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Trivial points on towers of curves

par Xavier Xarles

Résumé. À fin d’étudier le comportement des points dans un tour
de courbes, nous introduisons et étudions les points triviaux sur
les tours de courbes, et nous discutons de leur finitude sur les
corps de nombres. Nous relions le problème de prouver que les
seuls points rationnels sont les triviales à un certain niveau de la
tour, à la non-existence d’une bourne du gonalité des courbes de
la tour, que nous démontrons sous certaines hypothèses.

Abstract. In order to study the behavior of the points in a
tower of curves, we introduce and study trivial points on towers
of curves, and we discuss their finiteness over number fields. We
relate the problem of proving that the only rational points are the
trivial ones at some level of the tower, to the unboundeness of the
gonality of the curves in the tower, which we show under some
hypothesis.

1. Introduction

A typical feature of the solutions of families of diophantine equations
(like Fermat’s equation) is the existence of some solutions, usually called
trivial, in any member of the family, sometimes clear from the context.
It is expected also in most cases that for all members of the family with,
maybe, a finite number of exceptions, the only solutions are the trivial ones.
This paper was intended as an attempt to study such a problem for the
case that the family forms a tower of curves. To this end we first need
to find an intrinsic definition of the trivial solutions. The idea is that the
trivial solutions are the solutions that are always there, so they should be
points that exist at all the levels of the tower. And our main goal is to find
conditions in order to show when there is a finite number of such trivial
points, and also conditions on the existence of bounds for the level of the
tower where all the points are trivial. These bounds will be uniform in the
sense that when we change the number field the bound changes depending
only on the absolute degree of the field.

The main example we had in mind was the case of the modular tow-
ers: consider the curves X1(pn) for some fixed prime p, and n ≥ 0. Then
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the trivial points should correspond to the cuspidal points. And, more-
over, there is a constant N(p, d) depending on p and d ≥ 1 such that,
for any number field K with [K : Q] ≤ d, and for any n ≥ N(p, d), the
only K-rational points of X1(pn) are the trivial ones. This result, but for
the constant N(p, d) depending also on K, was obtained by Y. Manin in
[26]. The stated uniform version was proved by Frey in [17], and it is a
consequence of the main theorem of Faltings (see also section 6).

Another example was considered by the author in [32] (see also last
example in section 2). This paper is, in some sense, a sequel of that paper,
with the aim to investigate in detail under which circumstances these type
of results generalize.

There are other recent papers treating similar problems. For example,
the paper [9] studies cases similar to the modular towers, related to the
inverse Galois problem (see also [18] for other generalizations), and the
paper [14] studies also such (very general) cases but for families indexed by
prime numbers.

The paper is organized as follows. In section 2 we introduce the towers
of curves and their trivial points, and give some elementary results. In
sections 3 and 4 we study the special cases of towers with genus 0 and
1, giving some partial results. In section 5 we give a criterion for prov-
ing the finiteness of trivial points of a tower. In section 6 we recall the
well-known relation between the unbounded gonality and the existence of
uniform bounds (see Theorem 6.3). The rest of the sections are dedicated to
the discussion of distinct methods to bound the gonality of a tower: geomet-
ric methods, reduction modulo primes and counting points, and methods
related to graphs.

This paper contains results concerning towers of curves that the author
collected during some years. The content was explained during the “Cuar-
tas Jornadas de Teoŕıa de Números” in Bilbao, in July 2011. I would like to
thank the organizers for the invitation to give a talk, which motivated me to
write this paper. I wish to express my gratitude also to Enrique González
Jiménez, Joan Carles Lario, Francesc Bars, Pete Clark and Brian Conrad
for some conversations related to the subject. I am greatly indebted to
Bjorn Poonen for answering some doubts concerning the gonality and for
his collaboration in proving some results in section 3. Finally, I gratefully
acknowledge the many helpful suggestions of an anonymous referee.

2. Notations, generalities and examples

Given a fieldK, we will denote byK a fixed separable closure ofK and by
GK the absolute Galois group of K, equal to AutK(K), the automorphisms
of the field K fixing the elements of K. Given any scheme V over K, we
will denote by V the base change of V to K.
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Definition. Let K be a field. By a tower of curves over K we mean an
ordered pair of sequences C := ({Cn}n≥0, {ϕn}n≥1), where, for any n ≥ 0,
a non-negative integer, Cn are smooth projective algebraic curves defined
over K and geometrically connected, and, for any positive integer n > 0,
the ϕn : Cn → Cn−1 are non constant morphisms as algebraic curves of
degree > 1.

If m > n, we will denote by ϕm,n the morphism from Cm to Cn obtained
composing the morphisms from ϕm to ϕn+1. We will denote also by ϕn,n
the identity map on Cn.

Definition. Given two towers of curves C = ({Cn}n≥0, {ϕn}n≥1) and
C′ = ({C ′n}n≥0, {ϕ′n}n≥1), a morphism Ψ from C to C′ is a collection of
morphisms ψn : Cn → C ′kn , where {kn}∞n=0 is a strictly increasing sequence

of non-negative integers, such that ϕ′kn,kmψn = ψmϕn,m if n ≤ m. A special

case is when C is a subtower of C′, i.e Cn = C ′kn and ψn is the identity,
for some progression k0 < k1 < k2 < . . . . An isomorphisms of towers will
mean that the maps ψn are isomorphisms and kn = n for all n ≥ 0.

Given a smooth projective algebraic curve C over a field K, we will
denote by g(C) the genus of C, and by γ(C) the gonality of C over the field
K, which is the minimum degree of a rational map to P1.

Note that, given a tower of curves, we have by Hurwitz’s theorem that
g(Cn) ≥ g(Cn−1) for any n. The same fact for the gonality is not so easy;
one can find a proof of this result for example in Proposition A1 in [29] (see
Proposition 6.1).

Definition. Given a tower of curves C, we define the genus g(C) to be
lim
n→∞

g(Cn), and the gonality γ(C) as lim
n→∞

γ(Cn).

Lemma 2.1. For any tower C, the genus can only be g(C) = 0, 1 or ∞.

Proof. This is again a consequence of Hurwitz’s theorem: if there exists
a curve Cn in the tower with genus g(Cn) > 1, then g(Cm+1) > g(Cm) for
all m ≥ n, so g(C) =∞. 2

Remark. One can construct genus 0 towers easily by fixing rational func-
tions fn(x) ∈ K(x) of degree > 1. Over algebraically closed fields, all genus
0 towers are of this type (see section 3).

Also, to construct genus 1 towers, one can fix elliptic curves En and
isogenies ϕn : En → En−1. An easy example is given when En = E and ϕn
is multiplication by some fixed integer number for all n ≥ 0 (see section 4).

