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Abstract. Extending results of Billingsley and Chentsov,
Bickel & Wichura proved some fluctuation inequalities for pro-
cesses with multi-dimensional time parameter. In the same order
of ideas we give here an extension to the case that the marginals

of the control measure are not necessarily continuous.

Applications of this results to get some useful convergen
ce criteria for [O,l]q indexed processes are given, as well as
a theorem on regularity of right stochastically continuous proce

sses.
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0. Introduction.

In (1) P. Bickel & M. Wichura prove fluctuation inequali
ties for processes indexed by a g-dimensional parameter set,
extending results of Chentsov and Billingsley, (2), (3). Here
we extend their theorem 3 to the case where the marginals of m
are not necessarily continuous. Bickel & Wichura (op. cit.

Pg. 1665, final) announce a possible extension to the case that
m .depends on n, and the measures m_~ converge weakly to a
measure with continuous marginals. Our extension has a different
character: m will be fixed (independent of n), we will
suppose instead that processes in question have independent
increments, and the constants that appear in their theorem 1

. will depend on m,q,y and f, in our case. This is the con-
tent of point 2. Point '3 is devoted to give applications of
the fluctuation inequalities to the convergence of processes
indexed by [0,1]9. at point 4 we see an application to the
regularity of processes with independent increments over
[0,119. on this later result it is.worthy to say that R. Mor-
kvenas (6), using Dynkin-Kinney's type conditions, proves that
all processes with independent increments and stochastically
continuous have versions in D[0,1]9. oOur Thm. (4.1) is not
enclosed in his result because we only impose right stochastic

continuity.

1. Definitions and previous results. Notation is much

as in (1). Let q be a positive integer and Tl,Tz,...,Tq
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subsets of [0,1] each of which contains 0 and 1, and is

finite or [0,1]. Let {Xt}te ¢ be a stochastic process

indexed by T = Tl X T2 XeoaX Tq, with values in a normed

space (E, |.l). We suppose X is separable and vanish on the

lower boundary of T, ainfT’ i,e. the points of T having

some coordinate egual to 0.

For each p, 1<p<g, and each tETVp we define

A

(p) . .
Xt .Tlx...x Tpx...x Tq—>E by

(p)
Xe

(t,,...,t b reest ) = X(t ,...,t B, t
1 a 1

pr1reerE)

p-1" "ptl p-1

If s<t<u in Tp, we define
n_ (s, &) (X) = min(Ix P} - xéP)H,HX(P) - xép’u)

t u

where || . || is the supremum norm.

Definition (1.1):

M;(X) = sup {mp(s,t,u) (X) : s<t=<u; s,t,uETp}

M"(X) = max  MO(X)
1<p<g
M(X) = sup {|X(t)]| : te€T} O
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The following proposition is very useful and guite ele-

mentary.

q
Proposition (1.2): If lq = (,...,1), then

q
M(X) < 2. M"(X) + IX(1 )l <
p=l p q
< g.M"(X) + IX(lq)I O

We say that B CT is a block if

we also write B = (s,t] where s= (s

— \
t=({t ,...,t ).

1

Denote X(B) the rectangular increment of X over the

block B, i.e.:

q
11 1 a- Lep
= - - .o + -
XE) = Zo 2o qu_o (1) P (s pe (£8)) s e (koS )

We say that X has independent increments if X(B) and X(C)
are independent random variables whenever B and C are

disjoint blocks.

Definition (1.3): We write XEC"i'(ﬁ,'y) if X has

independent increments and

86



p{1xB) >0 <27 (m)’, ¥A> o0

for all B C T, block of T, where v and B are fixed:
positive reals, and m 1is a finite measure over T vanishing
over ainfT O

Evidently 1if XEECf (8,7Y) then the pair (X,m) belongs

to C(2B8,2%) in the sense of Bickel & Wichura (1l).

Theorem (1.4): If (X,m)ec(f,Y), i.e. if for all pair

of disjoint blocks B,C of T we have
px(B) >X, 1x(@1 >M<A muc)f, ¥A>0

then YA> 0

P(MY (X) > )\}<Kq(ﬁ,‘¥)A7\-7(m(T))ﬁ

for all p, 1l<p<qg, and

=

PM” (X) > MI<L_(B,7) A (m(T))

This is theorem 1 of Bickel and Wichura(l).

