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Abstract. In this paper we determine all modular curves X(N) (with N ≥ 7)
that are hyperelliptic or bielliptic. We also give a proof that the automorphism
group of X(N) is the group PSL2(Z/NZ), therefore it coincides with the nor-
malizer of Γ(N) in PSL2(R) modulo ±Γ(N).

1. Introduction

In this paper we discuss some basic problems on the modular curves X(N). By
X(N) we mean a geometrically connected curve defined over Q, which over the
complex field C is given as Riemann surface by the quotient of H∗ modulo the
modular subgroup

Γ(N) =

{(

a b
c d

)

∈ SL2(Z)

∣

∣

∣

∣

(

a b
c d

)

≡

(

1 0
0 1

)

(mod N)

}

,

where as usual we denote by H∗ the union of the upper half plane H together with
the “so-called cusps” Q ∪ {∞}. The modular curve X(N) is defined over Q as the
moduli space parametrizing generalized elliptic curves together with a full N -level
structure (see Section 2 for a detailed discussion).

One of the problems we solve is the determination of the integers N ≥ 7 such
that the modular curves X(N) are hyperelliptic or bielliptic. We obtain in Section
4 that none of them are hyperelliptic (Theorem 12) and they are bielliptic only for
N = 7 and 8 (Theorem 13).

The study of this problem for some other families of modular curves was initiated
by Ogg (see [24] and [3]) with the case of the curves X0(N), and followed by the
modular curves X1(N) in [22] and [15] and the curves X1(N,M) in [14] and [16].

In the last section we apply this result to study the finiteness of quadratic points
of X(N). In particular we can prove that the set of quadratic points of X(N)
over the cyclotomic field Q(ζN ) is always finite for N > 6, ζN denotes, as usual, a
primitive N -th root of unity.

In Section 3 we consider another important issue concerning the curve X(N):
the explicit determination of its automorphism group over C, that we denote by
Aut(X(N)).

Recall that, for a modular curve X of genus greater than one and with modular
group Γ ≤ SL2(Z), the quotient of the normalizer of Γ in PSL2(R) by ±Γ always
gives a subgroup of Aut (X). We denote this subgroup by Norm(Γ)/ ± Γ. It is
a quite difficult problem to determine when Norm(Γ)/ ± Γ coincides with the full
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group of automorphisms of the corresponding modular curve X , of genus greater
than one. An automorphism v ∈ Aut(X) \ (Norm(Γ)/± Γ) is called exceptional.

Kenku and Momose in [20] determined the full automorphism group for X0(N)
with N 6= 63 and Elkies in [8] obtained Aut(X0(63)), and finally Harrison in [13]
corrected the Kenku-Momose statement for Aut(X0(108))1. In particular, there
are exceptional automorphisms for X0(N) only for N = 37, 63 and 108. For the
modular curve X1(N) and N square-free, Momose proved in [23] that there are no
exceptional automorphism.

Finally, let us explain briefly the history concerning Aut(X(N)). J.P. Serre in
a letter to B. Mazur [27] computed that the automorphism groups of the modular
curves X(p) for p prime p ≥ 7, are isomorphic to the simple groups PSL2(Z/pZ).
Back in 1997, in a conference held in Sant Feliu de Gúıxols, the second author met
G. Cornelissen, who wanted to compute the automorphism group of the Drinfeld
modular curves [7, sec. 10] and asked if there is a generalization for composite N .
After finishing the computation, the second author communicated the generaliza-
tion to J.P. Serre, who answered that the theorem he proved in the letter to Mazur
and the generalization for composite N should be known to the pioneers of modular
forms; but we were not able to find a reference in the literature. Since there is new
interest (see [5],[26]) on the automorphisms of the modular curves X(N) and we
are not aware of any reference for this computation, we believe that writing down
a proof might be useful to the mathematical community.

2. Preliminary results on the curve X(N)

The (non-complete) Riemann surface Y (N)(C) is constructed as the quotient
of the upper-half plane H modulo the modular subgroup Γ(N). The set Y (N)(C)
parametrizes the pairs (E, (P1, P2)), where E is an elliptic curve defined over C and
P1 and P2 are points of order exactly N in E(C), which generate the subgroup of
N -torsion points and verify that e(P1, P2) = exp(2πi

N ), where e denotes the Weil
pairing.