Remark. The analogous result of lemma 2.1 but for the gonality is not
true. In fact one can construct towers of curves of a given gonality γ over
a field if one knows an algebraic curve C over that field with that gonality:
if f : C → P1 is a gonal map, and g : P1 → P1 is any map with degree
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> 1, define first C0 := P1, C1 := C, ϕ1 := f and ψ1 := f . Then, define
inductively, for n ≥ 1, the curve Cn+1 to be the desingularization of a
connected component of the fiber product Cn ×P1 P1 with respect to the
maps ψn and g, and the maps ϕn+1 : Cn+1 → Cn and ψn+1 : Cn+1 → P1

as the natural maps given by the universal property of the fiber product.
For a general g the maps ϕn are of degree equal to the degree of g, and the
degree of ψn equal to the degree of f . Since the gonality of Cn cannot be
smaller than the gonality γ of C for n ≥ 1 (by Proposition 6.1 (6)), and it
has a map of the degree γ, the gonality of Cn is equal to γ.

Definition. Given a tower of curves C = ({Cn}n≥0, {ϕn}n≥1) defined over
K, the K-trivial points of C in the level n ≥ 0 are

C(K)n := {P ∈ Cn(K) | ∀m ≥ n ∃Pm ∈ Cm(K) such that ϕm,n(Pm) = P}.

If d ≥ 1 is an integer, the K-trivial points of C in the level n ≥ 0 and
degree d are

C(d)(K)n :=
⋃

L⊂K ,[L:K]≤d

C(L)n.

Finally, the trivial points of C in level n are

C(∞)(K)n :=
⋃
d≥1

C(d)(K)n.

So the trivial points in level n are the points that are L-trivial in level n
for some finite extension L/K.

In the case of level 0 we will frequently omit it from the notation.

Observe that over an algebraically closed field the trivial points of a tower
of curves in the level n is equal to all the rational points of the curve Cn. So
these definitions are only interesting in fields K whose algebraic closure has
infinite degree over K. In this paper we will consider only number fields or
finite fields.

Observe also that the K-rational trivial points in level n are equal to the
image in Cn(K) of the natural map

lim
←−
n

Cn(K)→ Cn(K),

where the projective limit is taken with respect to the maps ϕn.
The main problem we are interested on is the finiteness of K-trivial and

of trivial points. This finiteness is independent of the level, and one can
reduced also to a subtowers, as the following result shows, whose proof is
straightforward and we will omit.

Lemma 2.2. Let C = ({Cn}n≥0, {ϕn}n≥1) be a tower of curves over some
field K.
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(1) For any d ∈ {0, 1, . . . ,∞}, and any n ≥ m, the natural map ϕn,m :

C(d)(K)n → C(d)(K)m is surjective.

(2) d ∈ {0, 1, . . . ,∞}, and any n ≥ m, C(d)(K)n ⊆ ϕ−1
n,m(C(d)(K)m).

(3) If C′ is a subtower of C, i.e. C ′n = Ckn and ψn is the identity, for

some progression k0 < k1 < k2 < . . . , then C′(d)(K)n = C(d)(K)kn
for all n ≥ 0 and all d ∈ {0, 1, . . . ,∞}.

We end this section by giving some examples of towers of curves.

Example 1. Consider a prime number p. The p-Fermat tower will be the

tower with curves Cn given by planar homogeneous equations Xpn

0 +Xpn

1 =

Xpn

2 , and maps ϕn(X0, X1, X2) = [Xp
0 : Xp

1 : Xp
2 ], all defined over the

rational field Q (or a general number field). One can show that the only
trivial points of the tower are the “trivial solutions” [a0 : a1 : a2] with
a0a1a2 = 0.

Example 2. Consider a prime number p. The p-modular tower will be
the tower with curves Cn := X1(pn) and natural maps ϕn. If the ground
field is a number field or a finite field, then the only trivial points of the
tower are the so-called cuspidal points, a result that can be deduced from
the well-known finiteness of the set of torsion points of any elliptic curve
over such a field.

Example 3. Consider the homogeneous polynomial f0 := X2
0 + X2

1 −
X2

2 , and Cn ⊂ Pn+2 be the curves defined over Q as the zero set of the
polynomials f0, f1, . . . , fn, where fn := f0(Xn, Xn+1, Xn+2). For any field
K, the K-rational points of Cn are in bijection with the Fibonacci type
sequences of squares of length n + 2, that is sequences {a0, a1, a2, . . . , an}
such that an+2 = an+1 + an and all the elements ai are squares in K. We
will call this tower the Square Fibonacci tower. This tower of curves is
similar the tower of curves studied in [32], which is defined as above but
with f0 := X2

0 − 2X2
1 +X2

2 .
Observe that we have four points [±1, 0, ±1, 1] ∈ C1(Q). One can show

that C1 is isomorphic to the elliptic curve E with Cremona Reference 32a2,
and that E(Q) has only four points. So C1(Q) = {[±1, 0, ±1, 1]}, thus
C2(Q) = ∅ and, hence, C(Q)0 = ∅.

Using the results in section 6 one can show that the degree 2 points over
Q of the curve C2, which has genus 5 and gonality 4 (see section 7), inject
inside the jacobian Jac(C2). Using results as in [19, 20], one can show that
the jacobian is isogenous to the product of 5 elliptic curves, with Cremona
references 32a2,32a2,48a1,96a1 and 96b1. All of them have rank 0 and four
rational points, so Jac(C2) is finite and computable. Using this result we
conclude that

C2(Q)(2) = {[
√
−1, ±1, 0, ±1, ±1], [±1, 0, ±1, ±1,

√
2]},
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which can be used to show that C3(Q)(2) = ∅ and hence C(K)
(2)
0 = ∅.

We do not know if C(K)
(d)
0 = ∅ for some d ≥ 3 (but we do know these

sets are finite using the results in section 6) or if C(K)∞0 = ∅, or even finite.
We conjecture that C(K)∞0 = ∅.
Conjecture 2.3. The Square Fibonacci tower has no trivial points over
any number field. Hence, the curves given by the system of equations

X2
0 +X2

1 = X2
2 , X2

1 +X2
2 = X2

3 , . . . , X
2
n +X2

n+1 = X2
n+2

inside Pn+2 have no rational points for any number field K and for n large
enough (in terms of the degree of K/Q).

3. Genus 0 Towers

Consider a tower of curves C with genus 0. It is well known that a genus
0 curve is either isomorphic to the projective line P1 (and if and only if it
has a rational point in your field), or isomorphic to a conic curve (see for
example Theorem A.4.3.1. in [21]). In this second case, there exists some
degree 2 extension of the field where the curve gets isomorphic to P1.

