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Abstract: We study a class of nonlocal double phase problems with discontinuous coefficients. A lo-

cal self-improving property and a higher Hölder continuity result for weak solutions to such problems

are obtained under the assumptions that the associated coefficient functions are of VMO (vanishing
mean oscillation) type and that the principal coefficient depends not only on the variables but also

on the solution itself.
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1. Introduction

In this article, we consider the following nonlocal problem:

(P) La(·,u),bu = f in Ω,

where Ω ⊂ RN is a bounded domain with N ≥ 2, f ∈ Lγloc(Ω) with γ > max
{

1, Nps
}

,

and the nonlocal operator La(·,),b is defined as

La(·,u),bu(x) := 2 P.V.

ˆ
RN

a(x, y, u(x), u(y))
|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy

+ 2 P.V.

ˆ
RN

b(x, y)
|u(x)− u(y)|q−2(u(x)− u(y))

|x− y|N+qt
dy, for x ∈ RN ,

with 1 < p ≤ q <∞, 0 < s, t < 1, and the kernel coefficients a(·, ·, ·, ·) and b(·, ·) are
nonnegative bounded functions. We will specify structural and regularity assumptions
to be imposed on a and b later in the introduction. Specifically, the nonlocal operator
in this work is motivated by the double phase equations and quasilinear equations for
local cases; we refer to [2, 12, 13, 15, 29, 40] and [7, 34] for each type of problem,
respectively.

The primary objective of the paper is to establish a local self-improving property
and a higher Hölder regularity result for weak solutions to a class of nonlocal double
phase problems with possibly discontinuous coefficients and a leading kernel coefficient
depending not only on the independent variables but also on the solution. Particularly,
we assume that the kernel coefficients are of VMO (vanishing mean oscillation) type.
We establish the self-improving property of local weak solutions that are locally in an
appropriate fractional Sobolev space which extends the results of [28] and [37]. To
the best of our knowledge, there is no result to deal with a self-improving property
of local weak solutions with nonzero boundary data. In this regard, our result gives a
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new path to approach a local weak solution with nonzero boundary data concerning
a nonlocal Calderón–Zygmund theory as in [32, 33]. We also complement the results
of higher Hölder continuity for local weak solutions of [4] and [22] to the case of more
general kernel coefficients.

We now briefly mention some recent regularity results on nonlocal problems. In the
case when the kernel coefficient a(·, ·) is independent of the solution and b ≡ 0, i.e., the
fractional p-Laplacian type equations, Di Castro, Kuusi, and Palatucci ([18]) proved
the local Hölder regularity. Subsequently, for the case when the coefficients a ≡ 1
and b ≡ 0, Brasco, Lindgren, and Schikorra ([4]) obtained a higher Hölder regularity
for the weak solutions to the problem (P) for the superquadratic case. For p = 2,
Nowak in [31] established a similar result as in [4] for problems involving irregular
kernel coefficients. For additional regularity results of nonlocal equations, we refer
to [9, 10, 14, 19, 26, 39] and references therein.

Concerning the nonlocal double phase type problems, we refer to [17] for Hölder
regularity results for bounded viscosity solutions to the problem (P) for the case
when a is independent of the solution and qt ≤ ps. Later, Fang and Zhang in [21] and
Byun, Ok, and Song in [6] obtained the Hölder continuity results for weak solutions
to a similar problem when tq ≤ ps and ps < tq (with the coefficient b being Hölder
continuous in the latter), respectively. Recently, Giacomoni, Kumar, and Sreenadh
in [22] obtained higher Hölder continuity results with an explicit Hölder exponent for
weak solutions to the problem (P) for the case qt ≤ ps and the coefficient b being
locally continuous only along the diagonals in Ω×Ω. For some other regularity results
of problems with nonstandard growth nonlocal operators, we refer to [5, 11, 16, 23,
24].

Regarding a self-improving property of weak solutions to the nonlocal equations,
Kuusi, Mingione, and Sire ([28]) proved this property for fractional Laplacian type
problems with linear growth by introducing the notion of dual pairs. Subsequently,
Scott and Mengesha ([37]) extended this result to bounded weak solutions of (P)
with a(x, y, u(x), u(y)) = a(x, y) when p−1

p ≤
tq
sp ≤ 1. On the other hand, in [1, 35],

the authors employed different techniques such as functional analysis and harmonic
analysis tools to obtain similar self-improving properties. Moreover, we refer to [3, 20,
30, 32, 33] for Sobolev regularity results for nonlocal problems involving fractional
Laplacian type operators (or their nonlinear versions).

Motivated by the above discussion, in this article, we consider the problem (P) with
the coefficient functions a : RN × RN × R × R → R and b : RN × RN → R satisfying
the following:

(A1) the functions a and b are symmetric; that is, a(x, y, z, w) = a(y, x, w, z) and
b(x, y) = b(y, x) for all x, y ∈ RN and z, w ∈ R;

(A2) for all x, y ∈ RN and z, w ∈ R, there hold

0 < Λ−1 ≤ a(x, y, z, w) ≤ Λ and(1.1)

0 ≤ b(x, y) ≤ Λ;(1.2)

(A3) the function a is locally uniformly continuous in RN × RN × R × R; that
is, for any M > 0, there is a nondecreasing function ωa,M : [0,∞) → [0,∞)
with ωa,M (0) = 0 and lim

t↓0
ωa,M (t) = 0 such that

|a(x, y, w, z)− a(x, y, w′, z′)| ≤ ωa,M
(
|w − w′|+ |z − z′|

2

)
for all z, z′, w, w′ ∈ [−M,M ] uniformly in (x, y) ∈ RN × RN ;
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(A4) the function a(·, ·, z, w) is in VMO on Ω × Ω locally uniformly in z, w and the
function b(·, ·) is in VMO on Ω× Ω, in the sense of Definition 2.2 below.

To prove our higher Hölder continuity result, we first obtain a self-improving identity
for the weak solution to the problem (P) much in the spirit of [28] and [37]. It is
worth mentioning that, unlike the previously mentioned works, for our case, solutions
considered here are assumed to be locally bounded and locally in an appropriate
fractional Sobolev space (see later, in Section 2). However, this requires careful han-
dling of the nonlocal tail terms. More precisely, we replace the notion of the standard
nonlocal tail with a refined version as in (3.14) so that only the local behavior of
the solution with respect to the fractional Sobolev space is taken into account. As a
consequence, our self-improving identity holds for all tq ≤ ps without requiring any
lower bound on the quantity tq

sp , unlike in [37, (A2)]. Subsequently, we use a suitable

approximation technique for VMO coefficients to establish an appropriate comparison
result, which finally yields the Hölder continuity estimates for weak solutions to the
problem (P).

For the sake of completeness, we prove the existence of a weak solution to the
problem (P) with prescribed exterior data (see problem (G)). For this, we use the
theory of M -type operators (as described in [38, Chapter II]) defined on a suitable
separable reflexive Banach space. The main difficulty in this regard lies in the lack of
monotonicity caused by the fact that the kernel coefficient a depends on the solution.

Before introducing our main results, we give a definition of a local weak solution.
See Section 2 for a precise definition of the terms involved.

Definition 1.1 (Local weak solution). Let f ∈ (W(Ω))∗. Then we say that u ∈
Wloc(Ω) ∩ Lp−1

ps (RN ) ∩ Lq−1
qt,b (RN ) is a local weak solution to the problem (P) if, for

all φ ∈ W(Ω) with compact support contained in Ω, there holds

ˆ
RN

ˆ
RN

a(x, y, u(x), u(y))
[u(x)− u(y)]p−1

|x− y|N+ps
(φ(x)− φ(y)) dx dy

+

ˆ
RN

ˆ
RN

b(x, y)
[u(x)− u(y)]q−1

|x− y|N+qt
(φ(x)− φ(y)) dx dy = 〈f, φ〉W,W∗ .

(1.3)

A local weak subsolution (resp. supersolution) is defined similarly by replacing the
sign “=” with “≤” (resp. “≥”) in (1.3) for all nonnegative test functions.

We now introduce our main results. The first one is the following local self-improv-
ing property of a weak solution to (P).

Theorem 1.1 (A priori estimate). Suppose that 2 ≤ p ≤ q ≤ ps
t and that the

assumptions (A1) and (A2) hold. Let u ∈W s,p
loc (Ω)∩L∞loc(Ω)∩Lp−1

ps (RN )∩Lq−1
qt (RN )

be a local weak solution to (P) with the nonhomogeneous term satisfying

(1.4) f ∈ Lp∗+δ0loc (Ω) for some small δ0 > 0,

where

p∗ =
Np′

N + sp′
if sp < N and p∗ = 1 if sp ≥ N.
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Then, for all Ω̃ b Ω, there is a constant δ = δ(N, s, t, p, q,Λ, δ0, ‖u‖L∞(Ω̃)) > 0 such

that u ∈ W
s+ Nδ

p(1+δ)
,p(1+δ)

loc (Ω̃). In particular, there exists a constant c depending only
on N , s, t, p, q, Λ, δ0, and ‖u‖L∞(B2ρ0

(x0)) such that(ˆ
B ρ0

2
(x0)

 
B ρ0

2
(x0)

(
|u(x)− u(y)|p

|x− y|N+ps

)(1+δ)

dx dy

) p−1
p(1+δ)

≤ c

[(ˆ
B2ρ0

(x0)

 
B2ρ0

(x0)

|u(x)−u(y)|p

|x− y|N+ps
dx dy

)1
p′

+ρs0

( 
B2ρ0(x0)

|f(x)|p∗+δ0 dx
) 1
p∗+δ0

+ ρs−tq0 T q−1
tq (u;x0, 2ρ0) + ρ

−s(p−1)
0 T p−1

ps (u;x0, 2ρ0) + ρ
−s(p−1)
0

]
,

(1.5)

whenever B2ρ0
(x0) b Ω̃ with ρ0 ∈ (0, 1].

Remark 1. We observe that if u ∈W s,p(RN ), then

u ∈W s,p
loc (Ω) ∩ Lp−1

ps (RN ),

but the converse is not true. Therefore, as we pointed out earlier, our result generalizes
the previous works in [28] and [37]. On the other hand, if we consider the case
for b = 0, then it suffices to take a weak solution

u ∈W s,p
loc (Ω) ∩ Lp−1

ps (RN ).

We next describe the second main result, which is the higher Hölder regularity.

Theorem 1.2. Suppose that 2 ≤ p ≤ q < min{p∗s, ps/t}. Let the kernel coefficients
satisfy the assumptions (A1) through (A4) and let u be a local weak solution to the

problem (P) such that u ∈ Lq−1
qt (RN ). Then, u ∈ C0,α

loc (Ω) for all α ∈ (0,Θ), where

(1.6) Θ := min

{
ps−N/γ
p− 1

,
qt

q − 1
, 1

}
.

Before ending the section, we mention the layout of the rest of the paper. Section 2
deals with some preliminaries related to the paper. Section 3 corresponds to the self-
improving property and we prove Theorem 1.1. Section 4 contains the proof of the
higher Hölder regularity result of Theorem 1.2. Section 5 deals with the existence
result for the problem (P). Finally, the appendix is devoted to some boundedness
results.

2. Preliminaries

In this section, we give some notations and introduce related function spaces. Here,
we will also recall some of the well-known results.

2.1. Notation. For 1 < p <∞, we set [ξ]p−1 = |ξ|p−2ξ, for all ξ ∈ R. We abbreviate

(−∆)sp,a(·,u)u(x) := 2 P.V.

ˆ
RN

a(x, y, u(x), u(y))
[u(x)− u(y)]p−1

|x− y|N+ps
dy, x ∈ RN ,
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and analogously (−∆)tq,b is defined. The number p′ denotes the Hölder conjugate of p;

that is, 1/p + 1/p′ = 1. Additionally, for 1 < p < ∞ and s ∈ (0, 1), we define the
Sobolev conjugate of p by

p∗s :=

{
Np/(N − ps) if N > ps,

p̊ if N ≤ ps,

where p̊ is an arbitrarily large number. For x0 ∈ RN and v ∈ L1(Br(x0)), we set

(v)r,x0 :=

 
Br(x0)

v(x) dx =
1

|Br(x0)|

ˆ
Br(x0)

v(x) dx

and when the center is clear from the context, we will denote it as (v)r. In several
places, we will use

dµ1(x, y) :=
dx dy

|x− y|N+ps
and dµ2(x, y) :=

dx dy

|x− y|N+qt
.

For a Banach space (X, ‖ · ‖), we denote its topological dual by X∗ and 〈·, ·〉X,X∗ de-
notes the duality pairing. The constant c appearing in the proofs may vary from line
to line and is always greater than or equal to 1. In particular, we write the relevant
dependencies on parameters using parentheses; e.g., c = c(N, s). On the other hand,
we write

data ≡ data(N, s, t, p, q,Λ).

