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ON CERTAIN ALGORITHMS IN THE PRACTICE OF GEOMETRY
AND THE THEORY OF NUMBERS

Peter Hilton and Jean Pedersen

0. Introduction

We demonstrated in [1] and [3] a systematic method
of folding a straight strip of vaper, by what we called a
wdmanuéoﬁdam procedure, to approximate, to any desired degree
of accuracy, a regular convex s-gon and certain regular star
s-gons, provided that s€F, the set of folding numbers. Here F
is defined to be the set of all integers s of the form

2¥Y -
s = (x,y) = =—=—= , where x =21,y = 2.

2" -1

Of course, such numbers s are odd.

By introducing secondary folds on the strip of paper we
showed how it is possible to approximate regular 2ks—gons, whe
re s €F and k =1 (and we included, for the sake of comple-

teness, the exact constructions of the regular 2k—gons, k =2).

The only remaining numbers = 3 are those of the form
2ka, where a is odd, # 1 and not a folding number and k=>0.
However, the method for approximating those regular polygons

can be described by a sequence of steps as follows (consult [1]
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for details).

First, since we know that, for any odd number a,
2¢(a) = 1 mod a, where ®(a} 1is the Euler totient function,
it follows that a is a factor of some element of F, say s,
with s = al. We can use the primary folding procedure to ob-
tain a strip of paper suitable for approximating a regular
s—gon. If we then introduce k secondary fold lines at each
point that would have been a vertex of the regular s-gon, we
can use a longer strip of this folded tape to construct a regu-
lar 2ks—qon. We then glue this 2ks—gon to a piece of paper
and fold on the lines connecting every ch vertex to produce

the desired Zka—gon. In [2] and [3], we introduced an al-

gorithm for finding the optimal s€F such that als.

In summary, the above procedures (using vrimary and se-
condary folds) provided us, in conjunction with the algorithm
referred to above, with a systematic method that could be used
to approximate regular convex s-gons for all s % 3. The same
procedures produced many regular sfar s-gons, where s€F. 1In
fact, as discussed and proved in [2], for a given
s = (x,y) €F, the exact number of star s-gons produced by the
primary folding procedure is % ®d(y)xy. Further, these could

be explicitly described.

In [2] we raised the question as to whether by genera-

lizing in a natural way the primary folding, we might be able
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to avoid the gluing step described above, and also be able to
fold afl regular star polygons. In this paper we answer that
question, in the affirmative.

Given a,b odd with a < and a prime to b, we des-

Nlo

cribe in Section 1 a geneuuizui primary folding procedure which
approximates a regulaf star {2}—gon. There are, then, very
obvious secondary procedures which allow us to remove the res-
triction that both a and b be odd. The generalization con-
sists in allowing a procedure of arbitrary periodicity. The pro-

cedures in previous papers have all been of period 1 or 2.

An interesting aspect of the content of this papér, and
the other pavers we refer to, is the way the geometry motivates
the number theory, and the subsequent interaction between the
two topics. Indeed, although the Quasi-Onden Theonem — of Section
2 would stand on its own merits as an interesting piece of num-
ber theory, it is hard to imagine how one would have discovered
it without the geometric motivation. Moreover, although our ge-
neralized primary folding procedure obviates the need to glue a
constructed N-gon to a piece of paper in order to construct an
M-gon, with MIN, the number theory generated by the gluing
technigue, described in [2] and [3}, stands in its own
right, and is in no sense superseded by the more sophisticated
paper-folding procedures of this articles, nor subsumed in the
number theory that arises from those more sophisticated procedu

res.
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In Section 1 we describe the paper-folding procedure
which enables us to construct arbitrary star polycons. We have
sought, by including this section, to make the entire paper rea
sonablyvself—contained, though we are not actually advocating
the neglect of oﬁr earlier papers on this subject. Section 2

opens with the definition of a symbol

' (0.1)

which may be regarded as encoding the instructions for folding
a strip of tape to form a star {g} -gon, with a,,b odd, and
a; < %. The "code" is described i; a typical case in Section 1
and, in general, in Appendix 1 (Section 4). However, . this sym-
bol also constitutes an interesting algorithm for determining
the quasi-orden of.2 mod b, that is, the smallest positive inte
ger ¢ such that 2Q = ] mod b. Indeed, if a; is prime

to b, then the quasi-order is k = '; ki and the parity of

r determines whether 2k =1 or 2kl; -1. Of course, the
gquasi-order, reinforced with the information provided by the
parity of r, provides much more information than the order
of 2 mod b. Examples ére given in Appendix 2 (Section 5) to
show how to apply the algorithm to obtain the symbol (0.1)

and then how, in a given case, to obtain, from the symbol, the

factor complementary to b in 2k * 1.