Definition. Given an enumerated set F := {fn(x) ∈ K(x)}n≥1 of rational
functions with degree > 1, consider the tower of curves CF defined as
Cn := P1 and ϕn = fn(x) for all n ≥ 0. The special case that fn = f for
all n will be denoted by Cf .

The next lemma, which in part goes at least all the way back to Witt,
was communicated to me by Bjorn Poonen.

Lemma 3.1. Let C and C ′ be genus 0 curves over a field K, and f be a
non-constant morphisms from C to C ′. Suppose that C ′(K) = ∅. Then C
and C ′ are isomorphic (and the degree of f is odd).

Proof. It is well known that the genus 0 curves C without K-rational
points correspond to conics without points, so to quaternion algebras over
K, hence they give elements xC of order 2 in the Brauer group Br(K) of
K. The existence of the map f says us that C has no rational points. We
will see that deg(f)xC = xC′ in Br(K), hence deg(f) is odd and xC = xC′ ,
so C is isomorphic to C ′. Observe that we have a natural map

Z ∼= Pic(C̄)GK → H1

(
GK ,

K(C)∗

K
∗

)
→ H2(GK ,K

∗
) = Br(K)

sending 1 to xC , given by the natural connecting homomorphisms, which
is functorial. On the other hand, the natural map Pic(C̄ ′)GK → Pic(C̄)GK

is the multiplication by the degree of f . Hence the result is deduced from
the commutativity of the natural diagram, which is easy. 2

As a consequence of this lemma and the results cited above, we get the
following classification.
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Lemma 3.2. Let K be a field, and let C be a genus 0 tower of curves.
Then

(1) If C(K)0 6= ∅, then there exists a set F := {fn(x) ∈ K(x)}n≥1 of
rational functions and an isomorphism C ∼= CF.

(2) There always exists some degree 2 extension L/K, an enumerated set
F := {fn(x) ∈ L(x)}n≥1 and an isomorphism C ⊗K L ∼= CF defined
over L.

Proof. If C(K)0 6= ∅, then there are points Pn ∈ Cn(K) for all n, hence
all the curves Cn are isomorphic to P1. But then the maps ϕn give us
endomorphisms of P1, so rational functions fn. The same is true if Cn(K) 6=
∅ for all n ≥ 0.

Now, suppose there exists n ≥ 0 such that Cn(K) = ∅. Using the
previous lemma, we get that Cm is isomorphic to Cn for all m ≥ n, and all
isomorphic to a fixed conic C.

To end the proof, we only need to observe that for any conic C over
a field there exists some degree 2 extension L/K such that C(L) 6= ∅; if
C(K) = ∅, and it is defined by a polynomial f(x, y) ∈ K[x, y], take any
a ∈ K. Then f(x, a) ∈ K[x] is a degree 2 irreducible polynomial which
defines the desired extension L. 2

Now we are going to study the finiteness of K-trivial points when K is
a number field. Hence we can and will assume that C(K)0 6= ∅. We will
only get results for towers of the form Cf using the theory of heights.

Remark. For the towers of the form Cf , with f(x) ∈ K(x), observe that
C(K)n = C(K)0 for all n, and it contains the set of periodic points of f :
the points P ∈ P1(K) such that fN (P ) = P for some N ≥ 1.

Theorem 3.3. Let K be a number field and let f(x) ∈ K(x) be a rational
function of degree d > 1. Then

(1) For every e ≥ 1, the set of trivial points of degree e and level 0

Cf (K)
(e)
0 is equal to the set of periodic points of f of degree e.

(2) The set of K-rational trivial points Cf (K)0 is finite.

Proof. Recall that Northcott theorem (Proposition B.4.2.(b) in [21]) states
that the set of preperiodic points (points P such that fN (P ) is periodic for
some N ≥ 1) is finite, and in particular the set of periodic points is finite
too. Hence part (2) follows from part (1) and it suffices to show that every
trivial point is periodic.

Consider the canonical height function hf : P1(K) → R associated to f
(see for example [21], Theorem B.4.1.). Then hf (f(P )) = dhf (P ) for any

P ∈ P1(K), where d > 1 is the degree of f . If P ∈ Cf (K)
(e)
0 , there exists

a finite extension L of K of degree ≤ e, and points Pn ∈ P1(L) such that
fn(Pn) = P . For these points we have hf (P ) = hf (fn(Pn)) = dnhf (Pn).
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Suppose that hf (P ) 6= 0. Then hf (Pn) = d−nhf (P ) < d−n+1hf (P ) =
hf (Pn−1), so all these real numbers are distinct. Thus the set {Pn | n ≥ 0}
is an infinite set of points of P1(L) and with bounded canonical height hf ,
hence with bounded absolute (logarithmic) height, which is not possible
(see [21], theorem B.2.3). So hf (P ) = 0 and hence P is preperiodic by
Proposition B.4.2.(a) in [21]. Now, if P is preperiodic but not periodic, the
set {Pn | n ≥ 0} is an infinite set of preperiodic points all defined over L,
which is again no possible, by Northcott theorem. 2

Observe that the finiteness of the set of K-rational trivial points of degree
e > 1 will follow from the same result on the periodic points, which is a
conjecture (see for example conjecture 3.15 in [31]).

Question 1. Are there genus 0 towers (of the form CF) over a number
field K having an infinite number of K-rational trivial points?

Concerning the trivial points of the genus 0 towers, it is easy to construct
examples such that there are infinitely many of them, and towers with only
a finite number of them, as shown in the next two examples.

Example 4. Consider the special case f(x) = x2 and K = Q. Then the

set of trivial points C
(∞)
x2

(K)0 of C in level 0 is equal to the set of periodic

points for x2, which is the set of n-roots of unity for odd ≥ 1 (and x = 0
and ∞), hence infinite:

Cx2
(∞)(Q)0 = {ξ ∈ Q | ∃N ≥ 1 such that ξN = 1} ∪ {0,∞}.

Example 5. Take the genus 0 tower CF defined by F := {fn(x) = xn+1 ∈
K(x)}, where K is any number field. Then the set of trivial points of C in
level 0 is equal to

CF
(∞)(K)0 = {0, 1,∞}.

To show these, observe that α ∈ K is a K-rational trivial point if and only
if α has a nth root for all n ≥ 1. But the only such numbers are 0 and 1
in any number field. This last result can be shown proving first that the
absolute logarithmic height of α must be 0 (if α 6= 0) as in the proof of
the Theorem 3.3, so α must be a root of unity. But the only root of unity
which is a nth root of unity for all n ≥ 1 is 1.

4. Genus 1 Towers

First of all, observe that, if we have a tower C of genus 1 curves over a
field K such that there is a trivial point P ∈ C(K)0, we can use this point
in order to get an explicit description of the tower.

