Pub. Mat. UAB Vol. 29 № 1 Abril 1985

A CHARACTERIZATION OF THE RADON-NIKODYM PROPERTY Oscar Blasco de la Cruz

§1. INTRODUCTION.

The aim of this paper is to give a new characterization of the Radon-Nikodym property in terms of martingales in X-valued Orlicz spaces.

Let X be a Banach space and put \sum , the Lebesgue measurable sets in $\begin{bmatrix} 0 & 1 \end{bmatrix}$. It is well known (see $\begin{bmatrix} 1 \end{bmatrix}$):

(1.1). X has the Radon-Nikodym property with respect to [0,1] if and only if every bounded uniformly integrable martingale in $L_X^{\bullet}[0,1]$, (f_n,B_n) where $\sigma(UB_n)=\sum$, is convergent in $L_X^{\bullet}[0,1]$.

We are interested in a generalization of this fact.

In this paper we shall prove the following

Theorem (1.2).

Let ϕ be a Young function with the Δ_2 -condition. X has the Radon-Nikodym property if and only if every bounded martingale in L_X^{φ} , (f_n,B_n) where $\sigma(UB_n)$ = \sum , is convergent in L_X^{φ} .

The definitions and the main results relating to X-valued martingales and Orlicz spaces may be found in [1] and [2] respectively.

We are going to denote by ϕ a Young function, and $\widetilde{L}_X^{\phi} = \{f: [0,1] \to X \text{ strongly measurable with respect Lebesgue measure s.t. } \rho(f,\phi) = \int_0^1 \phi(||f(x)||) dx < \infty \}.$

Let ψ be the complementary Young function of ϕ . We shall write $||f||_{\dot{\phi}} = \sup \left\{ \int_0^1 ||f(x)|| |g(x)| dx \text{ with } g \in \widetilde{L}^{\gamma}_{\mathbb{R}}, \, \rho(g,\psi) \stackrel{\text{d}}{=} 1 \right\}$ and $L^{\dot{\phi}}_{X} = \{f: [0,1] \longrightarrow X \text{ strongly measurable with } ||f||_{\dot{\phi}} < \infty \}$.

It is well known that L_X^φ is a vector space and $||f||_\varphi$ is a norm on it.

Besides, $\widetilde{L}_X^{\varphi} = L_X^{\varphi}$ if and only if φ verifies the Δ_2 -condition. It is easy to prove that the convergence and the boundedness in $\widetilde{L}_X^{\varphi}$ and L_X^{φ} are equivalent using the following fact:

(1.3) Suppose ϕ verifies Δ_2 -condition, i.e. there exists K>0 and $T\geq 0$ such that $\phi(2t) \leq K\phi(t)$ for all $t\geq T$.

If there exists m belongs to (N with $\rho(f,\phi) \le 1/K^m$ then $||f||_{\phi} \le \frac{\phi(T)+2}{2^m}$. See [2], page 158 for a proof.

§2. PREVIOUS LEMMAS.

Lemma 1.

If $(f_n$, n ε N) is a bounded sequence in $\widetilde{L}_\chi^\varphi$, then (f_n , n ε N) is a bounded uniformly integrable sequence in L_χ^1 .

Proof.

For a Young function we have

 $(2.1) \xrightarrow{\phi(t)} \longrightarrow \infty \quad \text{as} \quad t + \infty \text{, and by } (2.1) \text{ we obtain } ||f_n||_{L_X^1} \stackrel{\checkmark}{=} \rho(f_n,\phi) + A \text{, where } A \text{ is a constant.}$ We have only to show that $\int_E ||f_n(x)|| dx \longrightarrow 0 \quad \text{as}$ $m(E) \longrightarrow 0 \quad \text{. Given } \varepsilon > 0 \text{, by } (2.1) \text{, there exists}$ $\tau > 0 \quad \text{such that}$

$$(2.2) \quad \frac{\phi(t)}{t} > \frac{2c}{\varepsilon} \quad \text{for} \quad t > \tau \quad \text{where} \quad \sup_{n} \quad \rho(f_{n},\phi) \leq C.$$
 Let $\delta = \varepsilon/2\tau$. If $m(E) < \delta$ and denoting
$$A_{n} = \{x : ||f_{n}(x)|| \leq \tau\} \cap E \quad \text{and}$$

$$B_{n} = \{x : ||f_{n}(x)|| > \tau\} \cap E \quad \text{we obtain}$$

$$\int_{E} ||f_{n}(x)|| = \int_{A_{n}} ||f_{n}(x)|| dx + \int_{B} ||f_{n}(x)|| dx$$

Lemma 2.