In Section 2 we describe the symbols, prove some basic
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oroperties, and enunciate the Quasi-Order Theorem. The theorem
is proved in Section 3, where we also obtain some refinements
of the theorem of further number-theoretical interest. We re-
mark that an independent proof of tﬂe Quasi-Order Theorem was
shown to us by Gerald Preston. This proof was based on the no-
tion of Hasse functions (see, for example, [4]); however, the
direction of proof does not take us through Theorem 2.5, which

has an immediate application to paper—-folding.

The paper closes with the two appendices already refe-
rred to; in the first we go back to the geometrical significan-
ce of the symbols, and, in the second, we discuss, as examples,

Fermat and Mersenne non-primes.

A feature of the earlier papers |2] and [3] missing
from the present paper was the ageneralization from 'base 2!
-— the only base of geometrical interest, since we modestly con
fine ourselves to bisecting angles -- to 'base t', where ¢t
is an arbitrary positive integer # l. It appears that this
generalization leads to interesting difficulties when we try to
introduce the analogs of our symbols in base t, since, in
this general context, they may fail to exist for a given b.
We propose to devote a sequel [6] to the study of generalized

symbols and the {generalized) quasi-order problem.

1. How to fold regular star polygons

First we suppose that appropriate fjold, of crease,
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lines have been made on our straight strip of paper and we des-

cribe the actual construction process for folding a {g}—gonl,

where a and b are mutually prime integers with a < %

Suppose, as illustrated in Figure 1, that we have a straight
strip of paper that has creases along straight lines emanating
from marked vertices Ai,i=0,l,..., at the top and bottom ed-
ges, and that, for a fixed k, those at the particular vertices

Ank n=0,1,2,...,b, which are on the top edge, form identical
14

angles 2. Suppose further that these vertices are equally
b £3

spaced (we describe below how you might obtain such a strip).
Figure 1 (a) shows the beginning of the strip. If we fold this

strip on (as shown in Figure 1(b)) and then on

AxPnk+2

AcPoke1 (as shown in Figure 1l(c)), the direction of the

top edge of the tape will be rotated through an angle of 2(% )
and the tape will be oriented the same way, with respect to the
center of the polygon being delineated by its top edge. We call

these two folds through A in that order, a 2(% ) —twist

k,

at A and observe that, if a 2(% 7)-twist is performed at

nk,
Ank for n=20,1, 2,..., b-1, the top edge of the tape will
have turned through an angle of 2ar and the point Abk will
then be coincident with Ao. Thus the top edge of the tape

will have visited every ath vertex of a bounding regular con-

vex b-gon, and hence determines a regular star {g}—gon.

1 A closed sequence of b edges that visit, in order, every

ath vertex (mod b) of a bounding regular convex b-gon. We
include the reqular convex b-gon as the special case a=1.
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Figure 1

We now explain how we obtained the desired crease lines
in the strip of tape in the first place. Recall that we are
seeking to construct a star {g}-gon where a, b are mutually
prime positive integers with a < % . We assume first that
a, b are odd. Thus we wish to have a strip of paper on which
the angle % T appears at regular intervals along the top edge.
We designate the direction from left to right as the forwand
direction on the tape. We begin by marking a point A0 on the
top of the tape and making an J{nitiaf crease line going in the
downward forward direction from AO to ' Al at the bottom of
tape, and assume that the angle it makes with the top edge is
a

§ ¢ Wwe call this the putative angle. The we continue to
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form new crease lines according to the following four rules:
(1) The first new crease line emanates from the vertex
Al.

(2) Each new crease line goes in the forward direction
along the strip of paper.

(3) Each new crease line always bdsects the angle bet-
ween the last crease line and the edge of the tape
from which it emanates.

(4) The bisection of angles at any vertex continues
until a crease line produces a putative angle of
the form %} 7 where a' is an odd number; then the
folding stops at that vertex and commences at the
intersection point of that last crease line with

the other side of the tape.

