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Abstract: Let Hωf be the Fourier restriction of f ∈ L2(R) to an interval ω ⊂ R. If Ω is an arbitrary
collection of pairwise disjoint intervals, the square function of {Hωf : ω ∈ Ω} is termed the Rubio

de Francia square function TΩ
RF. This article proves a pointwise bound for TΩ

RF by a sparse operator

involving local L2-averages. A pointwise bound for the smooth version of TΩ
RF by a sparse square

function is also proved. These pointwise localization principles lead to quantified Lp(w), p > 2, and
weak Lp(w), p ≥ 2, norm inequalities for TΩ

RF. In particular, the obtained weak Lp(w)-norm bounds

are new for p ≥ 2 and sharp for p > 2. The proofs rely on sparse bounds for abstract balayages of

Carleson sequences, local orthogonality, and very elementary time-frequency analysis techniques.
The paper also contains two results related to the outstanding conjecture that TΩ

RF is bounded

on L2(w) if and only if w ∈ A1. The conjecture is verified for radially decreasing even A1-weights,

and in full generality for the Walsh group analogue of TΩ
RF.
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