ẽℓ, Ep) has

mvπ∗
p(D)(Ñ ) = mvD(N ); this shows that mv(π∗

p(D)) ≥ mv(D). Finally, for ev-

ery configuration Ñ = (C̃1, . . . , C̃k, Ẽ1, . . . , Ẽℓ, Ep) with mvπ∗
p(D)(Ñ ) = mv(π∗

p(D)),

the configuration of push-forwards N = (C1, . . . , Ck, E1, . . . , Eℓ) has mvD(N ) =

mvπ∗
p(D)(Ñ ); this proves the inequality mv(D) ≥ mv(π∗

p(D)), and the proof is com-

plete.

By Lemma 4.2, mv is a birational invariant, and this allows us to extend the
definition to possibly singular surfaces. If D is a big and nef divisor on a normal
projective surface S, then we definemv(D) to be equal tomv(π∗(D)), where π : S̃ → S
is a resolution of singularities of S. By the lemma and the fact that two arbitrary
resolutions are dominated by some smooth model, mv(π∗(D)) does not depend on
the chosen resolution π.

Lemma 4.3. Let B be a big and nef Q-divisor on a smooth surface S. For every
integer m large and divisible enough, Cm = mB − Fix(mB) is a big and nef effective
divisor with Null(Cm) ⊂ Null(B).

Proof: Replacing B with a suitable multiple, we may assume that B is an effective
divisor on S. Then Fix(B) is an effective divisor a1F1 + · · · + akFk such that for
every positive integer m, the support of Fix(mB) is contained in Fix(B). Moreover,
by Lemma 2.9(iv), the coefficients of the components Fi of Fix(B) in Fix(mB) are
bounded by a constant a independent of m, i.e., Fix(mB) ≤ a(F1 + · · · + Fk) for
every m. As the big cone is open, for m large enough the divisor

Zm = mB − a(F1 + · · ·+ Fk)

is big and effective, so Cm ≥ Zm is big and effective as well. On the other hand,
Fix(Cm) = 0 by definition of Cm, so Cm is nef.

Now fix m0 such that Zm0
is big and effective, and let Zm0

= P +N be its Zariski
decomposition. For every m, Em = Cm − Zm is effective and supported on Fix(B),
so if m ≥ m0, we can write

Cm = Em + Zm = Em + P +N + (m−m0)B.

For every curve E which is not a component of Fix(B) or Null(P ), one has Em ·E ≥ 0,
N ·E ≥ 0 (because every component ofN belongs to Null(P )), B·E ≥ 0, and P ·E > 0,
so Cm ·E > 0. It follows that every curve in Null(Cm) for m large enough is either a
component of Fix(B) or Null(P ), which is a finite collection of curves.

Now to show that Null(Cm) ⊂ Null(B) for m large enough, observe that, for every
curve E not in Null(B),

Cm · E = mB · E − Fix(mB) · E ≥ m(B · E)− a

(
k∑

i=1

Fi · E

)
is positive for m larger than some integer mE . It follows that the claim is satisfied
by every integer m larger than m0 and the finitely many numbers mE , where E is a
component of Fix(B) or Null(P ) not in Null(B).
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Lemma 4.4. Let S be a smooth projective surface, and D a big and nef divisor on S
with Null(D) = {E1, . . . , Eℓ}. Let C1, . . . , Ck be irreducible curves on S such that the
intersection matrix of N = (C1, . . . , Ck, E1, . . . , Eℓ) is negative definite. Then there
is an irreducible curve C with Null(C) ⊆ Null(D) with the following properties (using
Notation 2.10).

(i) C intersects each Ci, i = 1, . . . , k, in at least two points.
(ii) For every t with Dt = D− tC pseudoeffective, the negative part Nt of its Zariski

decomposition is supported on N .
(iii) Every Ci, i = 1, . . . , k, is a component of Nµ.
(iv) tC1

< · · · < tCk
.

Moreover, C can be chosen in the linear span of D, the Ci, and the Ej, and satisfying
C ·D > 0.

Proof: This proof is adapted to the present setting from [27, Lemma 5.3].
We will prove by induction on k that there are positive rational numbers a1, . . . , ak

such that, denoting by

D − a1C1 − · · · − akCk = P +N

the Zariski decomposition of the divisor on the left hand side, then P is big and
nef with Null(P ) ⊆ Null(D), and for every sufficiently large m and every irreducible
curve C ∈ |mP − Fix(mP )| properties (iii) and (iv) are satisfied. By Lemma 2.9
and Bertini’s theorem, for m large and divisible enough there are irreducible curves
in |mP − Fix(mP )| that intersect D positively and each Ci in at least two points, so
by Lemma 4.3 we shall be done.