Let us consider the example b = 11, a = 3. Then we
can see that if we begin with an angle of T% T at Aj (as
shown in Figure 2(a)) and adhere to the above rules we will
obtain a strip of tape with the angles and creases (dotted 1li-
nes) indicated in Fiqure 2(b). Adhering to the notation for
the primary folding procedures in [1l, [2] and [3], we
could write this more generalized folding procedure as

fatulatutaduly . (1.1)
As before, this notation means that if we begin folding on the
strio of paper at the place where there is one crease line slo-
ping umwards then the first dl refers to the one bisection
{producing a line in a downward direction) at Alﬂn (for

an = 0,1,2, ...) on the top of the tape; the w3 refers to

38



the 3 bisections (producing creases in an upward direction) ma-
de at the bottom of the tape through A10n+1; etc. However, the
folding process is duplicated halfway through, so it suffices
to write just the first three exponents in (1.1). In fact, we

can denote (l.1) even more simply as

{1,3,1} (1.2)

kq

with the understanding that we fold a~lu¥2a%3u®4... with the

k k k ... cycling, in order, repeatedly through the values

1’ 27 3’
1, 3, 1, ...

We call (1.1) or (l1.2) a primary folding procedure
04 peried 3. Note that, in this terminology, the primary folding
procedures we have hitherto considered in [1, 2, 3] were all

of period 1 ({d™™}) or period 2 ({d™u"}, m # n).

It is easy to see that, starting with any putative angle

m (a, b odd, mutually prime, a < %), we will always obtain

o'l

by our rules a primary folding procedure kl,kz,...,kr which
'produces’® this angle. We also note that, starting with the

putative angle n at the top of the tape, we produced a pu-

11
tative angle f% 7 at the boton of the tape, then a putative

angle m at the top of the tape, and so on. Thus if,

3
11 .
indeed, our crease lines could have been used to fold a star
{l%} -gon, they could also have been used to fold a convex
ll-gon and a star {%%}-gon. This feature of our tape furnished

with its crease lines obviousiy applies in general: other star

b-gons will be available to us from the tape yielding the star
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{g}ﬂyon-

More still is true; for if there are crease lines ena-
bling us to fold a star {2}—gon, there will be crease lines

enabling us to fold star {-%—}—qons, where k =2 0 takes all

k+1 2a .
2 a < b. Thus effectively we may dispose

values such that
of the condition that a be odd, although our rules for introdu-
cing the crease lies are based on the assumption that a is odd.
If a is even, our first step ié to write a = 2kao, with a,

odd.

Oné link is still missing in our chain. What is the rela
ion of the putative angle to the true angle? It turns out
-- the easy proof was given in [2] -- that if we repeat the
folding rules, starting at the successive iterates of Ao (thus
at AO'AS'AlO"" in Figure 2(b)), then the actual angle rapidly
converges to the putative angfe. Thus we obtain arbitrarily good
approximations to regular star-polygons by starting sufficiently
far along the tape. Reverting to our example of the {;%}— gon,

we showed in [2] that if our initial fold produces an angle
1
6
from T% m -by less than

of

3

at AO then the acute angle at A would differ

10

T
R E— which is about 0,000325
2

ol
=3
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As pointed out, although we began the folding in

Figure 2 with an interest in producing an angle of 2o

11

|
at equal intervals along the top of the tape we have produced
much more. Observe that angles of 3 , 2 T, 4 m, 2 7 and

1 11 11 11 11
i1 ™ appear (to the right of downward sloping transversals wiht

equal angles adjacent to them) along the top of the tape. This
means that we can use this tape to fold any of the star
ll~-gons. Figure 3 shows the star {%%}—gon formed by making a
4 . =

11 T-twist at  Ajonie (n =0,1,2,...10). The excess tape that
would 'stick out' at each vertex has been folded under to make

the resulting model more apvealing. It is the top of the tape

that delineates the {%%}—gon.
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FPigure 3

It is also not necessary for b to be odd. For, if a

is odd and less than half of b with b even, we can write

b as 2kb', where b' is odd. Next carry out the foldind

process, seeking an angle of ﬁ% m. This tape will always

include a sequence of adjacent angles whose sizes are

1 1 2 2k-1
B " BT BT T BT

sect (by secondafy folds) the appropiate angle(s) so as to

m. It is then always possible to bi-

create the desired angles % 7, but we will not go into details
here, since this would take us from our main purpose. However,

we give an example in Figure 4, which illustrates the construc-
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tion of a {lg}-qon where the angle of % is created first

and then this tape is used to get the necessary angle f% .
First the tape is folded by a {d2u2} procedure, which produ-

ces angles of % along the top.