This interpretation can be used to give a model of the modular curve Y (N)
(and its completion X(N)) over other fields of characteristic not dividing N (or
general schemes over Spec(Z[1/N ]). We have two options: either we ignore the last
condition on the Weil paring, obtaining a non geometrically connected curve, or we
modify the moduli problem introducing in some way the Weil pairing. The first
option is essentially the one taken by Deligne and Rappoport in [4], and also by
Katz and Mazur in [19]. We consider here the second option, following for example
Elkies in [9], Section 4. Over fields containing all the N -roots of unity µN the
second curve is isomorphic to a connected component of the first.

Thus, we take the full modular curve Y (N) (forN > 2) as the (geometrically con-
nected) curve which over any field K (of characteristic not dividing N) parametrizes
pairs (E, φ), where E is an elliptic curve over K and φ is a Weil-equivariant iso-
morphism of group schemes between E[N ], the kernel of the multiplication by N
on E, and Z/NZ × µN . This means that

〈 , 〉 ◦ (φ × φ) = e

1We would like to mention that this correction does not affect the results in [3].
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where e : E[N ]×E[N ] → µN is the Weil Paring and 〈 , 〉 is the natural (symplectic)
self-pairing of Z/NZ × µN given by

〈(m, ξ), (n, η)〉 := ξnη−m.

The map φ is called the N -level structure. We denote by X(N) the completion of
Y (N); it also has a moduli interpretation like Y (N) by allowing generalized elliptic
curves. For the cases N = 1 and 2 one takes the usual coarse moduli space (in both
cases isomorphic to the projective line).

There are other options one can take to get a model of the curve X(N); for

example, one can take a fixed elliptic curve Ẽ, and consider the N -level structures
φ given as Weil-equivariant isomorphisms between E[N ] and Ẽ[N ]. One gets a
twisted form of X(N), usually denoted by XẼ(N) (see for example [11]).

Recall that the curve X(1) is isomorphic (via the j-function) to the projective
line P1. The canonical cover X(N) → X(1) that forgets the N -level structure is
Galois over any field containing all the N -roots of unity, and with Galois group
PSL2(Z/NZ). The degree of this cover is equal to

δN :=

{

N3/2
∏

p|N (1 − p−2) if N > 2

6 if N = 2
.

Moreover the genus gN of X(N) is equal to [29, p. 23]

(1) gN = 1 + δN
N − 6

12N
.

We see that the curves X(2), X(3), X(4) and X(5) are rational, while the curve
X(6) is elliptic. For all the other values N ≥ 7 the curves X(N) have genus > 1.

We now want to relate the curve X(N) to some other modular curves. First,
observe that we have natural “forgetful” maps f1 : X(N) → X1(N) given, in the
moduli interpretation, by sending the pair (E, φ) to the pair (E, φ−1((1, 1))), since
φ−1((1, 1)) is a point of exact order N . Thus, we have maps f0 : X(N) → X0(N)
obtained composing the map f1 with the forgetful map ̺ : X1(N) → X0(N).
There is also another independent map f ′

0 : X(N) → X0(N), which can be defined
in terms of the moduli interpretation, as the map sending the pair (E, φ) to the
pair (E, φ−1({0} × µN )). If we see the curve X(N) as the compactified quotient
of H by a discrete subgroup, then we can interpret these maps f1 and f ′

0 as the
quotient maps of X(N) by the subgroups

Γ1(N) =

{(

1 ∗
0 1

)}

and Γ0(N) =

{(

∗ 0
∗ ∗

)}

⊆ PSL2(Z/NZ),

respectively.
Over a field containing a primitive N -root of unity ζN , there is a map f ′

1 :
X(N) → X1(N), which depends on ζN , given by assigning to the pair (E, φ), in
the notation above, the N -torsion point φ−1((0, ζN )). The map f ′

0 can be factored
as f ′

0 = ̺ ◦ f ′
1.

We now recall a construction of natural maps from X1(N
2) to X(N) and from

X(N) to X0(N
2), for which we do not know a precise reference (see, however,

Section 11.3.5. in [19], for the second morphism in the case N = pn, p a prime).

Lemma 1. Let N ≥ 3 be an integer. Then there exist morphisms of curves π1 :
X1(N

2) → X(N) of degree N and π0 : X(N) → X0(N
2) of degree ϕ(N)/2 defined
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over Q, such that the composition π0 ◦ π1 : X1(N
2) → X0(N

2) is the natural
forgetful map. Moreover, the maps make the following diagram commutative:

X1(N
2)

π1

X(N)

f1
π0 f ′

0

X0(N
2)

ω
N2

X0(N
2)

X1(N)

X0(N)
ωN

X0(N) X0(N)
ωN

X0(N)

X(1)

where ωN and ωN2 denote the Atkin-Lehner involutions, and the maps without name
are the usual projection maps given by the forgetful maps.