Introduction of the following moduli is suggested by the

identification

= q, = .
Dq = D([OIl] ’ R) D([OI]-]I Dq—l) .
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Definition (1.5): If xGDq and 6§ >0 we define

n (p) = s (p) __ (p) (p)_,(p)
W (6) sup min (Il %/ x Al X X I
s,t,uETp
s<t<u, u-s < §

W"(a) = max w" (p) (6) 0
X X
1<p<g

In what follows we shall also need the following result

on tightness in the space (D{0,1]9; D whose proof may be

q) '
found in Neuhaus (7).

Theorem (1.6,): A sequence {Pn};:l

measures on (D[0,1]9, Dq) is tight if and only if:

of probability

i) For all =7 >0, there exists a€R such that

Pn{x : suptlx(t)l >a) <, for all n=>1.

ii) For all € >0, =n >0, there exist &, 0<58<1, and

n , such that for n=>n

o

2. Fluctuation ineqgualities

Theorem (2.1): There exists a constant K,

K = K(q,8,y, m(T)), such that for all process XEC’:(ﬁ,'y),
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(see Def. (1.3)), is

B
JP[O,I]]

Mt () = M<K(X4T v X2y o, |1 -
p P mp[O,l]

for all p, 1< p<q, where Jp[O,l] is the maximum jump of

the distribution function Fo of the p-th marginal, mp, of
P

m, and V means "the greatest of".
Proof:

Step 1. g =1 and T finite. Let 0 = t <t <o <=1

be the points ocf T. Define the process

m-1

Y(u) = iEO X(ti)I[ti’tiﬂ.)(u) + x(tm)I{tm} (u)

over |0,1]. Then, if

< < < < <
t \s<ti\th t<th+1 ty “<tk+1

i-1

h
- )3
pin(s,t,0 (1) >SNV Zmen? (2 mie P

j'=h+1
- h
ATk e amie ) <
j=i,j'=h+l J J
-2v,, X k B k h B,
SAT T it} m{t, A (T m{t J(Z m{tNT]S
j=i 37 jrent1 J jr=1 37 521 J
-2 k
<27 (mem) - 9, m) £ melf <
j=i ’
27 8 k-1 8
SAT(m(T) - (T)) (E. 2m{t ) +mity) -m{t )" =

J=1
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g kIl i-1 i
(m(T) -J (T)) (2 2m{t . } +m{t } - 2 2m{t,} - mi{t. })
m 3=1 3 k 5=1 b] i

= A-Z'Y

=22 @m(m - 3 (m)¥ (Fe) - Fe )P <
m k i

<A mm- g ) - Fsn?

where F, continuous, is defined by the relations
F(0) = 0, F(tj) - F(tj—l) = m{tj} + m{tj_l} and is linear over

the intervals [t ’ tj ].

j=-1

Hence, the proces Y, together with the measure, m',
associated to the distribution function F' = (m(T) - J_(T))F,

belongs to C(8,2yY). By theorem (l1.4) we have
- . R, T I
P{M:'I:(X) 2 A} = P{MI(Y) 2 AN}SKA (mi{(T))" =
= kX2 (m(m) - 3_(m)P (r(1))P<

-27

<2 k22" (m(m))® (m(m) - Jm(T))B

where we have used F(l) <2m(T). This proves the theorem in this

case.

Step 2. g =1, T =1{0,1], m arbitrary. Let

0=t <tl<... <tm =1, and Y the process X restricted to

{t ,...,t 1.
? m

Define v as in step 4, proof of theorem 1, in
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Bickel & Wichura (1):
u{tj} = m(tj-l’tj] if j =21,
v {to} = 0..

Then Y’eCz(5,7), as a process over {to,tl,...tm}.
Step 1 now implies
B8
Jv{to,tl, e ,tm}

" "'27 2‘3 -
PM"(Y)2N< A K(w{t ,t . ,...,%t 1 1 - =
1 o1 m Ve ot)

Jv[O,llr

=k A (mr)) 281 -
m{0,1]}

If now we take limit when m — ¢ , the set
{to,tl,...,tm} increasing to a dense subset of [0,1] that
contains the points of discontinuity of F , we obtain (by se-

parability):

3 10,11 b

PM) (V) >} € ka2 (m(1))2P [1—

Step 3) g>2, T and m arbitrary. We know that the theorem

is true for g = l. We now will show our result to be true for

p = 1; for other p the argument is the same.

