
Publ. Mat. 68 (2024), 407–429

DOI: 10.5565/PUBLMAT6822403

SUMMABILITY AND DUALITY

Soumitra Ghara, Javad Mashreghi, and Thomas Ransford

Abstract: We formalize the observation that the same summability methods converge in a Banach
space X and its dual X∗. At the same time we determine conditions under which these methods

converge in weak and weak* topologies on X and X∗ respectively. We also derive a general limitation
theorem, which yields a necessary condition for the convergence of a summability method in X.

These results are then illustrated by applications to a wide variety of function spaces, including

spaces of continuous functions, Lebesgue spaces, the disk algebra, Hardy and Bergman spaces, the
BMOA space, the Bloch space, and de Branges–Rovnyak spaces. Our approach shows that all these

applications flow from just two abstract theorems.
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1. Introduction

Let X be a Banach space of holomorphic functions on the open unit disk D, and
suppose that X contains the polynomials. Every function f ∈ X has a Taylor ex-
pansion f(z) =

∑
j≥0 ajz

j , which converges locally uniformly on D to f(z). However,
it can happen that the series fails to converge to f in the norm of X. This is the
case, for example, whenever polynomials are not dense in X, but it may occur even
when they are dense. Here is a short list of examples illustrating various possibilities,
ranging from ‘best’ to ‘worst’.

(1) If X is the Hardy space H2, then the Taylor series of f does converge to f in
the norm of X. The same is true if X is the Dirichlet space or the Bergman
space.

(2) If X is the disk algebra A(D), then the Taylor series of f may fail to converge in
the norm of X (du Bois-Reymond’s example), but its Cesàro means do converge
in norm (Fejér’s theorem).

(3) If X is a de Branges–Rovnyak space H(b), then, for certain choices of b and f ,
the Cesàro means may fail to converge in norm, though polynomials are still
dense in X (see [3]).

(4) If X fails to have the bounded approximation property, then no lower-triangular
summation method can converge in norm for every function, even though poly-
nomials may still be dense in X (see [13]).

In this article we are mainly interested in cases like (2) and (3), where some summa-
bility methods work and others do not, and the problem is to determine the range of
methods that do work. Our starting point is the fact that, typically, the same methods
tend to work in X and in its dual X∗. This is because the convergence of a summa-
bility method often boils down to whether a certain sequence of summation operators
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is uniformly bounded in norm, and an operator has the same norm as its adjoint. We
formalize this idea, at the same time linking it to weak and weak* convergence in X
and X∗ respectively. We also derive a general limitation theorem, namely a necessary
condition for the convergence of a summability method in a given Banach space. The
proofs of these results are carried out in two steps: in Section 2 we establish a gen-
eral operator-theoretic result, which is then used in Section 3 to derive the abstract
summability theorems.

The rest of the article is devoted to various examples and applications of these re-
sults. In Section 4 we consider continuous-function and Lebesgue spaces, as well as the
disk algebra. In Section 5 we deal with the Hardy and Bergman spaces and their rela-
tives, BMOA and the Bloch space. Finally, in Section 6, we consider reproducing ker-
nel Hilbert spaces of holomorphic functions, and, in particular, de Branges–Rovnyak
spaces. Some of the applications are already known, others are slight generalizations
of known results, and some are completely new. Our approach shows that they all
flow from just two abstract theorems.

2. Operator theory

In what follows, X is a real or complex Banach space. We write X∗ for the dual
space of X, and 〈·, ·〉 for the duality pairing between X and X∗. We use w and w∗

to denote the weak and weak* topologies on X and X∗ respectively. Lastly, given a
bounded operator T on X, we write T ∗ for the adjoint operator on X∗, defined by
the relation

〈x, T ∗φ〉 = 〈Tx, φ〉 (x ∈ X, φ ∈ X∗).
The purpose of this section is to establish the following result.

Theorem 2.1. Let (Tn)n≥0 be a sequence of bounded, finite-rank operators on X
such that

TnTm(X) ⊂ Tm(X) and T ∗nT
∗
m(X∗) ⊂ T ∗m(X∗) (m,n ≥ 0).

Let

Y := span
(⋃

m≥0
Tm(X)

)
and Z := span

(⋃
m≥0

T ∗m(X∗)
)
,

where the closures are taken in the norm topologies of X and X∗ respectively. Then
the following statements are equivalent:

(i) Tnx→ x in (X,w) for all x ∈ X;

(ii) Tnx→ x in (X, ‖ · ‖) for all x ∈ X;

(iii) T ∗nφ→ φ in (X∗, w∗) for all φ ∈ X∗;
(iv) T ∗nφ → φ in (X∗, w∗) for all φ ∈ Z, and Z is w∗-sequentially dense in X∗

and Y = X;

(v) T ∗nφ → φ in (X∗, ‖ · ‖) for all φ ∈ Z, and Z is w∗-sequentially dense in X∗

and Y = X.

If, further, X is reflexive, then these are equivalent to:

(vi) T ∗nφ→ φ in (X∗, ‖ · ‖) for all φ ∈ X∗.

We shall prove this result via a series of lemmas, beginning with a very simple one.

Lemma 2.2. Let (Tn)n≥0 be a sequence of bounded operators on X. The following
statements are equivalent:

(i) Tnx→ x in (X,w) for all x ∈ X;

(ii) T ∗nφ→ φ in (X∗, w∗) for all φ ∈ X∗.
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Proof: We have

Tnx
w−→ x ∀x ∈ X ⇐⇒ 〈Tnx, φ〉 −→ 〈x, φ〉 ∀φ ∈ X∗, ∀x ∈ X,

⇐⇒ 〈x, T ∗nφ〉 −→ 〈x, φ〉 ∀x ∈ X, ∀φ ∈ X∗,

⇐⇒ T ∗nφ
w∗−→ φ ∀φ ∈ X∗.

We next establish a similar result relating weak convergence in X to norm conver-
gence. In order to obtain an equivalence, we need to impose some conditions on the
operators Tn.

Lemma 2.3. Let (Tn)n≥0 be a sequence of bounded, finite-rank operators on X such
that

(2.1) TnTm(X) ⊂ Tm(X) (m,n ≥ 0).

Then the following statements are equivalent:

(i) Tnx→ x in (X,w) for all x ∈ X;

(ii) Tnx→ x in (X, ‖ · ‖) for all x ∈ X.

Remarks. (1) Lemma 2.3 fails without the assumption ‘finite-rank’. For example, if
X := `2(Z+) and Tn := I + Sn, where S is the unilateral shift on `2(Z+), then
TnTm = TmTn for all m, n, so (2.1) holds, and

Tnx− x = Snx
w−→ 0 ∀x ∈ `2(Z+),

but
‖Tne0 − e0‖2 = ‖en‖2 6−→ 0.

(2) Lemma 2.3 also fails without the assumption (2.1). For example, if X = `2(Z+)
and Tn :=

∑n
j=0(ej ⊗ ej) + (en⊗ e0), then each Tn is a bounded, finite-rank operator,

and
Tnx− x = −

∑
j>n

〈x, ej〉ej + 〈x, e0〉en
w−→ 0 ∀x ∈ `2(Z+),

but
‖Tne0 − e0‖2 = ‖en‖2 6−→ 0.

Note that, in this example, if m < n, then Tm(X) = span{e0, e1, . . . , em}, while
TnTm(X) = span{e0 + en, e1, . . . , em}.

Proof of Lemma 2.3: It is enough to prove that (i)⇒ (ii), since the reverse implication
is obvious. Suppose then that Tnx → x weakly for all x ∈ X. We need to show that
it also converges in norm. This will be done in four steps.

The first step is to show that ‖Tnx − x‖ → 0 if x ∈ span(∪mTm(X)). Fix m and
let ψ be a continuous linear functional on Tm(X). By the Hahn–Banach theorem, we
can extend ψ to a continuous linear functional φ on the whole of X. Therefore, for
all x ∈ Tm(X), we have

〈Tnx, ψ〉 = 〈Tnx, φ〉 −→ 〈x, φ〉 = 〈x, ψ〉.
This shows that Tnx→ x weakly in Tm(X). As dim(Tm(X)) <∞, the weak topology
and norm topology coincide, so ‖Tnx−x‖ → 0 for all x ∈ Tm(X). Finally, by linearity,
it follows that ‖Tnx− x‖ → 0 for all x ∈ span

(⋃
m Tm(X)

)
, as claimed.