If k = 1, choose a positive integer a such that the divisor class B = D − (1/a)C1

is big and its Zariski decomposition B = N + P satisfies Null(P ) = Null(D). This is
certainly possible: on one hand, because the big cone is open, B is big for 1/a small
enough; on the other hand, by the continuity of the Zariski decomposition and [1,
Proposition 1.3], for 1/a small enough we have N ∪ Null(P ) ⊆ Null(D), and every
component Ej of Null(D) which does not satisfy C1 · Ej = 0 belongs to N , so N ∪
Null(P ) ⊇ Null(D).

Then for every m and every C ∈ |mP − Fix(mP )|,

D1/m = D − (1/m)C = (1/a)C1 +N + (1/m) Fix(mP )

is exactly equal to N1/m, as it is an effective divisor with negative definite intersection
matrix because supp(N+(1/m) Fix(mP )) ⊆ Null(mP ) = Null(D) since P is nef (this
follows from [28, Theorem 8.1]). Therefore 0 < tC1

< 1/m, and we are done.
Now assume the claim is true for N ′=(C1, . . . , Ck−1, E1, . . . , Eℓ), and let a, a1, . . . ,

ak−1 be positive rational numbers such that the Zariski decomposition

B′ = D − a1C1 − · · · − ak−1Ck−1 = P ′ +N ′

has P ′ big with Null(P ′) = Null(D) and moreover

• if we denote by N ′
t the negative part of the Zariski decomposition of D′

t =
D − tP ′, then sup{t ∈ Q : Ci is not contained in N ′

t} is a finite positive real
number t′Ci

, and
• t′C1

< · · · < t′Ck−1
.

In this case, since P ′ is big and nef, Wilson’s theorem ([21, Theorem 2.3.9]) guarantees
that, for m ≫ 0 and every C ′ ∈ |mP ′ − Fix(mP ′)|, the numbers tCi such that Ci is
a component of Nt for t > tCi satisfy tC1 < · · · < tCk−1

< 1.
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Moreover, for every t ∈ [0, 1], we haveDt = (1−t)D+t(ma1C1+· · ·+mak−1Ck−1+
mN ′+Fix(mP ′)), with (1−t)D nef andma1C1+· · ·+mak−1Ck−1+Fix(mP ′) effective,
so by the extremality properties of the Zariski decomposition it follows that

Nt ≤ t(ma1C1 + · · ·+mak−1Ck−1 +N ′ + Fix(mP ′))

(with equality if and only if t = 1). In particular, all components of Nt are among
the Ci or the Ej .

Choose rational numbers si with 0 = s0 < t′1 < s1 < t′2 < · · · < sk−2 < t′k−1 <
sk−1 < 1. The choices made guarantee that the irreducible components of N ′

si not
in Null(D) are exactly C1, . . . , Ci, and P ′

si · Cj > 0 for all i < j ≤ k. Therefore by
continuity of the Zariski decomposition (see Proposition 2.4) there exist ε1, . . . , εk > 0
such that, choosing ak ∈ Q with ak ≤ εi, the irreducible components not in Null(D)
of the negative part in the Zariski decomposition of D − si(P

′ − akCk) are also
exactly C1, . . . , Ci. Thus by choosing a rational number ak smaller than ε0, . . . , εk−1

and setting

D − a1C1 − · · · − akCk = P +N,

C ∈ |mP − Fix(mP )|,

again Wilson’s theorem guarantees that for m ≫ 0 the irreducible components not
in Null(D) of the negative part in the Zariski decomposition Psi + Nsi of D − siC
are C1, . . . , Ci. On the other hand, in the Zariski decomposition D − C = P1 + N1

one has N1 = ma1C1 + · · ·+makCk +N + Fix(mP ) and therefore

tCk−1
< sk−1 < tCk

< 1,

which completes the induction step.
For the last claim, we first observe that the class P thus constructed is a combi-

nation of D, the Ci, and the Ej , and hence (since Null(P ) = Null(D)) the class of C ′

is also a combination of D, the Ci, and the Ej . Moreover, C ′ · D ≥ 0, and we can
slightly modify P to obtain a P ′′ to guarantee that C ′′ ·D > 0 (and still satisfy the
properties) by taking P ′′ = P + εD for ε small enough.