Like in step 5 of Bickel & Wichura's proof of theo-
rem 1, the key point is that the version for g=1 of our theo

rem works for the function valued proces x Py . To
t ‘teT
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show this it is enough to find bounds of its incremernts.
Remember that
m_(s,t,u) (X). = min (4xP) - x®y yx® _ 4@y,
P t s u t
Let T* =T x...xT and Y =x ) _ x @ over T*, fThen
2 q t s
PxM - xPiEny=puw > <

<SP {(g-1)M" (Y) + lY(lq_ 2= Ar<

1

<SP {(g-1)M" (Y) >>\rl} + P{l Y(lq-l ) Z>hr,}

rl+ r2 =1,
If B' is a block of T*, Y¥(B') = X ((s,t] x B'), hence
PUYBII 2N <X (m((s,8] 2B =1 A7 (m* (31))F

*
So Yec’;‘ (8,7), and by thm. (1.4)

P2 Ar (g-D7) 0Pk (0,027 (s, 617 <

<SA2'%  met))P 272 (mo(s, )P
q 1 1

Now if B = (s,t] x T*

Y(1 ) =X(1:,1GI ) = X{(B) .

q-1 ) -X(s'lq

-1 -1
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This implies
> < =Y -7 ﬁ
P{IY(lq-l)l Ar,}< AT, (mo(s,t]) .
Putting together our inequalities we get finally:
(1) _ 1)y S -27 B =Ty =27 2= B
P{IIXt X =1 <(rl (m(T)) Kq+r2 ) vA )(ml(s,t]) .

By the theorem in dimension 1:

8
- J(T.)
P () 2 A1<e 2 (m(TPKR +r, ) A2y X4Y) (mT)2Fly - L1
1 lo q 20 ml(Tl)

where r, is the solution of the equation 2Kq(m(T»B(l-rl)7+l=
- L2 °

1 over (0,1) and r20 =1 - rlotj

Remark. In step 3 we have in fact used a slight modification
of the result of step 2, to cover the (A\"% vA™Y) situation.
As a referee has pointed out, this proof works only in case

B > 1. As we need this theorem with B = 1 1later on, we remark
that an independent easy proof may be given for f§ > 1/2 wusing

induction on gq and Billingsley (3), Thm 12.6.

3. Convergence of processes indexed by [0,119,

Theorem (3.1): Let {xn}:il be processes over
T = {0,119 vanishing on 9, .T. Suppose that X_ €ct(B,7)

for some $>1/2, n=1,2,... .
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Then:

(3.1.1) limmO lim sup P {w)'(‘ (6) 2 € }r=0

n —* oo n

for all € >0:
Proof: It is enough to show that

: : " (p) = =
limg, =~ lim sup P {wy ()= €}=10

n— oo n

for all p , 1<p<g, and ¢€>0.

Let

y PV )y PV P k) Py
n’s o'y nit

Now, an application of theorem (2.1) to the process Yn,
defined over T* = [O,l]p-lx [o,7]1 x [0,11%°P in such a way

that for o<t<r
(p) _ (p) _ (p)
(Yq) P71 = ), (x), B,

(observe that Yn vanishes over ai _T*, has the same incre--

nc
ments that X, over T*'s blocks and that, as a consequence,
it verifies condition C’i"*(ﬁ,'y) over T*, where

m*(.) =m(.) -m (. N3 T*) ),

f
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gives us

B
J (o,7]
(3.1.3) Plw(o,7;n) > e} <Ke 27 (my0,71)?P |1 - 2T
m {o,7])
P
for all e, 0<e<x1.
If &= 1/2u then
n(P)
(3.1.4) {wxn (5)>e}CAlUA2
where
u-1
Ai = U {w(216,(21+42)6;n) = €} and
i=0
u-~2
i-\2 = U {w((2i+1)8,(2i+3)d;n) =e¢}.
i=0
From (3.1.3) and (3.1.4) we get
(3.1.5) plwr P (5) > e)<k ™Y (1, +1,)

n

where
u-1 28 Jp(zis,(2i+2)51

I, = Z (%(2i6,(21+2)61) 1 -

L -0 m (218, (2i+2)8]
and

u-2 J ((2i+1)8, (21+3)8]

L, = T (m (2+1) 8, (2+3)81) 2 |1 - -
i=0

mp( (2i+1) 8, (21+3)8] | .
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Now all follow as in Billingsley (5), pg. 133-134 0O

Remark: The previous theorems also hold if condition

X€E C“i1 8,vy) 1is replaced by: X defined over (U, xU,,P, xP,)

and for all ulGU ; Xt(ul,.)GC';l (8,y). We then say that

XEET(ﬁ ).