The second step is to show that span
(⋃

m Tm(X)
)

is norm-dense in X. Suppose
the contrary. Then, by the Hahn–Banach theorem, there exists φ ∈ X∗ \ {0} such
that φ = 0 on span

(⋃
m Tm(X)

)
. For all m ≥ 1, we have

〈x, T ∗mφ〉 = 〈Tmx, φ〉 = 0 (x ∈ X),
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so T ∗mφ = 0. Also, from Lemma 2.2, we know that T ∗mφ→ φ in (X∗, w∗). Hence φ = 0.
This contradicts the choice of φ. We conclude that, as claimed, span

(⋃
m Tm(X)

)
is

norm-dense in X.
The third step is to show that supn ‖Tn‖ <∞. For each x ∈ X, the sequence (Tnx)

converges weakly, so it is weakly bounded. By the Banach–Steinhaus theorem, it is
also norm-bounded, i.e., supn ‖Tnx‖ < ∞. As this holds for each x ∈ X, a second
application of Banach–Steinhaus shows that supn ‖Tn‖ <∞, as claimed.

The fourth and final step is to show that ‖Tnx− x‖ → 0 for all x ∈ X. Let x ∈ X
and let ε > 0. By the second and third steps, there exists x0 ∈ span

(⋃
m Tm(X)

)
such that ‖x − x0‖ < ε/(1 + supn ‖Tn‖). By the first step, there exists n0 such that
‖Tnx0 − x0‖ < ε for all n ≥ n0. Then, if n ≥ n0, we have

‖Tnx− x‖ ≤ ‖Tn(x− x0)‖+ ‖Tnx0 − x0‖+ ‖x0 − x‖ < 3ε.

Thus ‖Tnx− x‖ → 0, as was to be proved.

If X is reflexive, then we may interchange the roles of X and X∗ in Lemma 2.3,
and deduce the following corollary.

Corollary 2.4. Suppose that X is reflexive. Let (Tn)n≥0 be a sequence of bounded,
finite-rank operators on X such that

(2.2) T ∗nT
∗
m(X∗) ⊂ T ∗m(X∗) (m,n ≥ 0).

Then the following statements are equivalent:

(i) T ∗nφ→ φ in (X∗, w∗) for all φ ∈ X∗;
(ii) T ∗nφ→ φ in (X∗, ‖ · ‖) for all φ ∈ X∗.

Remark. If X is not reflexive, then Corollary 2.4 may break down. For example, let
X := `1(Z+) and let Tn : `1(Z+) → `1(Z+) be the projection onto the first n co-
ordinates. Its adjoint T ∗n : `∞(Z+) → `∞(Z+) is also the projection onto the first
n coordinates. The sequences (Tn) and (T ∗n) satisfy (2.1) and (2.2) respectively. Also
‖Tnx − x‖1 → 0 for all x ∈ `1(Z+), so by Lemmas 2.2 and 2.3 we have T ∗nφ → φ
weak* for all φ ∈ `∞(Z+). However, if φ0 := (1, 1, 1, . . . ), then ‖T ∗nφ0 − φ0‖∞ 6→ 0.
Note that, in this example, the norm closure of span

⋃
n T
∗
n(X∗) is c0.

Here is a version of Corollary 2.4 valid for all X, not necessarily reflexive.

Lemma 2.5. Let (Tn)n≥0 be a sequence of bounded, finite-rank operators on X such
that

(2.3) Tn(Tm(X)) ⊂ Tm(X) and T ∗n(T ∗m(X∗)) ⊂ T ∗m(X∗) (m,n ≥ 0).

Let

Y := span
(⋃

m≥0
Tm(X)

)
and Z := span

(⋃
m≥0

T ∗m(X∗)
)
,

where the closures are taken in the norm topologies of X and X∗ respectively. Then
the following statements are equivalent:

(i) T ∗nφ→ φ in (X∗, w∗) for all φ ∈ X∗;
(ii) T ∗nφ → φ in (X∗, w∗) for all φ ∈ Z, and Z is w∗-sequentially dense in X∗

and Y = X;

(iii) T ∗nφ → φ in (X∗, ‖ · ‖) for all φ ∈ Z, and Z is w∗-sequentially dense in X∗

and Y = X.

For the proof, we need a further lemma.
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Lemma 2.6. Let Z be a subspace of X∗ that is w∗-sequentially dense in X∗. Then
the w∗-closure of the unit ball of Z contains a positive multiple of the unit ball of X∗.

Proof: Let C be the closure in (X∗, w∗) of the unit ball of Z. Given φ ∈ X∗, there
exists a sequence (φn) in Z such that φn is w∗-convergent to φ. By the Banach–
Steinhaus theorem, since (φn) is w∗-bounded, it is norm-bounded. Hence there exists
an integer m ≥ 1 such that φ ∈ mC. Thus we have

⋃
m≥1mC = X∗. Each set mC

is w∗-closed in X∗, so it is certainly norm-closed. We may therefore apply Baire’s
theorem to deduce that there exists m0 such that m0C has a non-empty norm interior.
As m0C is a convex, symmetric set, it follows that 0 belongs to the norm interior
of m0C. In other words, C contains a ball around 0.

Proof of Lemma 2.5: (i)⇒ (ii): Suppose that (i) holds. Then it is obvious that T ∗nφ→
φ for all φ ∈ Z, and also that Z is w∗-sequentially dense in X∗. Finally, by Lemmas 2.2
and 2.3, (i) implies that Tnx→ x in norm for all x ∈ X, and this entails that Y = X.

(ii)⇒ (iii): Suppose that (ii) holds. By (ii), we have T ∗nφ→ φ in (X∗, w∗) for each φ ∈
Z. By the Banach–Steinhaus theorem, applied to the sequence (T ∗n |Z) on Z, we have
supn ‖T ∗n |Z‖ <∞.

Let m ≥ 0. Then T ∗nφ→ φ in (X∗, w∗) for all φ ∈ T ∗m(X∗). Since dim(T ∗m(X∗)) <
∞, it follows that T ∗nφ→ φ in norm for all φ ∈ T ∗m(X∗). As this holds for each m ≥
0, we deduce that T ∗nφ → φ in norm for all φ ∈ span

(⋃
m≥0 T

∗
m(X∗)

)
. Lastly, as

supn ‖T ∗n |Z‖ <∞, it follows that T ∗nφ→ φ in norm for all φ ∈ Z.

(iii) ⇒ (i): Suppose that (iii) holds. As noted above, supn ‖T ∗n |Z‖ <∞. By (iii) and
Lemma 2.6, the unit ball of Z is w∗-dense in a ball of radius r > 0 in X∗. It follows
that, for every operator T on X, we have ‖T ∗‖ ≤ ‖T ∗|Z‖/r. Combining these facts,
we deduce that K := supn ‖T ∗n‖ <∞.

Let m ≥ 0 and let Zm := {φ|Tm(X) : φ ∈ Z}. Since Z is w∗-sequentially dense in X∗

and dimTm(X) < ∞, it follows that Zm is norm-dense in Tm(X)∗. Let x ∈ Tm(X).
Let ψ ∈ Tm(X)∗ and let ε > 0. Then there exists φ ∈ Z with ‖ψ − φ|Tm(X)‖ < ε.
Since ‖T ∗nφ− φ‖ → 0, there exists N such that

n ≥ N =⇒ ‖T ∗nφ− φ‖ < ε.

Then

〈Tnx− x, ψ〉 = 〈x, T ∗nφ− φ〉+ 〈Tnx− x, ψ − φ|Tm(X)〉,

so, for all n ≥ N ,

|〈Tnx− x, ψ〉| ≤ ‖x‖‖T ∗nφ− φ‖+ (K + 1)‖x‖‖ψ − φ|Tm(X)‖ ≤ (‖x‖+K + 1)ε.

Thus Tnx→ x weakly for all x ∈ Tm(X). As dimTm(X) <∞, it follows that Tnx→ x
in norm for all x ∈ Tm(X). As this holds for all m ≥ 0, we deduce that Tnx → x
in norm for all x ∈ span

(⋃
m Tm(X)

)
. Since supn ‖Tn‖ = supn ‖T ∗n‖ = K < ∞, it

follows that Tnx→ x for all x ∈ Y .
By (iii), we have Y = X. Thus Tnx → x in norm for all x ∈ X. By Lemmas 2.2

and 2.3, this implies T ∗nφ→ φ in (X∗, w∗) for all φ ∈ X∗.