introduced to bisect A4n+lA4nA4n+2

Then a secondary fold line is

for n=0,1,...9. The

construction of the {%;}-gon is then completed by performing
the 2 (f%1r)—twist at 10 equally spaced intervals along the

top of the tape. The finished {lg}—gon appears in Figure 5.

a
Th
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Figure 4
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Let us return to the main example of our generalized
folding procedure (in which a =3 and b = 11) and look at
the patterns in the arithmetic of the computations. We change
notation in'designating the vertices on the tape now, for conve

; 2
nience.

2 Here we are only interested in folding {g}—gons with a, b
odd.
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Figure 6

To bring out the relationship between the number of bi-
sections at a vertex and the angle formed at that vertex we now
change the labeling of the representative case shown in Figure

2(b) so that it appears as shown in Figure 6. Then we observe

that
The angle to is of the form and the number of
the right of a, bisections at Pn =
Pn where <=7 where a_ =

N 11 n—l 1

I R R
UOR WU R W
R N i )

We could write this in shorthand form (which we will generalize

in the next section) as follows:

(a=)3 1 5

(b=)11 3 1 1 (1.3)

As remarked, given any two odd numbers a and b, with
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a < %, there is always a completely determined unique symbol
like the one above (we do not need a,b relatively prime).
Appropriately interpreted, we can use this symbol to read off
the folding procedure that produces the angle of % 7 along

the top edge of the tape, so that a symbol such (1.3) encodes a
folding procedure for producing a star {g}-gon, and also tells
us what other star polygons we can obtain from the same tape

(of course, for each symbol a diagram similar to Figure 6 can

be drawn to illustrate the relative positions of the angles

an
—b— 1r).

Before we close this section we would like to point out
that the folding process described above is the most efficient
one possible. That is, there could not be any folding procedure
of this type that would procuce the reguired star polygons with
fewer folds. It is also optimal from the point of view of "dif-
ficulty of execution", for it keeps the number of bisections at
each vertex to a minimum. These last comments are explained as
follows. If the folding procedure {kl'kz""'kr} produces
the angle 2 7, then (see (2.3) and (2.4) bl 25%¢1, where

r
k= I k

1 Ki- If we adopt the procedures described in this sec-
1=

tion we will have a procedure {Ql, 22,...,Qs} such that
L = El ®; is the smallest number m such that bl 2™,
thatjzs, the quasi-order of 2 mod b. Moreover, r will be
a multiple of s and, suitably cycling the Qj’ each ki is

a multiple of Qi

All these facts are contained in the number-theoretical
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results of the next two sections.

2. Symbols and the quasi-order of 2 mod b

By the symbol

b (2.1}

we understand that b 1is an odd positive integer, that a is

i
an odd positive integer < %, i=1,2,..., r, and that
kl'kz""kr are positive integers such that

b =a, + 2¥a i=1,2 £, a_., = ap;. (2.2)

i i+l’ rer oo r+l 1 :

Let us aaree where convenient, to define ay for all integers
i by making a; periodic in i, with period r, and similar-
ly for ki. We note that, given odd positive integers a, b
with a < 9, there is always a symbol (2.1) with a, = a, and
that the symbol is unique up to itenation; here we say that
(2.1) arises by iteration if there exists s|r such that

A ,s = B4 ki+S = ki' for all i. A proper iteration, that

is, one in which s # r, is called a nepetition.

Given b’kl"'"kr' the equations (2.2) have unigue solu-

tions, in the "unknowns" as namely

Ba. = bAi, i=121, 2, ..., X, (2.3)
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k

MK

where B = 2° - (-1)F, x = k., (2.4)

i=1 *
and A =2""Ki-1_okTki-iky o, LTk LyT, sa1,0, .0 el
i
(2.5)
We note, for future use, that A, 45 Lndependent of LR
We also remark that the solutions (2.3) of the equations (2.2)
always exist, but that (for a given odd positive integer b) the
numbers a; given by (2.3) may fail to be integers. However,

we have immediately

Proposition 2.1 (i) The sclutions of (2.2) are rational numbers a;
satisguing ~ 0 < a; < lg.;
(ii) 44 any a, 48 an integen, then all a, are odd Jintegers.