Proof. We will construct the maps from X1(N
2) to X0(N) and from X(N) to

X0(N
2) in two equivalent ways. First, over the complex numbers, the map is

deduced by observing that

Γ1(N
2) ≤ U−1Γ(N)U ≤ Γ0(N

2),

where

U =

(

1 0
0 1/N

)

.

These maps can be defined over Q (or any field with characteristic prime to N)
by using the moduli interpretation. First, the map from X(N) to X0(N

2) can be
described on Y (N) by sending the point of Y (N) given by an elliptic curve E and
the N -level structure φ : E[N ] → Z/NZ × µN to the N2-cyclic isogeny obtained
composing the dual of the N -isogeny E → E/F1 with the N -isogeny E → E/F2,
where we consider the subgroups F1 := φ−1(Z/NZ×{1}) and F2 := φ−1({0}×µN).

The morphism π0 can also be interpreted as the natural map from X(N) to
X(N)/C, where C is the full Cartan subgroup of PSL2(Z/NZ) (formed by the
diagonal matrices).

The map from X1(N
2) to X(N) can be analogously described in the moduli

interpretation for the points in Y1(N
2) over a field K, given as pairs (E,P ) where

E is an elliptic curve over K and P is a point of exact order N2: consider the
point Q := [N ]P , which has order N , and the elliptic curve E′ := E/〈Q〉. Then
E′ has two natural cyclic isogenies of degree N , the quotient E′ → E/〈P 〉 and the
dual isogeny of E → E′. The kernel F1 of the first map is canonically isomorphic
to Z/NZ, i.e. F1

∼= Z/NZ, where the isomorphism is given by the point P . We
denote by F2 the kernel of the second isogeny E′ → E, dual of E → E′. Then
the two subgroups F1 and F2 have zero intersection and hence there must be a
canonical isomorphism F2

∼= µN given by the Weil pairing. Therefore we have an
Weil-equivariant isomorphism φ : E′[N ] = F1 ⊕ F2

∼= Z/NZ × µN .
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The commutativity of the diagram is clear from the definition of the maps via
the moduli interpretation of the curves. Recall that the natural projection map
from X0(N

2) to X0(N) sends a non-cuspidal point (E,ϕ) of Y0(N
2) to the point

(E,ϕ1), where ϕ = ϕ2 ◦ ϕ1 is the decomposition of the degree cyclic N2 isogeny
ϕ : E → E′ as composition of two cyclic degree N isogenies, and that the Atkin-
Lehner involution sends an isogeny to is dual.

Finally, the assertions on the degrees are easy over C, taking into account that
the subgroup Γ0(N

2) contains −Id2, but Γ(N) (and Γ1(N
2)) do not. �

Remark 2. This lemma implies that, for N = 3, 4 and 6, the moduli curves X(N)
and X0(N

2) are identical over Q(ζN ). This is analogous to the case of the curves
X1(N) and X0(N) for N = 3, 4 and 6. Note that this does not imply that given an
elliptic curve E over a field K and a cyclic subgroup scheme F of order 3 defined
over K, then F contains a point of order 3; but that there exists a (unique) quadratic
twist E′ of E such that the corresponding subgroup scheme F ′ of E′ contains a point
of order 3. Equivalently, there exists a point P in F , defined over a (quadratic)
extension L, such that the pair {P,−P} is defined over K. The same is true for
N = 4 and 6, and, in general, for the elliptic curves whose j-invariant is in the

image of the map Y1(N)(K) → Y (1)(K)
j
→ K.

Corollary 3. The curve X(N) is isomorphic over Q to the fiber product of X1(N)
and X0(N

2) over X0(N), with respect to the natural map X1(N) → X0(N) and

the map X0(N
2) → X0(N)

ωN→ X0(N) given by the composition of the natural map
with the Atkin-Lehner involution ωN .

Proof. From the previous lemma and the universal property of the fiber product
we have a natural map from X(N) to the fiber product. In order to show it is
an isomorphism we will prove they both parametrize the same moduli problem.
The moduli problem parametrized by the fiber product is easily seen to be the
triplets (E,P, ϕ) where E is an elliptic curve, P is a point of order exactly N ,
ϕ : E′′ → E/〈P 〉 is a degree N2 cyclic isogeny such that ϕ = ϕ2 ◦ ϕ1, where
ϕ1 : E → E/〈P 〉 is the quotient isogeny. Now, the kernel of the dual of ϕ2 is a
subgroup scheme F of order N in E. From the condition E/F → E → E/〈P 〉
being a cyclic isogeny of degree N2, it is deduced that the subgroups F and 〈P 〉
have zero intersection. Hence E[N ] ∼= F × 〈P 〉 ∼= F × Z/NZ. The Weil pairing
implies then that F ∼= µN and that this isomorphism is compatible with the Weil
pairing. �

3. The automorphism group of X(N)

Recall that the curves X(N) have genus greater than two if N ≥ 7, and their
automorphism groups are bounded by Hurwitz bound:

(2) |Aut(X(N)| ≤ 84(gN − 1).