If ϕ verifies the $\Delta_2^{}\text{-condition}$ then the simple functions are dense in $\widetilde{L}_{x}^{\,\varphi}$.

Proof:

Given fe $\widetilde{L}_X^{\varphi}$, since f is strongly measurable, there exists a sequence (f , n e N) of countably valued functions such that

 $(2.3) \quad || \, f_n(x) \cdot f(x) \, || < \frac{1}{n} \quad \text{for almost all} \quad x \in [0,1]$ and for all $n \in \mathbb{N}$. Suppose $f_n = \sum_{m=0}^{\infty} x_{n,m} \chi_{E_{n,m}}$ where $x_{n,m} \in X$ and $\chi_{E_{n,m}}$ are the characteristic functions of disjoint measurables sets.

Since $2||f_n(x)|| < 2||f(x)|| + \frac{2}{n}$ a.e. and ϕ is a convex function, we have $2f_n \in \widetilde{L}_X^{\phi}$. Therefore, there is a number $p_n \in N$ such that

(2.4)
$$\int_{\widetilde{m}=p_n}^{\infty} E_{n,\widetilde{m}} \phi(2||f_n(x)||) dx < \frac{1}{n}$$

We consider the simple function $g_n = \sum_{m=0}^{p_n} x_{n,m} \chi_{E_{n,m}}$. By (2.3) and (2.4)

$$\int_{0}^{1} \phi(|f(x) - g_{n}(x)| |) dx \le \frac{1}{2} \int_{0}^{1} \phi(2||f(x) - f_{n}(x)|| dx$$

$$+ \frac{1}{2} \int_{0}^{1} \phi(2||f_{n}(x)-g_{n}(x)||) dx \leq \frac{1}{2} \phi(\frac{2}{n}) + \frac{1}{n}$$

Since $\phi(t) \rightarrow 0$ as $t \rightarrow 0^+$ the proof is finished.

Lemma 3

Let $(B_{\tau}, \tau \in I)$ be a family of sub- σ -fields of \sum . Suppose ϕ with Δ_2 -condition.

If f_n convergs to f in L_X^{φ} then $E(f_n/B_{\tau})$ convergs to $E(f/B_{\tau})$ uniformly in B_{τ} , where $E(./B_{\tau})$ denotes the conditional expectation relative to B_{τ} ,

Proof

It may be proved with a slight, modification in the

argument in [1], page 122 that if B is a sub- σ -field of \sum , then $\rho(E(G/B),\phi) \leq \rho(g,\phi)$ for all $g \in \widetilde{L}_X^{\phi}$.

Now, given $\epsilon > 0$, let m_0 be a number such that $\max_{\substack{2 \ 0}} (\frac{\phi(T)+2}{m_0}, \frac{1}{m_0}) < \epsilon \quad \text{where} \quad K,T \quad \text{are the constants in}$ the Δ_2 -condition.

Since $||f_n - f||_{\phi} \to 0$ $(n \to \infty)$ then $\rho(f_n - f, \phi) \to 0$ $(n \to \infty)$ so there is a number n_0 such that if $n > n_0$ we have $\rho(f_n - f, \phi) < \frac{1}{m_0}$. This implies, by (1.3) and the first result in the proof, that $||E(f_n - f/B_{\tau})||_{\phi} < \varepsilon$ for $n \ge n_0$ and it is true for all $\tau \in I$.

§3. PROOF OF THE THEOREM (1.2).

Suppose X has the Radon-Nikodym property and let (f_n,B_n) be a bounded martingale in L_X^{φ} with $\sigma(\bigcup B_n)=\sum By$ lemma 1 and (1.1), there is a function f in L_X^1 such that $f_n \longrightarrow f$ in L_X^{φ} and $f_n=E(f/B_n)$ as it may be seen in [1]. Since the convergence of martingales in L_X^{φ} implies the convergence almost everywhere, we obtain, using the continuity of φ that $\varphi(||f_n(x)||) \longrightarrow \varphi(||f(x)||)$ a.e. and by Fatou's Lemma

$$\int \phi(||f(x)||) dx \le \lim \inf \int \phi(||f_n(x)|| dx \le M$$

Therefore f belongs to $\widetilde{L}_X^{\,\varphi}$, which coincides with $L_X^{\,\varphi}$.