Proof (i) It is clear form (2.4) and (2.5) that B, Ai are

odd positive integers. Thus from (2.3}, each a; is a positive

k
rational number. Now 2 la, =b - a, <b, since a, > 0.
i+l i i
Since a, is positive and k, > 1, we infer that a, ‘<E.
i+l i ki1 i+l "2
To prove (ii), observe that a; 1 =b-2 * a;. Thus if a;

is an integer, a; 1 is an odd integer, and the result follows

by finite induction.

As an application, consider B, Ai, given by (2.4),
(2.5). As already observed, B and Ai are odd positive

integers for all i. Moreover, it follows immediately from

X
(2.3) that the solution of the equations B = x5 + 2 lxi+1' i=
= 1,2,...,r,xi+l = Xy is X, = Ai, so that
ky
B=2a, +2 A, (2.6)
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Thus, by Proposition 2.1,

B (2.7)

is a symbol.

We will also need the following elementary propositions;

the first is proved in [2].

Proposition 2.2 In the symbol (2.1), gcd(b,a;) 45 independent

of i.

Proposition 2.3 4§, 4n the symbo (2.1), k., = n, Zthen a, <k,
i i+l 2n

Proof This is obvious from (2.2).

Proposition 2.4 (Periodicity lemma) I§, in (2.1), there exists

an s such that s|r and k, . =k for all i, then a,, =a; |

forn all i.

Proof It is clear from (2.5) that if kiJrS = ki for all i,
then Ai+s = Ai for all i. The result now follows from (2.3).
The periodicity lemma asserts that if the sequence
kl’k2""'kr is a repeating sequence, then the symbol (2.1) is

obtainéd by the same repetition. If there is no proper repeti-

tion, we say that the symbol (2.1) is feduced ahd write
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b (2.8)

Then a geﬁeral symbol (2.1) is obtained by 4epeating a
unique reduced symbol; and a reduced symbél (2.8) is obtained
by compressing a general symbol. Given positive odd integers a
and b with a< %, there is a unigue reduced symbol (2.8)
with a, = a.

1

We come now to our main preliminary result.

Theorem 2.5 let k,.,k k. be positive integens with

b R
r k-1
T k; =k>2. Then, for a given odd integer a; < 2 , we have
i=1

a,8n4...3 a,al...a a'

172 r |- 172 r-1 'r

] if and onty if  2FTia1

Kykyeo ok, Kikyeooko_q k*1

In either case, r 44 even.

Proof Assume the left-hand symbol. Then, by (2.3),

k r _ k _
(27 - (-1 )ai = (2 l)Ai.

If r were odd, we would have 2k—l|ai, an evident

contradiction. Thus r 1is even and a; = Ai' for all 1i.

We now solve the equations 2k+l -1=x,4+ 271
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r
where k'i =k.,, 1<i<r-1, k;: = kr+ 1, so that Z ki=k+l=k',

i .
i=1
sav, to obtain (compare (2.6)) X; = Ai,
with (compare (2.5))
k'-k;_ k'-k!_-ki_ ki
aj=2  Thoa AR 2i 4 (-T2 T - ;1T (2.9)

Thus we obtain the symbol

' ' ' ®

Al A2 ... A Ar

k k, ... k k +1
r

However, we see from (2.9), recalling that Ai is independent

T L] -
of kr’ that Al = Al

right-hand symbol of the theorem. The converse is proved simi-

= aj establishing the existence of the

larly.

There is a companion theorem as follows; we need not gi-

ve an explicit proof.

Theorem 2.5* Let kyrkyreooiky be positive integens with

r
Tk, =k=>1. Then, for a given odd integer a; < 2k l, we have
i=1
. a; a, ... a,
2741 i4 and only L4
Ky k kp
a al . a’ a'
1 2 r-1 r
2k+l+l
| k1 X - Kooy ket 1
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In edither case, r s odd.

We are now ready to state our main theorem.