It is also known that exactly three points of X(1) are ramified in the coverX(N) →
X(1), namely j(i), j(ω), j(∞), with ramification indices 2, 3 and N , respectively (j
denotes the natural j-invariant isomorphism between P1 and X(1)). The main
result of this section is the following:

Theorem 4. The automorphism group of X(N) over C for values N such that
gN ≥ 2 equals PSL2(Z/NZ).
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We will prove the theorem in several steps.

Lemma 5. If PSL(2,Z/NZ) � AutX(N) then PSL(2,Z/NZ) = AutX(N).

Proof. Since PSL(2,Z/NZ)�AutX(N), we can restrict automorphisms in AutX(N)
to automorphisms of X(1) ∼= P1 and these automorphisms should fix the three ram-
ification points. Therefore the restriction is the identity. �

Let m be the index of PSL2(Z/NZ) = Gal(X(N)/X(1)) in AutX(N). The
equation for the genus (1) for N 6= 2 can be written as

(3) 84(gN − 1) = |PSL2(Z/NZ)|

(

7 −
42

N

)

and this combined with (2) gives the following bounds for the index m:

(4)

m ≤ 2 for 7 ≤ N < 11
m ≤ 3 for 11 ≤ N < 14
m ≤ 4 for 14 ≤ N < 21
m < 7 for 21 ≤ N

.

Therefore, for 7 ≤ N < 11 we have AutX(N) ∼= PSL2(Z/NZ) by lemma 5.
The following lema is elementary.

Lemma 6. Consider the coset decomposition

Aut(X(N)) = a1PSL2(Z/NZ) ∪ · · · ∪ amPSL2(Z/NZ)

and define the representation

β : PSL2(Z/NZ) −→ Sm

by sending

σ 7→ {σa1PSL2(Z/NZ), σa2PSL2(Z/NZ), ..., σamPSL2(Z/NZ)}.

Then PSL2(Z/NZ) � AutX(N), if and only if β is the trivial homomorphism.

Lemma 7. If N = p is prime, p ≥ 7 then β = 1.

Proof. Since PSL2(p) is simple we have kerβ is either PSL2(p) or {1}. The last
case is impossible since there are no elements of order p in Sm, for m ≤ 6. �

Let us now consider the curves X(pe), where p is prime, p ≥ 7.

Lemma 8. For X(pe) with p ≥ 7 we have AutX(pe) = PSL2(p
e).

Proof. We will prove that β = 1 for the map β defined in lemma 6. We consider
the following tower of covers

X(pe)

H

PSL2(Z/p
e
Z) X(p)

PSL2(p)

X(1)
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Consider H := Gal(X(pe)/X(p)); then |H | = p3(e−1), and, since p ≥ 7, we have

H < kerβ. Therefore, we can define the homomorphism β̃ so that the following
diagram is commutative

PSL2(Z/p
eZ)

β
Sm

PSL2(p)

β̃

Again, since PSL2(p) is simple, we obtain β̃ = 1 and the same holds for β. �

Corollary 9. Let N be a composite integer prime to 2, 3, 5. Then AutX(N) =
PSL2(Z/NZ).

Proof. The homomorphism β is trivial in this case as well, since

PSL2(Z/NZ) ∼=

s
⊕

i=1

PSL2(Z/p
ai

i Z),

where N =
∏s
i=1 p

ai

i is the decomposition of N in primes. �

End of the proof of Theorem 4. In order to study the case for general N we will
need better bounds for the index

m := [AutX(N) : PSL2(Z/NZ)].

We consider the tower of covers

X(N)

PSL2(Z/NZ)

Aut(X(N))

2 3 N

X(1) j(i) j(ω) j(∞)

X(N)AutX(N)

Observe that if PSL2(Z/NZ) is not a normal subgroup of AutX(N) then the cover
X(1) ∼= P1 → X(N)AutX(N) is not Galois. From the proof of the inequality (2) in
[10, p. 260], we see that if the number r of points of X(1) ramified in the cover
X(N) → X(N)AutX(N) is r > 3, then Hurwitz’s bound is improved to

|AutX(N)| ≤ 12(gN − 1).