Lemma 4.5. Let D be a big and nef divisor on S with Null(D) = {E1, . . . , Eℓ}. As-
sume k < ρD(S)−1 and C1, . . . , Ck are irreducible curves on S such N =(C1, . . . , Ck,
E1, . . . , Eℓ) is a maximal effective divisor with negative definite intersection matrix,
i.e., such that there exists no curve C ′ distinct from C1, . . . , Ck, E1, . . . , Eℓ with
N + C ′ having negative definite intersection matrix. Then the irreducible curve C
from Lemma 4.4 can be assumed to have a numerical class linearly independent
of ⟨D,E1, . . . , Eℓ, C1, . . . , Ck⟩ in N1(S)R.

Proof: The argument from [27, Lemma 5.4] applies verbatim, with B = P .

Theorem 4.6. On every smooth projective surface S, for every big and nef divisor D
and every integer δ, 3 ≤ δ ≤ mv(D), there exists a smooth flag Y• = {S ⊃ C ⊃ {p}}
with D ·C > 0 such that the Newton–Okounkov polygon ∆Y•(D) has exactly δ vertices.

Remark 4.7. By its definition in (2), the number mv(D) only depends on the
set Null(D), i.e., all big and nef divisors D with the same set Null(D) have Newton–
Okounkov bodies with 3, . . . ,mv(D) vertices.

Proof: Write as above Null(D)={E1, . . . , Eℓ}. Choose a configuration N0 = (C1, . . . ,
Ck,E1, . . . ,Eℓ) with negative definite intersection matrix such thatmv(D)=mvD(N0).
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Assume moreover that its components have been ordered in such a way that one
connected component of N0 contains all Ci for 1 ≤ i ≤ mc(N0). By the definition
of mv(N ), it is not restrictive to assume that N0 is maximal, i.e., there exists no
curve C ′ with N0 + C ′ having negative definite intersection matrix.

Then, if k < ρD(S)−1, for every mcD(N0) ≤ i ≤ k, mvD(C1, . . . , Ci, E1, . . . , Eℓ) =
mvD(N0)−k+i, and for 0 ≤ i ≤ mcD(N0),mvD(C1, . . . , Ci, E1, . . . , Eℓ)=mvD(N0)−
k −mcD(N0) + 2i. On the other hand, if k = ρD(S)− 1, then

mvD(C1+· · ·+Ci)=

{
mvD(N0)−k + i+ 1 for every mcD(N0)≤ i<k,

mvD(N0)−k −mcD(N0) + 2i+ 1 for 0 ≤ i ≤ mcD(N0).

In any event,

{3, . . . ,mv(D)} = {mvD(N ) : N ≤ N0} ∪ {mvD(N )− 1 : N ≤ N0}.

Therefore, it will be enough to prove that, for every choice of irreducible curves C1, . . . ,
Ck on S such that the intersection matrix of N = (C1, . . . , Ck, E1, . . . , Eℓ) is negative
definite,

• If N is maximal, there is a flag Y• such that ∆Y•(D) has mvD(N ) vertices.
• If N is non-zero or has fewer than ρD(S) − 1 components, there is a flag Y•
such that ∆Y•(D) has mvD(N )− 1 vertices.

• If N is non-zero and has fewer than ρD(S) − 1 components, there is a flag Y•
such that ∆Y•(D) has mvD(N )− 2 vertices.

Moreover, in each case the divisorial of Y• can be assumed to intersect D positively.
In the case of a maximal N with fewer than ρD(S) − 1 components, choose an

irreducible curve C satisfying the conditions of Lemma 4.5, and let p be one of the
intersection points of C and C1 (unless N = 0, in which case we choose an arbi-
trary p ∈ C). We claim that D, Y• : S ⊃ C ⊃ {p} give a body with mvD(N ) ver-
tices. On the one hand, since C · D > 0, it follows that P0 · C > 0, so ν = 0
and ∆Y•(D) has two leftmost vertices. Moreover, Theorem 2.7 ensures that ∆Y•(D)
has two interior vertices with first coordinate equal to the number ti given by Lem-
mas 4.4 and 4.5 for i = 1, . . . ,mcD(N ), whereas it only has an upper interior
vertex for mcD(N ) < i ≤ k. Finally, as the numerical class of C is independent
of ⟨D,E1, . . . , Eℓ, C1, . . . , Ck⟩ in N1(S)R, by Corollary 2.8 ∆Y•(D) has two rightmost
vertices. So, the total number of vertices is mvD(N ).