Remark. Although statements (i)–(iii) are all about the adjoint operators T ∗n , we
nonetheless need the invariance assumption that Tn(Tm(X)) ⊂ Tm(X) in (2.3). This
assumption is used in the proof of the implication (iii)⇒ (i), and the result is actually
false without this assumption. Here is a counterexample.
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Let X := `1(N). For n ≥ 1 define Tn : `1(N)→ `1(N) by

Tn := P2n(Sn + I),

where S : `1(N) → `1(N) is the unilateral shift and P2n : `1(N) → `1(N) is the pro-
jection onto the first 2n coordinates. Taking adjoints, we have T ∗n : `∞(N) → `∞(N)
given by T ∗n = (S∗n + I)P2n. The following properties are easily verified:

• Tm(X) = span{e1, . . . , e2m} for all m ≥ 1;

• T ∗m(X∗) = span{e1, . . . , e2m} for all m ≥ 1;

• T ∗n(T ∗m(X∗)) ⊂ T ∗m(X∗) for all m,n ≥ 1;

• Y = `1(N) = X;

• Z = c0(N), which is w∗-sequentially dense in X∗ = `∞(N).

If φ ∈ c0(N), then we have

‖T ∗nφ− φ‖∞ ≤ ‖S∗nφ‖∞ + ‖P2nφ− φ‖∞ −→ 0 (n −→∞).

Thus T ∗nφ→ φ in norm for all φ ∈ Z. Therefore (iii) holds.
However, if φ ∈ `∞(N) \ c0(N), then

〈e1, T ∗nφ− φ〉 = 〈Tne1 − e1, φ〉 = 〈en+1, φ〉 6−→ 0 (n −→∞),

and so T ∗nφ 6→ φ weak*. Therefore (i) fails.

Finally, the main result of the section, Theorem 2.1, follows by combining Lem-
mas 2.2, 2.3, and 2.5.

3. Summability

3.1. The basic set-up. In the rest of the paper, we consider the following set-up.
As before, X denotes a Banach space with dual space X∗. Let (ek)k≥0 and (ψk)k≥0
be sequences in X and X∗ respectively such that{

〈ej , ψk〉 = 0, ∀j, k, j 6= k,

〈ek, ψk〉 6= 0, ∀k.

For each k ≥ 0, define Pk : X → X by

Pk :=
ek ⊗ ψk
〈ek, ψk〉

.

Explicitly,

Pk(x) :=
〈x, ψk〉
〈ek, ψk〉

ek (x ∈ X).

Clearly Pk(ek) = ek and Pk(ej) = 0 if j 6= k. It is easy to see that Pk is a rank one
projection (P 2

k = Pk) with

‖Pk‖ =
‖ek‖‖ψk‖
|〈ek, ψk〉|

.

Its adjoint P ∗k : X∗ → X∗ is given by

P ∗k =
ψk ⊗ ek
〈ek, ψk〉

.

Let A = (ank)n,k≥0 be an infinite matrix of complex scalars such that, for each n ≥ 0,

(3.1)
∑
k≥0

|ank|‖Pk‖ <∞.
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We define the associated summation operators SAn : X → X (n ≥ 0) by the absolutely
convergent series

SAn :=
∑
k≥0

ankPk.

Explicitly, we have

SAn (x) =
∑
k≥0

ank
〈x, ψk〉
〈ek, ψk〉

ek (x ∈ X),

(SAn )∗(φ) =
∑
k≥0

ank
〈ek, φ〉
〈ek, ψk〉

ψk (φ ∈ X∗).

3.2. The main equivalence. With this notation established, our goal is to prove
the following theorem.

Theorem 3.1. Let Z be the norm closure in X∗ of span{ψk : k ≥ 0}. Suppose that

there exists at least one matrix A0 satisfying (3.1) such that SA
0

n x→ x (either weakly
or in norm) for all x ∈ X. Then, for every matrix A satisfying (3.1), the following
statements are equivalent:

(i) SAn (x)→ x in (X,w) for all x ∈ X;

(ii) SAn (x)→ x in (X, ‖ · ‖) for all x ∈ X;

(iii) (SAn )∗(φ)→ φ in (X∗, w∗) for all φ ∈ X∗;
(iv) (SAn )∗(φ)→ φ in (X∗, w∗) for all φ ∈ Z;

(v) (SAn )∗(φ)→ φ in (X∗, ‖ · ‖) for all φ ∈ Z.

If, further, X is reflexive, then these are equivalent to:

(vi) (SAn )∗(φ)→ φ in (X∗, ‖ · ‖) for all φ ∈ X∗.

Proof: By (3.1), for each n ≥ 0, there exists Kn ≥ 0 such that∑
k>Kn

|ank|‖Pk‖ < 2−n.

Define TAn : X → X by

TAn :=

Kn∑
k=0

ankPk.

Clearly we have ‖SAn − TAn ‖ < 2−n for all n, so each of the statements (i)–(vi) holds
iff it holds with SAn replaced by TAn .

The operators TAn are bounded, finite-rank operators on X. The images of TAn
and (TAn )∗ are given by

TAn (X) = span{ek : 1 ≤ k ≤ Kn, ank 6= 0},
(TAn )∗(X∗) = span{ψk : 1 ≤ k ≤ Kn, ank 6= 0}.

It follows that TAn T
A
m(X) ⊂ TAm(X) and (TAn )∗(TAm)∗(X∗) ⊂ (TAm)∗(X∗) for all m, n.

Thus Theorem 2.1 applies.
We claim that, for each k, there is at least one n such that ank 6= 0. Indeed, if

ank = 0 for all n, then TAn (ek) = 0 and (TAn )∗(ψk) = 0 for all n, and so (under the
relevant assumption (i)–(vi)), either ek = 0 or ψk = 0. Neither of these can be true,
since we are assuming that 〈ek, ψk〉 6= 0.
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It follows that, in the notation of Theorem 2.1,

Y := span
(⋃

m≥0
(TAm)(X)

)
= span{ek : k ≥ 0},

Z := span
(⋃

m≥0
(TAm)∗(X∗)

)
= span{ψk : k ≥ 0}.

In particular, this reconciles the definition of Z given in the statement of Theorem 3.1
with that in Theorem 2.1.

From Theorem 2.1, applied with A = A0, we deduce that Y = X and that Z is
w∗-sequentially dense in X∗. Reapplying Theorem 2.1 with a general A now gives the
result.

Remarks. (1) The implications (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v) hold without the as-
sumption about A0. The existence of A0 is needed only for the implication (iv)⇒ (iii).

(2) In the concrete examples that we shall address below, the existence of A0 will
be an obvious consequence of some version of Fejér’s theorem.

(3) However, there are examples where there exists no matrix A0 satisfying (ii).
For instance, this is the case whenever the Banach space X fails to have the bounded
approximation property (see [13]). The article [10] contains another such example,
in which X is actually a Hilbert space.

3.3. Limitation theorems. Let A = (ank)n,k≥0 be an infinite scalar matrix satis-
fying (3.1). We say that A admits a left inverse if there exists a scalar matrix B =
(bjn)j,n≥0 such that

(3.2)
∑
n≥0

|bjn| <∞ (j ≥ 0) and
∑
n≥0

bjnank =

{
1, j = k,

0, j 6= k.

Theorem 3.2. Suppose that SAn (x)→ x (weakly or in norm) for all x ∈ X, and that
A admits a left inverse B. Then, writing Bj :=

∑
n≥0 |bjn|, we have

‖ej‖‖ψj‖
|〈ej , ψj〉|

= O(Bj) (j −→∞).

Remark. This theorem is of interest when ‖ej‖‖ψj‖/|〈ej , ψj〉| grows with j, since it
then places limitations on possible matrices A for which summability holds. Hardy ([8,
p. 57]) calls such results limitation theorems.

