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For any "nite "eld k we count the number of orbits of galois invariant n-sets of
��(kM ) under the action of PGL

�
(k). For k of odd characteristic, this counts the number

of k-points of the moduli space of hyperelliptic curves of genus g over k. We get in this
way an explicit formula for the number of hyperelliptic curves over k of genus g, up to
k-isomorphism and quadratic twist. � 2002 Elsevier Science (USA)
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0. INTRODUCTION

Let k"�
�
be a "nite "eld with q elements. For any positive integer n, the

number of orbits of n-sets of ��(k) under the action of PGL
�
(k) was counted

in [5]. In this way, we get a formula for the number of isometry classes of
Goppa codes of genus zero of length n and a "xed dimension r (cf. [7]) or
equivalently, for the number of classes modulo the action of PGL

�
(k) of n-arcs

in ���� whose points lie in a rational normal curve (cf. [4]). It is remarkable
that these numbers are independent of r.
On the other hand, there is a well-known connection between n-sets of ��

and hyperelliptic curves. Consider for any positive integer n the variety

M
�
"�

��

n � �PGL
�
.
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Then, if the characteristic of k is odd, the variety M
����

is a coarse moduli
space for hyperelliptic curves of genus g. In this context the formula of [5]
certainly counts isomorphy classes of hyperelliptic curves, but only of those
curves having all their Weierstrass points de"ned over k (cf. Section 3).
The aim of this paper is to "nd a formula for the number of k-points of this

variety M
�
for any "nite "eld (of even or odd characteristic) and for any

positive integer n. That is, we want to count the cardinal of

M
�
(k)"�

��(kM )
n �

������ ���
�PGL

�
(k).

This is achieved in Section 2, where we prove that for n'2,

�M
�
(k) �"

1

2(q#1)

�
�
��	
�
2

e� �
������
����

� (m) (q�������!(!1)�������)

#

1

q

�
�
��	

�
���	
����

(!1)����� (q�������!q���������#[1]
�����

)

#

1

2(q�#1)
�

���	
��

�
������
����

�(m)q(�����������!q�������#(!1)���������


#(!1)�����������
q),

where � is Euler's phi function, p is the characteristic of k, and [1]
�����

means &&add 1 if n!e"m.''
As we explain in Section 3, for n"2g#256, this formula counts, in the

odd characteristic case, the number of hyperelliptic curves of genus g de"ned
over k, up to k-isomorphism and quadratic twist.
In Section 1 we "nd explicit formulas for the number of points of the

discriminant variety, which are used in Section 2 to obtain the above
formula.

1. THE DISCRIMINANT VARIETY

Let n'1 be a positive integer and let

f (x)"v
�
x�#v

���
x���#2v

�
x#v

	

be a generic polynomial of degree n. The nth discriminant is an homogeneous
polynomial of degree 2n!2 in the variables v

�
,2, v

	
, with integral
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coe$cients, de"ned as

D
�
(v

�
,2, v

	
)"R( f, f � )/v

�
,

where R ( , ) denotes the resultant of two polynomials. The following property
is easy to check:

D
�
(0, v

���
,2, v

	
)"(!1)���v�

���
D

���
(v

���
,2, v

	
).

Let k be a "eld and v
	
, v

�
,2, v

�
3k. If v

�
O0, then D

�
(v

�
,2, v

	
)"0 if and

only if the polynomial v
�
x�#2#v

	
has multiple roots.

The nth discriminant variety is de"ned as the projective variety �-��

de"ned by the equation D
�
(v

�
,2, v

	
)"0.

For any 04i4n, let Z


be the closed subvariety of �� de"ned by v



"0

and let ;


"��!Z



. We can express the discriminant variety as the disjoint

union, �"�
�
��

�
��

�
, where

�
�
"�	;

�
, �

�
"�	Z

�
	;

���
, �

�
"�	Z

�
	Z

���
.