2.2. Function spaces and definitions. For an open set Ω ⊂ RN , we define the
space Wb(Ω) as below:

Wb(Ω) := {u ∈W s,p(Ω) : [u]W t,q
b (Ω) + ‖u‖Lq(Wb, Ω) <∞},

equipped with the norm

‖u‖Wb(Ω) := ‖u‖Lp(Ω) + ‖u‖Lq(Wb,Ω) + [u]W s,p(Ω) + [u]W t,q
b (Ω),

where

(2.1) ‖u‖qLq(Wb,Ω) :=

ˆ
Ω

Wb(x)|u(x)|q dx with Wb(x) :=

ˆ
RN\Ω

b(x, y)

|x− y|N+qt
dy

and

[u]q
W t,q
b (Ω)

:=

ˆ
Ω

ˆ
Ω

b(x, y)
|u(x)− u(y)|q

|x− y|N+tq
dx dy with [u]W s,p(Ω) = [u]W s,p

1 (Ω).

Note that C∞c (Ω) is obviously contained in Wb(Ω). It is not difficult to verify that
Wb(Ω) is a uniformly convex Banach space. Moreover, Wb(Ω) is continuously embed-
ded into W s,p(Ω).

In what follows, the subscript b from the definitions of Wb(Ω) and Wb will be
suppressed if it has no relevance to the context. We call a function u ∈ Wloc(Ω)

if u ∈ W(Ω̃), for all Ω̃ b Ω. Now we give definitions of the tail space and kernel
coefficients.

Definition 2.1. Let 0 < m,α < ∞ and b(·, ·) ∈ L∞(RN × RN ) be a nonnegative
function. Then, we define the tail space as below:

Lmα,b(RN )=

{
u :RN→R is measurable function: sup

x∈RN

ˆ
RN
b(x, y)

|u(y)|m

(1+|y|)N+α
dy<∞

}
.

And for b(·, ·) ≡ 1, we denote it by Lmα (RN ). In particular, we write

‖u‖Lmα,b(RN ) =

(
sup
x∈RN

ˆ
RN

b(x, y)
|u(y)|m

(1 + |y|)N+α
dy

) 1
m

.
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For 0 < α < 1 < m < ∞ and a measurable function u : RN → R, the nonlocal tail
centered at x0 ∈ RN with radius R > 0 is defined as

Tmα,b(u;x0, R) =

(
Rmα sup

x∈RN

ˆ
RN\BR(x0)

b(x, y)
|u(y)|m−1

|x0 − y|N+mα
dy

) 1
m−1

.

For b(·, ·) ≡ 1, we follow the convention Tmα,1(u;x0, R) = Tmα(u;x0, R).

Remark 2. Using Minkowski’s inequality, we check the following algebraic fact:

Tmα,b(u+ v;x0, R) ≤ Tmα,b(u;x0, R) + Tmα,b(v;x0, R)

for any u, v ∈ Lmα,b(RN ) with m ≥ 2. We will often use this inequality when we deal
with a tail estimate in Section 4.

Definition 2.2 (VMO functions). (1) For any M > 0 and any ball BR ⊂ Ω, we
say that the function a is (δM , R)-vanishing in BR × BR, if for all x0, y0 ∈ BR
and r ∈ (0, R] such that Br(x0), Br(y0) ⊂ BR, 

Br(x0)

 
Br(y0)

|a(x, y, w, z)− (a)r,x0,y0(w, z)| dx dy ≤ δM , for all w, z ∈ [−M,M ],

where (a)r,x0,y0
(w, z) =

ffl
Br(x0)

ffl
Br(y0)

a(x, y, w, z) dx dy.

(2) We say that the function a is in VMO on Ω × Ω locally uniformly in (w, z) if
for any M > 0 and Bρ(x), Bρ(y) ⊂ Ω,

(2.2) νa,M (ρ) := sup
|w|,|z|≤M

sup
0<r≤ρ

sup
x,y∈Ω

 
Br(x)

 
Br(y)

|a(x′, y′, w, z)−(a)r,x,y(w, z)| dx′ dy′

tends to 0 as ρ ↓ 0.
Especially, if the function a is independent of (w, z), then we say that a is

in VMO on Ω× Ω and the VMO modulus of a is denoted by νa:

νa(ρ) = sup
0<r≤ρ

sup
x,y∈Ω

 
Br(x)

 
Br(y)

|a(x′, y′)− (a)r,x,y| dx′ dy′.

We recall the following inequalities (see [27]):

• for ` ≥ 2, there exists a constant c(`) > 0 such that

(2.3) c(`)|ξ − ζ|` ≤ ([ξ]`−1 − [ζ]`−1)(ξ − ζ) for all ξ, ζ ∈ R;

• for ` ≥ 2, there exists a constant c = c(`) > 0 such that for all ξ, ζ ∈ R,

(2.4) |[ξ − w]`−1 − [ζ − w]`−1| ≤ c|ξ − ζ|`−1 + c|ξ − ζ||ξ − w|`−2.

Before ending this section, we mention the following iteration lemma, which will be
used in the proof of Lemma 3.6.

Lemma 2.1 (see [25, Lemma 6.1]). Let ϕ be a bounded nonnegative function in [t1, t2].
For t1 ≤ r < ρ ≤ t2,

ϕ(r) ≤ ηϕ(ρ) +
M

(ρ− r)α
,

with η ∈ (0, 1), M > 0, and α > 0. Then we have

ϕ(t1) ≤ c M

(t2 − t1)α
,

for some constant c = c(η, α).
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3. Self-improving properties

Throughout this section, we assume that the local weak solution u to the prob-
lem (P) satisfies the following:

u ∈W s,p
loc (Ω) ∩ L∞loc(Ω) ∩ Lp−1

ps (RN ) ∩ Lq−1
qt (RN )

with 2 ≤ p ≤ q ≤ sp
t and that (1.4) holds. We now fix

Ω̂ b Ω̃ b Ω.

In what follows, we write

data1 = data1(data, ‖u‖L∞(Ω̃)).

For any v ∈ Lp−1
ps (RN ) ∩ Lq−1

qt (RN ), we denote

T (v;x0, R) =

ˆ
RN\BR(x0)

(
|v(y)|p−1

|x0 − y|N+sp
+ ‖b‖L∞

|v(y)|q−1

|x0 − y|N+tq

)
dy, BR(x0) ⊂ Ω̃.

For a unified approach to handle the forcing term, we set a nonnegative number A
such that

(3.1)

{
A = 0 if sp < N,

A = 1
2 min{δ0, 1/p} if sp ≥ N.

Before going further, we first give the following Caccioppoli-type estimate.

Lemma 3.1. Let u be a local weak solution to (P). Let B ≡ BR(x0) ⊂ Ω with R ≤ 1
8 ,

and let ψ ∈ C∞c (B) be a cutoff function such that 0 ≤ ψ ≤ 1, ψ ≡ 1 in Br(x0), and
|∇ψ| ≤ 4

R−r with r ∈ (0, R). Then we have

ˆ
B

 
B

|ψ
q
p (x)u(x)− ψ

q
p (y)u(y)|p

|x− y|N+sp
+

ˆ
B

 
B

b(x, y)
|ψ(x)u(x)− ψ(y)u(y)|q

|x− y|N+tq
dx dy

≤ cRp(1−s)

(R− r)p

 
B

|u(x)|p dx+
cRq(1−t)

(R− r)q

 
B

|u(x)|q dx+cRsp
′
( 

B

|f(x)|p∗+A dx

) p′
p∗+A

+ c
RN+sp

(R− r)N+sp

ˆ
RN\B

|u(y)|p−1

|x0 − y|N+sp
dy

 
B

ψq(x)|u(x)| dx

+ c
RN+tq

(R− r)N+tq

ˆ
RN\B

‖b‖L∞
|u(y)|q−1

|x0 − y|N+tq
dy

 
B

ψq(x)|u(x)| dx,

for some constant c = c(data).

Proof: Note that Hölder’s inequality, Sobolev’s embedding, and Young’s inequality
imply that for any σ > 0,ˆ

B

|fuψq| dx ≤ ‖fψ
q
p′ ‖Lp∗+A(B) × ‖uψ

q
p ‖L(p∗+A)′ (B)

≤ c(data)‖fψ
q
p′ ‖Lp∗+A(B) × ([uψ

q
p ]W s,p(B) +R−s‖uψ

q
p ‖Lp(B))

≤ c

σp−1
‖f‖p

′

Lp∗+A(B)
+ σ([uψ

q
p ]pW s,p(B) +R−sp‖uψ

q
p ‖pLp(B)).

(3.2)

In addition, since the kernel coefficient a(·, ·, ·, ·) satisfies the uniform ellipticity condi-
tion (1.1) in (A2), we have the result of the lemma by following the proof as presented
in [37, Theorem 3.1] with (3.2).
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A dual pair (µ,U). We now introduce the notion of dual pair (µ,U), which is
an essential tool to obtain the self-improving property of a weak solution u to (P).
Assume that ε is a sufficiently small positive number such that

ε ∈
(

0,min

{
s

p
, 1− s

})
,

which will be determined later, in Lemma 3.6. Let us define a measure µ in R2N by

µ(A) =

ˆ
A

dx dy

|x− y|N−εp
, A ⊂ R2N is a measurable subset.

We write B(x0, R) := BR(x0) × BR(x0) with x0 ∈ RN and R > 0. Then we observe
some properties of the measure µ as below.

Lemma 3.2 (see [36, Theorem 3.1]). Let us write kB(x0, R) = B(x0, kR) for k > 0.
Then we have

µ(kB(x0, R))

µ(B(x0, R))
= kN+pε and µ(B(x0, R)) =

cRN+pε

ε
,

where c = c(N, p, ε) satisfies 1
C(N,p) ≤ c ≤ C(N, p) for some constant C(N, p) ≥ 1.

For (x, y) ∈ RN × RN , we define some functions as below:

(3.3)



B(x, y) = b(x, y)|x− y|(s−t)q+ε(q−p), U(x, y) = |u(x)−u(y)|
|x−y|s+ε ,

H(x, y, U) = Up +BUq, G(x, y, U) = H(x, y, U)
1
p′ ,

F (x, y) =

{
|f(x)| (x, y) ∈ Ω× Ω,

0 otherwise.

Then we notice that

G(x, y, U) ∈ Lp
′

loc(Ω× Ω; dµ) and F ∈ Lp∗+δ0loc (Ω× Ω; dµ).

For convenience of notations, we set

m =
Np+ εp2

N + sp+ εp
, τ = s+ ε− εp

m
, α =

m

p
< 1, θ =

s− ε(p− 1)

N + εp
,

and

βi = 2i(−
sp
p−1 +(s+ε)), for nonnegative integers i.

Then we check directly the following:

(3.4) m ∈ (1, p), p =
Nm

N − τm
, and

∞∑
i=0

βi <∞.

We now state the following fractional Sobolev inequality.

Lemma 3.3 (see [36, Lemma 4.2]). Let BR(x0) ⊂ Ω and let u ∈W s,p(BR(x0)). Then
for all η ∈ [1, p], we have( 

BR(x0)

|u(x)− (u)R,x0
|η dx

) 1
η

≤ c

ε
1
m

Rs+ε
( 
B(x0,R)

Um dµ

) 1
m

,

for some constant c = c(data).

With the aid of the Caccioppoli-type inequality (see Lemma 3.1) and Lemma 3.3,
we prove the following diagonal reverse Hölder-type inequality with a nonlocal tail.
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Lemma 3.4. Let u be a local weak solution to (P). Let 0 < R ≤ 1
8 and choose a

positive integer l such that

(3.5) x0 ∈ Ω̂, 2lR ≤ 2, and B2lR(x0) ⊂ Ω̃.

Then, for B ≡ BR(x0), the following holds:

( 
1
2B
G(x, y, U)p

′
dµ

) 1
p′

≤ cσ
−(p−1)

ε
1
p′α−

1
p′

( 
B
G(x, y, U)p

′α dµ

) 1
p′α

+ c
σ

ε
1
p′α−

1
p′

l∑
j=0

βp−1
j

( 
2jB

G(x, y, U)p
′α dµ

) 1
p′α

+ cσε
1
p′ [εµ(B)]θT (u− (u)2lR,x0

;x0, 2
lR)

+
c[εµ(B)]θ

ε
1

p∗+A−
1
p′

( 
B
F p∗+A dµ

) 1
p∗+A

,

(3.6)

for some constant c = c(data1) which is independent of l and σ ∈ (0, 1).

Proof: Let l be a fixed positive number satisfying (3.5). Using Lemma 3.1 with r = R
2

and ‖u‖L∞(BR) ≤ c, we deduce

ˆ
1
2B

 
1
2B

|u(x)− u(y)|p

|x− y|N+sp
dx dy +

ˆ
1
2B

 
1
2B

b(x, y)
|u(x)− u(y)|q

|x− y|N+tq
dx dy︸ ︷︷ ︸

I1

≤ c

Rsp

 
B

|u(x)−(u)R,x0 |p dx︸ ︷︷ ︸
I2

+ cT (u−(u)R,x0 ;x0, R)

 
B

ψq(x)|u(x)−(u)R,x0 | dx︸ ︷︷ ︸
I3

+ cRsp
′
(ˆ

B

|f(x)|p∗+A dx

) p′
p∗+A

︸ ︷︷ ︸
I4

.