Theorem (3.2): A sequence, {Pn}:

-1 of probability

measures over (Dq, Uq) is tight if:
i) For all =7 >0, there exists a€ R such that:
Pn{ X suptlx(t)l >a ) <n, n=1,2....

ii) For all positive ¢€,n, there exist &, 0<86 <1,

and no, such that for all n?no

a) P {x : w'(8) e} <.

n X
b) Pn{X : W;p)[0,5) 2 €, for some p, 1<p<qg} <n.
c) Pn{x E w)((p)[l- §,1) > ¢, for some p, 1<p<q } <7n.

Proof: We show that a), b) and ¢) imply
ii) of thm. (1.6). The argument of Billingsley (2), thm.

(14.4), applied to the functions t — || xép)ll , lead to

(3.2.1) P {x : w;(‘P’ (8/2) >e¢/q }<P _{x w)‘(P’[ 0,86) > ¢/6q ) +
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¥R (% w® [1-5,1) > ¢/6q) + B (x: ), ®) (5)> e/6q}

M

Now our theorem follows from w)'( (8) < w)'c(P) (). O

p=1

As an application of the previous results we get the fo-
llowing theorem, which generalizes theorem (2.3) of Giné& & Mar-

cus (4), to processes indexed by [0,1] e,

oo

Theorem (3.3): Let (Xn]n=l’ X, Dbe Dq—valued random

variables, wvanishing on ainfT, and such that:

i) The finite dimensional distributions of the Xn

converge weakly to the corresponding distributions of X.

ii) xnea‘i"(ﬁ,y), n=1,2,..., for some $>1/2, and

vy >0.

(iii) For all € >0

lim lim sup P {x:w(p)[l—a,l) > €, for some p, 1L<p<q}=0
6&0 n— oo n X

©o

n=1 converge weakly to L(X), as a

Then {P_ = L(X )1}
n n

sequence of probability measures on (Dq,Dq) .

Proof: It is an induction on g. We verify conditions

i) and 1ii) of the previous thm.
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With respect to 1ii): a) is a consequence of thm. (3.1),

¢} 1is the hypothesis iii). Let us see i).

P{sup, . Ix(t)l >a }= P{sup uxt‘P’u > al
te€fo,1]

Hence:

P{sup . |(Xp)el > a} =P ( sup x> ay <
t€[o0,1]

<P(w;‘(“" (6)>11+r{max sup l(xn)él) (t*)1> ao} <
n << *
l1sisk t esz...qu

%) X
<P{w; 3)>1} +2 P{ sup

[(X ), 1>a }.
n i=1 nty °

t*er. x...xT
2 q

Now because of

p{wfi';u)[l- 6,1) > €, for some p', 2<p'<qg }<
N,
1

<P{w}§p)[1— 8,1)> €, for some p, 1<p<q!}

n

1 .
the processes (xn)t() satisfy i), ii) and iii) of our
i
theorem, i = 1,2,...,k.
k
i=1

By induction hypothesis there exists

{a;} such that

1
P{sup, x| (Xn)é')l > a;} < n/2k.
1

Given >0, 1let & >0 be such that

1
piwrt (5) >11<m2.
Xn
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choose 0 =t <t.<... t, =1 such that t, -t . < § and
o 1 k i i-l

a = max a. .
o

i
i=1l,...k

Then if a=a°+1:

P{supteTl(Xn)t|>a}<n .

This proves that i), ii) and iii) imply i) of thm.

(3.2), by induction on g.
It only rests to verify condition b) of ii).

By induction hypothesis (Xn)a(p) N (X)gp) . Hence,

I (Xn)a(p) [ (X)a(p)l'u also. Now observe that
(p) Pr.
il (X)5 i 50 0

as a consequence of the right continuity of (X)ép) and

x) (P = o,
[e]

Given positive n and €, let 50>0 be such that if
6 < 6

Pl (x)ép) I =e) < /2.
Then
limsup P{I (x ){®) 1 B} <pOl (03P I ey <wa2.

n— oo

99




Now from
{x:wiP0,8)>4e) Cx st P)(5) >ed U (x 1l )P -x{Pli>e)
we get:
lim sup P {x :w(p)[O,S) >4e} <nq
n —> oo n X
This proves b) and the theorem. [l
In applications quite frequently we don't know that
X(EDq. It is then useful to have the following variant of the

previous thm., whose proof requires the same argument as above.