Now choose C verifying the conditions of Lemma 4.4, so that the class of C belongs
to the span of D, the Ci, and the Ej . The shape of ∆Y•(D) is as before, but with a
single rightmost vertex; if N has ρD(S)−1 components (in particular N is maximal),
the total number of vertices is mvD(N ), otherwise it is mvD(N )− 1.

Finally, if N is non-zero, we can pick p differently, while keeping the same curve C
that satisfies the conditions of Lemma 4.4. If mcD(N ) = 1, we let p be a point of C
not on N , and ifmcD(N ) > 1, then we take p to be one of the intersection points of C
with C2. In this way we obtain one lower point less, so if N has ρD(S)−1 components,
the total number of vertices is mvD(N )− 1, otherwise it is mvD(N )− 2.

Corollary 4.8. Let D be a big and nef divisor on the normal projective surface S.
Then there is a proper flag Y• = {S̃ ⊃ C ⊃ {p}} over S such that D · π(C) > 0 and
∆Y• is a k-gon if and only if 3 ≤ k ≤ mv(D).

Recall that Y• is a proper flag over S if π : S̃ → S is a proper birational morphism,
p is a smooth point of C and S̃, and π(C) is a curve on S. Note that the corollary
describes all Newton–Okounkov bodies of ample divisors with respect to proper flags.
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Proof: By the definition of mv(D), we may replace S with a resolution of singularities
and assume S is smooth.

The existence part is then given by Theorem 4.6, so we only need to show that for
every flag Y• = {S̃ ⊃ C ⊃ {p}} where π : S̃ → S is a proper birational map between
smooth surfaces, such that D ·π(C) > 0, the number of vertices of ∆Y•(D) is bounded
above by mv(D).

By Lemma 4.2, it holds that mv(D) = mv(π∗(D)), and by the projection for-
mula [11, 8.1.7], π∗(D) ·C = D ·π(C) > 0, whereas ∆Y•(D) = ∆Y•(π

∗(D)) as already

observed in the proof of Theorem 3.2. Therefore we may replace S with S̃ and it is
enough to prove the claim for smooth flags Y• = {S ⊃ C ⊃ {p}}.

Keeping Notation 2.10, let as above Null(D) = {E1, . . . , Eℓ}, and let {C1, . . . , Ck}
be the components of Nµ not in Null(D). Choose a number µ′ < µ such that the
support of Nµ′ is the same as the support of Nµ. Since Pµ′ = D−µ′C−Nµ′ ≤ D and
by hypothesis D ·C > 0, for every component Ei of Null(D) which is not a component
of Nµ′ we have Pµ′ ·Ei = D ·Ei −µ′C ·Ei −N ·Ei ≤ 0, which, Pµ′ being nef, implies
Pµ′ · Ei = 0. Therefore all curves in the configuration N = (C1, . . . , Ck, E1, . . . , Eℓ)
have intersection number 0 with Pµ′ , which is big (because µ′ < µ) so by the index
theorem N has negative definite intersection matrix.

Then by [27, Proposition 3.3] and Lemma 3.1, the number of vertices of ∆Y•(D)
is at most mvD(N ).

5. Newton–Okounkov bodies with respect to D-orthogonal flags

It is a subtler problem to determine the number of vertices of the Newton–Okounkov
bodies ∆Y•(D), where the divisorial part of the flag Y• belongs to Null(D). To begin
with, there are only finitely many curves in Null(D), which entails that there are only
finitely many such bodies, and the facts explained in Theorem 4.6 and Remark 4.7
do not hold anymore.

Example 5.1. There exist surfaces S with divisors D, D′ satisfying Null(D) =
Null(D′) for which the numbers k such that some k-gon arises as a Newton–Okounkov
body of D or D′ with respect to flags with divisorial part in Null(D) differ.