This proves that m ≤ 1, so PSL2(Z/NZ) � AutX(N), a contradiction.
Therefore the number of ramified points is r = 3. Now Hurwitz’s bound for

X(N) −→ X(N)AutX(N) gives

(5) 2(gN − 1) = |AutX(N)|

(

1 −
1

ν1
+ 1 −

1

ν2
+ 1 −

1

ν3
− 2

)

,

where νi are the ramification indices of the ramified points of the cover X(N) →
X(N)AutX(N). We distinguish the following cases:
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Case 1 The three points j(i), j(ω), j(∞) restrict to different points p1, p2, p3 with
ramification indices e(j(i)/p1) = κ, e(j(ω)/p2) = λ, e(j(∞)/p3) = µ. Equation (5)
in this case is written

2(gN − 1) = |AutX(N)|

(

1 −
1

2κ
+ 1 −

1

3λ
+ 1 −

1

Nµ
− 2

)

≥

≥ |AutX(N)| (1 − 1/2 + 1 − 1/3 + 1 − 1/N − 2) ≥

≥ |AutX(N)| (1/6 − 1/N)

which in turn gives the desired result

|Aut(X)| ≤
12N

N − 6
(gN − 1) = δN .

Case 2. Some of the three points j(i), j(ω), j(∞) restrict to the same point
X(N)AutX(N). We will consider the case 11 ≤ N . First, let us see that the points
j(i) and j(∞) could not restrict to the same point of X(N)AutX(N). Since the cover
X(N) → X(N)AutX(N) is Galois we should have 2κ = Nµ (with the notation used
in the Case 1). But the degree of the cover X(1) → X(N)AutX(N) is at most m ≤ 6,
so κ ≤ m ≤ 6 and µ = 1, and this means that j(i) and j(∞) could not restrict to
the same point, unless N ≤ 12. But if N ≤ 12 then κ ≤ m ≤ 3, so N ≤ 6, which
contradicts 11 ≤ N . Using the same argument we can show that the points j(ω)
and j(∞) restrict to different points of X(N)AutX(N).

Hence, we can suppose that only the points j(i) and j(ω) restrict to the same
point of X(N)AutX(N). Thus, there should be another point p of X(N)AutX(N)

which ramifies only in the cover X(1) → X(N)AutX(N) with ramification index
2 ≤ ν ≤ 6. The Hurwitz bound implies

2(gN − 1) = |AutX(N)|

(

1 −
1

6ψ
+ 1 −

1

φN
+ 1 −

1

ν
− 2

)

ν≥2,ψ=1 or 2

≥

|AutX(N)|

(

1

3
−

1

N

)

N≥11

≥ |AutX(N)|

(

1

3
−

1

11

)

which gives

|AutX(N)| ≤ 33/4 (gN − 1)

and in turn gives the desired result m ≤ 1. �

Recall that Aut (H) is isomorphic to PSL2(R), and Γ(N) is torsion-free if N ≥ 5,
thus the automorphism group of Y (N) = H/Γ(N) is the quotient of the normalizer
of Γ(N) in PSL2(R) by ±Γ(N).

Corollary 10. For N ≥ 7 we have Aut (Y (N)) ∼= SL2(Z/NZ)/ ± 1 and the order
of the group of automorphisms of Y (N) is given by

1

2
Nϕ(N)ψ(N)

where ϕ(N) := N
∏

p|N (1 − p−1) and ψ(N) := N
∏

p|N (1 + p−1) with p prime.

In particular the normalizer of Γ(N) in PSL2(R) is given by PSL2(Z) and
Norm(Γ(N))/ ± Γ(N) ∼= PSL2(Z/NZ).

Proof. Clearly for N ≥ 5, Γ(N) ≤ PSL2(Z) ≤ Norm(Γ(N)) ≤ PSL2(R). Thus

PSL2(Z)/ ± Γ(N) ≤ Norm(Γ(N))/ ± Γ(N) = Aut(Y (N)) ≤ Aut(X(N))
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but PSL2(Z)/ ± Γ(N) is isomorphic to Aut(X(N)) for N ≥ 7 therefore the result.
�

Remark 11. Following the proof for computing Norm(Γ1(N)) in [21] one can easily
deduce that, for N ≥ 5, Aut(Y (N)) ∼= PSL2(Z/NZ) and the normalizer of Γ(N) in
PSL2(R) is PSL2(Z).