Lemma 4.1. Consider a tower C = ({Cn}n≥0, {ϕn}n≥1) of genus 1 curves
over a field K, and suppose there is a point P ∈ C(K)0. Then the tower C
is isomorphic to a tower E := ({En}n≥0, {φn}n≥1) where the En are elliptic
curves and the φn : En → En−1 are isogenies.
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Proof. Let us fix a point Pn ∈ Cn(K) such that ϕn(Pn) = Pn−1. Consider
the elliptic curve En := Jac(Cn), and the Abel-Jacobi map ιn : Cn → En
given by sending the point Pn ∈ Cn(K) to 0, which is an isomorphism of
curves. The maps φn := ιn−1ϕnι

−1
n are non-constant morphisms of curves

between En and En−1 which send the 0 point to the 0 point. Hence they
are isogenies. 2

Definition. Given an elliptic curve E over a field, denote by O := EndK(E)
the ring of endomorphisms of E over K as elliptic curve (if E has no
complex multiplication, and K has characteristic 0, then O ∼= Z). Given
a progression A := {an ∈ O| n = 0, 1, . . . } of elements with degree > 1,
consider the tower of curves CE,A defined as Cn := E for all n ≥ 0 and ϕn
equal to the an for all n ≥ 1. The special case that an = a for all n will be
denoted by CE,a.

Corollary 4.2. Let C = ({Cn}n≥0, {ϕn}n≥1) be a tower of genus 1 curves
over a number field K such that C(K)0 6= ∅. Then there is an elliptic curve
E defined over K and a progression A := {an} such that the tower CE,A is
isomorphic to a subtower of C.

Proof. By applying the lemma we are reduced to the case that the Cn are
elliptic curves and the ϕn are isogenies. A well-known result of Faltings’
(see [15]) implies that there is a finite number of elliptic curves isogenous
to a given one over a number field. Hence in the set of elliptic curves Cn,
there are infinitely many of them isomorphic to a given elliptic curve E.
The result is now easily deduced. 2

Now we can prove the finiteness of the K-rational trivial points.

Corollary 4.3. Let C = ({Cn}n≥0, {ϕn}n≥1) be a tower of genus 1 curves
over a number field K. Then, for all n ≥ 0 and all d ≥ 1, the set of
K-trivial points of C in the level n ≥ 0 and degree d is finite.

Proof. Observe that it is sufficient to know the result for an isomorphic
subtower by Lemma 2.2. Hence, by using the previous results, we are
reduced to the case that C = CE,A for some elliptic curve E and some
progression A := {an} of natural numbers, or of elements in a quadratic
imaginary order in the CM case, and also to the case n = 0.

Consider a point P ∈ C(d)(K)0. Let L/K an extension of degree d such
that P ∈ C(L)0. Such an element in C(L)0 is a point P ∈ E(L) that is
divisible by bn := a0a1 · · · an for all n, hence by its norm to Z. But E(L)
is finitely generated, so P must be torsion. Thus C(L)0 ⊂ E(L)tors, the
torsion subgroup, which is finite, which proves the case d = 1. In general,
we get that

C(d)(K)0 ⊂
⋃

L⊂K ,[L:K]≤d

E(L)tors,
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which is again finite, as we are going to show.
First, we prove that there exists an integer N(d,K,E), depending on d,

K and E, such that all points in E(L)tors for L/K of degree d have order
dividing N(d,K,E). Fix L/K of degree d and let NL ≥ 1 be an integer
such that E(L)tors = E(L)[NL]. Now, take a good reduction prime ℘ with

residual characteristic p. Let NL,p := p−ordp(NL)NL be the prime to p-part
of NL. Then the reduction map modulo ℘ gives an injection E(L)[NL,p] ↪→
E℘(`℘′), where E℘ is the reduction of E at ℘, ℘′ is a prime above ℘ and `℘′ is
the residue field of L at ℘′ (see for example [30], Proposition VII.3.1). Hence
NL,p is bounded above by a constant depending only on the number of
elements of `℘′ by the Weil bound. One can give then a bound M(p, d, dK),
depending only on d, p and the absolute degree dK of K, such that NL,p

divides M(p, d, dK). Considering then two primes ℘1 and ℘2 with distinct
characteristics p1 and p2 we get the result; just take N(d,K,E) to be the
least common multiple of M(pi, d, dK) for i = 1 and 2.

Using this result, one gets finally that⋃
L⊂K ,[L:K]≤d

E(L)tors ⊂ E(K)[N(d,K,E)]

which is finite, with order N(d,K,E)2. 2

Remark. Using Merel’s result in [27], one can show that there exists a
bound of

⋃
L⊂K ,[L:K]≤dE(L)tors, for any E elliptic curve over a number

field L, which depends only on d and the absolute degree of K, which in
particular implies the result in the last part of the proof.

On the other hand, it is not true in general that the set of all trivial
points of a genus 1 tower is finite, as shown in this example.

Example 6. The set of all trivial points of the tower CE,a, where E is an
elliptic curve defined over a number field K and a > 1, is equal to the set
of torsion points of E(K) with order prime with a:

C
(∞)
E,N (K) = {P ∈ E(K) | ∃m, [m](P ) = 0 and (m, a) = 1}.

Finally, let us mention that there are genus 1 towers without trivial
points at all, as shown in the next example.

Example 7. Let E be an elliptic curve over a number field K. Suppose
that the Galois cohomology group H1(K,E) contains a non-zero divisible
element ψ, or, even less, an element divisible for all powers of a fixed prime
p. Now, consider elements ψn ∈ H1(K,E) such that pψn = ψn−1 and
ψ0 = ψ.

Recall that any element ξ ∈ H1(K,E) corresponds to a twist Cξ of the
curve E, that is, a genus 1 curve isomorphic to E over the algebraic closure
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of K (and, hence, with jacobian isomorphic to E over K). Moreover,
the multiplication-by-m in the group H1(K,E) corresponds to a map φmξ
between Cξ and Cmξ such that gives the multiplication-by-m map between
the corresponding jacobians (see for example [22] for all this facts).

So we have a tower given by the curves Cψn and the maps ϕn := φpψn .
Now, the elements ψn have order divisible by pn, hence have index also
divisible by pn (see proposition 5 in [22]), which implies that the curves
Cψn do not have rational points in any extension with degree < pn. Hence
the result.

The proof is completed by showing the existence of such elliptic curves
E. In fact, showing the existence of one such E over Q is sufficient. And
this is known: take, for example, any elliptic curve E over Q with finite
number of Q-rational points, which implies that the Tate-Shafarevich group
is also finite (see for example theorem D in [10]).