We estimate each Ii, for i = 1, 2, 3, and 4, to discover the reverse Hölder inequal-
ity (3.6).

Estimate of I1. By (3.3) and Lemma 3.2, we observe that

 
1
2B
G(x, y, U)p

′
dµ ≤ c ε

Rεp
I1.

Estimate of I2. In light of Lemma 3.3, we have

I2 ≤ c
Rεp

ε
p
m

( 
B
G(x, y, U)p

′α dµ

) 1
α

.
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Estimate of I3. A simple calculation with (3.5) gives us

ˆ
RN\BR

|u(y)− (u)R,x0
|q−1

|x0 − y|N+tq
dy ≤

l−1∑
i=0

ˆ
B2i+1R\B2iR

|u(y)− (u)R,x0
|q−1

|x0 − y|N+tq
dy

+

ˆ
RN\B

2lR

|u(y)− (u)R,x0 |q−1

|x0 − y|N+tq
dy

=:
l−1∑
i=0

I3,i + I3,l.

(3.7)

We first note from the facts ‖u‖L∞(B2) ≤ c and p ≤ q that

I
1
p−1

3,i ≤ c
(

(2iR)−qt
 
B2i+1R

|u− (u)BR |p−1 dy

) 1
p−1

≤ c(2iR)−
qt
p−1

[( 
B2i+1R

|u− (u)B2i+1R
|p−1 dy

) 1
p−1

+

k∑
j=0

|(u)B2j+1R
− (u)B2jR

|

]

≤ c(2iR)−
qt
p−1

i+1∑
j=1

( 
B2j+1R

|u− (u)B2jR
|p−1 dy

) 1
p−1

≤ c(2iR)−
sp
p−1

i+1∑
j=1

( 
B2j+1R

|u− (u)B2jR
|p−1 dy

) 1
p−1

,

where we have used the relations 2lR ≤ 2 and tq ≤ sp in the last inequality. Then,
by Lemma 3.3, we obtain

I
1
p−1

3,i ≤ c(2
iR)−

sp
p−1

i+1∑
j=1

2j(s+ε)Rs+ε

ε
1
m

( 
2jB

Um dµ

) 1
m

.

We now employ the following Minkowski’s inequality( i∑
j=0

(I
1
p−1

3,i )p−1

) 1
p−1

≤
i∑

j=0

I
1
p−1

3,i

and Fubini’s theorem to deduce that( l−1∑
i=0

I3,i

) 1
p−1

≤ c
l−1∑
i=0

(2iR)−
sp
p−1

i+1∑
j=1

2j(s+ε)Rs+ε

ε
1
m

( 
2jB

Um dµ

) 1
m

≤ c
l∑

j=1

l−1∑
i=j−1

(2iR)−
sp
p−1

2j(s+ε)Rs+ε

ε
1
m

( 
2jB

Um dµ

) 1
m

≤ c
l∑

j=1

R−
sp
p−1 +s+ε βj

ε
1
m

( 
2jB

Um dµ

) 1
m

.
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By using Minkowski’s inequality once again, we next note that

I
1
q−1

3,l ≤
(ˆ

Rn\B
2lR

|u− (u)B
2lR
|q−1

|y|n+tq
dy

) 1
q−1

+

l−1∑
j=0

(ˆ
Rn\B2iR

|(u)B2j+1R
− (u)B2jR

|q−1

|y|n+tq
dy

) 1
q−1

.

(3.8)

We further estimate the second term on the right-hand side of (3.8) by means of
Lemma 3.3 as below:

l−1∑
j=0

(ˆ
Rn\B

2lR

|(u)B2j+1R
− (u)B2jR

|q−1

|y|n+tq
dy

) 1
q−1

≤ c
l−1∑
j=0

(ˆ
Rn\B

2lR

|(u)B2j+1R
− (u)B2jR

|p−1

|y|n+tq
dy

) 1
q−1

≤ c
l−1∑
j=0

(2lR)−
qt
q−1 |(u)B2j+1R

− (u)B2jR
|
p−1
q−1

≤ c
l−1∑
j=1

(
(2lR)−

sp
p−1

2j(s+ε)Rs+ε

ε
1
m

( 
2jB

Um dµ

) 1
m

) p−1
q−1

.

We next claim that

(3.9) I
1
p−1

3,l ≤cT (u−(u)2lR,x0
;x0, 2

lR)
1
p−1+c

l−1∑
j=1

(2jR)−
sp
p−1

2j(s+ε)Rs+ε

ε
1
m

( 
2jB

Um dµ

) 1
m

.

Indeed, if p = q, it is a direct computation. We now assume that p < q. Then, by
Hölder’s inequality, we have

I
1
p−1

3,l ≤ (I
1
q−1

3,l )
q−1
p−1

≤ cT (u− (u)2lR,x0
;x0, 2

lR)
1
p−1

+ c

(
l−1∑
j=1

(2l−j)
−sp
q−1

(
(2jR)−

sp
p−1

2j(s+ε)Rs+ε

ε
1
m

( 
2jB

Um dµ

) 1
m

) p−1
q−1
) q−1
p−1

≤ cT (u− (u)2lR,x0
;x0, 2

lR)
1
p−1

+ c

l−1∑
j=1

(2jR)−
sp
p−1

2j(s+ε)Rs+ε

ε
1
m

( 
2jB

Um dµ

) 1
m

,
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which proves (3.9). Consequently,

ˆ
RN\BR

|u(y)− (u)R,x0
|q−1

|x0 − y|N+tq
dy ≤

( l−1∑
i=0

I
1
p−1

3,i + I
1
p−1

3,l

)p−1

≤ cT (u− (u)2lR,x0
;x0, 2

lR)

+ c
Rεp−(s+ε)

ε
p−1
m

l∑
j=0

(
βj

( 
2jB

Um dµ

) 1
m

)p−1

,

(3.10)

where we have used the following algebraic inequality:(
l∑

j=1

R−
sp
p−1 +s+ε βj

ε
1
m

( 
2jB

Um dµ

) 1
m

)p−1

≤

(
l∑

j=1

R−
sp
+ (s+ε)(p−1) βj

ε
p−1
m

( 
2jB

Um dµ

) p−1
m

)( l∑
j=1

βj

)p−2

≤ cR
εp−(s+ε)

ε
p−1
m

l∑
j=0

(
βj

( 
2jB

Um dµ

) 1
m

)p−1

.

Similarly, we estimateˆ
RN\BR

|u(y)− (u)R,x0
|p−1

|x0 − y|N+sp
dy ≤ cT (u− (u)2lR,x0

;x0, 2
lR)

+ c
Rεp−(s+ε)

ε
p−1
m

l∑
j=0

(
βj

( 
2jB

Um dµ

) 1
m

)p−1

.

(3.11)

Coupling (3.10) and (3.11), we get

T (u− (u)R,x0
;x0, R) ≤ cR

εp−(s+ε)

ε
p−1
m

l∑
j=0

(
βj

( 
2jB

Um dµ

) 1
m

)p−1

+ cT (u− (u)2lR,x0
;x0, 2

lR).

(3.12)

On the other hand, we have

(3.13)

 
B

ψq(x)|u(x)− (u)R,x0 | dx ≤ c
Rs+ε

ε
1
m

( 
B
Um dµ

) 1
m

.

Consequently, using Young’s inequality with (3.12) and (3.13), we obtain

I3 ≤ c
σp
′
Rεp

ε
p
m

(
l∑

j=0

βj

( 
2jB

Um dµ

) p−1
m

)p′

+ cσp
′
Rsp

′
T (u− (u)2lR,x0

;x0, 2
lR)p

′
+ c

σ−pRεp

ε
p
m

( 
B
Um dµ

) p
m

≤ cσ
p′Rεp

ε
p
m

(
l∑

j=0

βj

( 
2jB

Gp
′α dµ

) 1
p′α
)p′

+ cσp
′
Rsp

′
T (u− (u)2lR,x0

;x0, 2
lR)p

′
+ c

σ−pRεp

ε
p
m

( 
B
Gp
′α dµ

) p
m

.
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Estimate of I4. Recalling the definition of F from (3.3), we get

I4 ≤ c
Rsp

′

ε
p′

p∗+A

( 
B
F p∗+A dµ

) p′
p∗+A

.

Eventually, we combine the estimates of I1, I2, I3, and I4 to discover that
 

1
2B
G(x, y, U)p

′
dµ ≤ cσ−p

ε
p
m−1

( 
B
G(x, y, U)p

′α dµ

) 1
α

+
cσp

′

ε
p
m−1

(
l∑

j=0

βp−1
j

( 
2jB

Gp
′α dµ

) 1
p′α
)p′

+ cεσp
′
Rsp

′−εpT (u− (u)2lR,x0
;x0, 2

lR)p
′

+ c
Rsp

′−εp

ε
p′

p∗+A−1

( 
B
F p∗+A dµ

) p′
p∗+A

,

which implies (3.6).

Now we are ready to give and prove a level set estimate for G in B(x0, 2ρ0) ⊂
Ω̃ × Ω̃ with ρ0 ≤ 1 and x0 ∈ Ω̂. First, we introduce a few more functionals. For
every B(x,R) ⊂ B(x0, 2ρ0), we define

Υ(x,R) :=

( 
B(x,R)

F p∗+A+δf dµ

) 1
p∗+A+δf

,

where δf ∈
(
0, δ02

]
will be determined later, in Lemma 3.6, and

Tail(x,R) :=

l∑
i=0

βp−1
i

( 
2iB(x,R)

G(x, y, U)p
′α dµ

) 1
p′α

+ ε
1
p′ [εµ(B(x,R))]θT (u− (u)2lR,x;x, 2lR),

(3.14)

for some positive integer l such that
ρ0

2
≤ 2lR < ρ0.

We also define

ΨM (x,R) :=

( 
B(x,R)

Gp
′
dµ

) 1
p′

+M
[µ(B(x,R))]θ

ε
1

p∗+A−
1
p′

( 
B(x,R)

F p∗+A dµ

) 1
p∗+A

,

where M ≥ 1 will be chosen later, in (3.32). Now we set

Ξ(x,R) := Υ(x,R) + Tail(x,R) + ΨM (x,R).

In particular, we denote

(3.15) Ξ0 := Υ(x0, 2ρ0) + Ψ1(x0, 2ρ0) + T (u− (u)2ρ0,x0
;x0, 2ρ0).

For convenience, we write

θu=
(p+1)(1−α)

α
, θf =(p∗+A+δf )

(
(p∗ + A)θ

1−(p∗+A)θ

)
, and θ̃f =

(p∗+A)(1+θδf )

1− (p∗ + A)θ
.

In this setting, we now describe an integral estimate of G on superlevel sets.
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Lemma 3.5. Suppose that u is a local weak solution to (P). Take B ≡ B2ρ0
(x0) ⊂ Ω̃

with 0 < ρ0 ≤ 1 and x0 ∈ Ω̂. Let ρ0

2 ≤ r < ρ ≤ ρ0. Then there exist constants cα =
cα(data1) ≥ 1, cf = cf (data1, ε) ≥ 1, and κf = κf (data1, ε) ∈ (0, 1) such that the
inequality

1

λp′

ˆ
B(x0,r)∩{G>λ}

Gp
′
dµ ≤ cα

εθuλp′α

ˆ
B(x0,ρ)∩{G>λ}

Gp
′α dµ

+
cfλ

θf
0

λθ̃f

ˆ
B(x0,ρ)∩{F>κfλ}

F p∗+A dµ

(3.16)

holds whenever λ ≥ λ0, where

(3.17) λ0 :=
c

ε
1
p′α

(
ρ0

ρ− r

)2N+p

Ξ0,

for some constant c = c(data1).

Proof: Let κ ∈ (0, 1) be a parameter which will be determined later, in (3.24). Define

(3.18) λ1 :=
1

κ
sup

ρ−r
40N
≤R≤ ρ02

sup
x∈Br(x0)

{ΨM (x,R) + Υ(x,R) + Tail(x,R)}.

Now, we prove the lemma in five steps.

Step 1: Upper bound on λ1. We estimate the upper bound of λ1 as follows. For
any x ∈ Br(x0) and ρ−r

40N
≤ R ≤ ρ0

2 , using the doubling property of µ, we have

Υ(x,R) ≤ c
(

2ρ0

ρ− r

)N+p

Υ(x0, 2ρ0) and ΨM (x,R) ≤ c
(

2ρ0

ρ− r

)N+p

ΨM (x0, 2ρ0).