Let S be the blowup of P1×P1 at a point p. There are three curves of negative self-
intersection on S, namely the exceptional divisor Ep and the strict transforms F1, F2

of the two rulings passing through p. Consider the divisorsD = 2Ep+F1+F2 andD′ =
3Ep+2F1+F2. It is immediate that Null(D) = Null(D′) = {Ep}. In addition, consider
flags of the form Y• = {S ⊃ Ep ⊃ {q}}. According to Galindo, Monserrat, and

Moreno-Ávila [12, Theorem 3.6], the first component v1 of the valuation vY• = (v1, v2)
is a non-positive at infinity divisorial valuation, hence we can compute the Newton–
Okounkov bodies ofD resp.D′ with respect to flags Y• using their explicit calculations
presented in [13]. More precisely, we distinguish three cases:

(1) If q ∈ Ep ∩ F1, then [13, Theorem 3.12] applies so that both ∆Y•(D) and
∆Y•(D

′) are quadrilaterals.
(2) If q ∈ Ep ∩F2, then [13, Theorem 3.13(a)] implies again that both ∆Y•(D) and

∆Y•(D
′) are quadrilaterals.

(3) Finally, if q ∈ Ep belongs to neither Ep ∩ F1 nor Ep ∩ F2, then the Newton–
Okounkov body ∆Y•(D) is a triangle, whereas ∆Y•(D

′) is a quadrilateral by [13,
Theorem 3.12].

The cases (1) and (3) are illustrated in Figure 1, whereas case (2) behaves in the
same manner as (1). These results agree with Theorem 4.6.



Newton–Okounkov bodies and Picard numbers on surfaces 19

x

y

0 1 2 3
0

1

2

(a) ∆Y• (D) for q ∈ Ep ∩ F1.
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(b) ∆Y• (D
′) for q ∈ Ep ∩ F1.
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(c) ∆Y• (D) for q /∈ F1, F2.
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(d) ∆Y• (D
′) for q /∈ F1, F2.

Figure 1. Newton–Okounkov bodies in Example 5.1.

Example 5.2. It is also possible to obtain Newton–Okounkov bodies of D with more
than mv(D) vertices by using flags whose divisorial part is orthogonal to D.

Let S → P2 be a proper birational map (which can be factored as a composition of
point blowups), and letD be the pullback to S of the class of a line. Obviously Null(D)
consists of all the exceptional components, so ρD(S) = 1 and only N = Null(D)
satisfies the conditions of Definition 4.1. Therefore mv(D) = mvD(N ) = 3. However,
it was shown in [6] and [14] that there are choices of S that support flags Y• such
that ∆Y•(D) is a quadrilateral.

Note that in Example 5.2 the maximum number 2ρD(S)+2 = 4 of vertices allowed
by Theorem 3.2 is attained. However, for many surfaces S and divisors D (e.g., the
line on P2, but also its pullback to most of the blowups considered in [6] and [14])
there is no flag Y• such that ∆Y•(D) has 2ρD(S)+ 2 vertices. A general upper bound
which takes into account the geometry on S can be given following the ideas of the
previous section using the following definition:

Definition 5.3. Assume D is a big and nef divisor such that Null(D) = {E1, . . . , Eℓ}
is non-empty. For a configuration of curves N = (C1, . . . , Ck, Ei1 , . . . , Eiℓ−1

) with
negative definite intersection matrix that contains all curves of Null(D) but one, let
mcD(N ) denote the largest number of irreducible components not in Null(D) which
belong to a single connected component of N . Then we define

mvD(N ) =

{
k +mcD(N ) + 3 if k < ρD(S),

k +mcD(N ) + 2 if k = ρD(S),

and

mvNull(D) := max{mvD(N ) : N negative definite, #(Null(D) \ N ) = 1}.
Proposition 5.4. On every smooth projective surface S, for every big and nef divi-
sor D, and every admissible flag Y• on S whose divisorial part belongs to Null(D),
the polygon ∆Y•(D) has at most mvNull(D) vertices.
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The proof of the upper bound in Corollary 4.8 carries over to this setting, and we
omit it for brevity. On the other hand, the analogous result to the existence part (i.e.,
Theorem 4.6) does not hold for D-orthogonal flags.

Invariance under pullback by birational morphisms (i.e., Lemma 4.2) also fails
for mvNull. However, this added complexity will turn out to be useful in the next
section.

Example 5.5. Let π : S → P2 be the blowup centered at a point p, and let D be the
pullback of a line by π. Then Null(D) consists of the exceptional divisor Ep only, so

mvNull(D) = 3. However, there exist further blowups η : S̃ → S that allow flags Y•
such that ∆Y•(η

∗(D)) is a quadrilateral, cf. Example 5.2. Therefore, Proposition 5.4
implies

mvNull(η∗(D)) ≥ 4 > mvNull(D).