Quasi-Order Theorem Let b be an odd positive integer, and Let a; be an

odd positive integer with a; < g and a pruime

Zo b, Then if b wiLth
ky k, ... k +

M

k. = k, we have
1 1

(1) k  4s the minimal % such that b|Z%1,

(1) b|2%1 44 r s even, b|2%1 4 r 4 odd.
We prove this theorem in the next section but we may imme
diately anounce the following corollary, relating to the ovader

of 2 mod b.

Corollary 2.6 With the same hypotheses as in the Quasi-Onder Theonrem, e

have

(1) L4 r 4s even, then the ondern 04 2 mod b 48 k and,
even {f k 4is even, 2?2 £-1 mod b;
(ii) iL§ r 44 odd, then the onder 0f 2 mod b s 2k, and

27 = -1 mod b.

3. Proof of the Main Theorem

We first study a special case of the main theorem and

prove

52



1 2 r
Theorem 3.1 let £ >2. Then 44 £-1 e
9 1 L 2 vt L r
r
we have = 2. |%.
. i
i=1
Proof We argue by induction on £, the case 2 = 2 being tri

1
vial since 3 [1] . Ihus we assume the theorem for €= 2 and

prove it for ¢ +1. Let

a a, ... a :
1 2 r
Al (3.1)
£, 0y --- 2
If r=1 and Ql =1, the conclusion is trivially true. If not,
it follows from the periodicity lemma that, for some i, L. = 2.

1

Without real loss of generality we may assume that Qr 2 2 so

that, by Proposition 2.3, a; < 22_1. Thus, by our inductive

hypothesis, we have

. a; a; ... ag
27 -1 (3.2)
kq k2 . ks
s
with z kl ¢ . By repetition, if necessary, we find the
i=1
symbol
1 1
. a; ay ... ag
27 -1 (3.3)
ky k2 “ee kt

& .
with $ k, = &. By Theorem 2.5 we deduce the symbol
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1 cee g
+
29 L 1 (3.4)
+
kq k2... kt—l kt 1
t
T 4 = < 1 < - L t = .
Write k; = k;, 1 i t-1, k! = k +1. Then izl ki Q+1
Compressing, if necessary, we obtain
a all . all
1 2 u
PR (3.5)
T 1 1
kl k2 N ku

u

with 2 k{ (2+1). By the uniqueness of the reduced symbol, as
i=1

a function of b and a,r we infer that (3.5) is identical

with (3.1), so that the inductive step is achieved and the theo

rem is proved.

There is, of course, a companion theorem, with almost iden

tical proof, namely,

Theorem 3.1* let = 1. Then if

Y
we have Tz 9? Q.

Proof of the Quasi-Order Theorem First let
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1 @8 - r
b , with no restriction on gcd(al,b).
kl k2 cee kr
r
Let ¥ k. =k and let k, be the minimal ¢ such that
i=1 1t k 0
p|2+ 1. If 2 °:1 =bq, then, obviously,
k a;q a,q ... a4g
2 +1 .
kl k2 P kr

Thus, by Theorem 3.1 or 3.1*, Xkl|k,.

Now suppose that a; is prime to b. Then, by (2.3)

and (2.4),
k r _
(2 (-1)7)a; = bA,.
Since b 1is prime to a,, we have b|2k - (-1)F. since klkqo
the minimality of k0 implies that k = kO‘ Moreover it is

plain that b|2k -1 if r 1is even and b[2k + 1 4if r is

odd.

Remarks (i) Note that we have proved that, if we remove from
the hypotheses of the Quasi-Order Theorem the condition that

a; be prime to b, and if k is defined as the minimal ¢
r .

such that bIZQ + 1, then z ki lk. If we write quo(b) for
i=1

the quasi-order of .2 mod b, then this says that if

a; a, ... ]
b , then

i
kl k2 N kr

kil gquo(b) . Moreover, the

LI & R

1
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x

Quasi-Order Theorem itself tells us that Z ‘ki = quo (g) . where
i=1

d = ch(b,ai) . Of course, it is obvious on elementary grounds

that quo(b') | quo(b) if b' ]| b.

(ii} If we confine attention to odd numbers b of the

form 2‘2 t 1, then we immediately infer from what we have pro-

ved

a, a, ... a
Q 1 2 r
Proposition 3.2 1§ >3 and 2 -1
Y e L
1 2° r
Q r
with a) prime o 2" -1, then = ?i =%, and r As even.
: i=1
|al a2 e
Proposition 3.2* T4 2 >1 and 2 + 1
[ 2 £
1 2 r
[ r
with  a; pudme to 20 +1,  then =28 and r 4 odd.
i=1

However, sharper results are available for such odd num-
bers 29 + 1. To prove these, we first present a combinatorial
lemma. We adopt the notion of a hepeating sequence used in the
previous section. {(See the remarks following Proposition 2.4).