On the other hand, using Hölder’s inequality and similar tail estimates as in (3.7), we
see that

Tail(x,R) ≤ c
l∑
i=0

(
2ρ0

2iR

)N+εp

βp−1
i

( 
B(x0,2ρ0)

Gp
′α dµ

) 1
p′α

+ c

( 
B(x0,2ρ0)

Gp
′α dµ

) 1
p′α

+ cT (u− (u)2ρ0,x0
;x, 2ρ0)

≤ c
(

ρ0

ρ− r

)N+εp( 
B(x0,2ρ0)

Gp
′α dµ

) 1
p′α

+ c

(
ρ0

ρ− r

)N+sp

T (u− (u)2ρ0,x0
;x0, 2ρ0),

where in the last line, we have used the relation

|y − x| ≥ |y − x0| − |x− x0| ≥ |y − x0|
ρ− r
ρ0

, for y ∈ B2ρ0
(x)c.

Thus, we get

(3.19) λ1 ≤
c(data1,M)

κ

(
ρ0

ρ− r

)N+p

Ξ0.
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Step 2: Vitali covering. We start with an exit-time argument as in [28] and [37] to
cover the diagonal level set of G. We focus on handling the tail term which is different
from the previous works. Define the diagonal level set of the functional ΨM by

(3.20) Dκλ :=

{
(x, x) ∈ B(x0, r) : sup

0≤R≤ ρ−r
40N

ΨM (x,R) > κλ

}
,

for some λ ≥ λ1 which will be specified in (3.24). Note that for each (x, x) ∈ B(x0, r)
and R ∈

[
ρ−r
40N

, ρ0

2

]
, we have ΨM (x,R) ≤ κλ1 ≤ κλ. Therefore, for each (x, x) ∈ Dκλ,

there exists a constant 0 < R(x) ≤ ρ−r
40N

such that

(3.21) ΨM (x,R(x)) ≥ κλ and ΨM (x,R) ≤ κλ, for any R ∈
(
R(x),

ρ− r
40N

]
.

Using Vitali’s covering lemma, we find that there is a collection {B(xj , 2R(xj))}j∈N
of disjoint open sets with center (xj , xj) ∈ Dκλ such that

(3.22) Dκλ ⊂
⋃
j

B(xj , 10R(xj)).

Let us write Rj ≡ R(xj) and Bj ≡ B(xj , R(xj)) for each positive integer j. From (3.21)
and the doubling property of the measure µ (see Lemma 3.2), we have∑

j

ˆ
10Bj

Gp
′
dµ ≤

∑
j

µ(10Bj)[ΨM (xj , 10Rj)]
p′ ≤ 10N+εp(κλ)p

′∑
j

µ(Bj).

Step 3: Off-diagonal estimate of G. For this, we follow the method described in [36,
Subsection 4.3]. Since we know that u ∈W s,p(B2ρ0(x0)) ∩ L∞(B2ρ0(x0)) with (3.22)
and functions G and H which are described in [36] are the same, an inspection of
Subsection 4.3 in [36] shows that it remains valid for our case, too. Therefore, we
have a desired result similar to [36, Lemma 4.10] as follows. There is a constant

(3.23) κ =
ε

1
p′α

cκ
with cκ = cκ(data1) ≥ 1

such that

(3.24)

ˆ
B(x0,r)∩{G>λ}

Gp
′
dµ≤10N+pκp

′
λp
′∑
j

µ(Bj)+cλp
′−p′α̂

B(x0,ρ)∩{G>κλ}
Gp
′α dµ,

for some constant c0 = c0(data1), whenever

λ ≥ max

{
λ1,

c1

ε
1
p′

(
ρ0

ρ− r

)2N+p

Ξ0

}
=: λ2.

Step 4: Estimate of µ(Bj). This step is to establish the existence of constants c4 =
c4(data1) and c5 = c5(data1, ε) such that∑

j

µ(Bj) ≤
c4

εp−pακp′αλp′α

ˆ
B(x0,ρ)∩{G>κ̃κλ}

Gp
′α dµ

+
c5λ

θf
1

(κ̂κλ)θ̃f

ˆ
B(x0,ρ)∩{F>κ̂κλ}

F p∗+A dµ.

(3.25)
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Indeed, by (3.20), it follows that at least one of the following inequalities hold:( 
Bj
Gp
′
dµ

) 1
p′

≥ κλ

2
or(3.26)

M [µ(Bj)]θ

ε
1

p∗+A−
1
p′

( 
Bj
F p∗+A dµ

) 1
p∗+A

≥ κλ

2
.(3.27)

Case 1. We assume that (3.26) holds. Then, from (3.4), we observe that

κλ ≤ cσ−(p−1)

ε
1
p′α−

1
p′

( 
2Bj

Gp
′α dµ

) 1
p′α

+
cσ

ε
1
p′α−

1
p′

lj−1∑
i=0

βp−1
i

( 
2i+1Bj

Gp
′α dµ

) 1
p′α

+ cσε
1
p′ [εµ(2Bj)]θT (u− (u)2ljRj ,x0

;xj , 2
ljRj)

+
c[εµ(2Bj)]θ

ε
1

p∗+A−
1
p′

( 
2Bj

F p∗+A dµ

) 1
p∗+A

,

(3.28)

for some positive integer lj such that ρ0

2 ≤ 2ljRj < ρ0. Note that since Rj ≤ ρ−r
40N
≤

ρ0

40N
, we have lj ≥ 3. Therefore, by (3.21), we see that

(3.29)

( 
2iBj

Gp
′α dµ

) 1
p′α

≤ κλ,

for i = 0, 1, . . . , lj − 1. With (3.18), we have

κλ ≥ Tail(xj , 2
lj−1Rj)

≥
1∑
k=0

βp−1
k

( 
2lj−1+kBj

Gp
′α dµ

) 1
p′α

+ε
1
p′ [εµ(2Bj)]θT (u−(u)2ljRj ,x0

;xj , 2
ljRj)

(3.30)

and

(3.31) κλ ≥ M [µ(2Bj)]θ

ε
1

p∗+A−
1
p′

( 
2Bj

F p∗+A dµ

) 1
p∗+A

,

where we have used the fact that
ρ− r
40N

≤ 2lj−1Rj <
ρ0

2
.

Applying (3.29), (3.30), and (3.31) to (3.28), we then discover that there are con-
stants c1 = c1(data1) and c2 = c2(data1) such that

κλ ≤ cσ−(p−1)

ε
1
p′α−

1
p′

( 
2Bj

Gp
′α dµ

) 1
p′α

+
c1σ

ε
1
p′α−

1
p′
κλ+

c2
M
κλ.

By taking

(3.32) σ =
ε

1
p′α−

1
p′

4c1
and M = 4c2,

we see that

κλ ≤ c

ε
p
p′α−

p
p′

( 
2Bj

Gp
′α dµ

) 1
p′α

,

which yields

µ(Bj)(κλ)p
′α ≤ c

εp−pα

ˆ
2Bj

Gp
′α dµ.
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Since

c

εp−pα

ˆ
2Bj

Gp
′α dµ ≤ c

εp−pα

(ˆ
2Bj∩{G≤κ̃κλ}

Gp
′α dµ+

ˆ
2Bj∩{G≥κ̃κλ}

Gp
′α dµ

)

≤ c3
εp−pα

(
(κ̃κλ)p

′αµ(Bj) +

ˆ
2Bj∩{G≥κ̃κλ}

Gp
′α dµ

)
(thanks to the doubling property in Lemma 3.2), by choosing κ̃ = ε

p
p′α−

p
p′

(2c3)
1
p′α

we obtain

(3.33) µ(Bj) ≤
c4

εp−pα(κλ)p′α

ˆ
2Bj∩{G≥κ̃κλ}

Gp
′α dµ,

for some constant c4 = c4(data1).

Case 2. If (3.27) occurs, we follow the proof exactly as in [36, Subsection 4.2] so that

there is a constant c5 = 2
( 4M(L+1)

ε
1

p∗+A
− 1
p′

) p∗+A
1−(p∗+A)θ with L = µ(B2) = c(N, p, ε) such that

µ(Bj) ≤
c5λ

((p∗+A)+δf )θ(p∗+A)/(1−(p∗+A)θ)
1

(κ̂κλ)(1+θδf )(p∗+A)/(1−(p∗+A)θ)

ˆ
Bj∩{F>κ̂κλ}

F p∗+A dµ

=
c5λ

θf
1

(κ̂κλ)θ̃f

ˆ
Bj∩{F>κ̂κλ}

F p∗+A dµ,

(3.34)

provided

(3.35) κ̂ ≤
(

1

4

) 1−(p∗+A)θ
p∗+A ε

1
p∗+A−

1
p′

4M(L+ 1)
.

Since {2Bj} is a collection of disjoint open sets contained in B(x0, ρ), the two estimates
in (3.33) and (3.34) imply (3.25).

Step 5: Conclusion. We are now ready to complete the proof. An elementary calcu-
lation givesˆ
B(x0,r)∩{G>κ̃κλ}

Gp
′
dµ︸ ︷︷ ︸

I1

≤ λp
′−p′α

ˆ
B(x0,r)∩{G>κ̃κλ}

Gp
′α dµ︸ ︷︷ ︸

I2

+

ˆ
B(x0,r)∩{G>λ}

Gp
′
dµ︸ ︷︷ ︸

I3

.

By (3.24), we have

I3 ≤ 10N+pκp
′
λp
′∑
j

µ(Bj)︸ ︷︷ ︸
I3,1

+ cλp
′−p′α

ˆ
B(x0,ρ)∩{G>κλ}

Gp
′α dµ︸ ︷︷ ︸

I3,2

,

for any λ ≥ λ2. Using (3.25), we have

I3,1 ≤
10N+pc4(κλ)p

′

εp−pακp′αλp′α

ˆ
B(x0,ρ)∩{G>κ̃κλ}

Gp
′α dµ

+
10N+pc5(κλ)p

′
λ
θf
1

(κ̂κλ)θ̃f

ˆ
B(x0,ρ)∩{F>κ̂κλ}

F p∗+A dµ,

where c4 = c4(data1) and c5 = c5(data1, ε). Note that

(3.36)
κp
′−p′α

εp−pα
= c

ε
1−α
α

εp(1−α)
= cε−p+

p
m ≥ c,
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where we have used (3.23), (3.4), and ε ∈ (0, 1). Therefore, combining the above
estimate with I3 and using (3.36), we obtain

I1 ≤
c(κλ)p

′

εp−pακp′αλp′α

ˆ
B(x0,ρ)∩{G>κ̃κλ}

Gp
′α dµ

+
10N+pc5(κλ)p

′
λ
θf
1

(κ̂κλ)θ̃f

ˆ
B(x0,ρ)∩{F>κ̂κλ}

F p∗+A dµ.

After some elementary algebraic manipulations, we observe that

I1 ≤
c(κ̃κλ)p

′−p′α

εp−pα(κ̃κ)p′−p′α

ˆ
B(x0,ρ)∩{G>κ̃κλ}

Gp
′α dµ

+
10N+pc5(κλ)p

′
λ
θf
1

(κ̂κλ)θ̃f

ˆ
B(x0,ρ)∩{F>κ̂κλ}

F p∗+A dµ,

(3.37)

whenever λ ≥ λ2. We reformulate estimate (3.37) as follows:

ˆ
B(x0,r)∩{G>λ}

Gp
′
dµ ≤ c

εp−pα(κ̃κ)p′−p′α
λp
′−p′α

ˆ
B(x0,ρ)∩{G>λ}

Gp
′α dµ

+
c6(data1, ε)λ

θf
1

λθ̃f−p
′

ˆ
B(x0,ρ)∩{F> κ̂

κ̃λ}
F p∗+A dµ,

provided λ ≥ κ̃κλ2. Now we take a number κ̂ > 0 sufficiently small so that (3.35)

and κf := κ̂
κ̃ ≤ 1 hold. Since κ̃κ = ε

1+p
p′α −

p
p′

c for some constant c = c(data1) > 1
and λ0 ≥ κ̃κλ2 by (3.19), we conclude that (3.16) holds whenever λ ≥ λ0.

Lemma 3.6. Let u be a local weak solution to (P). Take B(x0, 2ρ0) ⊂ Ω̃× Ω̃ with 0 <

ρ0 ≤ 1 and x0 ∈ Ω̂ and write B ≡ B(x0, ρ0). Then there exist positive constants ε,
δ ∈ (0, 1), δf ∈

(
0, δ02

)
, and c depending on data1 and δ0 such that

( 
1
2B
G(x, y, U)p

′+δ dµ

) 1
p′+δ

≤ c
( 

2B
G(x, y, U)p

′
dµ

) 1
p′

+ cT (u− (u)2ρ0,x0
;x0, 2ρ0)

+ c

( 
2B
F p∗+A+δf dµ

) 1
p∗+A+δf

.

Proof: Let ρ0

2 < r < ρ < ρ0. We now set the parameters δ, δf , δ̃, and ε depending
only on data1 and δ0 such that

(3.38)
cαδ

εθu(p′ − p′α+ δ)
≤ 1

16
and δ < p′ − θ̃f + δ + δ̃ < δf .