6. Infinitesimal flags with maximal negative configurations

In the same way that results on Newton–Okounkov bodies with respect to D-posi-
tive admissible flags were used in Section 4 to describe the Newton–Okounkov bodies
with respect to proper (not necessarily admissible) flags, we next apply our results
on Newton–Okounkov bodies with respect to D-orthogonal flags to describe Newton–
Okounkov bodies with respect to infinitesimal flags. However, working with infinites-
imal flags provides additional flexibility (replacing S with a suitable blowup) which
will turn out to be enough to characterize surfaces of Picard number 1 in terms of
Newton–Okounkov bodies.

It will simplify the presentation to use the notion of relative Zariski decomposition
inspired by [8, Section 8].

Definition 6.1. Let D be an arbitrary divisor on the smooth projective surface S,
and let N = {E1, . . . , Ek} be a configuration of (irreducible, reduced) curves with
negative definite intersection matrix. There is a unique effective Q-divisor NN =
a1E1 + · · ·+ akEk satisfying

(i) (D −NN ) · Ei ≥ 0 for all i = 1, . . . , k.
(ii) (D −NN ) · Ei = 0 for every i such that ai > 0.

We then set PN = D −NN and call D = PN +NN the Zariski decomposition of D
with respect to N .

The properties of the relative Zariski decomposition that we will need are contained
in the following lemmas:

Lemma 6.2. If D is pseudoeffective and D = N + P is its Zariski decomposition,
then for every negative definite configuration N , the relative Zariski decomposition
D = NN + PN satisfies NN ≤ N .

Lemma 6.3. Let D = NN +PN be the relative Zariski decomposition of a divisor D
with respect to some negative definite configuration N . If P 2

N > 0, then D is big.

Both lemmas are elementary and we leave their proofs to the reader.

Fix a big and nef divisor D on a smooth projective surface S, with relative Picard
number ρD(S) = ρ. Our construction starts from an irreducible nodal curve C on S,
which for simplicity we assume has positive self-intersection, and we will show that
there is an infinitesimal flag Y• centered at the node p of the curve C, such that
C induces two internal vertices on the Newton–Okounkov body of D with respect
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to Y•. This allows us to prove that D admits Newton–Okounkov bodies with four
vertices, and also with five if ρ > 1.

For each k > 0, let us denote by Sk → S the composition of the k successive
blowups

Sk −→ Sk−1 −→ · · · −→ S1 −→ S0 = S,

where S1 → S0 is the blowup with center at p, S2 → S1 is the blowup with center at
one of the two points in C1 ∩ E1, and for every i > 1, Si+1 → Si is the blowup with
center at the point pi = Ci ∩ Ei, where Ci denotes the strict transform of C on Si,
and Ei stands for the exceptional divisor of Si → Si−1.

Slightly abusing notations, for every divisor Z on a surface X we shall denote by
the same symbol Z its pullback by a blowup morphism (the spirit of this abuse of
notation is consistent with a birational point of view which thinks of Z as a b-divisor;
see [7]).

Denoting by Ei,k the strict transform on Sk of the exceptional divisor Ei, the
pullback of C on Sk (which—as said above—we continue to write C for simplicity of
notation) is Ck +2E1,k +3E2,k + · · ·+(k+1)Ek,k and the pullback of Ei (written Ei

for simplicity) is Ei,k + Ei+1,k + · · ·+ Ek,k.
All divisors on Sk we shall be concerned with belong to numerical equivalence classes

which are linear combinations of [D], [C], [E1], . . . , [Ek]. They are moreover orthogonal
to Ei,k for i = 2, . . . , k−1 and thus they actually belong to the span ⟨[D], [C], [E], [E1]⟩,
where E =

∑k
i=1 iEi,k. In particular, Ck = C−E−E1. Note also that Ck intersects E

at the components E1,k and Ek,k of E.

Proposition 6.4. Let D be a big and nef divisor on a smooth projective surface S, and
C an irreducible curve on S with a node at the point p and not belonging to Null(D).
For every integer k > 0 let Sk → S be the composition of blowups determined by C
as described above, and consider Y• = {Sk ⊃ Ek ⊃ {pk}}, where pk = Ck ∩ Ek. If

k > (D · C)/
√
D2 − 1, then ∆Y•(D) has at least two internal vertices.