5. Finiteness of trivial points and reduction

Now we are going to consider towers with genus ∞, or, equivalently,
towers such that there is a curve Cn with genus > 1. In this case, and
when K is a number field, the finitness of the K-rational trivial points
is clear, since, by Faltings’ theorem [15], the number of points in Cn(K)
is finite. So we are mainly interested in the whole trivial points. Next
example will show that there are towers with infinite genus and an infinite
number of trivial points.

Example 8. For n ≥ 0, let Cn be the smooth hyperelliptic curve defined
over Q by the hyperelliptic equation y2 = x2n − 1, and consider the degree
two maps ϕn defined in the affine part by ϕn(x, y) = (x2, y).

Now, take ξ ∈ Q a root of unity of odd degree, so there exists an odd

N ≥ 1 such that ξN = 1. Consider the field Kξ generated by
√
ξi − 1, for

i = 1, . . . , N − 1; it is a finite extension of Q and, clearly, (ξ,
√
ξ − 1) ∈

C0(Kξ) is a Kξ-rational trivial point of the tower.
So, the trivial points of the tower include all the points of this form, and

there are an infinite number of them.

Observe that hyperelliptic curves have an infinite number of points of
degree ≤ 2, a result that generalizes to points of degree ≤ d for curves of
gonality d.

The next question is directly related to the Question 1 on trivial points
on genus 0 towers.

Question 2. For d > 1, are there towers with infinite genus over a number
field K having an infinite number of trivial points of degree ≤ d?
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We will see in the next section that the answer of the question is no when
the gonality of the tower is infinite. But before we will give a criterion for
a tower to have a finite number of trivial points.

Definition. Let C be a tower of curves over a number field K and a ring
of integers O (a Dedekind domain, not a field, and with field of fractions
K). By a proper model of C over O we mean a collection of proper models
Cn of Cn and morphisms ϕn,O : Cn → Cn−1 such that the generic fiber is
ϕn,O ⊗O K = ϕn. We will denote by ϕ̃n,℘ : Cn,℘ → Cn−1,℘ the reduction
of the morphism modulo some nonzero prime ℘ of O (and we will suppress
the ℘ in the notation if it is clear from the context).

Observe that for any nonzero prime ℘ of O we have a reduction map
red℘ : Cn(O) → Cn,℘(k℘), where k℘ is the residue field O/℘. For any
P ∈ Cn(K) = Cn(O), we have red℘(ϕn(P )) = ϕ̃n(red℘(P )).

Theorem 5.1. Let C be a tower of curves over a number field K such
that Ω := C(K)n is finite for some n ≥ 0. Fix a proper model of C over
a ring of integers O of K, and suppose that for any nonzero prime ℘ of
O outside a finite number of primes, there exists m := m℘ ≥ n such that
Cm(k℘) = red℘(ϕ−1

m,n(Ω)), where k℘ is the residue field modulo ℘ and red℘
is the reduction map. Then Ω is the set of all trivial points C(∞)(K)n of
C, and hence there is a finite number of them.

Proof. Let L/K be a finite extension of K, and let OL be the ring of
integers of L. We are going to show that the set of L-rational trivial
points C(L)n is equal to Ω. Suppose in the contrary that there is a point
P ∈ (C(L)n \ Ω).

Consider a nonzero prime ideal ℘L of OL such that there is a prime ideal
℘ of K divisible by ℘L and with equal residue fields k℘L = k℘ (there are an
infinite number of them). First, we show that then red℘L(P ) ∈ red℘(Ω).
Take m := m℘ and Pm ∈ Cm(L) such that ϕm,n(Pm) = P . By hypothesis,
red℘L(Pm) ∈ red℘(ϕ−1

m,n(Ω)). Hence

ϕ̃m,n(red℘L(Pm)) = red℘L(ϕm,n(Pm)) =

= red℘L(P ) ∈ ϕ̃m,n(red℘(ϕ−1
m,n(Ω))) = red℘(Ω).

So, we have an infinite number of primes ℘L of OL such that red℘L(P ) ∈
red℘L(Ω). Since the set Ω is finite, there should be a point Q ∈ Ω and an
infinite number of primes ℘L of OL such that red℘L(P ) = red℘L(Q). But,
given a (proper) curve C over a Dedekind domain O and points P 6= Q ∈
C(O), the number of primes ℘ of O such that red℘(P ) = red℘(Q) is finite.
Hence P = Q. 2

We will say that a tower of curves has a model of good reduction at some
nonzero prime ℘ if the models Cn of Cn have good reduction at ℘ (i.e. Cn,℘
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are smooth and projective curves). In this case the curves Cn,℘ together
with the maps ϕ̃n,℘ form a tower of curves over k℘.

Corollary 5.2. Suppose that the tower C has a model with good reduction
outside a finite number of primes S of O. For any prime ℘ of good reduction
of C, consider the tower of curves C℘ = ({Cn,℘}, {ϕ̃n,℘}), reduction modulo
℘ of the model. Suppose that there exists n such that C(K)n is finite and
for any prime ℘ outside a finite set containing S, red℘(C(K)n) = C℘(k℘)n.

Then C(∞)(K)n = C(K)n.

5.1. An example related to torsion points on abelian varieties. Let
K be a number field and U/k a smooth geometrically connected algebraic
curve over K. Let A → U be an abelian scheme of dimension g ≥ 1,
defined over K. Given a prime number p and a n ≥ 1, consider the étale
cover A[pn] → U over U . Let Un be a connected component of A[pn],
such that the multiplication-by-p maps A[pn] → A[pn−1] give maps φn :
Un → Un−1 for all n ≥ 2 in a compatible way. Suppose moreover that
Un(S) ⊂ A[pn](S) consists of points of order exactly pn, for any S scheme
over Un; in particular, Un is not the image of the zero section.

Let Cn be the smooth projective curve associated to Un, and let ϕn :
Cn → Cn−1 be the natural maps. Since the Un are smooth over U , the
points Un(L) can be seen inside Cn(L), for any extension L/K. The points
in Un(L) classify fibers As of the family A→ U at the point s := Spec(L),
which is an abelian variety over L, together with a point P ∈ As(L) of
order exactly pn.

Although the curves Cn are connected, it could happen that they are
not geometrically connected; however, they are geometrically connected if
Cn(K) 6= ∅. In any case, we can construct the tower of (not necessarily
geometrically connected) curves C = ({Cn}n≥0, {ϕn}n≥1), .

Using that the torsion subgroup of an abelian variety is finite, one can see
that the trivial points C(∞)(K)n at level n are contained in Cn(K)\Un(K),
which is well known to be finite.

This result can be shown by observing that the points P ∈ Un(L) cor-
respond to a special fiber As, which is an abelian variety over L, together
with a point Q ∈ As(L) of order exactly pn. This point P is a trivial point
if and only if for all m ≥ 1, there exists a point Qm ∈ As(L) such that
[pm]Qm = Q; thus, Qm has exact order pn+m. Since the cardinal of the
group of torsion points of an abelian variety over a number field is finite
(a fact that can be proved by reducing modulo some primes `), there is no
such a QM for m� 1. So there is no trivial point inside Un.