Proof: For each j ≥ 0, we have∑
n≥0

bjnS
A
n =

∑
n≥0

bjn

(∑
k≥0

ankPk

)

=
∑
k≥0

(∑
n≥0

bjnank

)
Pk =

∑
k≥0

δjkPk = Pj ,

the exchange of sums being justified by absolute convergence in (3.1) and (3.2). Now
as SAn (x)→ x for all x ∈ X, we have supn ‖SAn (x)‖ <∞ for each x ∈ X, and hence,
by the Banach–Steinhaus theorem, supn ‖SAn ‖ <∞. It follows that

‖Pj‖ =

∥∥∥∥∑
n≥0

bjnS
A
n

∥∥∥∥ ≤∑
n≥0

|bjn|‖SAn ‖ ≤ Bj sup
n
‖SAn ‖,

in other words, ‖Pj‖ = O(Bj). Finally, since ‖Pj‖ = ‖ej‖‖ψj‖/|〈ej , ψj〉|, the result
follows.
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In practice, the matrix B is not known explicitly, so estimating Bj may be prob-
lematic. Here is one case where we can do it.

We denote by W+(D) the holomorphic Wiener algebra, namely

W+(D) :=

{
f(z) =

∑
k≥0

f̂(k)zk :
∑
k≥0

|f̂(k)| <∞
}
.

Theorem 3.3. Let f ∈ W+(D) with f(0) 6= 0, and let (γn)n≥0 be an increasing
sequence in (0,∞). Let A = (ank) be the lower-triangular matrix with entries given
by

ank := γ−1n (̂1/f)(n− k) (0 ≤ k ≤ n).

Then A has a left inverse B, where B = (bjn) is a lower-triangular matrix and∑
n≥0

|bjn| � γj (j −→∞).

Proof: Let B be the lower-triangular matrix with entries (bjn) given by

bjn := γnf̂(j − n) (0 ≤ n ≤ j).

For each fixed j, there are only finitely many n for which bjn 6= 0, so the first condition
in (3.2) is clearly satisfied. As for the second condition, we have∑

n≥0

bjnank =
∑
n≥0

γnf̂(j − n)γ−1n (̂1/f)(n− k)

=
∑
p,q≥0

p+q=j−k

f̂(p)(̂1/f)(q) = 1̂(j − k) = δjk.

Thus B is indeed a left inverse of A. Further, we have∑
n≥0

|bjn| =
j∑

n=0

γn|f̂(j − n)| ≤ γj
∑
`≥0

|f̂(`)|

and ∑
n≥0

|bjn| =
j∑

n=0

γn|f̂(j − n)| ≥ γj |f̂(0)|.

By assumption, we have
∑
`≥0 |f̂(`)| <∞ and |f̂(0)| > 0. It follows that

∑
n≥0 |bjn| �

γj , as claimed.

Remark. In this case, it is easy to see that in fact B is a two-sided inverse of A.

We illustrate these results by applying them to one particular family of summability
methods, namely the Cesàro means. Given α > −1, let A = (ank)n,k≥0 be the lower-
triangular matrix defined by

(3.3) ank :=

(
n

k

)/(n+ α

k

)
(0 ≤ k ≤ n).

(As usual, binomial coefficients with non-integer arguments are defined using the
Gamma function.) With this choice of A, we write

σαn(x) := SAn (x) (x ∈ X).

In particular, we write sn for σ0
n and σn for σ1

n.
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We remark that, if −1 < α ≤ β, then σβn includes σαn in the sense that, if σαn(x)→ x
for some x ∈ X, then also σβn(x) → x. (For scalars this is well known; for Banach
spaces, it follows by [11, Theorem 5.1].)

The following limitation theorem is an abstract version of [8, Theorem 46].

Theorem 3.4. Let α ≥ 0. If σαn(x)→ x (weakly or in norm) for all x ∈ X, then

‖ej‖‖ψj‖
|〈ej , ψj〉|

= O(jα) (j −→∞).

Proof: Let A be the Cesàro matrix defined by (3.3). A computation gives

ank =

(
n

k

)/(n+ α

k

)
=

(
n− k + α

α

)/(n+ α

α

)
= γ−1n ĝ(n− k),

where (γn) is the increasing sequence given by

γn :=

(
n+ α

α

)
,

and where ĝ(m) are the Taylor coefficients of the function

g(z) :=

∞∑
m=0

(
m+ α

α

)
zm = (1− z)−α−1.

Clearly g = 1/f , where f(z) := (1− z)α+1. Since the Taylor coefficients of f satisfy∑
k≥1

|f̂(k)| =
∑
k≥1

∣∣∣∣ (̂f ′)(k − 1)

k

∣∣∣∣ ≤ (∑
k≥1

1

k2

)1/2

‖f ′‖H2 <∞,

we have f ∈ W+(D), and Theorem 3.3 applies. We deduce that A has a lower-trian-
gular inverse B = (bjn) such that∑

n≥0

|bjn| = O(γj) = O

((
j + α

α

))
= O(jα) (j −→∞),

the last equality by Stirling’s formula. The result now follows by applying Theo-
rem 3.2.

4. Applications in spaces of continuous functions

4.1. Fourier series. Probably the best-known applications of summability are to
Fourier series, so, for our first example, we see what the abstract theory developed in
the previous two sections tells us about this case.

Let T denote the unit circle. We write C(T) for the space of complex-valued con-
tinuous functions on T, with the usual sup-norm ‖f‖∞ := supT |f |. The dual space
of C(T) may be identified with M(T), the space of finite complex Borel measures
on T, the duality being given by

〈f, µ〉 :=

∫
T
f(ζ) dµ(ζ) (f ∈ C(T), µ ∈M(T)).

Under this pairing, M(T) inherits the norm of C(T)∗, which is just the total variation
norm.

The absolutely continuous measures on T form a closed subspace of M(T), which
can be identified with L1(T) via g ↔ g(eit) dt/2π. The restriction of the total variation
norm to L1(T) is just the usual L1norm.
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We now proceed to apply the theory developed in Section 3. Let X := C(T), and
for k ∈ Z let ek := eikt and ψk := eikt dt/2π. (Here the index k runs through all the
integers rather than just the positive integers, but this creates no problems.) Then
‖ek‖∞ = ‖ψk‖1 = 1 and 〈ek, ψk〉 = 1 for all k ∈ Z.

LetA=(ank)n≥0, k∈Z be an infinite matrix of complex scalars such that
∑
k∈Z|ank|<

∞ for each n ≥ 0. Then, for each n ≥ 0, we have

SAn (f) =
∑
k∈Z

ank
〈f, ψk〉
〈ek, ψk〉

ek =
∑
k∈Z

ankf̂(k)eikt (f ∈ C(T)),

(SAn )∗(µ) =
∑
k∈Z

ank
〈ek, µ〉
〈ek, ψk〉

ψk =
∑
k∈Z

ankµ̂(k)eikt
dt

2π
(µ ∈M(T)).

By Fejér’s theorem, we have ‖σnf − f‖∞ → 0 as n→∞ for all f ∈ C(T), so there

exists at least one matrix A0 for which ‖SA0

n (f)−f‖∞ → 0. Thus Theorem 3.1 applies.
In the notation of Theorem 3.1, Z is the norm closure in M(T) of span{eikt dt/2π :
k ∈ Z}, which is exactly L1(T). Thus we obtain the following theorem.

Theorem 4.1. Let (ank)n≥0, k∈Z be an infinite matrix of complex scalars such that∑
k∈Z |ank| <∞ for each n ≥ 0. Then the following statements are equivalent:

(i)
∑
k∈Z ankf̂(k)eikt → f in (C(T), w) for all f ∈ C(T);

(ii)
∑
k∈Z ankf̂(k)eikt → f in (C(T), ‖ · ‖∞) for all f ∈ C(T);

(iii)
∑
k∈Z ankµ̂(k)eikt dt/2π → µ in (M(T), w∗) for all µ ∈M(T);

(iv)
∑
k∈Z ankĝ(k)eikt dt/2π → g(eit) dt/2π in (M(T), w∗) for all g ∈ L1(T);

(v)
∑
k∈Z ankĝ(k)eikt → g in (L1(T), ‖ · ‖1) for all g ∈ L1(T).

We now use this theorem to deduce some classical results about Cesàro summation
of Fourier series. Since the summation index k runs over Z rather than Z+, the
definition of σαn needs to be modified accordingly, taking ank :=

(
n
|k|
)
/
(
n+α
|k|
)

for |k| ≤ n
and ank := 0 for |k| > n. As usual, we write sn for σ0

n and σn for σ1
n (this was already

implicit when we quoted Fejér’s theorem above).

Theorem 4.2. (i) If µ = δ1, then sn(µ) 6→ µ in (M(T), w∗).

(ii) There exists f ∈ C(T) such that sn(f) 6→ f in (C(T), w).

(iii) There exists g ∈ L1(T) such that sn(g) 6→ g in (M(T), w∗).