Note that choosing p′k = Ek ∩ Ek−1,k would lead to the same conclusion.

Proof: The determination of ∆Y•(D) relies on the understanding of the Zariski de-
composition of Dt = D − tEk, which we denote by Dt = Nt + Pt.

Clearly, the divisors Ei,k for i = 1, . . . , k−1 belong toNt as soon as t > 0. In fact, for
N = {E1, . . . , Ek−1}, it is easy to check that the relative Zariski decomposition Dt =
Pt,N +Nt,N of Dt with respect to N has negative part Nt,N = t

kE − tEk, and we
know (by Lemma 6.2) that Nt ≥ Nt,N . Therefore, for every t > 0 such that Dt is
pseudoeffective, either Ck is a component of Nt or Ck · Pt,N is non-negative, which
gives

0 ≤ Ck ·
(
Dt −

(
t

k
E − tEk

))
= (C − E − E1) ·

(
D − t

k
E

)
= D · C − t

k + 1

k
.

In other words, for t > kD·C
k+1 such that Dt is pseudoeffective, Ck belongs to Nt.

On the other hand, by Lemma 6.3 we know that Dt is big whenever

0 < P 2
t,N =

(
Dt −

(
t

k
E − tEk

))2

=

(
D − t

k
E

)2

= D2 − t2/k.

The hypothesis k > (D ·C)/
√
D2−1 guarantees the existence of a t > kD·C

k+1 such that

D2−t2/k > 0, i.e., withDt big and therefore pseudoeffective. Hence for t large enough,
Ck does belong to Nt, whereas for t close to zero Ck does not belong to Nt, because
D0 ·Ck = D ·Ck > 0. Thus there is a value tCk

(less than or equal to kD·C
k+1 ) such that
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Ck belongs to Nt if and only if t > tCk
, hence there are interior vertices on ∆Y•(D)

with abscissa tCk
. Since Ck meets the configuration N at the component E1,k, Nt is

connected, so the connected component of Nt to which Ck belongs is simply Nt,
and it intersects Ek at two points (at least), namely Ck ∩ Ek and Ek−1 ∩ Ek. The
first point is equal to p so Ck is contained in the connected component of Nt that
passes through p and by statement (iv) of Theorem 2.7 the function α(t) has a point
of non-differentiability at t = t0, i.e., there is an internal lower vertex at t = t0.
The second intersection point Ek−1 ∩ Ek of Nt with Ek is different from p, so the
connected component containing Ck intersects Ek away from p and by statement (v)
of Theorem 2.7 the function β(t) has a point of non-differentiability at t = t0 and
there is an internal upper vertex at t = t0. Thus ∆Y•(D) has two internal vertices
with abscissa tCk

.

Theorem 6.5. For every ample divisor D on a normal projective surface S there
exist rank 2 valuations v such that ∆v(D) has at least four vertices. If ρ(S) > 1, then
there exist rank 2 valuations v such that ∆v(D) has more than four vertices.

Corollary 6.6. Among all projective smooth surfaces S, those with Picard number 1
are characterized by the fact that for every big divisor D and every rank 2 valuation v
of K(S), the Newton–Okounkov polygon ∆v(D) has at most four vertices.

For the proof of Theorem 6.5 we need the following lemma.

Lemma 6.7. Let D be an ample divisor and C a nodal curve on the surface S. Let
k be an integer such that k > (D ·C)/

√
D2− 1 and D− D·C

k+1C is ample. Consider the

construction above of surfaces Sk with infinitesimal flags Y• = {Sk ⊃ Ek ⊃ {pk}}, and
suppose that ∆Y•(D) has exactly four vertices. Then for every t such that Dt = D−tEk

is pseudoeffective, the negative part Nt in the Zariski decomposition Dt = Pt +Nt is
supported on N = {E1,k, . . . , Ek−1,k, Ck}.

Proof: We argue by contradiction. Assume that there is an irreducible component Zk

of Nµ not in N . In particular, since D is ample, Zk is the strict transform in Sk

of a curve Z in S. Let us denote by Zi the strict transform of Z in the sequence of
blowups Si → Si−1 → · · · → S1 → S0 = S.

