**Email:** xtolsa@mat.uab.cat

**Mailing address:** Departament de MatemÃ tiques
Universitat Autonoma de Barcelona
08193 Bellaterra. Barcelona

### Research interests

I work in mathematical analysis. My research deals with harmonic analysis, potential theory, and geometric measure theory. Particularly, I am interested in the relationship between analytic notions such as analytic capacity or harmonic measure, and geometric concepts like rectifiability.

In a sense, analytic capacity measures how much a set in the plane is visible or invisible for analytic functions in the plane. On the other hand, rectifiability tells you if a set is contained in a countable collection of curves with finite length. Some years ago, I studied the connection between analytic capacity and the curvature of measures introduced by Melnikov, and the semiadditivity of analytic capacity. The relationship between analytic capacity and Favard length is another question in this area which is not fully understood and that still calls my attention.

I have also studied related problems in higher dimensions, such as the so-called David-Semmes problem about the Riesz transforms and recitifiability. More recently, I have applied some of the techniques developed for the David-Semmes problem to study different questions on harmonic measure, which is another of my main interests at present, together with some neighboring topics on free boundary problems.