Theorem (3.4): Let (X, } be as in +hm, (3.3), Su

ppose:

i) The finite dimensional distributions of Xn are

weakly convergent and
lim lim sup p {x:ngp”|>e}=0
dlo n — oo n

for all €>0 and all p, l1<p<q.

ii) XnEC':(ﬁ,'y), n=12,..., for some B>1/2 and

¥y >0.
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iii) lim  lim swp  Py{x:w®'[1-8,1) > €, for some p, 1<p<q) = 0

Slo n—> o
for all € >0.

oo

Then {P =L (X )} _
n n n

2, 1s weakly convergent 0

4. Regularity of processes with independent increments.

Theorem (4.1): If xecz‘(ﬁ,v), where - >1/2, ~v>0,

then X has a version with sample paths in D[0,1]9.

Proof: Let 8 < 1/2. For t€[0,1]9 Qgefine:

i
fao(t) = (ty,..eaty gty I 6_.1-5) () +8. T g 5 jlE)

(a-s_,1] IESERRRRA N

for all i, 1<i<q.

(o]

= - - -1
E, (6) = (128, e ) e (L2807 (- ) e, (12280 (6 -8 ) )

We first prove that the proces Yt = Xf& (t) on [0,l]q,

has a version with sample paths in DIl0,11%,

Observe that Ye C‘;’ B,7), if

B () =m(Eg (008,15 1%))
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For each n we define a proces Y on [0,119, cons-

n
tant over each rectangle of the dyadic net of order n, and

equal to the value of Y at "“south-west" vertex, i.e.:
_ _ -n L ~n
Y"(t)—Y((:Ll 1)2 ,...,(1q 12 7)

for all tel(i - 1)2"‘,112‘“)x...x[(iq - 12" ,iqz‘"), where

1<4i, < 2%,..., 1< i <2%,
. q

We show that {Yn}m
n=1

argument like that in the proof of thm. (3.1) shows that

is a tight sequence. First, an

(4.1.1) lim lim sup P{w; 6) Z2€¢} =0

8lo n —> oo n

*h
V
>

In fact: If Zn is defined over T* = [0,1]p-lx [o,7] x
x [0,119P from Y, as in thm. (3.1) Y, is defined from

Xn, Z:(Z) represents the restriction of Zn to the diadic net,

of T*, and v(m) is defined over like the

* *
Tm(2) ! Tm(2)
v of step 2, in the proof of thm. (2.1), then:

P(M"(z ) =A}= lim pM"(z"?® ) 223 <
p n P n

m —>» o0
Jvm(a,r] b
< lim KA "0, M2B1 - 2 | -
m — oo P v™o ,7]
g 8
J (o, 7]
= K 2747 ﬁ\';ﬁ(a,rl 1 -2 | .

mp(a, 7}



Hence, {Yn} satisfies (3.1.3), and now all follows as

in thm. (3.1)'s proof.

1f 2¥<5 and T () denote the set of points of the

2% _gyadic net in T =[0,1]1%, then

sup 1Y _(t)] < max . lY_(t)l+qw?, (8).

teT k(2) n n

Moreover, observe that the variables

max Y (&)1, n=%k, k+1,...
€T ()

are identically distributed. This, together with (4.1.1) gives
condition i) of our thm. (3.2). Besides, {Yn}:=1 satisfies

b) and ¢) of ii), thm. (3.2), by construction.

Hence, {Yn}:Ll is tight. If W is the weak limit of
some subsequence, then it is easy to see that W is a version
of Y, looking first at dyadic points, and approaching then

any point by dyadics.

The application fbo being bijective and continuous
- q q = — -
between [60,1 601 and [0,1]%, and X, Y(fﬁo) Ligy r
the theorem is proved. O
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Remarks and comments.

a) It will be very interesting to get a result like
thm. (2.1)Vfor processes whose increments are not necessarily

independent. I don'tinow at present how to do this.

b) All previous results extend easily to [0,%)9-indexed
processes using well known results on D[0,%)? (see B.G.

Ivanoff (5)).

c) Using above results and some ofhérs, (which constitu-
te my Doctoral Thesis, as presented at the Universitat Autdnoma
de Barcelodna, Spain), we can prove the Central Limit Theorem
for processes that admit a representation as stochastic inte-
grals w.r.t. L&vy processes with multidimensional time parame-

ter. This will appear elsewhere.

d) Finally I want to express my indebtness and gratitude
to Professor E. Giné&, that suggested this problems to me and

has given efficient help, whenever needed.
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