Another way to show this result is by reducing modulo some prime ℘ of
K, such that the map A → U has good reduction, and does not divide p
(all primes except a finite number of them verify these conditions). Then
the tower Un has good reduction at such a prime. The assertion is deduced
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from the fact that the cardinal of the group of (torsion) points of an abelian
variety over a finite field is finite, which is trivial, and then applying the
Corollary 5.2 (observe that the corollary is still valid if the curves in the
tower are not necessarily geometrically connected).

6. Genus ∞ Towers, trivial points and gonality

Recall that the gonality γK(C) of a curve C over a fieldK is the minimum
m such that there exists a morphism φ : C → P1 of degree m defined over
K. In the next proposition we recall some properties of the gonality (see
[29] for the proofs).

Proposition 6.1. Let K be any field, and let C be an smooth and projective
curve with genus g > 1 y gonality γK(C). Then

(1) γK(C) ≤ 2g − 2.
(2) If C(K) 6= ∅, then γK(C) ≤ g.

(3) If K = K is algebraically closed, then γK(C) ≤
⌊
g+3

2

⌋
.

(4) If L/K is a field extension, then γK(C) ≥ γL(C).
(5) If K is a perfect field, L/K is an algebraic field extension, γL(C) > 2

and C(K) 6= ∅ then γK(C) ≤ (γL(C)− 1)2.
(6) If f : C → C ′ is a non-constant K-morphism then γK(C) ≤ deg(f)γK(C ′)

and γK(C ′) ≤ γK(C).

The main tool we will use to relate the gonality with the finiteness of triv-
ial points is the following criterion of Frey [17], proved also by Abramovich
in his thesis, which is an application of the main result of Faltings in [16].

Theorem 6.2 (Frey). Let C a curve over a number field K, with gonality
γ > 2 over K, and such that C(K) 6= ∅. Fix an algebraic closure K of K
and consider the points of degree d of C,

C(d)(K) :=
⋃

[L:K]≤d

C(L) ⊂ C(K)

where the union is over all the finite extensions of K inside K of degree
≤ d. Suppose that 2d < γ. Then Cd(K) is finite.

Using this criterion we can show the following result.

Theorem 6.3. Let C({Cn}n≥0, {ϕn}n≥1) be a tower with infinite gonality.
Then, for all d ≥ 1 and n ≥ 0, the set of K-trivial points of C in the level
n ≥ 0 and degree d is finite.

Moreover, for all d ≥ 1 there exists a constant nd (depending on the
tower C) such that, for any extension L/K of degree ≤ d, and for any

n ≥ nd, Cn(L) ⊂ C(d)(K)n.
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Proof. First of all, we show that we can suppose C(K)n 6= ∅ for all n ≥ 0.
Suppose C∞(K)m 6= ∅, otherwise the result is clear. Let d be the minimum

integer such that C(d)(K)m 6= ∅ for some m ≥ 0 (and hence for all m, see
Lemma 2.2). This implies that there exists an extension L/K of degree

d such that C(L)m 6= ∅. But C(e)(K)m ⊂ C(e)(L)m for any e ≥ 1. If

P ∈ C(e)(K)m, then P ∈ C(M)m for some extension M/K of degree e,
hence P ∈ C(M ′)m for M ′/M the compositum of M and L, which is an

extension of L degree e′ ≤ e. Thus P ∈ C(e′)(L)m ⊂ C(e)(L)m.
Hence, consider a tower C of infinite gonality with C(K)n 6= ∅. In order

to show C(d)(K)n is finite for all d ≥ 1 and all n ≥ 0, we can do it for
some n � 1 (in terms of d). Just take n such the gonality of Cn is bigger
than 2d. Since ∅ 6= C(K)n ⊂ Cn(K), we can apply Frey’s Theorem 6.2 to

conclude that C
(d)
n (K) ⊇ C(d)(K)n is finite.

Moreover, continuing with the same hypothesis, since C
(d)
n (K)\C(d)(K)n

is finite, there are a finite number of extensions L/K of degree ≤ d such

that any point P in C
(d)
n (K)\C(d)(K)n comes from a point in Cn(L). Since

P 6∈ C(d)(K)n, there is an integer nP ≥ n such that P 6∈ ϕnP ,n(CnP (L)).

By considering the maximum nd of all the integers nP for P ∈ C(d)
n (K) \

C(d)(K)n, we get that for all m ≥ nd, C
(d)
m (K) = C(d)(K)m, which implies

the last claim in the theorem. 2

Corollary 6.4. If the set C(∞)(K)m is finite for some m, and γ(C) =
∞, then for all d ≥ 1 there exists a constant nd (depending on the tower
C), such that for any extension L/K of degree ≤ d and for any n ≥ nd,

Cn(L) ⊂ C(∞)(K)n.

We do not know, however, if all towers with infinite gonality have a finite
number of trivial points.

Question 3. Are there towers with infinite gonality over a number field K
having an infinite number of trivial points?

7. Gonality in the complete intersection case

Definition. For any n ≥ 1, let fn(X0, X1, . . . , Xn+1) be a homogeneous
polynomial of degree dn > 1. Consider the curves Cn−1 ⊂ Pn+1 defined
as the zero set of the polynomials f1, f2, . . . , fn. We have a natural map
ϕn : Cn → Cn−1 given by forgetting the last coordinate: ϕn([x0 : x1 : · · · :
xn+2]) = [x0 : x1 : · · · : xn+1]. If the polynomials fn are sufficiently general,
then the curves Cn are smooth and complete intersection, and we get a
tower of curves. We call these type of towers complete intersection towers.

The main result of this section is that the complete intersection towers
have infinite gonality. The main tool is the following theorem by Lazards-
feld (see Exercise 4.12. in [23]), which is a generalization of the well-known
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fact that a planar curve (so given by an smooth projective model inside P2)
has gonality larger or equal to the degree of the model minus 1 (and with
equality exactly if the curve has a rational point).

Theorem 7.1 (Lazarsfeld). Let C ⊂ Pn be a smooth complete intersection
of hypersurfaces of degrees 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar−1 over C. Then
γ(C) ≥ (a1 − 1)a2 · · · ar−1.

Corollary 7.2. Any complete intersection tower of curves has infinite go-
nality over any characteristic zero field.