We call �
�
the a.ne nth discriminant variety. By the considerations above,

the sets of k-points of the three subvarieties �
�
, �

�
, �

�
are in bijection

respectively with

�
�
(k)��inseparable polynomials x�#v

���
x���#2#v

	
3k[x]�,

�
�
(k)��inseparable polynomials x���#v

���
x���#2#v

	
3k[x]�,

�
�
(k)����� (k).

The nth discriminant variety is the dual variety of the rational normal
curveC in��, with pointsP

�
"(0,2, 0, 1) and (1, t, t� ,2, t���), t3kM . Under

this point of view, the points of �
�
correspond to hyperplanes

v
	
x
	
#2#v

�
x
�
cutting the a$ne part of C with multiplicity greater than

one at some point and not containing P
�
, the points of �

�
correspond to

hyperplanes cutting the a$ne part of C with multiplicity greater than one
at some point and cutting C with multiplicity one at P

�
, whereas the points

of �
�
correspond to hyperplanes cutting C with multiplicity greater than one

at P
�
.

Our aim in this section is to count, when k is a "nite "eld, the number of
k-rational points of the a$ne and projective discriminant varieties. The
variety � is birrationally equivalent to ����, but it has many singularities, so
that it is not clear how could one compute the number of k-points by
geometric methods. Nevertheless, as we have seen, this computation amounts
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to counting the number of inseparable polynomials of a given degree. By
unique factorization, it is not di$cult to "nd explicit formulas for the number
s(n) of monic separable polynomials of degree n in terms of the numbersN

�
of

monic irreducible polynomials of degree m. Considering that a polynomial is
in a unique way a product of r

�
irreducible polynomials of degree one, r

�
irreducible polynomials of degree two, etc., we have

s (n)" �
�������2������

�
N

�
r
�
� �

N
�

r
�
�2�

N
�

r
�
� ,

understanding that (�
�
)"0 if N(r.

However, these kind of formulas where the sum runs over all partitions of
n are very unsatisfactory from the combinatorial point of view. The partitions
are easy to generate, but we cannot consider that the expression above is
quite explicit as a closed formula for s(n). In the next theorem we "nd a very
simple computation of s (n).
As a general rule for the rest of the paper, a term [a]

��

in a formula means

&&add a if b"c.'' Similarly, a term [a]
�,
���

in a formula means &&add a if b is
congruent to c modulo d.''

THEOREM 1.1. For any positive integer n the number s(n) of monic separ-
able polynomials of degree n with coe.cients in k"�

�
is

s(n)"q�!q���#[1]
���

.

Proof. Any monic polynomial t (x) of degree n with coe$cients in k can be
written in a unique way as t(x)"a (x)�b (x), where a (x) is a monic polynomial
of degree 04r4[ �

�
] and b(x) is a monic separable polynomial of degree

n!2r, both a (x) and b (x) with coe$cients in k. Hence we have

q�"
����

�
��	

q�s (n!2r), (1)

where we put s (0)"1 understanding that the constant 1 is the unique monic
separable polynomial of degree 0.
We can proceed now to prove the theorem by induction on n. For n"1 the

assertion s(1)"q is clear. Assume n'1; by (1) and the induction hypothesis
we can calculate s (n) as

s(n)"q�!
����

�
���

q�s
����

(q)"q�!
����
��

�
���

q�(q����!q������)!q����
s�n!2�
n

2��
"q�!q���#q������
!q����
 s�n!2�

n

2�� .
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Moreover, in both cases n"2r even or n"2r#1 odd we have

q������
!q����
 s �n!2 �
n

2��"�
q�!q�s(0)"0,

q���!q�s (1)"0,

if n is even,

if n is odd.
�

COROLLARY 1.1. For n'1, the number of �
�
-points of the a.ne and

projective nth discriminant varieties is

��
�
(�

�
) �"q���,

��(�
�
) �"q���#q���#[!1]

���
#

q���!1

q!1
"

q�!1

q!1
#q���#[!1]

���
.