Proof: (i) If µ = δ1, then µ̂(k) = 1 for all k ∈ Z, so

sn(µ) =

n∑
k=−n

eikt
dt

2π
= Dn(t)

dt

2π
,

where Dn(t) is the Dirichlet kernel. We know that

‖sn(µ)‖M(T) = ‖Dn‖1 � log n −→∞,

so (sn(µ)) is not weak*-convergent.

Parts (ii) and (iii) now follow from (i) by applying Theorem 4.1.

Remark. Part (ii) is a weak form of a famous result of du Bois-Reymond, who showed
that the Fourier series of a continuous function may diverge at a point.
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Theorem 4.3. Let α > 0.

(i) ‖σαn(f)− f‖∞ → 0 for all f ∈ C(T).

(ii) ‖σαn(g)− g‖1 → 0 for all g ∈ L1(T).

(iii) σαn(µ)→ µ in (M(T), w∗) for all µ ∈M(T).

Proof: Part (i) is a classical result of M. Riesz [14]. Parts (ii) and (iii) follow, using
Theorem 4.1.

4.2. The disk algebra. The disk algebra A(D) consists of those holomorphic func-
tions on the open unit disk D that have a continuous extension to D. It is a Banach
space (indeed a Banach algebra) with respect to the sup-norm.

By the maximum principle, the map f 7→ f |T is an isometry of A(D) into C(T),
so A(D) can be identified with a closed subspace A of C(T). In fact A = {f ∈
C(T) : f̂(k) = 0∀k < 0}. Therefore the dual of A(D) may be identified with the
quotient M(T)/A⊥, where

A⊥ :=

{
µ ∈M(T) :

∫
T
f dµ = 0∀f ∈ A

}
.

By the F. and M. Riesz theorem, if µ ∈ A⊥, then µ is absolutely continuous with
respect to Lebesgue measure on T, say µ = h dt/2π. The condition that h dt/2π ∈ A⊥

is equivalent to h ∈ H1
0 , where

H1
0 := {h ∈ L1(T) : ĥ(k) = 0∀k ≥ 0}.

Thus we can identify the dual space A(D)∗ with M(T)/H1
0 .

There is another way to express this duality, using Cauchy transforms. Given µ ∈
M(T), we define its Cauchy transform Kµ : D→ C by

Kµ(z) :=

∫
T

dµ(ζ)

1− ζz
(z ∈ D).

Notice that Kµ ≡ 0 ⇔ µ ∈ H1
0 . Hence the map [µ] 7→ Kµ is a linear isomorphism

of M(T)/H1
0 onto K, where

K := {Kµ : µ ∈M(T)}.

We endow K with the norm that makes this isomorphism an isometry, namely

‖Kµ‖K := ‖[µ]‖
M(T)/H1

0
= dist(µ,H1

0 ) (µ ∈M(T)).

Thus, finally, the dual of A(D) may be identified with K, the duality pairing being
given by

〈f,Kµ〉 :=

∫
T
f(ζ) dµ(ζ) = lim

r→1−

∞∑
k=0

f̂(k)µ̂(k)rk (f ∈ A(D), Kµ ∈ K).

We now apply the theory developed in Section 3. Let X := A(D) and X∗ = K.
For k ≥ 0, we define ek ∈ A(D) by ek(z) := zk, and ψk ∈ K by

ψk(z) := K

(
eikt

dt

2π

)
(z) = zk.

It is easily checked that ‖ek‖∞ = ‖ψk‖K = 1 and that 〈ek, ψk〉 = 1 for all k.
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Let A = (ank)n,k≥0 be an infinite matrix of complex scalars such that
∑
k≥0 |ank| <

∞ for each n ≥ 0. Then, for each n ≥ 0, we have

SAn (f) =
∑
k≥0

ank
〈f, ψk〉
〈ek, ψk〉

ek =
∑
k≥0

ankf̂(k)zk (f ∈ A(D)),

(SAn )∗(Kµ) =
∑
k≥0

ank
〈ek,Kµ〉
〈ek, ψk〉

ψk =
∑
k≥0

ankµ̂(k)zk (Kµ ∈ K).

Just as in the case of C(T), Fejér’s theorem implies that ‖σnf−f‖∞ → 0 as n→∞
for all f ∈ A(D), so there exists at least one matrix A0 for which ‖SA0

n (f)−f‖∞ → 0.
Thus Theorem 3.1 applies. In the notation of Theorem 3.1, Z is the norm closure in K
of span{K(eikt dt/2π) : k ≥ 0}, which is L1(T)/H1

0 . Thus we obtain the following
theorem.

Theorem 4.4. Let (ank)n,k≥0 be an infinite matrix of complex scalars such that∑
k≥0 |ank| <∞ for each n ≥ 0. Then the following statements are equivalent:

(i)
∑
k≥0 ankf̂(k)zk → f in (A(D), w) for all f ∈ A(D);

(ii)
∑
k≥0 ankf̂(k)zk → f in (A(D), ‖ · ‖∞) for all f ∈ A(D);

(iii)
∑
k≥0 ankµ̂(k)zk → Kµ in (K, w∗) for all µ ∈M(T);

(iv)
∑
k≥0 ankĝ(k)zk → Kg in (K, w∗) for all g ∈ L1(T);

(v)
∑
k≥0 ankĝ(k)zk → g in (L1/H1

0 , ‖ · ‖L1/H1
0
) for all g ∈ L1(T).

5. Application to Hardy spaces and Bergman spaces

5.1. Hardy spaces, BMOA, and VMOA. We begin by reviewing the definitions
and some basic facts about these spaces. All the details can be found in [20, Chap-
ter 9].

For 1 ≤ p <∞, the Hardy space Hp is defined as the set of f ∈ Hol(D) such that

‖f‖Hp := sup
r<1

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ
)1/p

<∞.

Also H∞ is the set of bounded holomorphic functions on D, with

‖f‖H∞ := sup
D
|f |.

The space BMOA of holomorphic functions of bounded mean oscillation can be
characterized as the space of f ∈ H2 such that

‖f‖BMOA := |f(0)|+ sup
D

(P |f |2 − |f |2)1/2 <∞,

where P |f |2 denotes the Poisson integral of |f |2. The space VMOA of holomorphic
functions of vanishing mean oscillation is the closed subspace of BMOA consisting of
those f ∈ BMOA such that (P |f |2 − |f |2)(z)→ 0 as |z| → 1.

All the spaces Hp, VMOA, BMOA are Banach spaces and contain the polynomials.
Polynomials are dense in Hp (1 ≤ p <∞) and in VMOA, but not in H∞ or BMOA,
since neither of the latter is separable.
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Up to isomorphism, we have the following identifications of dual spaces: (VMOA)∗∼=
H1 and (H1)∗ ∼= BMOA. The pairings are given by

〈f, g〉 := lim
r→1−

1

2π

∫ 2π

0

f(reiθ)g(re−iθ) dθ (f ∈ VMOA, g ∈ H1),

〈g, h〉 := lim
r→1−

1

2π

∫ 2π

0

g(reiθ)h(re−iθ) dθ (g ∈ H1, h ∈ BMOA).

We now proceed to apply the theory developed in Section 3. Let X := H1, let
ek := zk ∈ H1, and let ψk := zk ∈ BMOA. Then ‖ek‖ = 1, ‖ψk‖ � 1, and 〈ek, ψk〉 = 1
for all k ≥ 0.

Let (ank)n,k≥0 be a matrix of complex scalars such that
∑
k |ank| <∞ for each n.

Then

SAn (g) =
∑
k≥0

ank
〈g, ψk〉
〈ek, ψk〉

ek =
∑
k≥0

ankĝ(k)zk (g ∈ H1),

(SAn )∗(h) =
∑
k≥0

ank
〈ek, h〉
〈ek, ψk〉

ψk =
∑
k≥0

ankĥ(k)zk (h ∈ BMOA).

By an appropriate version of Fejér’s theorem, ‖σn(g) − g‖H1 → 0 for all g ∈ H1.
Theorem 3.1 therefore applies. In the notation of Theorem 3.1, Z is the norm closure
in BMOA of span{zk : k ≥ 0}, which is exactly VMOA. We thus obtain the following
result.