To this end, we consider the two cases depending on the relationship between N
and sp.
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Case 1. Assume that sp ≥ N . Set δf = min
{
δ0
2 ,

1
2(p−1)

}
and choose

(3.39) ε < min

{
s

p
, (1− s)

}
such that

(3.40)
1

p
− p− 1

2p
δf < θ,

which is possible because

θ =
s− ε(p− 1)

N + εp
<

s

N

is a decreasing function with respect to ε and sp ≥ N . Since

1

p− 1
− A− δf

2
(1 + (1 + A)θ) <

1

p− 1
− δf

2
and p′θ < p′(1 + A)θ,

by (3.40), we see that

1

p− 1
− A− δf

2
(1 + (1 + A)θ) < p′(1 + A)θ,

which can be rewritten as

p′(1− (1 + A)θ)− (1 + A) <
δf
2

(1 + (1 + A)θ),

where we have used the following fact:

1

p− 1
− A = p′ − (1 + A).

Dividing each side by (1− (1 + A)θ), we find that

p′ − (1 + A)

(1− (1 + A)θ
<
δf
2

(1 + (1 + A)θ)

(1− (1 + A)θ)
=
δf
2

+
((1 + A)θ)

(1− (1 + A)θ)
δf ,

which is equivalent to

(3.41) p′ − θ̃f <
δf
2
.

Let δ be any nonnegative number satisfying

(3.42) δ < min

{
spp′ε(sp

2+sp+N)/N

16cα(N + sp)
,

1

8
δf

}
.

In light of (3.39) and (3.42), we see that

spp′ε(sp
2+sp+N)/N

16cα(N + sp+ p)
≤ s2p

(p− 1)16cα(N + sp+ p)
≤ 1

(p− 1)16cα

and

2δ < δf with
cαδ

εθu(p′ − p′α+ δ)
≤ 1

16
.

Moreover, we note by (3.40) and (3.1) that

(3.43) p′ − θ̃f + θf = p′ − (p∗ + A) ≥ 1

2(p− 1)
> δ.

Combine (3.41) and (3.43) to find a constant δ̃ ∈ [0, θf ] such that

δ < p′ − θ̃f + δ + δ̃ < δf .
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Case 2. Assume that sp < N . With an elementary algebraic manipulation as in [37,
Theorem 5.1], we find that there are constants ε ∈ (0, 1) and δf ∈

(
0,min

{
1

2(p−1) ,
δ0
2

})
depending on data1 and δ0 satisfying the following:

(3.44)
εp(p′)2

N + εp
< δf ≤

εp(N + sp′)

N(s− ε(p− 1))
.

Let δ be any nonnegative number such that

(3.45) δ ≤ min

{
spp′ε(sp

2+sp)/N

16cα(N + sp+ p)
,

1

p− 1

εpp′(N + sp′)

N2 + 2Nεp+ εspp′

}
,

where cα = cα(data1) is determined as in (3.46). By proceeding exactly as in [37,

Theorem 5.1], we find that the conditions (3.44) and (3.45) imply (3.38) by taking δ̃ =
0.

From the choice of δ, δf , δ̃, and ε satisfying (3.38), we now prove the higher
integrability of G. We first apply Lemma 3.5 with ε, δf , and δ which satisfy (3.38).
Then we see that there are some constants cα = cα(data1) ≥ 1, cf = cf (data1, δ0) ≥ 1,
and κf = κf (data1, δ0) ∈ (0, 1) such that

(3.46)
1

λp′

ˆ
Br∩{G>λ}

Gp
′
dµ ≤ cα

εθuλp′α

ˆ
Bρ∩{G>λ}

Gp
′α dµ+

cfλ
θf
0

λθ̃f

ˆ
Bρ∩{F>κfλ}

F p∗+A dµ,

whenever λ ≥ λ0 with

λ0 := c0(data1, δ0)

(
ρ0

ρ− r

)2N+p

Ξ0.

Let us define a truncated function Gm(x, y) = min{G(x, y),m} for (x, y) ∈ B2ρ0

with m > λ0 and a measure dν = Gp
′
dµ in B2ρ0

. We then observe that
ˆ
Br
GδmG

p′ dµ =

ˆ
Br
Gδm dν

= δ

ˆ ∞
0

λδ−1ν(Br ∩ {Gm > λ}) dλ

= δ

ˆ λ0

0

λδ−1ν(Br ∩ {Gm > λ}) dλ+ δ

ˆ ∞
λ0

λδ−1ν(Br ∩ {Gm > λ}) dλ

≤ λδ0
ˆ
Br
Gp
′
dµ+ δ

ˆ ∞
λ0

λδ−1ν(Br ∩ {Gm > λ}) dλ

= λδ0

ˆ
Br
Gp
′
dµ︸ ︷︷ ︸

I1

+ δ

ˆ m

λ0

λδ−1

ˆ
Br∩{G>λ}

Gp
′
dµdλ︸ ︷︷ ︸

I2

,

where we have used an integral formula of a distribution function of G. We next
estimate I1 and I2 as follows.

Estimate of I1. By the definition of λ0, we find

I1 ≤ λδ0µ(B2ρ0)

 
B2ρ0

Gp
′
dµ ≤ cλp

′+δ
0 µ(B2ρ0).
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Estimate of I2. Using (3.46), we discover that

I2 ≤ δ
ˆ m

λ0

λδ−1 cαλ
p′

εθuλp′α

ˆ
Bρ∩{G>λ}

Gp
′α dµdλ︸ ︷︷ ︸

I2,1

+ δ

ˆ m

λ0

λδ−1 cfλ
θf
0 λp

′

λθ̃f

ˆ
Bρ∩{F>κfλ}

F p∗+A dµ dλ︸ ︷︷ ︸
I2,2

.

By (3.38), we see that

I2,1 ≤
cαδ

εθu

ˆ ∞
0

λp
′−p′α+δ−1

ˆ
Bρ∩{Gm>λ}

Gp
′α dµ dλ

=
cαδ

εθu(p′ − p′α+ δ)

ˆ
Bρ
Gδ+p

′−p′α
m Gp

′α dµ

≤ 1

16

ˆ
Bρ
Gδ+p

′−p′α
m Gp

′α dµ ≤ 1

16

ˆ
Bρ
GδmG

p′ dµ.

We next estimate I2,2 as follows:

I2,2 ≤ λ
θf−δ̃
0 δ

ˆ m

λ0

cfλ
p′−θ̃f+δ+δ̃−1

ˆ
Bρ∩{F>κfλ}

F p∗+A dµ dλ

≤ cλθf−δ̃0 µ(B2ρ0)

 
B2ρ0

F p∗+A+δ+p′−θ̃f+δ̃ dµ

≤ cµ(B2ρ0
)λ
θf−δ̃
0

( 
B2ρ0

F p∗+A+δf dµ

) p∗+A+δ+δ̃+p′−θ̃f
p∗+A+δf

≤ cµ(B2ρ0)λ
θf−δ̃
0 Υ0(x0, 2ρ0)p∗+A+δ+δ̃+p′−θ̃f ≤ c(data1, δ0)µ(B2ρ0)λp

′+δ
0 ,

where we have used (3.38) with Hölder’s inequality, (3.15), and (3.17). We combine
estimates I1 and I2 to obtainˆ

Br
GδmG

p′ dµ ≤ 1

16

ˆ
Bρ
GδmG

p′ dµ+ cµ(B2ρ0
)λp

′+δ
0 .

Due to the doubling property and (3.15), we discover that(
µ(Br)
µ(Bρ)

 
Br
GδmG

p′ dµ

) 1
p′+δ

≤
(

1

16

 
Bρ
GδmG

p′ dµ

) 1
p′+δ

+ c

(
µ(B2ρ0

)

µ(Bρ)

) 1
p′+δ

λ0,

and a few elementary manipulations with (3.17) gives( 
Br
GδmG

p′ dµ

) 1
p′+δ

≤ 1

2

( 
Bρ
GδmG

p′ dµ

) 1
p′+δ

+ c

(
ρ0

ρ− r

)2N+p

Ξ0.

Therefore, we rewrite the above inequality as

ϕ(r) ≤ 1

2
ϕ(ρ) + c

(
ρ0

ρ− r

)2N+p

Ξ0,
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where we have defined ϕ(τ) :=
(ffl
−BτGδmGp

′
dµ
) 1
p′+δ for τ ∈

[
ρ0

2 , ρ0

]
. By Lemma 2.1,

we obtain ( 
B ρ0

2

GδmG
p′ dµ

) 1
p′+δ

≤ cΞ0,

where c = c(data1, δ0) is independent of m. Thus, by taking m → ∞, we conclude
that ( 

B ρ0
2

Gp
′+δ dµ

) 1
p′+δ

≤ cΞ0.

Recalling the definition of Ξ0 as stated in (3.15), we complete the proof of the lemma.

Since we have obtained a higher integrability result for G, we now prove our first
main result.

Proof of Theorem 1.1: For any x0 ∈ Ω̂, there is a ρ0 ∈ (0, 1] such that

B2ρ0
(x0) ⊂ Ω̃.

We now need to normalize the solution u. Define

ũ(x) = u(ρ0x+ x0), f̃(x) = ρsp0 f(ρ0x+ x0), for x ∈ B2,

ã(x, y, z, w) = a(ρ0x+ x0, ρ0y + x0, z, w),

b̃(x, y) = ρsp−tq0 b(ρ0x+ x0, ρ0y + x0), for x, y ∈ RN × RN .

Then we have

Lã,b̃ũ = f̃ in B2,

with

0 < Λ−1 ≤ ã(x, y, z, w) ≤ Λ and

0 ≤ b̃(x, y) ≤ ρsp−tq0 Λ.

For B := B1 × B1, by Lemma 3.6, there are sufficiently small positive numbers δ1,
ε ∈ (0, 1), δf ∈ (0, δ0), and c depending on data1 and δ0 such that( 

1
2B
G(x, y, Ũ)p

′(1+δ1) dµ

) 1
p′(1+δ1)

≤ c
( 

2B
G(x, y, Ũ)p

′
dµ

) 1
p′

+ cT̃ (ũ− (ũ)2,0; 0, 2ρ0)

+ c

( 
2B
F̃ p∗+A+δf dµ

) 1
p∗+A+δf

,

(3.47)

and

(3.48) s+
pεδ1

p(1 + δ1)
< 1,

where

T̃ (ũ− (ũ)2,0; 0, 2ρ0) :=

ˆ
RN\B2

(
|ũ(y)− (ũ)2,0|p−1

|y|N+sp
+ ‖b̃‖L∞

|ũ(y)− (ũ)2,0|q−1

|y|N+tq

)
dy.
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Since ũ ∈ L∞(B2) and tq ≤ sp, we see that

(3.49)

ˆ
2B
G(x, y, Ũ)p

′
dµ ≤ c[ũ]pW s,p(B2).

From [33, Proposition 2.5] with (3.48), we discover that

[ũ]p−1

W
s+ Nδ

p(1+δ)
,p(1+δ)

(B1/2)
≤ c[ũ]p−1

W
s+

pεδ1
p(1+δ1)

,p(1+δ1)
(B1/2)

≤ c
(ˆ

1
2B
G(x, y, Ũ)p

′(1+δ1) dµ

) 1
p′(1+δ1)

,

(3.50)

where δ = δ(data1, δ0) is a sufficiently small positive number such that

Nδ

p(1 + δ)
<

pεδ1
p(1 + δ1)

and pδ ≤ pδ1.

We combine the estimates (3.47), (3.49), and (3.50) to obtain(ˆ
B 1

2

ˆ
B 1

2

(
|ũ(x)− ũ(y)|p

|x− y|N+ps

)(1+δ)

dx dy

) 1
p′(1+δ)

≤ c

[
[ũ]p−1

W s,p(B2) + T̃ (ũ− (ũ)2,0; 0, 2) +

(ˆ
B2

|f̃(x)|p∗+A+δf dx

) 1
p∗+A+δf

]
.

By scaling back, noting u ∈ L∞(B2ρ0(x0)) and using Hölder’s inequality with A+δf <
δ0, we conclude the estimate (1.5). Finally, the standard covering argument gives that

u ∈W
s+ Nδ

p(1+δ)
,p(1+δ)

loc (Ω̃).

4. The Hölder continuity

We first focus on a local weak solution

u ∈ Wloc(Ω) ∩ Lp−1
ps (RN ) ∩ Lq−1

qt (RN )

to

(PA) La,b u = f in Ω,

where the coefficient function a is a VMO function and is independent of the solu-
tion u, and f ∈ Lγloc(Ω) with γ > max

{
1, Nps

}
. Then, from [22, Theorem 4.5] and

using the Caccioppoli-type estimate of Lemma 3.1 (to control the quantity [u]W s,p ,
appearing there), we can get the following continuity result.

Lemma 4.1. Suppose that 2 ≤ p ≤ q ≤ ps/t and that the functions a(·, ·) and b(·, ·)
are locally translation invariant in Ω× Ω. Let u be a local weak solution to the prob-
lem (PA) with f ≡ 0. Then u ∈ Cαloc(Ω) for all α ∈ (0,Θ0), where Θ0 := min

{
ps
p−1 , 1

}
.