We shall prove that $f_n \longrightarrow f$ in L_X^{φ} . From Lemma 2, we see that given $\epsilon>0$, there exists a number \textbf{m}_0 and a

sequence of simple functions such that

(3.1)
$$||s_m-f||_{\phi} < \varepsilon/2$$
 for $m \ge m_0$ and using Lemma 3 with B_n , there is m_1 in /N such that

(3.2) $||E(f-s_m/B_n)||_{\varphi}$ $<\epsilon/2$ for $m \Rightarrow m_1$ and for all n .

Since $\sigma(UB_n) = \Sigma$, we can take the functions s_m on measurable sets from U B_n .

Let m be a fixed number such that m > max (m_0, m_1) . If $s_m = \sum_{i=1}^p x_{m,i} x_{E_{m,i}}$, let n_0 be a number such that $E_{m,i} \subset B_{n_0}$ for i = 1, ..., p and in this case $E(s_m/B_n) = s_m$ for $n \ge n_0$.

Therefore if $n \ge n_0$, by (3.1) and (3.2)

$$||f - f_n||_{\phi} \le ||f - s_m||_{\phi} + ||s_m - f_n||_{\phi} =$$

$$= ||f - s_m||_{\phi} + ||E(s_m - f/B_n)|| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

To prove the converse we are going to use the Characterization of the Radon-Nikodym property in terms of operators: For every $T:L^1[0,1] \longrightarrow X$ there exists a function f in L^∞_X such that $T(\varphi) = \int_0^1 \varphi(x) f(x) dx$ for $\varphi \in L^1[0,1]$ (see [1], page 63).

Let $T:L^{4}$ $[0,1] \rightarrow X$ be a bounded operator. We consider B_{n} the σ -field generated by the dyadic intervals of length $\frac{1}{2^{n}}$, i.e. $B_{n} = \sigma(I_{n,i}$; $i=0,\ldots,2^{n}-1)$ where

 $I_{n,i} = \left[\frac{i}{2^n}, \frac{1+i}{2^n}\right)$ Let $f_n = \sum_{i=0}^{2^n-1} 2^n T(\chi_{I_n, i}) \chi_{I_{n, i}}$. It is easy to prove that $E(f_{n+1}/B_n) = f_n$ and obviously $\sigma(UB_n) = \Sigma$. Since $||f_n|| = \sum_{i=0}^{2^{n}-1} 2^{n}||T(\chi_{I_{n,i}})||\chi_{I_{n,i}}|$, it is clear that $||f_n(x)|| \le ||T||$ for all $x \in [0,1]$. Then $\rho(f_n,\phi) \le$ $\leq \phi(||T||)$ for all n, and we can find a function f in L_X^{φ} such that $f_n \longrightarrow f$ in L_X^{φ} . This is equivalent to $\phi(||f_n||) \longrightarrow \phi(||f||)$ in L¹ and therefore there is a subsequence $\phi(||f_{n_k}(x)||) \longrightarrow \phi(||f(x)||)$ asse. Hence $\phi(||f(x)||) \leq \phi(||x||)$ a.e. and f belongs to L_v^{∞} . To conclude the proof, we must only prove that (3.3) $T(s) = \int_{0}^{1} s(x) f(x) dx$ for all simple function on UB, measurable sets. First, we shall prove that (3.4) $f_n = E(f/B_n)$. If E is a B_n-measurable set, $\int_{\mathbb{R}} f_n(x) dx = \int_{\mathbb{R}} f_{n+k}(x) dx$ for k31 and then it is sufficent to prove that $\int_{\mathbb{R}} f_n(x) dx \longrightarrow \int_{\mathbb{R}} f(x) dx \text{ as } n \rightarrow \infty. \text{It is clear from the Holder}$ inequality $\int_{\Gamma} \|f_n(x) - f(x)\| dx \le \|f_n - f\| \|\chi E\|$ (3.4), $\int_{I_{n,i}} f(x) dx = \int_{I_{n,i}} f(x) dx = T(\chi I_{n,i})$ and by linearity we obtain (3.3) and finish the proof.

REFERENCES

- [1] J. DIESTEL and J.J. UHL (1977). Vector Measures.

 Amer. Math. Soc. Mathematical Surveys, 15.
- [2] A. KUFNER et al. (1977). Function spaces. Noordhoff
 International Publishing.

Rebut el 9 de novembre del 1984

Departamento de Teoría de Funciones Facultad de Ciencias Zaragoza SPAIN