Theorem 5.1. Let (ank)n,k≥0 be an infinite matrix of complex scalars such that∑
k |ank| <∞ for each n. Then the following statements are equivalent:

(i)
∑
k≥0 ankĝ(k)zk → g in (H1, w) for all g ∈ H1;

(ii)
∑
k≥0 ankĝ(k)zk → g in (H1, ‖ · ‖H1) for all g ∈ H1;

(iii)
∑
k≥0 ankĥ(k)zk → h in (BMOA, w∗) for all h ∈ BMOA;

(iv)
∑
k≥0 ankf̂(k)zk → f in (VMOA, w) for all f ∈ VMOA;

(v)
∑
k≥0 ankf̂(k)zk → f in (VMOA, ‖ · ‖BMOA) for all f ∈ VMOA.

Remark. Explicitly, statement (iii) means that, for all h ∈ BMOA and all g ∈ H1,

lim
n→∞

lim
r→1−

∑
k≥0

ankr
kĝ(k)ĥ(k) = lim

r→1−

1

2π

∫ 2π

0

g(reiθ)h(re−iθ) dθ.

We now specialize to the case of Cesàro means.

Theorem 5.2. (i) There exists g ∈ H1 such that sn(g) 6→ g in (H1, w).
(ii) There exists f ∈ VMOA such that sn(f) 6→ f in (VMOA, w).

Proof: It is well known that there exists g ∈ H1 such that ‖sn(g)− g‖H1 6→ 0. This
follows easily from the fact that the Riesz projection P+ : L1(T)→ H1 is unbounded
(see e.g. [6, Chapter III, §1]). Parts (i) and (ii) both follow by applying the equiva-
lences in Theorem 5.1.

Remark. Using much the same idea, Zhu has previously shown that there exists
f ∈ VMOA such that ‖sn(f)− f‖BMOA 6→ 0 (see [19, Corollary 5]).
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Theorem 5.3. Let α > 0.

(i) ‖σαn(g)− g‖H1 → 0 for all g ∈ H1.

(ii) σαn(h)→ h in (BMOA, w∗) for all h ∈ BMOA.

(iii) ‖σαn(f)− f‖BMOA → 0 for all f ∈ VMOA.

Proof: Part (i) is a classical result of Hardy [7]. Parts (ii) and (iii) follow, using
Theorem 5.1.

5.2. Bergman and Bloch spaces. Our development parallels that in Subsection 5.1.
Once again, we begin by reviewing the definitions and some basic facts about these
spaces. The details are in [20, Chapters 4 and 5].

For 1 ≤ p <∞, the Bergman space Ap is defined as the space of f ∈ Hol(D) such
that

‖f‖Ap :=

(
1

π

∫
D
|f(z)|p dA(z)

)1/p

<∞,

where dA denotes the area measure on D.
The Bloch space B consists of those f ∈ Hol(D) such that

‖f‖B := |f(0)|+ sup
D

(1− |z|2)|f ′(z)| <∞.

The little Bloch space B0 is the closed subspace of B consisting of those functions f ∈ B
such that (1− |z|2)|f ′(z)| → 0 as |z| → 1.

All the spaces Ap, B, B0 are Banach spaces and contain the polynomials. Polyno-
mials are dense in Ap (1 ≤ p < ∞) and in B0, but not in B, since the latter is not
separable.

We have the following identifications of dual spaces (up to isomorphism): (B0)∗ ∼=
A1 and (A1)∗ ∼= B. The pairings are given by

〈f, g〉 := lim
r→1−

1

π

∫
|z|<r

f(z)g(z) dA(z) (f ∈ B0, g ∈ A1),

〈g, h〉 := lim
r→1−

1

π

∫
|z|<r

g(z)h(z) dA(z) (g ∈ A1, h ∈ B).

Once again, we apply the theory developed in Section 3. Let X := A1, let ek :=
zk ∈ A1, and let ψk := zk ∈ B. Then ‖ek‖A1 � 1/(k+ 1), ‖ψk‖B � 1, and |〈ek, ψk〉| �
1/(k + 1), where the implied constants are independent of k.

Let (ank)n,k≥0 be a matrix of complex scalars such that
∑
k |ank| <∞ for each n.

Then

SAn (g) =
∑
k≥0

ank
〈g, ψk〉
〈ek, ψk〉

ek =
∑
k≥0

ankĝ(k)zk (g ∈ A1),

(SAn )∗(h) =
∑
k≥0

ank
〈ek, h〉
〈ek, ψk〉

ψk =
∑
k≥0

ankĥ(k)zk (h ∈ B).

It is known that ‖σn(g) − g‖A1 → 0 for all g ∈ A1 (see Theorem 5.8(i) below).
Theorem 3.1 therefore applies. In the notation of Theorem 3.1, Z is the norm closure
in B of span{zk : k ≥ 0}, which is exactly B0. We thus obtain the following result.
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Theorem 5.4. Let (ank)n,k≥0 be an infinite matrix of complex scalars such that∑
k |ank| <∞ for each n. Then the following statements are equivalent:

(i)
∑
k≥0 ankĝ(k)zk → g in (A1, w) for all g ∈ A1;

(ii)
∑
k≥0 ankĝ(k)zk → g in (A1, ‖ · ‖A1) for all g ∈ A1;

(iii)
∑
k≥0 ankĥ(k)zk → h in (B, w∗) for all h ∈ B;

(iv)
∑
k≥0 ankf̂(k)zk → f in (B0, w) for all f ∈ B0;

(v)
∑
k≥0 ankf̂(k)zk → f in (B0, ‖ · ‖B) for all f ∈ B0.

Remark. Explicitly, statement (iii) means that, for all h ∈ B and all g ∈ A1,

lim
n→∞

lim
r→1−

∑
k≥0

ankr
kĝ(k)ĥ(k) = lim

r→1−

1

π

∫
|z|<r

g(z)h(z) dA(z).

5.3. Relationship between Hardy and Bergman spaces. The following result
describes the relationship between summability in Hp and summability in Ap.

Theorem 5.5. Let 1 ≤ p <∞. Let A := (ank)n,k≥0 be an infinite matrix of complex
scalars such that

∑
k |ank| < ∞ for each n. If ‖SAn (f) − f‖Hp → 0 for all f ∈ Hp,

then ‖SAn (g)− g‖Ap → 0 for all g ∈ Ap.

For the proof, we need a lemma.

Lemma 5.6. Let 1 ≤ p <∞.

(i) We have Hp ⊂ Ap, and ‖f‖Ap ≤ ‖f‖Hp for all f ∈ Hp.
(ii) Let S : Hol(D) → Hol(D) be a linear map such that (Sf)r = S(fr) for all f ∈

Hol(D) and all r ∈ (0, 1). If ‖Sf‖Hp ≤ C‖f‖Hp for all f ∈ Hp, then ‖Sg‖Ap ≤
C‖g‖Ap for all g ∈ Ap.

Proof: (i) By Fubini’s theorem, we have the identity

‖f‖pAp =

∫ 1

0

‖fr‖pHp 2r dr.

As ‖fr‖Hp ≤ ‖f‖Hp ∀r ∈ (0, 1), we obtain ‖f‖pAp ≤
∫ 1

0
‖f‖pHp 2r dr = ‖f‖pHp .

(ii) Again by the above identity, if f ∈ Ap, then

‖Sf‖pAp =

∫ 1

0

‖(Sf)r‖pHp 2r dr =

∫ 1

0

‖S(fr)‖pHp 2r dr

≤ Cp
∫ 1

0

‖fr‖pHp 2r dr = Cp‖f‖pAp .

Remark. In fact a result of Hardy and Littlewood shows that we even have Hp ⊂ A2p.
For a simple proof of this, and an example showing that 2p is sharp, see the article
of Vukotić [18]. However, we do not need this here.

Proof of Theorem 5.5: Assume that ‖SAn (f)− f‖Hp → 0 for all f ∈ Hp. By part (i)
of the lemma, ‖SAn (f) − f‖Ap → 0 for all f ∈ Hp. By part (ii) of the lemma,
‖SAn : Ap → Ap‖ ≤ ‖SAn : Hp → Hp‖ for all n, and by the Banach–Steinhaus the-
orem, supn ‖SAn : Hp → Hp‖ < ∞. The standard density argument now gives that
‖SAn (g)− g‖Ap → 0 for all g ∈ Ap.

Once again, we finish the section by applying the above work to classical Cesàro
means.
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Theorem 5.7. (i) If 1 < p <∞, then ‖sn(g)− g‖Ap → 0.