This result suggests that the a$ne nth discriminant variety could be
parameterized by n!1 a$ne parameters. We have not been able to check
this.

2. ORBITS OF GALOIS INVARIANT n-SETS OF �� (kM ) UNDER
THE ACTION OF PGL

�
(k)

Let p be a prime number, q a power of p, and k"�
�
the "nite "eld with

q elements. We choose a point R3�� (k), which we call in"nity. This choice
determines a k-embedding ��6��, as well as an identi"cation:
Aut(��)"PGL

�
. From now on we denote the group PGL

�
(k) simply by 
.

We recall that the galois group G :"Gal(kM /k) is topologically generated by
the Frobenius automorphism F, acting as x�"x�, for all x3kM . The group
G has a natural action over ��(kM ) and by our choice we haveR�"R. To say
that some object is galois invariant or de,ned over k means that it is "xed by
all elements of G, or equivalently, that it is "xed by F.
Let us "x throughout a positive integer n'2. The number of orbits of

n-sets of ��(k) under the action of 
 have been counted in [5, TheoremC]. As
we explain in Section 3, taking n"2g#2 one obtains an explicit formula, in
the odd characteristic case, for the number of hyperelliptic curves of genus
g de"ned over k having all Weierstrass points de"ned over k. In order to
count all hyperelliptic curves de"ned over kwe have to count orbits under the
action of 
 of n-sets of ��(kM ) which are de"ned over k (as a set).
Let X :"(����M �

�
)� be the set of galois invariant elements of (����M �

�
). The

elements of X are families �P
�
,2, P

�
� of n di!erent points of ��(kM ) such that

�P
�
,2, P

�
�"�P�

�
,2, P�

�
�, ∀�3G.
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Our aim is to count the number of orbits of the "nite setX under the action
of 
. To this end we need to consider the following subsets of X,

X
�
"�

�� (kM )!�R�
n �

�
, X

�
"�

��(kM )!�R, 0�
n �

�
,

X
	
"�

�� (kM )!��, ���
n �

�
,

where �3�
��

!�
�
and ��"�� is the conjugate of �.

We denote the cardinals of these sets by

S (n) :"�X �, S


(n) :"�X



�, for i"0, 1, 2.

To any n-subset ¹"�P
�
,2, P

�
� of ��(kM ), not containing R, we can

attach the separable polynomial f
�
(x)"(x!P

�
) ,2, (x!P

�
) and the fact

that ¹ is galois invariant is equivalent to f
�
(x) having coe$cients in k.

Needless to say, the n-set ¹ is recovered from f
�
(x) as the set of roots in kM of

this polynomial. This correspondence between certain galois invariant sub-
sets of the set of n-sets and certain subsets of separable polynomials with
coe$cients in k enables us to use Theorem 1.1 to "nd very explicit formulas
for the numbers S (n), S



(n) as polynomials in q.

LEMMA 2.1. For any positive integer n'1 we have:

(1) S (n)"q�!q���#[1]
���

,
(2) S

�
(n)"q�!q���,

(3) S
�
(n)"(q!1) (q�#(!1)���)/(q#1),

(4) S
	
(n)"(q#1) (q���!q�#(!1)����
#(!1)��������q)/(q�#1).

Proof. The "rst two assertions are clear. In fact, s (n), (resp. s(n!1))
coincides with the number of elements in X not containing (resp. containing)
R, so that S (n)"s (n)#s(n!1) and S

�
(n)"s (n).