4. Hyperelliptic and bielliptic modular curves X(N)

Recall that a non-singular projective curve C of genus gC > 1 over an alge-
braically closed field of characteristic zero is hyperelliptic if it has an involution
v ∈ Aut (C), called hyperelliptic involution, which fixes 2gC + 2 points (see, for
example, [28, §1]). This involution v is unique if gC ≥ 2. Similarly, the curve C is
bielliptic if it has an involution w ∈ Aut (C), named bielliptic, which fix 2gC − 2
points. This involution is unique if gC ≥ 6.

In this section we want to determine for exactly which integers N ≥ 7 the curve
X(N) is hyperelliptic or bielliptic over C. Since X(N) is naturally isomorphic over
the cyclotomic field Q(ζN ) to the curve X1(N,N), these results can also be deduced
from the results by Ishii-Momose in [14] in the hyperelliptic case, and by Jeon-Kim
in [16] in the bielliptic case 2. Here we present a distinct and direct proof.

Theorem 12. For N ≥ 7 the modular curve X(N) is not hyperelliptic.

Theorem 13. For N ≥ 7 the modular curve X(N) is bielliptic only when N = 7
or N = 8.

Before we proceed to the proof of the theorems, we collect some results we will
use. Observe first that, given a morphism of non-singular projective curves

φ : X → Y

which is a Galois cover (in the sense that it is given by a quotient map of the form
X → X/H , for H a subgroup of the group of automorphisms of X), and given ν
an involution on X , if ν satisfies νH = Hν, then either ν induces, by φ, an element
of the Galois group H of the cover, or it induces an involution on Y .

Lemma 14. Consider a Galois cover φ : X → Y of degree d between two non-
singular projective curves of genus gX ≥ 2 and gY respectively. Suppose that gY ≥ 2
or d is odd.

(1) Suppose that 2gX + 2 > d(2gY + 2). Then, X is not hyperelliptic.
(2) Denote by nι the number of fixed points of an involution ι of Y . Suppose

2gX − 2 > dnι for any involution ι on Y . Then, if gX ≥ 6, X is not
bielliptic.

(3) Suppose 2gX − 2 > d(2gY + 2). Then, if gX ≥ 6, X is not bielliptic.

Proof. If v, a hyperelliptic or bielliptic involution, is in the group of the Galois
cover φ, then we have the following factorization of φ

X → X/〈v〉 → Y,

2The proofs of some results in [14] use that do not exist exceptional automorphisms for interme-

diate modular curves [23], but Andreas Schweizer communicated to us that there are exceptional
automorphisms in some intermediate curve (see the forthcoming work [17]). This correction does
not affect the result on X1(N, N) in [14] and [16], but here we present a proof without using any
of the results stated in [23].
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which is impossible if d is odd, since X → X/〈v〉 has degree 2, and also if gY ≥ 2,
since X/〈v〉 has genus ≤ 1.

Suppose now that X has a hyperelliptic or bielliptic involution v, which induces
an involution ṽ on Y . Then the involution v can have fixed points only among
the points lying above the fixed points by ṽ of Y , and hence the map v has at
most dnṽ fixed points, where nṽ denotes the number of fixed points of ṽ on Y .
By the Hurwitz’s formula, the involution v must have 2gX + 2 fixed points in the
hyperelliptic case, or 2gX − 2 fixed points in the bielliptic case. We get the result
under our hypothesis, since hyperelliptic involutions and bielliptic involutions on
X are (unique and) in the center of Aut(X) (see [28, Proposition 1.2]). �

The following lemmas can be easily proved over C by observing that both curves
attain the maximal order of the group of automorphisms for their genus. Recall
that from the main result in Section 3 we have SL2(Z/NZ)/ ± 1 ∼= Aut (X(N)).
Now, the maximal order of the automorphism group for a genus 3 curve is 164
(given by the Hurwitz bound), and |SL2(Z/7Z)/±1| = 164, and the maximal order
of this group for genus 5 is 192 and |SL2(Z/8Z)/ ± 1| = 192. The first lemma is
proved by Elkies in [9].

Lemma 15. The curve X(7) is a genus 3 curve isomorphic over Q to the Klein
quartic which is a bielliptic curve and is not hyperelliptic.

Recall that the Klein curve is the curve over Q defined by the quartic equation

x3y + y3z + z3x = 0.

Similarly, we take the model W defined over Q of the Wiman curve (which has
the maximal order of the automorphism group for a genus 5 curve) given as the
intersection of the following three quadrics in P4:

x2
0 = x3x4, x2

3 = 4x2
1 + x2

2, x2
4 = x1x2.

Lemma 16. The curve X(8) is a genus 5 curve isomorphic over Q to the Wiman
curve W , which is a bielliptic curve and is not hyperelliptic.