(ii) There exists g ∈ A1 such that sn(g) 6→ g in (A1, w).

(iii) There exists f ∈ B0 such that sn(f) 6→ f in (B0, w).

Proof: Part (i) is a consequence of the (well-known) corresponding result in Hp and
Theorem 5.5. By a result of Zhu [19, Theorem 9], there exists g ∈ A1 such that
‖sn(g) − g‖A1 6→ 0. Parts (ii) and (iii) both follow by applying the equivalences in
Theorem 5.4.

Remark. Zhu has previously shown that there exists f ∈ B0 such that ‖sn(f)−f‖B 6→
0 (see [19, Corollary 11]). The same result had also been obtained earlier by Anderson,
Clunie, and Pommerenke [2], but with a slightly different identification of the dual
of B0 and the predual of B.

Theorem 5.8. Let α > 0.

(i) ‖σαn(g)− g‖A1 → 0 for all g ∈ A1.

(ii) σαn(h)→ h in (B, w∗) for all h ∈ B.

(iii) ‖σαn(f)− f‖B → 0 for all f ∈ B0.

Proof: Part (i) follows from the corresponding result for H1, together with Theo-
rem 5.5. Parts (ii) and (iii) are consequences of (i), using the equivalences in Theo-
rem 5.4.

6. Applications in Hilbert spaces

6.1. Abstract set-up. In the case of a Hilbert space, we can repeat the analysis
of Section 3 using the inner product in place of the duality pairing. The fact that
an inner product is sesquilinear rather than bilinear leads to some slight differences
between the two theories.

Throughout this section, H denotes a complex Hilbert space with inner prod-
uct 〈·, ·〉. Also, if T is a bounded linear operator on H, then T ∗ denotes the Hilbert-
space adjoint of T , namely the unique operator on H such that

〈Tg, h〉 = 〈g, T ∗h〉 (g, h ∈ H).

The following theorem is the analogue of Theorem 2.1. It is proved in just the same
way, so we omit the details. Of course, since a Hilbert space is reflexive, there is no
distinction between weak and weak* convergence.

Theorem 6.1. Let (Tn)n≥1 be a sequence of bounded, finite-rank operators on H
such that

TnTm(H) ⊂ Tm(H) and T ∗nT
∗
m(H) ⊂ T ∗m(H) (m,n ≥ 0).

Then the following statements are equivalent:

(i) Tnh→ h weakly for all h ∈ H;

(ii) Tnh→ h in norm for all h ∈ H;

(iii) T ∗nh→ h weakly for all h ∈ H;

(iv) T ∗nh→ h in norm for all h ∈ H.

Now suppose that (ek)k≥0 and (fk)k≥0 are two sequences in H such that{
〈ej , fk〉 = 0, ∀j, k, j 6= k,

〈ek, fk〉 6= 0, ∀k.
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For each k ≥ 0, define Pk : H → H by

Pk :=
ek ⊗ fk
〈ek, fk〉

.

Explicitly,

Pk(h) :=
〈h, fk〉
〈ek, fk〉

ek (h ∈ H).

Clearly Pk(ek) = ek and Pk(ej) = 0 if j 6= k. It is easy to see that Pk is a rank one
projection with

‖Pk‖ =
‖ek‖‖fk‖
|〈ek, fk〉|

.

Its adjoint P ∗k : H → H is given by

P ∗k =
fk ⊗ ek
〈fk, ek〉

.

Let A = (ank)n,k≥0 be an infinite matrix of complex scalars such that, for each n ≥ 0,∑
k≥0

|ank|‖Pk‖ <∞.

We define the associated summation operators SAn : H → H (n ≥ 0) by the absolutely
convergent series

SAn :=
∑
k≥0

ankPk.

Explicitly, we have

SAn (h) =
∑
k≥0

ank
〈h, fk〉
〈ek, fk〉

ek (h ∈ H),

(SAn )∗(h) =
∑
k≥0

ank
〈h, ek〉
〈fk, ek〉

fk (h ∈ H).

With this notation established, we have the following equivalence theorem. It fol-
lows from Theorem 6.1 in just the same way that Theorem 3.1 follows from Theo-
rem 2.1. We omit the details.

Theorem 6.2. The following statements are equivalent:

(i) SAn (h)→ h weakly for all h ∈ H;

(ii) SAn (h)→ h in norm for all h ∈ H;

(iii) (SAn )∗(h)→ h weakly for all h ∈ H;

(iv) (SAn )∗(h)→ h in norm for all h ∈ H.

There are also Hilbert-space versions of the limitation theorems, Theorem 3.2 and
Theorem 3.4. The proofs are the same as before.

Theorem 6.3. Suppose that SAn (x)→ x (weakly or in norm) for all x ∈ H, and that
A admits a left inverse B. Then, writing Bj :=

∑
n≥0 |bjn|, we have

‖ej‖‖fj‖
|〈ej , fj〉|

= O(Bj) (j −→∞).

Theorem 6.4. Let α ≥ 0. If σαn(x)→ x (weakly or in norm) for all x ∈ H, then

‖ej‖‖fj‖
|〈ej , fj〉|

= O(jα) (j −→∞).
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6.2. Reproducing kernel spaces of holomorphic functions. We shall now ap-
ply these ideas to reproducing kernel spaces of holomorphic functions on the unit
disk.

Let H be a Hilbert space of holomorphic functions on D such that:

• convergence in the norm of H implies pointwise convergence on D;
• H contains the polynomials.

The first assumption implies that, for each w ∈ D, the functional h 7→ h(w) is
continuous on H, so, by the Riesz representation theorem, there exists a unique kw ∈
H such that

h(w) = 〈h, kw〉 (h ∈ H).

We define K : H ×H → C by

K(z, w) := kw(z) = 〈kw, kz〉 (z, w ∈ D).

The function K is the reproducing kernel of H. Clearly it satisfies K(w, z) = K(z, w),
and K(z, w) is holomorphic in z for each fixed w. Therefore it is anti-holomorphic
in w for each fixed z. We shall need the following simple lemma about derivatives
of K.

Lemma 6.5. For each w ∈ D and each n ≥ 0, let

kw,n(z) :=
1

n!

∂n

∂wn
K(z, w) (z ∈ D).

Then kw,n ∈ H and

(6.1) 〈h, kw,n〉 =
h(n)(w)

n!
(h ∈ H).

Proof: As norm convergence inH implies local uniform convergence on D, the map h 7→
h(n)(w)/n! is a continuous linear functional on H, so, by the Riesz theorem again,
there exists kw,n ∈ H such that (6.1) holds. It remains to identify kw,n, which we do
as follows. For each z ∈ D, we have

kw,n(z) = 〈kw,n, kz〉 = 〈kz, kw,n〉

=
k
(n)
z (w)

n!
=

1

n!

∂n

∂wn
K(w, z) =

1

n!

∂n

∂wn
K(z, w).

Now we define sequences (ej)j≥0 and (fj)j≥0 in H by ej := zj and fj := k0,j . Note
that, if h ∈ H, then

〈h, fj〉 =
h(j)(0)

j!
= ĥ(j).

In particular, 〈ei, fj〉 = δij , so the theory outlined in Subsection 6.1 applies. Note also
that ‖ej‖ = ‖zj‖H and

‖fj‖2 = ‖k0,j‖2 = 〈k0,j , k0,j〉 =
1

j!
k
(j)
0,j(0) =

1

j!2
∂2jK

∂zj∂wj
(0, 0).

Theorem 6.2 leads to the following result.

Theorem 6.6. Let (anj)n,j≥0 be an infinite matrix of complex scalars such that∑
j≥0 |anj |‖zj‖‖k0,j‖ <∞ for each n ≥ 0. Then the following statements are equiva-

lent:

(i)
∑
j≥0 anj ĥ(j)zj → h weakly as n→∞ for all h ∈ H;

(ii)
∑
j≥0 anj ĥ(j)zj → h in norm as n→∞ for all h ∈ H;
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(iii)
∑
j≥0 anj〈h, zj〉k0,j → h weakly as n→∞ for all h ∈ H;

(iv)
∑
j≥0 anj〈h, zj〉k0,j → h in norm as n→∞ for all h ∈ H.

The following result is a limitation theorem for reproducing kernel spaces. It is an
immediate consequence of Theorem 6.4.