More precisely, for B2ρ0 ≡ B2ρ0(x0) b Ω with ρ0 ∈ (0, 1] and for all α ∈ (0,Θ0),
there exists a positive constant c depending only on data and α such that

[u]Cα(Bρ0/4) ≤
c

ρα0
[‖u‖L∞(Bρ0/2) + 1 + Tps(u;x0, ρ0/2) + Tqt(u;x0, ρ0/2)]β(q−p)+1,

where β ∈ N depends only on N , p, s, and α.

Concerning the case when the coefficients need not be locally translation invariant,
we have the following approximation lemma.
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Lemma 4.2. For any ε > 0, there exists a small δ = δ(data, ε) > 0 such that for any
weak solution u to (PA) in B4 ≡ B4(0) with

sup
B4

|u| ≤ 1, Tps(u; 0, 4) + Tqt(u; 0, 4) ≤ 1

and ( 
B4

|f |γ dx
)1/γ

+

 
B4

 
B4

(|a(x, y)− (a)4,0|+ |b(x, y)− (b)4,0|) dx dy ≤ δ,

there exists a weak solution v to

(4.1)

{
Lã,b̃v = 0 in B2,

v = u in RN \B2,

such that

‖u− v‖L∞(B1) ≤ ε,

where

(4.2) ã(x, y)=

{
(a)4,0 if (x, y)∈B4×B4,

a(x, y) otherwise,
and b̃(x, y)=

{
(b)4,0 if (x, y)∈B4×B4,

b(x, y) otherwise.

Proof: The existence of a weak solution v to (4.1) is given by Theorem 5.1 below.
To prove the claim, we proceed by the method of contradiction. Suppose there exist
ε0 > 0 and sequences {ak}k∈N, {bk}k∈N, {fk}k∈N, and {uk}k∈N such that

(4.3) Lak,bkuk = fk in B4

with

(4.4) sup
B4

|uk| ≤ 1, Tps(uk; 0, 4) + Tqt(uk; 0, 4) ≤ 1

and( 
B4

|fk|γ dx
)1/γ

+

 
B4

 
B4

(|ak(x, y)− (ak)4,0|+ |bk(x, y)− (bk)4,0|) dx dy ≤
1

k
,

but for any weak solution vk to

(4.5)

{
Lãk,b̃kvk = 0 in B2,

vk = uk in RN \B2,

there holds

(4.6) ‖uk − vk‖L∞(B1) > ε0.

Set wk := uk − vk. Then, from Lemmas A.1 and A.2, we see that vk ∈ L∞(B2) and
hence wk ∈ L∞(B4). On account of [22, Lemma 5.1], we check that wk is a well-
defined test function to the weak formulation of problems (4.3) and (4.5). We next
claim that

(4.7)

ˆ
B3/2

|wk(x)|p
∗
s dx→ 0 as k →∞.
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Testing wk to (4.3) and (4.5), we see that

I0 :=

ˆ
RN

ˆ
RN

ãk(x, y)([uk(x)− uk(y)]p−1 − [vk(x)− vk(y)]p−1)(wk(x)− wk(y)) dµ1

+

ˆ
RN

ˆ
RN

b̃k(x, y)([uk(x)− uk(y)]q−1 − [vk(x)− vk(y)]q−1)(wk(x)− wk(y)) dµ2

=

ˆ
RN

ˆ
RN

(ãk(x, y)− ak(x, y))[uk(x)− uk(y)]p−1(wk(x)− wk(y)) dµ1

+

ˆ
RN

ˆ
RN

(b̃k(x, y)− bk(x, y))[uk(x)− uk(y)]q−1(wk(x)− wk(y)) dµ2

+

ˆ
B4

fkwk dx =: I1 + I2.

Now we estimate each Ii for i = 0, 1, 2, and 3.

Estimate of I0. Using (2.3), we see that

I0 ≥
1

Λ
[wk]p

W s,p(RN )
.

Estimate of I2. We first note that there exists a constantc = c(q) such that

I2 =

ˆ
B4

ˆ
B4

(b̃k(x, y)− bk(x, y))[uk(x)− uk(y)]q−1(wk(x)− wk(y)) dµ2

≤ c
ˆ
B4

ˆ
B4

|b̃k(x, y)− bk(x, y)||uk(x)− uk(y)|p−1|wk(x)− wk(y)| dµ1,

where we have used the fact that tq ≤ ps and (4.4). In addition, using Hölder’s
inequality, (1.2), Theorem 1.1, and Young’s inequality, we find that there is a con-
stant c = c(data) which is independent of k such that

I2 ≤ c
( 

B4

 
B4

|b̃k(x, y)− bk(x, y)||uk(x)− uk(y)|p dµ1

)(p−1)/p

[wk]W s,p(B4)

≤ c
( 

B4

 
B4

|b̃k(x, y)− bk(x, y)| dx dy
)σ(p−1)
p(1+σ)

×

( 
B4

 
B4

(
|uk(x)− uk(y)|p

|x− y|N+ps

)(1+σ)

dx dy

) (p−1)
p(1+σ)

[wk]W s,p(B4)

≤ c
(

1

k

) σ
1+σ

+
I0
16
,

where we have chosen a sufficiently small σ > 0 so that Theorem 1.1 holds. Likewise,
we have

I1 ≤ c
(

1

k

) σ
1+σ

+
I0
16
.
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Estimate of I3. We use Hölder’s inequality, Young’s inequality, and the Sobolev–
Poincaré inequality to discover that

I3 ≤ ‖fk‖Lγ(B4)‖wk‖Lγ′ (B4) ≤ c‖fk‖
p′

Lγ(B4) +
I0
16
.

Combining all estimates I0, I1, and I2, we have

(4.8) [wk]p
W s,p(RN )

≤ c
(

1

k

) σ
1+σ

,

where c is independent of k. Therefore the claim (4.7) follows by the Sobolev–Poincaré
inequality and (4.8). Moreover, uk and vk are Hölder continuous in B2 with uniform
bound independent of k as in [22, Lemma 5.1]. By the Arzelà–Ascoli theorem, there is
a function w such that wk → w in Cβ(B3/2), up to a subsequence, for some β ∈ (0, 1).
By the uniqueness of the limit together with (4.7), we have that

lim
k→∞

‖uk − vk‖L∞(B3/2) = 0,

which is a contradiction to (4.6).

Lemma 4.3. Let u be a weak solution to (PA) in B4 ≡ B4(0) with

(4.9) sup
B4

|u| ≤ 1 and Tps(u; 0, 4) + Tqt(u; 0, 4) ≤ 1.

Given α ∈ (0,Θ), where Θ is given by (1.6), there exists a small constant δ =
δ(data, α) > 0 such that if kernel coefficients a and b are (δ, 4)-vanishing in B4 ×B4

and ( 
B4

|f |γ dx
)1/γ

≤ δ,

then u ∈ Cα(B1) with the estimate

[u]Cα(B1) ≤ c
for some constant c = c(data, α).

Proof: Let α ∈ (0,Θ) be fixed. We now show that for any x ∈ B1 there is a con-
stant Ax ∈ R such that

sup
y∈Br(x)

|u(y)−Ax| ≤ crα,

for any r ∈ (0, 1] and for some constant c = c(data, α). Using a translation argument
as in [31, Proposition 4.2], it suffices to prove the case for x = 0. To this end, we
show the following claim.

Claim. There exist ρ = ρ(data, α) ∈ (0, 1/4) and a sequence {Ak}∞k=−1 with A−1 = 0
such that for all k ≥ 0,

(4.10) |Ak −Ak−1| ≤ 2ρ(k−1)α, sup
B4

|u(ρkx)−Ak| ≤ ρkα,

and

(4.11) Tps

((
u(ρkx)−Ak

ρkα

)
; 0, 4

)
+ Tqt

((
u(ρkx)−Ak

ρkα

)
; 0, 4

)
≤ 1.

To prove the claim, we take ρ > 0 sufficiently small depending only on data and α >
0 such that

(4.12) ρ
Θ−α

2 ≤ 1

12Θ0+2c1c2
min

{[
sp−

(
Θ0 + α

2

)] 1
p−1

, 1

}
,
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where c1 = c1(data) ≥ 1 and c2 = c2(data) ≥ 1 are constants which are determined
later. For k = 0, we take A0 = 0; then (4.10) and (4.11) hold by (4.9). Suppose that
(4.10) and (4.11) hold for k = 0, 1, . . . , i. Set

ui(x) =
u(ρix)−Ai

ραi
, fi(x) = ρ(sp−α(p−1))if(ρix), x ∈ RN ;

ai(x, y) = a(ρix, ρiy) and bi(x, y) = b(ρix, ρiy)ρ(sp−tq+α(q−p))i, (x, y) ∈ R2N .

Then ui is a weak solution to

Lai,biui = fi, in B4.

By the inductive assumption, we have

sup
B4

|ui| ≤ 1 and Tps(ui; 0, 4) + Tqt(ui; 0, 4) ≤ 1.

Since ρ < 1, we notice that

Λ−1 ≤ ai ≤ Λ and 0 ≤ bi ≤ Λ.

By Lemma 4.2, we find δ0 = δ0(data, ε), corresponding to the given

(4.13) ε =
ρα

16c2
.

Taking δ = δ0
3 , we see that ai and bi are (δ, 4)-vanishing in B4 ×B4 because a and b

are (δ, 4)-vanishing in B4 ×B4. Therefore, we check that( 
B4

|fi|γ dx
)1/γ

+

 
B4

 
B4

(|ai(x, y)− (ai)4,0|+ |bi(x, y)− (bi)4,0|) dx dy ≤ δ0.

By Lemma 4.2, there exists a weak solution vi to the following problem:{
Lãi,b̃ivi = 0 in B2,

vi = ui in RN \B2,

such that

(4.14) ‖ui − vi‖L∞(B1) ≤ ε,

where ãi and b̃i are defined as in (4.2), corresponding to ai and bi, respectively. Before
checking the assumptions (4.10) and (4.11), we specify the constants c1 and c2.

1. Constant c1. We first note that there is a c = c(data) independent of i such that

(4.15) ‖vi‖Lp∗s (B2) ≤ c,

by following the proof in Lemma 4.2 with (4.9). From (4.15) and (4.14), we see that

(4.16) Tps(vi; 0, 2ρ) ≤ c(‖vi‖L∞(B3/2) + ‖vi‖Lp(B2)Tps(u; 0, 2)) ≤ c,

where c = c(data). In light of Lemma 4.1 and (4.16), there exists a constant c1 =
c1(data) ≥ 1 which is independent of i such that

(4.17) [vi]Cα̃(B1) ≤ c1,

where α̃ = (Θ0 + α)/2 < 1.

2. Constant c2. Set

(4.18) c2 = max{1, Tps(1;x0, R) + Tqt(1;x0, R)}, for R > 0 and x0 ∈ RN .

Then we find that c2 = c2(data) ≥ 1 and it is independent of R and x0.
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LetAi+1 = Ai+ρ
iαvi(0). We now check the inductive assumptions (4.10) and (4.11)

for i = k + 1. We first note that (4.14) also implies that

(4.19) |Ai+1 −Ai| ≤ ρiα|vi(0)| ≤ 2ρiα.

In addition, by (4.12), (4.14), and (4.17), we see that

sup
B4

|u(ρi+1x)−Ai+1| = sup
B4ρ

|u(ρix)−Ai − ρiαvi(0)|

≤ ρiα sup
B4ρ

|ui(x)− vi(x)|+ ρiα sup
B4ρ

|vi(x)− vi(0)|

≤ ρ(i+1)α

16
+ c1(4ρ)α̃ρiα ≤ ρ(i+1)α,

where we have used ρ ∈ (0, 1/4). Thus, we have shown that (4.10) holds for k = i+1.
Moreover, we observe that

Js,p :=

(
(4ρi+1)sp

ˆ
Bρi\B4ρi+1

|u(x)−Ai+1|p−1

ρ(i+1)α(p−1)|x|N+sp
dx

) 1
p−1

≤
(

(4ρ)sp
ˆ
B1\B4ρ

|u(ρix)− (Ai + vi(x)ρiα)|p−1

ρ(i+1)α(p−1)|x|N+sp
dx

) 1
p−1

+

(
(4ρ)sp

ˆ
B1\B4ρ

|vi(x)− vi(0)|p−1

ρα(p−1)|x|N+sp
dx

) 1
p−1

≤ c2
‖ui − vi‖L∞(B1)

ρα
+ c1

(
(4ρ)sp

ˆ
B1\B4ρ

dx

ρα(p−1)|x|N+sp−α̃(p−1)

) 1
p−1

≤ c2
ε

ρα
+

c2c14α̃

(sp− α̃(p− 1))
1
p−1

ρ
Θ−α

2 ≤ 1

8
,

(4.20)

where we have used (4.14), (4.17), (4.13), and (4.12). Similarly, we deduce that

(4.21) Jt,q ≤
1

8
.

