POINTWISE LOCALIZATION AND SHARP WEIGHTED BOUNDS FOR RUBIO DE FRANCIA SQUARE FUNCTIONS

Francesco Di Plinio, Mikel Flórez-Amatriain, Ioannis Parissis, and Luz Roncal

Abstract: Let $H_{\omega}f$ be the Fourier restriction of $f \in L^2(\mathbb{R})$ to an interval $\omega \subset \mathbb{R}$. If Ω is an arbitrary collection of pairwise disjoint intervals, the square function of $\{H_{\omega}f : \omega \in \Omega\}$ is termed the Rubio de Francia square function T_{RF}^{Ω} . This article proves a pointwise bound for T_{RF}^{Ω} by a sparse operator involving local L^2 -averages. A pointwise bound for the smooth version of T_{RF}^{Ω} by a sparse square function is also proved. These pointwise localization principles lead to quantified $L^p(w)$, p > 2, and weak $L^p(w)$, $p \geq 2$, norm inequalities for T_{RF}^{Ω} . In particular, the obtained weak $L^p(w)$ -norm bounds are new for $p \geq 2$ and sharp for p > 2. The proofs rely on sparse bounds for abstract balayages of Carleson sequences, local orthogonality, and very elementary time-frequency analysis techniques.

The paper also contains two results related to the outstanding conjecture that $T_{\rm RF}^{\Omega}$ is bounded on $L^2(w)$ if and only if $w \in A_1$. The conjecture is verified for radially decreasing even A_1 -weights, and in full generality for the Walsh group analogue of $T_{\rm RF}^{\Omega}$.

2020 Mathematics Subject Classification: Primary: 42B20. Secondary: 42B25.

Key words: Rubio de Francia square function, sparse domination, sparse square functions, exponential square integrability, sharp weighted bounds, time-frequency analysis, localization principles.