1’ k2, cens kr—l be fixed positive auto.gejw3.

Lemma 3.3 Let k
Then there exists at mosi one positive integer k  Auch that

(kl, k2, ooy kr—l’ k) 48 a nepeating sequence.

Note that this lemma really has nothing to do with positive
integers. The elements kl’kz’ ey kr—l’ k could be drawn
from any set.
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Proof Supposé kl' kz, ceor kr is a repeating sequence with
period s; suppose k., ké, ceor k; is a repeating sequence

with period +t; and let ki = ki, i=1l,2, ..., r=-1. We will

prove that k_ = k!. Let 2 lem(s,t). Since s|r, t|r, we

have 2|r, so r =2fu. If u>1, then k_=k; =kj = kg,
so assume u =1, r = f = lcm(s,t). Then s /}ft, since then
r = t and a seqguence of length +t cannot repeat with period

t. Likewise t fs. Recall that now r = lecm(s,t).

We now adopt the convention that the indices are residues
modulo ¥, for the sake of simplicity of statemenxz. Let

d = ged(s,t) =ms +nt. Then r/fnt, rfms, rfd, so

-
il
=
|

1
a4~ *ar = ¥nt

i
~
5 -
~

|- U
and k a kms kms r

il
i
o

Since k, = k!

. — 1
a a’ it follows that kr = kr'

We now improve on our Propositions 3.2, 3.2* as fo-

liows.

Theorem 3.4 Fix a; and Let &  be chosen 40 that PREEIDS a;-
, a; a, ... ar'
14 2 -1 , ‘then, with at most one exceptional
£ 1 522 ves R r
r
value of £, Z £, = % and r 48 even. If a; = 1, the excep-
i=1
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Ltional value <8 2 = 2. 1§ a; > 1, the exceptional value, Lf £t

occuns, is such that is not puime to 2% - 1.

il

Theorem 3.4% Fix a; and Let 9  be chosen A0 that A -1l a,.

1
. a; a, ... a, '
1§ 27+ 1 , then, with at most one exceptional
R, 2, .. 2
r
value o4 ¢, Z 2, =2¢ and r 48 odd. The exceptional value, if Lt
i=1l

2

occuns, £s such that a i8 not pime to 20 + 1.

1

Proof We will be content to prove Theorem 3.4. Let ¢ be the
Q -

1 > a,. Then we know from Theorem 3.1,

1
by repetition if necessary, that

least ¢ such that 2

| a, a, ... a_ | -
E L 4 L -~ _
20 -1 , with Z Ei = Q. (3.6)
= = = i=1
Ql QZ N Qr
Then, by Theorem 2.5, for any m = 0,
a al . .. a’
= 1 2 r
Aoy (3.7)
21 Qz . Qr—l Qr+m

Now, by Lemma 3.3, the sequence (El, Ez, ceer Ry Ry +m) re

peats for at most one value of m, so that, with this single

possible exception,

Aty (3.8)

£ L 2 ,*m

Theorém 2.5 also tells us that if (3.8) holds r is even. If
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a1==l, then 3 [i] is exceptional. If ay > 1, then the

proof of the theorem is completed by appeal to the Quasi-Order

Theorem.
r
Remarks (i) Of course, in the excepcional case z Qil L.
i=1

(ii) The smallest number a; such that there is no exceptional

£, either for 25Z -1 or ZQ + 1, is a; = 19.