Consequently, using (4.20), (4.21), and (4.18), we obtain

∑
l

Tl

((
u(ρi+1x)−Ai+1

ρα(i+1)

)
; 0, 4

)
=
∑
l

Tl

((
u(x)−Ai+1

ρα(i+1)

)
; 0, 4ρi+1

)

≤
∑
l

(4ρ)Θ0Tl

((
u(x)−Ai+1

ρα(i+1)

)
; 0, ρi

)
+Js,p+Jt,q

≤
∑
l

(4ρ)Θ0Tl

((
u(x)−Ai+1

ρα(i+1)

)
; 0, ρi

)
+

1

4
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for l ∈ {ps, qt}. With the help of (4.18), (4.19), (4.10), and (4.11) for k = i, we further
estimate∑

l

(4ρ)Θ0Tl

((
u(x)−Ai+1

ρα(i+1)

)
; 0, ρi

)

≤ 4Θ0

[∑
l

ρΘ0Tl

((
u(x)−Ai
ρα(i+1)

)
; 0, 4ρi

)
+
∑
l

ρΘ0Tl

(
1

ρα
; 0, 4ρi

)

+
∑
l

ρΘ0Tl

((
Ai −Ai+1

ρα(i+1)

)
; 0, ρi

)]

≤ 4Θ0

[∑
l

ρΘ0−αTl

((
u(x)−Ai

ραi

)
; 0, 4ρi

)
+ ρΘ0−α3c2

]

≤ 4Θ0 [4c2ρ
Θ0−α] ≤ 1

4
.

It gives that (4.11) holds for k = i+ 1, hence the claim follows. Thus, from the claim
with simple computations (see [8]), we see that

lim
i→∞

Ai = A < +∞.

In addition, for any r ∈ (0, 1], there is a constant c = c(data, α) such that

‖u(x)−A‖L∞(Br) = ‖u(x)−Aj‖L∞(Br) + |A−Aj | ≤ ρjα +

∞∑
k=j

2ρkα

≤ cρjα ≤ crα,

where j is the unique nonnegative number satisfying ρj+1 < r ≤ ρj .

Lemma 4.4. Let u be a local weak solution to (PA) and let the functions a and b be
in VMO. Then for any α ∈ (0,Θ), u ∈ Cαloc(Ω).

Proof: Let α ∈ (0,Θ0) be fixed and let δ = δ(data, α) be as obtained in Lemma 4.3.

Suppose Bρ0
(x0) b Ω. It suffices to show that u ∈ Cα(Bρ0

(x0)). Set

(4.22) R := dist(Bρ0
(x0), ∂Ω), R0 := ρ0 +R/2,

and

M := 8c2

[
‖u‖L∞(BR0

(x0)) + Tps(u;x0, R0) + Tqt(u;x0, R0)

+

(
R
sp−nγ
0 ‖f‖Lγ(BR0

(x0))

δ

) 1
p−1

+ 1

]
×
(

2R0

R

)N+sp
p−1

,

where c2 is given as in (4.18) of Lemma 4.3. Then we find that there is a constant

(4.23) ρ ∈

(
0,min

{
ρ0

4
,
R

4

})
depending only on data, M, νa, and νb such that

Mq−p
(
ρ

4

)sp−tq
≤ 1
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(this is possible because of the condition ps > qt) and the kernel coefficients a and b
are (δ, ρ)-vanishing in Bρ0(x0)×Bρ0(x0). We further note that

Bρ(z) ⊂ BR0
(x0), for every z ∈ Bρ0

(x0).

We define, for any z ∈ Bρ0
(x0),

uz(x) =
u
(
ρ
4x+ z

)
M

, fz(x) =

(
ρ

4

)sp
1

Mp−1
f

(
ρ

4
x+ z

)
, x ∈ B4,

and

az(x, y)=a

(
ρ

4
x+z,

ρ

4
y+z

)
, bz(x, y)=Mq−p

(
ρ

4

)sp−tq
b

(
ρ

4
x+z,

ρ

4
y+z

)
, (x, y)∈R2N .

Then we directly see that

Laz,bzuz = fz, in B4(0)

with

sup
B4

|uz| ≤ 1 and

( 
B4

|f |γ dx
)1/γ

≤ δ.

On the other hand, for l ∈ {ps, qt}, we note that

∑
l

Tl(uz; 0, 4) =
1

M
∑
l

Tl(u; z, ρ) ≤
(

2R0

R

)N+sp
p−1 1

M
∑
l

Tl(u;x0, R0)

+
1

M
∑
l

Tl

((
R

2R0

)N+sp
p−1 M

8c2
; z, ρ

)

≤ 1

8c2
+

1

4
≤ 1,

where we have used (4.23), (4.22), and the fact that

|y − z| ≥ |y − x0| − |x0 − z| ≥ |y − x0| −
ρ0

R0
|y − x0| ≥

R

2R0
|y − x0|, y ∈ BR0(x0)c.

Moreover, the kernel coefficients az and bz are (δ, 4)-vanishing in B4 × B4 and the
following holds:

Λ−1 ≤ az ≤ Λ and 0 ≤ bz ≤ Λ.

By Lemma 4.3, uz ∈ Cα(B1). Scaling it back, we obtain u ∈ Cα(Bρ(z)) for any z ∈
Bρ0(x0). Using the standard covering argument as in [31, Theorem 4.3], we have the
desired result.

Now we return to our original problem; that is, the coefficient function a has the
form a(x, y, u(x), u(y)), where u is a solution under consideration.

Lemma 4.5. For a weak solution u ∈ Cσloc(Ω) to (P), for some σ ∈ (0, 1), the
coefficient function a(x, y, u(x), u(y)) is in VMO on Bρ(x0)×Bρ(y0) for any x0, y0 ∈
RN and ρ > 0 satisfying Bρ(x0), Bρ(y0) b Ω.
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Proof: Fix x0, y0 ∈ Ω and ρ > 0 such that Bρ(x0), Bρ(y0) b Ω. Then, for all r < ρ,
using the continuity and VMO properties, we have 
Br(x0)

 
Br(y0)

∣∣∣∣a(x, y, u(x), u(y))−
 
Br(x0)

 
Br(y0)

a(x′, y′, u(x′), u(y′)) dx′ dy′
∣∣∣∣ dx dy

≤ 2

 
Br(x0)

 
Br(y0)

|a(x, y, u(x), u(y))− a(x, y, u(x0), u(y0))| dx dy

+

 
Br(x0)

 
Br(y0)

|a(x, y, u(x0), u(y0))− (a)r,x0,y0
(u(x0), u(y0))| dx dy

≤ 2

 
Br(x0)

 
Br(y0)

ωa,M

(
|u(x)− u(x0)|+ |u(y)− u(y0)|

2

)
dx dy + νa,M (ρ),

where M = 2 max{‖u‖L∞(Bρ(x0)), ‖u‖L∞(Bρ(y0))}, ωa,M is given by property (A3),
and νa,M by (2.2). The right-hand side terms converge to 0 as ρ → 0 due to the
assumption (A3) and the VMO condition of Definition 2.2. This proves the lemma.

Proof of Theorem 1.2: Let Bρ0
(x0) b Ω and α ∈ (0,Θ0) be fixed. It suffices to show

that u ∈ Cα(Bρ0
(x0)). Set

R := dist(Bρ0
(x0), ∂Ω) and R0 := ρ0 +R/2.

In light of Lemma 4.5 and simple computations, we see thatA(x, y) :=a(x, y, u(x),u(y))
is in VMO on BR0(x0)×BR0(x0), symmetric and satisfies (1.1). Since u solves

LA,b u = f in BR0
(x0),

where Λ−1 ≤ A ≤ Λ, it gives that u ∈ Cσloc(Ω) for some σ = σ(data) ∈ (0, 1). By
Lemmas 4.4 and 4.5, the result follows.

5. The existence result

This section provides the solvability of the following Dirichlet problem:

(G)

{
La(·,u),b u = f in Ω,

u = g in RN \ Ω,

where Ω ⊂ RN is a bounded open set, and f and g are suitable measurable functions.
With g ∈ Lp−1

ps (RN ) ∩ Lq−1
qt,b (RN ) and Ω b Ω′ b RN , we define

Xg,b(Ω,Ω
′) := {v ∈ Wb(Ω

′) ∩ Lp−1
ps (RN ) ∩ Lq−1

qt,b (RN ) : v = g a.e. in RN \ Ω},

equipped with the norm of Wb(Ω
′). Once again, we will suppress the term b from the

above definition whenever it is clear in the context. Now we define the notion of a
weak solution to (G) as usual.

Definition 5.1. Let f ∈ (W(Ω′))∗ and g ∈ W(Ω′)∩Lp−1
ps (RN )∩Lq−1

qt,b (RN ), for Ω b

Ω′ b RN . A function u ∈ Xg(Ω,Ω
′) is said to be a weak solution of the problem (G),

if for all φ ∈ X0(Ω,Ω′),
ˆ
RN

ˆ
RN

(
a(x, y, u(x), u(y))

[u(x)−u(y)]p−1

|x− y|N+ps
+b(x, y)

[u(x)−u(y)]q−1

|x− y|N+qt

)
(φ(x)−φ(y)) dx dy

= 〈f, φ〉W,W∗ .

To prove our existence result, we consider the case when the kernel coeffi-
cient a(·, ·, ·, ·) satisfies a global uniform continuity condition (stronger than (A3)),
namely
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(A3)’ the function a is uniformly continuous in RN × RN × R× R; that is, there is a
nondecreasing function ωa : [0,∞) → [0,∞) with ωa(0) = 0 and lim

t↓0
ωa(t) = 0

such that

(5.1) |a(x, y, w, z)− a(x, y, w′, z′)| ≤ ωa
(
|w − w′|+ |z − z′|

2

)
for all z, z′, w, w′ ∈ R uniformly in (x, y) ∈ RN × RN .

Theorem 5.1. Suppose that 2 ≤ p ≤ q < ∞, s, t ∈ (0, 1), and that the coefficients
satisfy the assumptions (A1), (A2), and (A3)’. Let f ∈ (W(Ω′))∗ and g ∈ W(Ω′) ∩
Lp−1
ps (RN ) ∩ Lq−1

qt,b (RN ), for Ω b Ω′ b RN . Then, there exists a weak solution u ∈
Xg(Ω,Ω

′) to the problem (G). In particular, if g ∈ W(Ω′) ∩ Lp−1
ps (RN ) ∩ Lq−1

qt (RN )
and q ≤ p∗s, then

u ∈ W(Ω′) ∩ Lp−1
ps (RN ) ∩ Lq−1

qt (RN ).

Proof: We see that, as in the proof of [4, Lemma 2.11], the space X0(Ω,Ω′) is continu-
ously embedded intoW(Ω′). Moreover, we can directly verify that X0(Ω,Ω′) is a sep-
arable uniformly convex Banach space. We now define a functional A : X0(Ω,Ω′) →
(W(Ω′))∗ by

A := Ap +Aq,
where

〈Ap(v), φ〉 =

ˆ
Ω′

ˆ
Ω′
a(x, y, v(x), v(y))

[v(x)+g(x)−v(y)−g(y)]p−1

|x− y|N+ps
(φ(x)− φ(y)) dx dy

+ 2

ˆ
RN\Ω′

ˆ
Ω

a(x, y, v(x), g(y))
[v(x) + g(x)− g(y)]p−1

|x− y|N+ps
φ(x) dx dy

=: 〈A1
p(v), φ〉+ 〈A2

p(v), φ〉 for all φ ∈ W(Ω′)

and Aq is defined analogously. By virtue of Hölder’s inequality and recalling the
definition of W (as stated in (2.1)), we obtain

|〈Aq(v), φ〉| ≤
ˆ

Ω′

ˆ
Ω′
b(x, y)

|v(x) + g(x)− v(y)− g(y)|q−1

|x− y|N+qt
|φ(x)− φ(y)| dx dy

+ c(q)

ˆ
RN\Ω′

ˆ
Ω

b(x, y)
|v(x) + g(x)|q−1 + |g(y)|q−1

|x− y|N+qt
|φ(x)| dx dy

≤ c([v]q−1

W t,q
b (Ω′)

+ [g]q−1

W t,q
b (Ω′)

)[φ]W t,q
b (Ω′)

+ c

ˆ
Ω′
W (x)|v(x) + g(x)|q−1|φ(x)| dx

+ c

ˆ
Ω

|φ(x)|
ˆ
RN\Ω′

b(x, y)
|g(y)|q−1

|x− y|N+qt
dy dx

≤ c([v]q−1

W t,q
b (Ω′)

+ [g]q−1

W t,q
b (Ω′)

)[φ]W t,q
b (Ω′)

+ c

(ˆ
Ω′
W (x)|(v + g)(x)|q dx

) 1
q′
(ˆ

Ω′
W (x)|φ(x)|q dx

) 1
q

+ c

(ˆ
Ω

|φ(x)|p dx
) 1
p
(

sup
x∈RN

ˆ
RN

b(x, y)
|g(y)|q−1

(1 + |y|)N+tq
dy

)
≤ c(‖v‖q−1

W(Ω′) + ‖g‖q−1
W(Ω′) + ‖g‖q−1

Lq−1
qt,b (RN )

)‖φ‖W(Ω′),

(5.2)
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where c = c(data,dist(Ω,Ω′)). A similar result holds for the p-term, too, by simply
using the bound (1.1). Consequently, we get that A is a well-defined operator. More-
over, (5.2) together with its p-counterpart shows that the operator A is bounded; i.e.,
it maps bounded sets to bounded sets. We next prove that A is weakly continuous.
For this, let {uk} ⊂ X0(Ω,Ω′) be a sequence such that uk ⇀ u, weakly in W(Ω′) for
some u ∈ X0(Ω,Ω′). Then, we claim that

lim
k→∞

〈A(uk), φ〉 = 〈A(u), φ〉 for all φ ∈ X0(Ω,Ω′).