Proof. Let a := min dn and let n0 ≥ 0 be such that dn0 = a. By the
previous theorem, the gonality of the curves Cn−1 for n ≥ n0 is bounded
below by

γ(Cn−1) ≥
(

1− 1

a

)( n∏
i=1

dn

)
,

hence its limit goes to infinite. 2

Observe that, if the degree d1 is the minimum of all the dn, and C0(K) 6=
∅, then the gonality of Cn over K is in fact equal to (d1−1) (

∏n
i=2 dn), since

the map ϕn,1 : Cn → C0 has degree (
∏n
i=2 dn), which composed with the

map of degree d1 − 1 from C0 to P1 given by the rational point has the
desired degree.

Example 9. Fix an homogeneous irreducible polynomial f(X0, X1, X2) of
degree d > 1 and defined over a number field. Suppose that the curve
projective C0 ⊂ P2 defined as the zero set of the polynomials f is non sin-
gular and geometrically connected. Consider now the complete intersection
tower Cf of curves Cn−1 ⊂ Pn+1 defined as the zero set of the polynomi-
als f1 := f, f2 := f(X1, X2, X3), . . . , fn := f(Xn−2, Xn−1, Xn). Then the
curve Cn has gonality ≥ dn − dn−1, so the tower has infinite gonality, with
equality exactly when C0(K) 6= ∅.

Hence, if K is a number field, and by Corollary 6.3, we get that the
curves Cn have only the trivial points over a finite extension L/K for n
large enough, depending only on the tower and the degree [L : K].

And, in case we know the set of trivial points is finite and computable
(for example, by theorem 5.1, we get that the points of the curves Cn over
a finite extension L/K for n large enough, depending only on C and the
degree [L : K], by Corollary 6.4.

One can also use the theorem for other type of towers of curves, a gen-
eralization of the pn Fermat tower.

Example 10. Fix an homogeneous irreducible polynomial f0(X0, X1, X2)
of degree d > 1 and defined over a number field, and a progression {an}n≥1

of integers an ≥ 2. Suppose that the curve projective C0 ⊂ P2 defined as the
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zero set of the polynomials f0 is non singular and geometrically connected.
Consider now the complete intersection tower C of curves Cn ⊂ P2 defined
as the zero set of the polynomial fn := fn−1(Xan

0 , Xan
1 , Xan

2 ), and the maps
ϕn given by ϕn(X0, X1, X2) = [Xan

0 : Xan
1 : Xan

2 ]. Then the curves Cn
are planar curves of degree da1a2 · · · an, and hence with gonality γ(Cn) ≥
da1a2 · · · an − 1 ≥ 2n − 1.

8. Gonality and reduction

The following proposition was shown in [32], proposition 5, and it will
allow us to bound by below the gonality by just counting points “modulo
p”.

Proposition 8.1. Let C be a curve over a number field, and let ℘ be a
prime of good reduction of the curve, with residue field k℘. Denote by
C ′ the reduction of the curve C modulo ℘. Then the gonality γ(C) of C
satisfies that

γ(CK) ≥ γ(C ′k℘) ≥ ]C ′(k℘)

]k℘ + 1
.

Observe that the proposition has two parts: first, that the gonality does
not increase under reduction modulo a prime. Second, that the gonality
over a finite field is bounded below by the number of points.

Definition. Let K be a number field and let C be a tower of curves overK.
We will say that a prime ℘ of the ring of integers O of K is a prime of good
reduction of the tower if there exists a proper model of C over O(℘), the
localization of O at ℘, such that Cn,℘ are smooth and projective curves,
and the maps ϕ̃n,℘ are non constant.

Corollary 8.2. Let C = ({Cn}n≥0, {ϕn}n≥1) be a tower of curves over a
number field K. Suppose that there exists a prime ℘ of good reduction of
the tower, and suppose that

lim
n→∞

]Cn,℘(k℘) = +∞.

Then the tower C has infinite gonality.

Proof. Using the Proposition 8.1 one gets that

γ(Cn) ≥ γ(Cn,℘) ≥ ]Cn,℘(k℘)

]k℘ + 1
,

hence the result. 2
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9. Gonality and Cayley-Schreier graphs

In this section we are going to follow the ideas originating in the work of
Zograf [33] and Abramovich [1], and developed in a recent paper of Ellen-
berg, Hall and Kowalski [14]. The idea is to show that certain étale towers
of (possibly affine) curves have infinite gonality if the associated Cayley-
Schreier graphs form an expanding family (or, more generally, verify some
growing condition in the first non-trivial eigenvalue of the combinatorial
laplacian operator).

Suppose that we have a tower of curves C defined over a number field
such that the maps ϕn,0 are étale (i.e. non-ramified) outside a fixed Zarisky
closed set Z. So, we have open subsets Ui = Ci \ Z of Ci, together with
maps ϕn : Un → Un−1, which are étale, and the original tower C is obtained
projectivizing the curves Ui (the case Ui = Ci is also considered).

Fix, for all i ≥ 0, a point xi in Ui(K) such that ϕi(xi) = xi−1, and a
generating set S of the topological fundamental group G := π1(U0C, x0).
Consider the Cayley-Schreier graphs Γi = C(Ni, S) associated to the finite
quotient sets

Ni := G/Hi = π1(U0C, x0)/π1(UiC, xi).

Recall that the graphs Γi = C(G/Hi, S) have vertex set V (Γi) = G/Hi,
and with (possibly multiple) edges from vertex xHi to vertex sxHi for all
s ∈ S; hence, they are r-regular graphs for r = |S|.

Define the combinatorial Laplacian operator of a r-regular graph Γ as
rId − A(Γ), where A(Γ) is the adjacency matrix of Γ. We compute the
eigenvalues of Γ, which are positive real numbers, and let λ1(G) to be the
smallest non-zero of them.

Observe that there are maps of graphs Γi → Γi−1 for all i ≥ 1, and that
such maps are unramified: the preimage of any vertex is formed always by
k vertices, where k, the degree of the map, is fixed.

Definition. A tower of graphs is a couple ({Γi}, {φi}) where Γi are graphs
for any i ≥ 0 and φi : Γi → Γi−1 are surjective maps of graphs. We say
that the tower is unramified if all the maps φi for i ≥ 1 are unramified.

Following ideas from the paper [14], we will bound the gonality of the
curves Ci by imposing some condition on the first non-zero eigenvalue λ1(Γi)
of the combinatorial laplacian operator on Γi.