Proof. One can easily see that W is a curve with the same group of automorphisms
as X(8) over C. Since there is only one such curve over C, we get that they are
isomorphic over C.

Consider the involution of W over Q given by

ι1(x0, x1, x2, x3, x4) = (x0, x1, x2,−x3,−x4).

The quotient curve W/ι1 has equation given by

x4
0 = x1x2(4x

2
1 + x2

2)

which is isomorphic to the curve X0(64) over Q (e.g. a computation via [6]).
Hence X(8) and W are curves over Q, isomorphic over C, and both unramified

degree covers of the same curve over Q. Moreover, one can see that there is only
one involution of W defined over C whose quotient is X0(64): in fact, there are 4
involutions without fixed points, three of them give quotients of genus three that
are hyperelliptic and one gives X0(64) (see also Subsection 3.2 in [18]). We deduce
that the cover f : W → X0(64) must be a twisted form (over Q) of the cover
X(8) → X0(64).
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The twisted forms of a fixed (degree 2) unramified covering are well-known. In
our case they can be described as the curves Wd given by

x2
0 = x3x4, dx2

3 = 4x2
1 + x2

2, x2
4 = dx1x2,

where d is a squarefree integer, together with the natural map f to X0(64) given
by fd(x0, x1, x2, x3, x4) = (x0, x1, x2). Now, since the covering f is unramified, the
subsets fd(Wd(Q)) do not intersect for distinct covers and they give a partition
of the set X0(64)(Q). This implies that only a finite number of covers do have
rational points. In our case, since X0(64) has 4 Q-rational points corresponding to
the cusps, a simple computation shows that only W = W1 and W2 have Q-rational
points; both have 4 Q-rational points, each one covering 2 points of X0(64)(Q).

Since X(8) does have rational points (some cusps), we get that the curve X(8) is
either isomorphic to W or W2 over Q. But, although W and W2 produce distinct
coverings of X0(64) over Q, they are isomorphic as curves over Q. �

Remark 17. A computation with MAGMA reveals that the curve W is also iso-
morphic over Q to the model of X(8) over Q given by Yang in [31, Table page 507].
Moreover, it has a degree 2 map to an elliptic curve isogenous to X0(32). In fact,
X(8) has three different bielliptic involutions (see [18] or the next section).

Finally, we recall that the curve X0(N
2) has genus > 1 if and only if N ≥ 8. For

them we have the following special case of a result cited in the introduction.

Proposition 18 (Ogg-Bars, [24] [3]). The curve X0(N
2) with gX0(N2) ≥ 2 is never

hyperelliptic, and it is bielliptic exactly for N = 8 and 9.

Now we can proceed to the proof of the main theorems in the section.

Proof of Theorem 12. First of all, recall that, if f : C → C′ is a non-constant
morphism between non-singular projective curves such that the genus of C′ is ≥ 2,
and C is hyperelliptic, then C′ is hyperelliptic.

Since X0(N
2) is never hyperelliptic if the genus is larger than 1 by Proposition

18, i.e. if N > 7, we get that X(N) cannot be hyperelliptic unless N = 7. But this
case was already considered in Lemma 15. �

Proof of Theorem 13. Recall the following result by Harris and Silvermann in [12]:
Let φ : C → C′ be a non-constant morphism between non-singular projective
curves such that the genus of C′ is ≥ 2. If C is bielliptic then C′ is bielliptic or
hyperelliptic.

Now, the result follows for N > 9 by using the map to X0(N
2) given in Lemma

1 and the result in Proposition 18. The cases N = 7 and 8 were already considered
in Lemmas 15 and 16. It only remains to show that X(9) is not bielliptic.

Recall that the genus of X(9) is 10 > 6. We will construct a map ρ, which is
a Galois cover (over C) and it verifies the conditions of the part (3) of Lemma 14.
Consider the (singular) model of X(9) given by y6 −x(x3 +1)y3 = x5(x3 + 1)2 [31,
p.507] (although this model is defined over Q, we do not know if it is isomorphic
to X(9) over Q). Now let E′ be the curve given by the equation

z2 − x(x3 + 1)z = x5(x3 + 1)2.