Let us think that S
�
(n) is equal to the number of monic separable poly-

nomials of degree n with coe$cients in �
�
, which are not divisible by x. We

prove now (3) for all n51 by induction on n. For n"1 the formula says
S
�
(1)"q!1, which is true. For n'1 we have s(n)"S

�
(n)#S

�
(n!1), since

each separable polynomial is either not divisible by x or decomposes as xg(x),
where g (x) is separable and not divisible by x. Hence, by induction hypothe-
sis,

S
�
(n)"s(n)!S

�
(n!1)"q�!q���!(q!1) (q���#(!1)���)/(q#1)

"(q!1) (q�#(!1)���)/(q#1).
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Finally, let q (x)3k[x] be a "xed irreducible quadratic polynomial and let
us denote by s

	
(n) the number of monic separable polynomials of degree

n with coe$cients in k and not divisible by q (x). We claim that

s
	
(n)"

q���!q���#(!1)����
q�������
(q#1)

q�#1
, ∀n51.

Let us prove this by induction on n. For n"1 the formula claims that
s
	
(1)"q, which is true. For n'1 we have as above s (n)"s

	
(n)#s

	
(n!2),

since each separable polynomial is either not divisible by q(x) or decomposes
as q(x)g(x), where g(x) is separable and not divisible by q (x). Hence, by
induction hypothesis,

s
	
(n)"q�!q���!

q�!q���#(!1)����
��q�������
 (q#1)

q�#1

"

q���!q���#(!1)����
q�������
(q#1)

q�#1
,

as claimed. We can now deduce (4) from S
	
(n)"s

	
(n!1)#s

	
(n), since any

n-set in X
	
either contains R or not. �

The main tool in counting �X�
� is the following formula, which in [1] is
called the Cauchy}Frobenius Lemma,

�X�
�"
1

�
 �
�
��


�X� �" �
��C

�X� �
�
� �

,

where

X�"�¹3X �
 (¹)"¹�, 
�"��3
��
���"
�,

andC is a system of representatives of conjugation classes of 
. The set C and
the cardinals �
� � are well known. To compute the last sum in the above
formula we need also to know for any "xed positive integer m the number of
elements inC of orderm as elements of the group 
. This was computed in [5,
Lemma 2.4]. For convenience of the reader we sum up all this information in
the following lemma:

LEMMA 2.2. In the ,nite ,eld k"�
�
let;

	
be the subset of elements a3k*

such that the polynomial x�!x!a is irreducible over k and let ;
�
be

a system of representatives of k*!�$1� under the equivalence relation,
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b&b��. ¸et us consider the following elements and subsets of 
:



�
"�

1

0

1

1� , �
	
"��

0

1

a

1� � a3;
	� , �

�
"��

1

0

0

b� � b3;
�� .

If q is odd we take also into consideration the following two elements of 
,



	
"�

0

1

c

0� , 

�
"�

1

0

0

!1� ,
where c is some ,xed non-square in k. ¹hen,

C"�
�1���

	
��

�
��


�
�,

�1���
	
��

�
��


	
, 


�
, 


�
� ,

if q is even,

if q is odd.

For 
3
, 
O1, let f (
) denote the number of ,xed points of 
 in �� (k).¹hen

f (
)"�
0, if 
3�

	
, or 
"


	
,

1, if 
"

�
,

2, if 
3�
�
, or 
"


�
.

Moreover,

� 
� �"�
q#1, if 
3�

	
,

q!1, if 
3�
�
,

q, if 
"

�
,

2q#2, if 
"

	
,

2q!2, if 
"

�
.

If m(
) denotes the order of 
 as an element of 
 we have

m(
)"�
p, if 
"


�
,

2, if 
"

	
or 


�
,

a divisor greater than 2 of q#1, if 
3�
	
,

a divisor greater than 2 of q!1, if 
3�
�
.

Moreover, for any divisor m of q#1 (resp. q!1), m'2, there are exactly
�(m)/2 elements in �

	
(resp. �

�
) with m(
)"m.
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Our aim now is to count �X� � for each 
3C. The following observation is
useful:

LEMMA 2.3. ¸et 
 be an element with ,nite order m'1 in the group 
 and
let P3�� (kM ). If P is not a ,xed point of 
 then the orbit of P under the cyclic
group �
� consists of m di+erent points P, 
 (P),2, 
���(P).