Theorem 9.1. Let C = ({Cn}, {ϕn}) be a tower of curves defined over
C such that the maps ϕn,0 are étale outside a fixed Zarisky closed set Z,
and with the genus g(C0) > 1. Consider the open subsets Ui = Ci \ Z
of Ci, together with maps ϕn : Un → Un−1 and points xi in Ui(K̄) such
that ϕi(xi) = xi−1. Let {Γi, φi} be the unramified tower of Cayley-Schreier
graphs C(π1(U0C, x0)/π1(UiC, xi), S). Suppose that limi→∞ λ1(Γi)|V (Γi)| =
∞. Then limi→∞ γ(Ci) =∞.
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Proof. First of all, observe that, by the Hurwitz’s formula

g(Ci)− 1 ≥ deg(ϕi,0)(g(C0)− 1) ≥ deg(ϕi,0)

(where we have equality exactly if φi,0 are unramified). Now, the degree of
ϕi,0 is exactly equal to the index of π1(UiC, xi) inside π1(U0C, x0), which is
equal to the number of vertices of Γi. So we get that g(Ci)− 1 ≥ |V (Γi)|.

Now, we will find a formula relating the λ1(Γi) to the gonality of Ci and
g(Ci). We will follow the proof of Theorem 8 (b) in [14], and we will only
sketch the proof. Since the genus of Ci is > 1 for all i, we can write Ui as
Gi\H for some discrete subgroup of PSL2(R). The hyperbolic area µi(Ui)
is then finite and the Poincaré metric induces a Laplacian operator on the
L2-space. Following Li and Yau [24], and Abramovich [1], one has that

γ(Ci) ≥
1

8π
λ1(Ui)µ(Ui)

where λ1(Ui) is the first non-trivial eigenvalue of the laplacian operator
−div(grad).

Now, using the Gauss-Bonnet theorem, one gets

µ(Ui) = −2πχ(Ui) ≥ −2πχ(Ci) = −4π(1− g(Ci)).

Using the comparison principle of Brooks [7] and Burger [8], one gets that
there exists a constant c > 0, depending only on U0 and on S, such that

λ1(Ui) ≥ cλ1(Γi).

Hence, combining all the results, that

γ(Ui) ≥ 2cλ1(Γi)(g(Ci)− 1) ≥ 2cλ1(Γi)|V (Γi)|

and hence the result. 2

We say that a family of graphs is an expander if limi→∞ |Γi| = ∞ and
λ1(Γi) ≥ c for some constant c. We will say that it is esperantist if there
exists some constant A ≥ 0 such that

λ1(Γi) ≥
c

(log(2|Γi|))A
.

Observe that, if our family (in fact, tower) of Cayley-Schreier graphs
{Γi} is an expander (or it is esperantist), then they verify a fortiori the
hypothesis of the theorem. Hence, the following constructions give towers
of curves C defined over a number field K with infinite gonality. Consider
U0 a smooth geometrically connected algebraic curve over a number field
K, and suppose we have an epimorfism of groups p : π1(U0(C), x0) → G,
where the group G is one of the cases below. Take finite-index subgroups
Hn of G such that Hn  Hn−1 and H0 = G, and consider the étale cover-
ings Un → U0 associated to the subgroups p−1(Hn). Finally, consider the
projectivizations and desingularizations Cn of these curves Un.
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(1) If G is a finite-index subgroup in G(Q) ∩GLm(Z), where G ⊂ GLm
is a semisimple algebraic subgroup, defined over Q, and G has real
rank at least 2 (for example, G can be a finite-index subgroup of
SLn(Z), n > 3, or of Sp2g(Z), g > 2) and S is an arbitrary finite set
of generators of G, and Hn arbitrary normal subgroups (by property
(T) of Kazhdan, see [4]).

(2) If G is a subgroup of SLn(Z) which is Zarisky-dense in SLd, for d > 1,
S is an arbitrary finite set of generators of G, p is a prime number
sufficiently large (depending on G) and Hn = pnSLd(Z), so G/Hn

∼=
SLn(Z/pnZ), by [5] and [6].

(3) IfG is any Zarisky dense subgroup of G/Zp, an arbitrary split semisim-
ple algebraic group, and we consider the tower of Cayley graphs of
G(Z/pnZ) with respect to any symmetric set of generators, by the
results of Dinai [12],[13] concerning the diameter of this graphs: the
diameter is less than c log(|G(Z/pnZ)|)d, for some constants c and d.

To show some of these cases, one needs to know that there is a rela-
tion between the first non-trivial eigenvalue of the combinatorial laplacian
operator and the diameter (longest shortest path between any to pair of
vertices) for any (regular) graph Γ. For example, Diaconis and Saloff-Coste
[11] showed that

λ1(C(G,S)) ≥ 1

|S|diam(C(G,S))2
,

if C(G,S) is a Cayley Graph associated to a finite group G with symmetric
set of generators S. Hence, if e have normal subgroups Hi � G inside a
group G, with Hi ⊆ Hi−1, the hypothesis of the theorem is verified if

lim
i→∞

|G/Hi|
diam(C(G/Hi, S))2

= +∞

On the other hand, it is easy to construct towers of curves not verifying
the growing condition on the first non-trivial eigenvalue of the combinatorial
laplacian operator (and having bounded gonality), as in the following trivial
example.

Example 11. Consider the tower of curves Cx2 , so with Cn = P1 and maps
given by ϕn(x) = x2. Of course this tower has no infinite gonality. These
maps ϕn are unramified outside x = 0 and ∞, so they give unramified
selfmaps of Ui = Gm = P1 \{0,∞}. Choose, for example, xn := 1 ∈ Cn(Q).
Then one has that π1(UiC, xi) ∼= Z, and for the set S := {1,−1}, we get
that the Cayley-Schreier graphs

C(π1(U0C, x0)/π1(UiC, xi), S) = C(Z/2nZ, {±1}) = Γ2n

where Γn denotes the cycle graph form by a cycle with n vertices and n
edges. It is well known that the eigenvalues of the combinatorial laplacian
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operator for these cycle graphs are λk(Γn) := 2 − 2 cos(2kπ/n) for k =
0, . . . , n− 1. Hence,

lim
i→∞

λ1(Γ2i)|V (Γ2i)| = lim
i→∞

2i(2− 2 cos
( π

2i−1

)
) = 0.

Finally, we would like to mention that there is another completely dif-
ferent relation of the gonality with graph theory, developed by Baker and
Norine [3] and specially by Baker in [2]. Suppose K is a field complete with
respect to a discrete valuation, and let C be a curve over K having a regular
semistable model over the ring of integers of K. Consider Γ the dual graph
of the reduction of X, where the vertexes are the irreducible components,
and the edges correspond to the intersection points. Then, there is a notion
of gonality for a finite graph and the gonality of C is bounded below by the
gonality of Γ (see Corollary 3.2 in [2]). Using this result it is not difficult
to construct towers of (Mumford) curves over Qp having infinite gonality.
All these results are also related to tropicalizations of algebraic curves, and
how to bound the gonality from the tropicalization.
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[19] González-Jiménez, E., Xarles, X., On symmetric square values of quadratic polynomials,

Acta Arithmetica 149, 145–159 (2011).
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