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Abstract: We study the (uniform) strong subdifferentiability of norms of Banach spaces P(NX, Y ∗) 
of all continuous N -homogeneous polynomials and tensor products of Banach spaces, namely 
X⊗̂ π · · · ⊗̂ πX and ̂ πs,NX. Among other results, we characterize when the norms of spaces P(N`p, ̀ q ), 
P(N lM1 , lM2 ), and P(N d(w, p), lM2 ) are strongly subdifferentiable. Analogous results for multilinear 
mappings are also obtained. Since strong subdifferentiability of a dual space implies reflexivity, we 
improve some known results in [38, 48, 49] (in the spirit of Pitt’s compactness theorem) on the 
reflexivity of spaces of N -homogeneous polynomials and N -linear mappings. Concerning the projec-
tive (symmetric) tensor norms, we provide positive results by considering the subsets U and Us of 
elementary tensors on the unit spheres of X⊗̂ π · · · ⊗̂ πX and ̂ πs,N X, respectively. Specifically, we 
prove that the norms of ̂ πs,N ̀ 2 and `2 ̂ π · · · ⊗̂π`2 are uniformly strongly subdifferentiable on Us 
and U , and that the norms of c0 ̂ πs c0 and c0 ̂ πc0 are strongly subdifferentiable on Us and U in 
the complex case.
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