Theorem 6.7. Let H be a reproducing kernel space of holomorphic functions on D
that contains the polynomials. If α ≥ 0 and σαn(h) → h (weakly or in norm) for
all h ∈ H, then

‖zj‖‖k0,j‖ = O(jα) (j −→∞).

6.3. De Branges–Rovnyak spaces. We now specialize to the case where H =
H(b), the de Branges–Rovnyak space with symbol b. Here b is an element of the unit
ball of H∞. By definition, H(b) is the reproducing kernel space on D with kernel

K(z, w) =
1− b(z)b(w)

1− zw
(z, w ∈ D).

The space H(b) contains the polynomials iff b is a non-extreme point of the unit
ball of H∞, and in this case the polynomials are dense in H(b). It is known that
b is non-extreme iff its boundary values satisfy log(1− |b|2) ∈ L1(T). Henceforth, we
assume that this is the case. For further information on H(b)-spaces, we refer to [16]
and [4, 5].

The following result will be useful in what follows.

Proposition 6.8. Let b be a non-extreme point of the unit ball of H∞. Then
infj≥0 ‖k0,j‖H(b) > 0.

Proof: We compute an expression for k0,j in H(b). Using Leibniz’s theorem, we have

k0,j(z) =
1

j!

∂j

∂wj
K(z, 0)

=
1

j!

j∑
i=0

(
j

i

)
∂i

∂wi

(
1− b(z)b(w)

)∣∣∣
w=0

∂j−i

∂wj−i

(
1− zw

)−1∣∣∣
w=0

= zj − b(z)
j∑
i=0

b̂(i)zj−i.

Thus, viewed as functions on T,

k0,j = zj(1− bsj(b)).

Also, expanding K(z, w) = (1−b(z)b(w))/(1−zw) as a double power series in z, w,
and computing the coefficient of zjwj , we find that

‖k0,j‖2H(b) =
1

j!2
∂2jK

∂zj∂wj
(0, 0) = 1−

j∑
i=0

|̂b(i)|2 = 1− ‖sj(b)‖2H2 .

In particular, we have

1 ≥ ‖k0,j‖2H(b) ≥ 1− ‖b‖2H2 (j ≥ 0).

As b is non-extreme, ‖b‖H2<‖b‖H∞≤1 or ‖b‖H2 =‖b‖H∞<1. Either way, 1−‖b‖2H2 >
0. Hence infj≥0 ‖k0,j‖H(b) > 0, as claimed.
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Remark. A similar result holds in the more general finite-rank H[B]-spaces studied
by Aleman and Malman in [1]. However, not all reproducing kernel function spaces
have this property. For example, in the classical Dirichlet space on the unit disk, we
have ‖k0,j‖ � 1/j.

Feeding this information into the results of Subsection 6.2, we deduce the following
results. (We write 〈·, ·〉b for the inner product in H(b).)

Theorem 6.9. Let b be a non-extreme point of the unit ball of H∞. Let (anj)n,j≥0 be
a matrix of complex scalars such that

∑
j≥0 |anj |‖zj‖H(b) <∞ for each n ≥ 0. Then

the following statements are equivalent:

(i)
∑
j≥0 anj ĥ(j)zj → h weakly in H(b) for all h ∈ H(b);

(ii)
∑
j≥0 anj ĥ(j)zj → h in norm in H(b) for all h ∈ H(b);

(iii)
∑
j≥0 anj(1− bsj(b))〈h, zj〉bzj → h weakly in H(b) for all h ∈ H(b);

(iv)
∑
j≥0 anj(1− bsj(b))〈h, zj〉bzj → h in norm in H(b) for all h ∈ H(b).

Theorem 6.10. Let b be a non-extreme point of the unit ball of H∞. If α ≥ 0 and
σαn(h)→ h (weakly or in norm) for all h ∈ H(b), then

‖zj‖H(b) = O(jα) (j −→∞).

The following consequence is worth pointing out explicitly.

Corollary 6.11. Let b be a non-extreme point of the unit ball of H∞. If sn(h)→ h
(weakly or in norm) for all h ∈ H(b), then supj≥0 ‖zj‖H(b) <∞.

The de Branges–Rovnyak spaces in which the powers of z are bounded in norm form
an interesting class in their own right. For example, they are precisely the H(b)-spaces
that contain H∞. Also, they are characterized by the condition that 1/(1 − |b|2) ∈
L1(T). For more on this, see [15, §4].

For α > 0, the convergence of σαn(h) to h for every h ∈ H(b) also has implications
for b. To derive these, we need an explicit formula for ‖zj‖H(b), which requires that
we delve a little further into the theory of de Branges–Rovnyak spaces. The details
can be found in [16] and [5].

As mentioned earlier, if b is a non-extreme point of the unit ball of H∞, then
log(1 − |b|2) ∈ L1(T). This implies that there exists a unique outer function a on D
with a(0) > 0 such that |b|2+|a|2 = 1 a.e. on T. This function a is sometimes called the
Pythagorean complement of b. Writing φ := b/a, we obtain a function in the Smirnov
class N+, namely the space of quotients of H∞-functions with outer denominators.
Conversely, all Smirnov functions are obtained in this way. There is thus a one-to-one
correspondence b ↔ φ, between non-extreme points b of the unit ball of H∞ and
functions φ ∈ N+. Expanding φ(z) as a Taylor series, say φ(z) =

∑
j≥0 cjz

j , we have

(6.2) ‖zj‖2H(b) = 1 +

j∑
i=0

|ci|2.

A simple proof of (6.2) can be found for example in [15, p. 81].

Theorem 6.12. Let b be a non-extreme point of the unit ball of H∞ and let φ be the
corresponding function in the Smirnov class. If α ≥ 0 and σαn(h) → h (weakly or in
norm) for all h ∈ H(b), then

(6.3) φ(z) = O((1− |z|)−α−1/2) (|z| −→ 1−).
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Proof: As above, let us write φ(z) =
∑
j≥0 cjz

j . Summing by parts, we have

|φ(z)| ≤
∑
j≥0

|cj ||z|j = (1− |z|)
∑
j≥0

( j∑
i=0

|ci|
)
|z|j (|z| < 1).

By Cauchy–Schwarz and formula (6.2),

j∑
i=0

|ci| ≤ (j + 1)1/2
( j∑
i=0

|ci|2
)1/2

≤ (j + 1)1/2‖zj‖H(b) (j ≥ 0).

From Theorem 6.10, it follows that

j∑
i=0

|ci| = O(jα+1/2) (j −→∞).

Feeding this information back into the inequality for φ, we find that there is a con-
stant C such that

|φ(z)| ≤ C(1− |z|)
∑
j≥0

jα+1/2|z|j (|z| < 1).

The conclusion (6.3) follows.

We conclude with two concrete examples.

Corollary 6.13. Let φ(z) := z/(1 − z) and let b be the corresponding non-extreme
point of the unit ball of H∞. If σαn(h)→ h for all h ∈ H(b), then α ≥ 1/2.

Remark. In this case b can be determined explicitly, namely as

b(z) =
(1− w0)z

1− w0z
,

where w0 := (3 −
√

5)/2. This example is taken from [17], where it is shown that,
with this particular choice of b, the de Branges–Rovnyak space H(b) is equal to the
local Dirichlet space D(δ1) (with the same norm). It was shown in [9] that, if α > 1/2,
then σαn(h)→ h in norm for all h ∈ D(δ1), but that there exists h0 ∈ D(δ1) such that

σ
1/2
n (h0) 6→ h0. Thus the constant 1/2 in Corollary 6.13 is sharp.

Corollary 6.14. Let

φ(z) := exp

(√
1 + z

1− z

)
(z ∈ D).

Then φ ∈ N+. If b is the corresponding non-extreme point of the unit ball of H∞,
then there exists no α ≥ 0 such that σαn(h)→ h for all h ∈ H(b).

Proof: The function
√

(1 + z)/(1− z) belongs to H1. Its exponential is therefore an
outer function, so φ ∈ N+. Now apply Theorem 6.12.

Remark. Thus, in this case, even though polynomials are dense in H(b), there is no
Cesàro summability method that always converges. Such examples were previously
obtained in [3] and [12] using inductive constructions. Our method has the virtue
that it yields a (fairly simple) explicit function φ that does the trick.
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[10] J. Mashreghi, P.-O. Parisé, and T. Ransford, Failure of approximation of odd functions by

odd polynomials, Constr. Approx. 56(1) (2022), 35–43. DOI: 10.1007/s00365-021-09557-y.
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