Proof. The jordan normal form of any representative of 
 in GL
�
(k)

determines if 
 has 1 or 2 "xed points in ��(kM ). It is easy to check that the
powers 
�, 14r(m, have a jordan normal form of the same type; hence, all
these powers have the same set of "xed points. �

The crucial result allowing us to count �X�� is the following:

THEOREM 2.1. For any 
3Aut (��) of ,nite order, the quotient
��P����
� exists in the category of algebraic varieties over k and the
quotient variety ����
� is k-isomorphic to ��.

Proof. The existence of the quotient under the action of a "nite group is
well known [3, Lect. 10]. Moreover, it is easy to check that the quotient of
a normal variety is again normal. In our case, the quotient will be a smooth
projective curve, which by LuK roth's theorem is birrationally equivalent (thus
isomorphic) to ��. �

We are ready to give an explicit formula for �X� � in terms of the number
f (
) of "xed points of 
 in ��(k) (which can be 0, 1, or 2) and the order m(
) of

 as an element of 
:

PROPOSITION 2.1. ¸et 
 be an element of order m in 
 and, for 
O1, let
f3�0, 1, 2� be the number of ,xed points of 
 in �� (k). ¹hen

�X��"�
S (n) if 
"1,

S
	�

n

m�#S
	�

n!2

m � if f"0,

S
��

n

m�#S
��

n!1

m � if f"1,

S
��

n

m�#2S
��

n!1

m �#S
� �

n!2

m � if f"2,

where we understand that S


(x)"0 if x��.

Proof. Let ¹ be a galois invariant n-subset of �� (kM ) such that 
 (¹ )"¹.
We can express ¹ as a disjoint union, ¹"¹

�
�¹ �, where ¹

�
is the set of all

"xed points of 
 contained in ¹ and ¹ � is a union of orbits of cardinal m by
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Lemma 2.3. Clearly ¹
�
is galois invariant too, hence, it contains either "xed

points de"ned over k, or a pair of quadratic conjugate elements (if f"0). On
the other hand, ¹ � is also galois invariant and if it has r orbits then it
corresponds in a unique way with an r-subset de"ned over k of the quotient
variety ��/�
�. By Theorem 2.1 the number of possibilities for ¹ � is equal to
the number of r-subsets de"ned over k of ��(kM ) } �"xed points of 
� and these
numbers are given by S



(r), i"0, 1, 2, according to the three di!erent possi-

bilities for the set of "xed points of 
.
The formulas for �X� � are obtained by taking into consideration for each

possible set ¹
�
the di!erent possibilities for ¹ �. �

After this result and Lemma 2.2 we are able to write down an explicit
formula for �X�
 �, as the sum of the terms

�X �
�
 �

"

S (n)

q (q!1) (q#1)
,

�X��
�

�
��
�
"

S
�
(n/p)#S

�
((n!1)/p)

q
,

�
��C
�����	

�X� �
�
� �

" �
� � �����
���

� (m)

2

S
	
(n/m)#S

	
((n!2)/m)

q#1
,

�
��C
������

�X� �
� 
� �

" �
� � �����
���

� (m)
2

S
�
(n/m)#2S

�
((n!1)/m)#S

�
((n!2)/m)

q!1
.

Note that the contributions of 

	
and 


�
have been introduced in the last

two sums by letting m take the value m"2. If q is even, this never happens
since m is a divisor of q#1 or q!1, whereas for q odd, �(m)/2 times
1/(q#1), resp. 1/(q!1), takes for m"2 the right value 1/(2q#2), resp.
1/(2q!2) corresponding to the contribution of 


	
, resp. 


�
.