We get a map ρ from X(9) to E′ by taking z = y3, which has degree 3 (hence odd)
and is Galois. The curve E′ is an elliptic curve isomorphic to E : t2 − t = x3 by
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writing t := z
x(x3+1) . By applying part (3) of Lemma 14, and since

2g(X(9))− 2 = 2 · 10 − 2 = 18 > deg(ρ)(2g(E) + 2) = 3 · (2 · 1 + 2) = 12,

we get that X(9) is not bielliptic. �

Remark 19. It is possible to describe theoretically the construction in the last proof
for the case X(9). First, consider the map f0 : X(9) → X0(81) given by Lemma
1; it is a degree 3 map to a curve of genus 4. Then, consider the degree 3 map
π : X0(81) → X0(27), where the target is an elliptic curve. Finally, let E be the
elliptic curve, given by the simple equation y2−y = x3. The curve E is 3-isogenous
(over Q) to the curve X0(27). The map ρ makes the following diagram commutative

X(9)

ρ

f1
X0(81)

π

E X0(27)

An analogous construction (but with degree 2 maps) can also be done for the curve
X(8).

5. On quadratic points for X(N)

Let C be a non-singular curve of genus greater than one, defined over a number
field K. Mordell’s conjecture, proved by Faltings, states that the set of K-rational
points C(K) of C is always finite. In order to generalize this, it is natural to
consider the set

Γd(C,K) =
⋃

[L:K]≤d

C(L)

of points of degree d of C over K. For quadratic points, that is, d = 2, Abramovich
and Harris showed in [1] that Γ2(C,F ) is not finite for some finite extension F of K
if and only if the curve C is either hyperelliptic or bielliptic. Hence, the following
result is a direct consequence of Theorems 12 and 13 in Section 4.

Corollary 20. The only modular curves X(N) of genus ≥ 2 such that there exists
a number field L where the set Γ2(X(N), L) is not finite are X(7) and X(8).

Now, we can ask if, for N = 7 or N = 8, there are infinitely many quadratic
points over the cyclotomic field Q(ζN ) (which is the smallest field where they can
have non-cuspidal rational points).

Theorem 21. For all N ≥ 7, the number of quadratic points of X(N) over F :=
Q(ζN ) is always finite.

Proof. By the corollary above, we only need to study N = 7 or N = 8.
If C(F ) 6= ∅, then by [1] we have: #Γ2(C,F ) = ∞ with C a non-singular curve

over F if and only if C is hyperelliptic or has a degree two morphism ϕ : C → E
all defined over F , with E an elliptic curve of rankZ E(F ) ≥ 1.

It is known (see for example [25]) that Jac(X(7)) over Q(ζ7) is isomorphic to E3,
whereE is the elliptic curve y2+3xy+y = x3−2x−3, which is isomorphic toX0(7

2).
Therefore, since X(7) is non-hyperelliptic, we have an infinite number of quadratic
points over Q(ζ7) only if there is a degree two mapX(7) → E′ all defined over Q(ζ7),
where E′ is an elliptic curve of positive rank over Q(ζ7). But then, necessarily, E′
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is isogenous to E and, in particular, rankZE
′(Q(ζ7)) = rankZ(E(Q(ζ7)). But this

last rank is zero, as a (2-Selmer) computation with MAGMA [6] or SAGE [30] reveals.
For N = 8, consider the equations over Q given above. Some computations with

MAGMA shows that the group of automorphisms over Q is abelian and isomorphic
to (Z/2Z)3, and the quotient with respect two of the elements gives the elliptic
curve E with equation y2 = x3 − x of conductor 32, and by a third element gives
the elliptic curve E′ with equation y2 = x3 + x, of conductor 64. By [18] there are
exactly 3 bielliptic involutions for X(8), so these are all of them. The elliptic curves
E and E′ become isomorphic over Q(ζ8). Hence, they have the same rank. Finally,
a (2-Selmer) computation with MAGMA or SAGE reveals that rankZ(E(Q(ζ8))) = 0,
proving the result. �

Remark 22. A computation with the help of the MAGMA algebra system [6] shows
that

#Γ2(X(8),Q(ζ8)) = 24,

corresponding to the cusps. This result is done through computing all the quadratic
points of X0(8

2) over Q(ζ8). The curve X0(8
2) is a genus 3 curve, with Jacobian

isogenous to the cube of the elliptic curve X0(32) over Q(ζ8), which has only a finite
number of points over Q(ζ8). Then we compute the inverse image with respect to
the the degree 2 map from X(8) → X0(32). We obtain that although there are
points in Γ2(X0(32),Q(ζ8)) which do not come from cusps (there are more than
one hundred points), none of them lift to a quadratic point of X(8).
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08193 Bellaterra, Barcelona, Catalonia

E-mail address: francesc@mat.uab.cat

Aristides Kontogeorgis, K. Vesri 10 Papagou, Athens, GR-15669, Greece

E-mail address: aristides.kontogeorgis@gmail.com

Xavier Xarles, Departament de Matemàtiques, Universitat Autònoma de Barcelona,
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