Using the bound on the function a, we observe that

|〈A(uk)−A(u), φ〉|

≤
ˆ

Ω′

ˆ
Ω′
|a(x, y, uk(x), uk(y))− a(x, y, u(x), u(y))||(u+ g)(x)− (u+ g)(y)|p−1

× |φ(x)− φ(y)| dµ1

+2

ˆ
Ω

ˆ
RN\Ω′

|a(x, y, uk(x), g(y))−a(x, y, u(x), g(y))||u(x)+g(x)−g(y)|p−1|φ(x)| dµ1

+Λ

ˆ
Ω′

ˆ
Ω′
|[(uk+g)(x)−(uk+g)(y)]p−1−[(u+g)(x)−(u+g)(y)]p−1||φ(x)−φ(y)| dµ1

+2Λ

ˆ
Ω

ˆ
RN\Ω′

|[(uk + g)(x)− g(y)]p−1 − [(u+ g)(x)− g(y)]p−1||φ(x)| dµ1

+ |〈A1
q(uk)−A1

q(u), φ〉|+ |〈A2
q(uk)−A2

q(u), φ〉|.

(5.3)

By the definition of X0(Ω,Ω′) together with the weak convergence and compactness
of the Sobolev embedding, we infer that, up to a subsequence, uk(x) → u(x) a.e.
in Ω′. Hence, using the uniform continuity condition of (5.1), we deduce that the first
two terms on the right-hand side of (5.3) converge to 0, as k → ∞. To prove the
convergence of the third term, on the contrary, we assume that there exist ε0 > 0 and
a subsequence {uk} (up to relabeling) such that

(5.4)

ˆ
Ω′

ˆ
Ω′
|[(uk+g)(x)−(uk+g)(y)]p−1−[(u+g)(x)−(u+g)(y)]p−1||φ(x)−φ(y)| dµ1≥ε0.

Since {uk} is bounded inW(Ω′), using the definition of the norm onW(Ω′), we observe

that the sequence
{ [(uk+g)(x)−(uk+g)(y)]p−1

|x−y|
N+ps
p′

}
is bounded in Lp

′
(Ω′×Ω′). Thus, by the

reflexivity of the space Lp
′

and the pointwise convergence uk → u a.e. in Ω′, up to a
subsequence (again up to relabeling), we get that

[(uk+g)(x)−(uk + g)(y)]p−1

|x− y|
N+ps
p′

⇀
[(u+g)(x)−(u+ g)(y)]p−1

|x− y|
N+ps
p′

weakly in Lp
′
(Ω′ ×Ω′),

as k → ∞. Owing to the fact |φ(x)−φ(y)|

|x−y|
N+ps
p

∈ Lp(Ω′ × Ω′) (due to φ ∈ W(Ω′)), we

find a contradiction to (5.4). Consequently, the third term on the right-hand side
of (5.3) converges to 0, as k → ∞. Similarly, for the fifth term, we note that
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the sequence
{
b(x, y)

1
q′ [(uk+g)(x)−(uk+g)(y)]q−1

|x−y|
N+qt
q′

}
is bounded in Lq

′
(Ω′ × Ω′). There-

fore, by the reflexivity of the space Lq
′

and proceeding as above by noting that

b(x, y)
1
q
|φ(x)−φ(y)|

|x−y|
N+qt
q

∈ Lq(Ω′ × Ω′), we get that the fifth term also converges to 0. It

remains to prove the convergence of the fourth and the sixth terms on the right-hand
side of (5.3). Using (2.4) and Hölder’s inequality, we deduce that

ˆ
Ω

ˆ
RN\Ω′

b(x, y)|[(uk + g)(x)− g(y)]q−1 − [(u+ g)(x)− g(y)]q−1||φ(x)| dµ2

≤ c
ˆ

Ω′
|uk(x)− u(x)|q−1|φ(x)|

ˆ
RN\Ω′

b(x, y)

|x− y|N+qt
dy dx

+ c

ˆ
Ω

ˆ
RN\Ω′

b(x, y)|φ(x)||uk(x)− u(x)||u(x) + g(x)− g(y)|q−2 dµ2

≤ c
ˆ

Ω′
W (x)|uk(x)−u(x)|q−1|φ(x)| dx+c

(ˆ
Ω′
W (x)|uk(x)−u(x)|q−1|φ(x)| dx

) 1
q−1

×
(ˆ

Ω

ˆ
RN\Ω′

b(x, y)|u(x) + g(x)− g(y)|q−1|φ(x)| dµ2

) q−2
q−1

,

where W is as defined in (2.1) with Ω′ in place of Ω. From (5.2), we see that the
second quantity on the right-hand side of the second term is finite. Then, recalling
the definition of the norm onW(Ω′) and arguing as above (the case of the fifth term),
we get that the sixth term on the right-hand side of (5.3) converges to 0. Similarly,
we see that the fourth term on the right-hand side of (5.3) tends to 0. Hence, we
prove the claim.

Next, to prove coercivity of the operator A, for any v ∈ X0(Ω,Ω′), using Hölder’s
and Young’s inequalities, we first see that

〈A1
p(v), v〉=

ˆ
Ω′

ˆ
Ω′
a(x, y, v(x), v(y))([(v+g)(x)−(v+g)(y)]p−1−[g(x)−g(y)]p−1)

× (v(x)− v(y)) dµ1

+

ˆ
Ω′

ˆ
Ω′
a(x, y, v(x), v(y))[g(x)− g(y)]p−1(v(x)− v(y)) dµ1

≥ 1

c

ˆ
Ω′

ˆ
Ω′
|v(x)− v(y)|p dµ1−c

ˆ
Ω′

ˆ
Ω′
|g(x)−g(y)|p−1|v(x)−v(y)| dµ1

≥ 1

c

ˆ
Ω′

ˆ
Ω′
|v(x)− v(y)|p dµ1−c

ˆ
Ω′

ˆ
Ω′
|g(x)−g(y)|p dµ1,

(5.5)

where we have also used (1.1) and (2.3). Similarly, we discover that

(5.6) 〈A1
q(v), v〉≥ 1

c

ˆ
Ω′

ˆ
Ω′
b(x, y)|v(x)−v(y)|q dµ2−c

ˆ
Ω′

ˆ
Ω′
b(x, y)|g(x)−g(y)|q dµ2.
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Furthermore, using the inequality (2.3) once again and the definition of W , we observe
that

〈A2
q(v), v〉=

ˆ
Ω

ˆ
RN\Ω′

b(x, y)([v(x) + g(x)− g(y)]q−1 − [g(x)− g(y)]q−1)v(x) dµ2

+

ˆ
Ω

ˆ
RN\Ω′

b(x, y)[g(x)− g(y)]q−1v(x) dµ2

≥ 1

c

ˆ
Ω

ˆ
RN\Ω′

|v(x)|q b(x, y)

|x− y|N+qt
dx dy

− c
ˆ

Ω

ˆ
RN\Ω′

(|g(x)|q−1 + |g(y)|q−1)|v(x)| b(x, y)

|x− y|N+qt
dx dy

≥ 1

c

ˆ
Ω′
W (x)|v(x)|q dx−c

(ˆ
Ω′
W (x)|g(x)|q dx

) 1
q′
(ˆ

Ω′
W (x)|v(x)|q dx

)1
q

− c
(ˆ

Ω

|v(x)| dx
)
‖g‖q−1

Lq−1
qt,b (RN )

≥ 1

c

ˆ
Ω′
W (x)|v(x)|q dx− c

ˆ
Ω′
W (x)|g(x)|q dx− ε

ˆ
Ω

|v(x)|p dx

− cε
−1
p−1 ‖g‖p

′(q−1)

Lq−1
qt,b (RN )

,

(5.7)

where we have also used the fact that v = 0 in Ω′ \ Ω and Young’s inequality on the
last line. On a similar note,

(5.8) 〈A2
p(v), v〉 ≥ 1

2c

ˆ
Ω′
|v(x)|p dx− c

ˆ
Ω′
|g(x)|p dx− c‖g‖p

Lp−1
ps (RN )

.

Finally, combining (5.5), (5.6), (5.7), and (5.8) with ε = 1
4c , and recalling the definition

of the norm on W(Ω′), we obtain

〈A(v), v〉 ≥ 1

4c
min{‖v‖pW(Ω′), ‖v‖

q
W(Ω′)} − c‖g‖

p
W s,p(Ω′) − c‖g‖

q

W t,q
b (Ω′)

− c(‖g‖p
Lp−1
ps (RN )

+ ‖g‖p
′(q−1)

Lq−1
qt,b (RN )

),

where the constant c depends only on data, Ω, and Ω′. This proves the coercivity of
the operator A.

Consequently, by [38, Example 2.A, p. 40], it follows that the operator A is of
M -type. Note that X0(Ω,Ω′) is a separable reflexive Banach space and (W(Ω′))∗ ⊂
(X0(Ω,Ω′))∗. Hence, using [38, Corollary 2.2, p. 39], we get that the map A is sur-
jective. Moreover, the last statement is true considering u ∈ Lq−1(Ω) by q ≤ p∗s. This
completes the proof of the theorem.

Appendix A. Boundedness results

We first give a boundedness result for the problem (P) whose proof runs along the
same lines of [23, Proposition 3.1] by using the Caccioppoli estimate of Lemma 3.1.
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Lemma A.1. Suppose that q < p∗s and qt ≤ ps. Let u be a local weak solution to
the problem (P) in Ω. Then, there exists a constant c depending only on data and γ
(if γ <∞) such that

‖u‖L∞(Br(x0)) ≤ c

(( 
B2r(x0)

|u(x)|ϑ dx
)q/(pϑ)

+ ‖f‖1/(p−1)
Lγ(B2r(x0))

+ Tps(u;x0, 2r) + Tqt,b(u;x0, 2r) + 1

)
,

provided B2r(x0) b Ω, where ϑ = max{q, pς} with ς =
pγ−(p∗s)′

p(γ−(p∗s)′)

(
<

p∗s
p

)
if γ < ∞,

while ς = 1 if γ =∞.

Let Bρ0
≡ Bρ0

(0). We next consider the following problem:

(Pb)

{
La(·,v),bv = f in B3ρ0/2,

v = g in RN \B3ρ0/2,

where g ∈ Wb(B2ρ0
)∩L∞(B2ρ0

)∩Lp−1
ps (RN )∩Lq−1

qt,b (RN ) and f ∈ Lγloc(B2ρ0
) with γ >

max{1, N/(ps)}. Let v ∈ Xg,b(B3ρ0/2, B2ρ0
) be a weak solution to the problem (Pb).

Then, v enjoys the same Caccioppoli-type estimate as in Lemma 3.1 and hence
Lemma A.1 holds for v, too. We next see the boundary estimate of the solution v. Pre-
cisely, we have the following estimate using [27, Theorem 5] and [23, Proposition 3.1]
with slight modifications.

Lemma A.2. Suppose that q < p∗s and qt ≤ ps. Let v ∈ Xg,b(B3ρ0/2, B2ρ0
) be a weak

solution to (Pb) with f ∈ Lγ(B2r(x0) ∩ B3ρ0/2) and g ∈ L∞(B2ρ0), for some r ∈
(0, 1/16) and x0 ∈ ∂B3ρ0/2. Then there is a constant c depending only on data and γ
(if γ <∞) such that

‖v‖L∞(Br(x0)) ≤ c

(( 
B2r(x0)

|v(x)|ϑ dx
)q/(pϑ)

+ ‖f‖1/(p−1)
Lγ(B2r(x0)∩B3ρ0/2)

+ Tps(v;x0, 2r) + Tqt,b(v;x0, 2r) + ‖g‖L∞(B2ρ0 ) + 1

)
,

where ϑ is the same number as in Lemma A.1.
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Laplacian in the superquadratic case, Adv. Math. 338 (2018), 782–846. DOI: 10.1016/j.aim.
2018.09.009.
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