As a consequence of Lemma 2.1 our formula reads:

THEOREM 2.2 For n'2 a positive integer we have

�X�
 �"q���#

1

2(q#1)

�
�
��	
�
2

e� �
� � ����
����
���

� (m) (q�������!(!1)�������)

#

1

q

�
�
��	

([q������	!q������	��]
�,��	�

#[1]
����	

)

#

1

2(q�#1)
�

���	
��

�
������
����
���

�(m)(q���������!q�������#(!1)���������


#(!1)�����������
q).
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Remarks 2.1 (1) It is easy to check that �X�
�"n for n"1, 2.
(2) ¹he term q��� can be expressed as

q���"

q�#2q���#q���

2(q#1)
!

q�!q���

q
#

q���!q�#q���!q���

2(q�#1)
,

hence we can obtain a more compact formula just by distributing this term q���

among the others, taking into consideration all cases m"1,

�X�
 �"
1

2(q#1)

�
�
��	
�
2

e� �
� � ����
����

�(m)(q�������!(!1)�������

#

1

q

�
�
��	

�
� � �	
����

(!1)� ���� (q�������!q���������#[1]
�����

)

#

1

2(q�#1)
�

���	
��

�
� � ����
����

� (m) (q���������!q�������

#(!1)���������
#(!1)�����������
q).

3. COUNTING HYPERELLIPTIC CURVES

As a general reference for the basic properties of hyperelliptic curves see
[2, 6]. Let k be a perfect "eld of characteristic di!erent from 2. Let
f (x)"a

�
x�#2#a

	
3k[x] be a separable polynomial of degree n55 and

consider the plane a$ne curve C
	
de"ned by the equation

y�"f (x). (2)

The curve C
	
is smooth and its closure CI in �� has only one point at in"nity,

P
�
, which is always a singular point. The normalization CPCI of CI is an

hyperelliptic curve of genus [n!1/2]. If n is odd, the point P
�
has only one

preimage in C, which we still denote by P
�
; this point is a Weierstrass point

and it is always de"ned over k. If n is even the point P
�
has two preimages in

C, which we denote by P
��
, P

��
; they are de"ned over k if and only if a

�
is

a square in k*.
Since the rest of the points of C are in bijection with the points in C

	
, it is

common to attach to these points of C the a$ne coordinates (x, y) of the
corresponding points in C

	
. If we introduce a$ne coordinates in �� (by

declaring some point in ��(k) to be R), the map

x :C
	
P��, (x, y)>x, (3)



204 LOD PEZ ET AL.
extends to a degree 2 map fromC to�� sendingP
�
or the pairP

��
,P

��
toR.

The Weierstrass points of C coincide with the rami"cation points of x. Every
hyperelliptic curve of genus g52 de"ned over k is k-isomorphic to some
curve C obtained as above. If k is algebraically closed, two hyperelliptic
curves of genus g are k-isomorphic if and only if the images in �� (k) of the
2g#2 Weierstrass points under any degree 2 map from the curve to �� di!er
by a k-automorphism of ��. For a non-algebraically closed "eld there are
quadratic twists to deal with.
Given any �3k*/k*� and a curve C given by Eq. (2) we de"ne the twisted

curve C� as the one determined by the equation

y�"�f (x).

For a "xed positive integer g52 denote by H the set of k-isomorphy
classes of hyperelliptic curves de"ned over k of genus g. The curves C and C�
are isomorphic over the quadratic extension k(��), but they are not neces-
sarily k-isomorphic. This induces a well-de"ned action of k*/k*� on H and
we denote by H� the quotient set H�(k*/k*�).
Denote by X the set of k-points of the variety ( ��

����
) of 2g#2-subsets of

��. That is, the elements in X are families �x
�
,2, x

����
� of 2g#2 di!erent

points of �� (kM ) invariant under the galois action:

�x
�
,2, x

����
�"�x�

�
,2, x�

����
�, ∀�3Gal(kM /k).