By the results above, the four vertices of ∆Y•(D) must be one leftmost vertex, one
rightmost vertex, and two vertices with abscissa tC=inf{t : Ck is a component of Nt}.
Since D0 · Zk = D · Z > 0 because D is ample, Zk does not belong to Nt for t near
zero. Therefore inf{t : Zk is a component of Nt} = tC (otherwise Zk would create
some additional vertex on ∆Y•(D) with abscissa different from 0, tC · µ), and in
particular PtC ·Zk = PtC ·Ck = 0. Moreover, for every t < tC , the Zariski decomposi-
tion Dt = Pt +Nt agrees with the Zariski decomposition of Dt relative to N \ {Ck}
computed above, and in particular

Pt = D − t

k
E for all 0 ≤ t ≤ tC .

The equality PtC · Ck = 0 now allows us to determine tC = kD·C
k+1 , which in turn

implies a strong restriction on Zk: let us denote by mZ,i the multiplicity at pi of the
strict transform Zi of Z in Si. Then we have

(3) 0 = PtC · Zk =

(
D −

kD·C
k+1

k
E

)
·

(
Z −

∑
i

mZ,iEi

)
= D · Z − D · C

k + 1

∑
i

mZ,i,
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and on the other hand 0 ≤ Ck ·C ′ = Ck · Zk = C · Z − 2mZ,1 −
∑k

i=2 mZ,i; therefore

we deduce that
∑k

i=1 mZ,i ≤ C · Z, and equation (3) yields

0 ≥ D · Z − D · C
k + 1

C · Z =

(
D − D · C

k + 1
C

)
· Z.

But this is a contradiction, because D − D·C
k+1C is ample.

Proof of Theorem 6.5: The Newton–Okounkov bodies ∆Y•(D) constructed in Propo-
sition 6.4 have at least two internal vertices, a rightmost and a leftmost vertex, so
they have at least four vertices.

Now assume ρ(S) > 1, and choose a nodal curve C with C2 > 0 whose numerical
equivalence class is not a rational multiple of [D]. We will show that in the construc-
tion above of an infinitesimal flag Y• = {Sk ⊃ Ek ⊃ {pk}} it is possible to choose k
such that the Newton–Okounkov body ∆Y•(D) has five or more vertices.

We argue by contradiction. Assume that for every k ≥ (D ·C)/
√
D2 − 1 the poly-

gon ∆Y•(D) has exactly four vertices, namely one leftmost vertex, one rightmost
vertex, and two vertices with abscissa tC = inf{t : Ck is a component of Nt}. By
Lemma 6.7 this implies that, if k is large enough, then for all t such that Dt = D−tEk

is pseudoeffective, the negative part Nt in the Zariski decomposition Dt = Pt +Nt is
supported on N = {E1,k, . . . , Ek−1,k, Ck}, and hence Pt can be computed as Pt,N .
This is a straightforward (if somewhat cumbersome) linear algebra computation lead-
ing to

(4) Pµ = D − (k + 1)µ− k(D · C)

k2 − k(C2 − 1)
C − µC2 − k(D · C)

k2 − k(C2 − 1)
E.

The assumption that there is a unique rightmost vertex implies that Pµ ·Ek = 0. The
facts that D · Ek = C · Ek = 0 and E · Ek = −1, setting Pµ · Ek = 0, imply µ =
k(D · C)/C2. Substituting this value in (4) and taking into account the intersection
numbers between D, C, and E, one gets

P 2
µ =

1

C2
det

(
D2 D · C

D · C C2

)
,

which is negative by the index theorem. This is a contradiction, because Pµ is nef by
definition.

Conjecture 6.8. Let S be a smooth projective algebraic surface, and D a big di-
visor on S. There is a smooth projective surface S̃ with a proper projective mor-
phism π : S̃ → S and a flag Y• = {S̃ ⊃ E ⊃ {p}} such that ∆Y•(D) has exactly
2ρ+ 2 vertices.

Note that the divisorial part E of the flag belongs necessarily to Null(D). The

use of a different model S̃ provides “new” curves on Null(D) to use in the flag, as
was done above to prove Theorem 6.5, but it is a challenge to construct appropriate
blowups π : S̃ → S where one can guarantee the maximal number of internal vertices.

Acknowledgments
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[19] A. Küronya and V. Lozovanu, Positivity of line bundles and Newton–Okounkov bodies, Doc.

Math. 22 (2017), 1285–1302. DOI: 10.4171/DM/596.
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