4. Appendix l: remark on notation, with reference to folding

procedures.
Let us start with an example. If we wish to fold an an-
gle of %%%, appearing at the top of the tape, then our proce-
dure, given an arbitrary starting line AAO on the tape is to

fold dluzdzul (see Figure 7).

iR // .7 \‘ o ’ \\ R y ~ .
- 4 ~ A)
Sl E‘;“’ \ \\/,':—i:" Nt .‘d:?r ' ‘\‘,13_:"
g ? Gl Y
Figure 7
197 .
Then the angle %3 arpears, to a better and better approxima-
tion, at PO, P4, P8' .+« » Now we have the reduced symbol

(4.1)

19 11 13 25
2 2 1 1

The entries along the first row, 19, 11, 13, 25, represent
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an’ Pan+1’ Pan+2’ Pan+3

respectively; however the entries along the second row 2, 2, 1,

the angles appearing sequentially at P

1, represent the folding instructions pertaining to P4n+l’
P4n+2’ P4n+3’ P4n' This discrepancy suggests that we should
consider rewriting the svmbol so that the folding instruction
at a particular vertex appears immediately below the 'star-num-

ber' corresponding to that vertex. This would require us to

rewrite (4.1) as, say
63 (4.2)
We pass from (4.1) to (4.2) by a cyclic permutation of the fol-

ding instructions, bringing the last into the first position.

Thus, given a symbol

a; a, - a,
b (4.3)
kl k2 . kr
we define the modified symbol to be
a; a, .- a,
b (4.4)
kp kpo- Kpe1

Now in practice we are given b and a and wish to
obtain a (reduced) symbol (4.35. We could, of course, then form
the modified symbol (4.4), which encodes the folding instruc-
tions and the list of star b-gons which can be folded from the

same tape as that used to fold a { gl }-gon. If we are impa-
1

tient to begin the folding we may well wish to find kr in
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(4.4) without going through the entire process of obtaining

the (reduced) symbol (4.3). This, however, is easy.

For a symbol is generated by considering the permutation

f of the set § =8 of odd numbers <<E, given by the rule:

b
write b - a, for a€S$S, as 2ka', where a' is an odd number,
and set f(a) =a'. We would then write, in our symbol,
. . . a a' . .
b
B . |

Thus, to determine what appears below a in our modified symbol,
we must consider the permutation g inverse to £f. Then g

is given by the rule: choose ¢ maximal so that 2Qa < b,

and set g(a) = b - Zga. This maximal £ is then precisely

what appears below a in the modified symbol.

The modified symbol has a further aesthetic advantage
over the symbol we have used. For, with the modified symbol,

the key Theorem 2.5 reads

Theorem 2.5 Let Kky/kys-.., k. be positive integens with

§ k; = k> 2. Then gon a given odd integer a, < 2k—1, we.

Fave

. a; a, ... ar] -~ a; aé ... ay

271 4§ and only L4 2 -1 .
Ky Ky oo ko , kil ky oon ko

Such a reformulation (as also of Theorem 2.5*%) is then
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immediately translatable into fold-theoretic language!

For it

tells us that, if we know how to fold our strip of paper to pro

2k-1 2*
duce a star {—7;— }-gon, then, to produce a star {

——7;:l}—gon,

we introduce one more fold line precisely at those vertices on

the top edge of the tape which are destined to become vertices

of our polygon.

5. Appendix 2: a few well-chosen examples

We note that, if

a; a, . .. a, r
b ’ Z k., = k,
Kk, k X i=1*
1 9 o+ vt r
with a, = 1, then, by (2.3),
2% - (-1)F = bag,
where, by (2.5)
Op-1 Cr-2 r.%1 r
A =2 -2 + ..o (-1)72 7 - (-7,
J
with o, = Z k., .
Joq=1 t
Moreover, by our main theorem,
k = quo(b).

(5.1)

(5.2)

(5.3)

Let us apply this to case b = 641. We obtain, by our algorithm,
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1 5 159 241 25 77 141 125 129
641 (5.4)

7 2 1 4 3 2 2 2 9

Thus we infer, since k = 32, r = 9, that

quo (641) = 32
. 32 -
and, indeed, that 2 +1 =0 mod 641.

Moreover, we know from (5.1)

232+ 1= 641a,

and, from (5.2)

IR X R 2 S L I 29 - 57 4

6700417,

This is, of course, Euler's famous factorization showing
that 225+ 1 is not a (Fermat) prime.4 Only the paper-folding
fanatic would take the view that the principal interest of (5.4)
is that it shows how to fold the regular convex 64l-gon and cer

tain star 641-gons.

As a second example, consider the symbol

Here k = 11, r = 6, so that

4
See, for example, the front cover of [5].
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quo(23) = 11, 21 - 1 =0 mod 23,

and, again by (5.2), the complementary factor is

A, =2 -2 + 27 -27+2-1

89

Thus 2ll - 1 =23-89 and is not a (Mersenne) prime.
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