The variety M"( ��

����
)�PGL

�
is a coarse moduli space for hyperelliptic

curves of genus g. Its sets of k-points is M (k)"X�PGL
�
(k).

Consider the map

= :H�PM(k), (4)

which assigns to any curve C the class of the set �x (P
�
) ,2, x (P

����
)� of

images of the Weierstrass points P
�
,2, P

����
of C under any degree 2 map,

x :CP��. This map= is well de"ned and bijective. The inverse map sends
�x

�
,2, x

����
� to the curve C de"ned by the equation

y�" �
�


O�

(x!x


).

Therefore, if k"�
�
is a "nite "eld with odd characteristic, the formula of

Theorem 2.2 for n"2g#2 counts the number of hyperelliptic curves of
genus g de"ned over k, up to k-isomorphism and quadratic twist.
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In the table below we write down these numbers for g"2, 3, 4, 5.

g �H� �

2 q�#q�#q#[4]
�,����

#[1]
�,	���

#[!1]
�,	���

3 q�#q�!1#[q]
�I	���

#[6]
�,����

#[1]
�,	���

#[2]
�,$����

4 q�#q�#[q�!q#2]
�,����

![q�!q]
�,�����

#[q!1]
�,	���

#[2q]
�,$����

#[6]
�,����

#[2]
�,$����

5 q�#q�#1#[2q!2]
�,����

#[2q]
�,$����

#[10]
�,�����

#[1]
�,	����

#[!2]
�,�����

#[2]
�,$�����

Furthermore, it is clear that the set of 2g#2 Weierstrass points of an
hyperelliptic curve C de"ned over k is galois invariant. The cardinals of the
invariant subsets of this galois set furnish a partition of the positive integer
2g#2 and since all galois groups over a "nite "eld are cyclic, this partition
actually determines the structure of the galois set. Clearly, the structure of this
galois set is invariant under isomorphism and under quadratic twist; thus, the
setH� is the disjoint union of p(2g#2) subsets, each one gathering classes of
curves with the same galois structure of the set Weierstrass points. For
instance, if g"2 we have

H�"H�
�
�
�
�
�
�

�H�
�
�
�
�
�

�H�
�
�
�
�

�H�
�
�
�

�H�
�
�
�
�

�

H�
�
�
�

�H�
�
�

�H�
�
�
�

�H�
�
�

�H�
�
�

�H�
�
,

where, for instance, H�
�
�
�

denotes the set of classes of curves in H having
two Weierstrass points de"ned over k and four Weierstrass points de"ned
over the quartic extension of k, forming a complete orbit under the action of
Gal(kM /k).
Exactly in the same way, the sets X and M(k)"X�PGL

�
(k) split as the

union of p (2g#2) di!erent subsets and the map = of (4) respects this
decomposition. This is clearly seen if we consider the particular degree 2 map
from C to �� given in (3) for which the Weierstrass points have a$ne
coordinates (x, 0).

Corresponding to the partition n"1#1#2#1 we get the subset of
H� of classes, modulo k-isomorphism and quadratic twist, of hyperelliptic
curves of genus g de"ned over k having all Weierstrass points de"ned over k,
that is, hyperelliptic curves given by Eqs. (2) with a polynomial f (x) having all
its roots in k. By the above considerations, the map = gives a bijection
between this set of classes of curves and the set of orbits of n-sets of ��(k)
under the action of PGL

�
(k). In [5] a closed formula was obtained for this

latter number of orbits.
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More generally, it would be interesting to "nd explicit formulas for the
cardinal of each subset of X�PGL

�
(k) gathering classes of n sets with "xed

structure as a galois set. In this way we would obtain, in the odd character-
istic case, explicit formulas for the number of hyperelliptic curves de"ned over
k, up to k-isomorphism and quadratic twist, with a "xed galois structure for
the set of Weierstrass points. We hope to deal with this question elsewhere.
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