Orbits of Galois Invariant n-Sets of \mathbb{P}^{1} under the Action of PGL_{2}

Amparo López, Daniel Maisner, ${ }^{1}$ Enric Nart, and Xavier Xarles ${ }^{2}$
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
E-mail: alopez@mat.uab.es, danielm@mat.uab.es, nart@mat.uab.es, xarles@mat.uab.es

Communicated by Michael Tsfasman
Received October 16, 2000; published online January 30, 2002

For any finite field k we count the number of orbits of galois invariant n-sets of $\mathbb{P}^{1}(\bar{k})$ under the action of $\mathrm{PGL}_{2}(k)$. For k of odd characteristic, this counts the number of k-points of the moduli space of hyperelliptic curves of genus g over k. We get in this way an explicit formula for the number of hyperelliptic curves over k of genus g, up to k-isomorphism and quadratic twist. © 2002 Elsevier Science (USA)
Key words: hyperelliptic curves; n-sets of projective spaces.

0. INTRODUCTION

Let $k=\mathbb{F}_{q}$ be a finite field with q elements. For any positive integer n, the number of orbits of n-sets of $\mathbb{P}^{1}(k)$ under the action of $\mathrm{PGL}_{2}(k)$ was counted in [5]. In this way, we get a formula for the number of isometry classes of Goppa codes of genus zero of length n and a fixed dimension r (cf. [7]) or equivalently, for the number of classes modulo the action of $\mathrm{PGL}_{r}(k)$ of n-arcs in \mathbb{P}^{r-1} whose points lie in a rational normal curve (cf. [4]). It is remarkable that these numbers are independent of r.

On the other hand, there is a well-known connection between n-sets of \mathbb{P}^{1} and hyperelliptic curves. Consider for any positive integer n the variety

$$
\mathscr{M}_{n}=\binom{\mathbb{P}^{1}}{n} \backslash \mathrm{PGL}_{2}
$$

[^0]Then, if the characteristic of k is odd, the variety $\mathscr{M}_{2 g+2}$ is a coarse moduli space for hyperelliptic curves of genus g. In this context the formula of [5] certainly counts isomorphy classes of hyperelliptic curves, but only of those curves having all their Weierstrass points defined over k (cf. Section 3).

The aim of this paper is to find a formula for the number of k-points of this variety \mathscr{M}_{n} for any finite field (of even or odd characteristic) and for any positive integer n. That is, we want to count the cardinal of

$$
\mathscr{M}_{n}(k)=\binom{\mathbb{P}^{1}(\bar{k})}{n}^{\operatorname{Gal}(\bar{k} / k)} \backslash \mathrm{PGL}_{2}(k)
$$

This is achieved in Section 2, where we prove that for $n>2$,

$$
\begin{aligned}
\left|\mathscr{M}_{n}(k)\right|= & \frac{1}{2(q+1)} \sum_{e=0}^{2}\binom{2}{e} \sum_{m \mid(q-1, n-e)} \varphi(m)\left(q^{(n-e) / m}-(-1)^{(n-e) / m}\right) \\
& +\frac{1}{q} \sum_{e=0}^{1} \sum_{m \mid(p, n-e)}(-1)^{\varphi\left(m^{2}\right)}\left(q^{(n-e) / m}-q^{(n-e) / m-1}+[1]_{n-e=m}\right) \\
& +\frac{1}{2\left(q^{2}+1\right)} \sum_{e \in\{0,2\}} \sum_{m \mid(q+1, n-e)} \varphi(m) q q^{((n-e) / m)+1}-q^{(n-e) / m}+(-1)^{[(n-e) / 2 m]} \\
& \left.+(-1)^{[(n-e-m) / 2 m]} q\right),
\end{aligned}
$$

where φ is Euler's phi function, p is the characteristic of k, and $[1]_{n-e=m}$ means "add 1 if $n-e=m$."

As we explain in Section 3, for $n=2 g+2 \geq 6$, this formula counts, in the odd characteristic case, the number of hyperelliptic curves of genus g defined over k, up to k-isomorphism and quadratic twist.

In Section 1 we find explicit formulas for the number of points of the discriminant variety, which are used in Section 2 to obtain the above formula.

1. THE DISCRIMINANT VARIETY

Let $n>1$ be a positive integer and let

$$
f(x)=v_{n} x^{n}+v_{n-1} x^{n-1}+\cdots v_{1} x+v_{0}
$$

be a generic polynomial of degree n. The nth discriminant is an homogeneous polynomial of degree $2 n-2$ in the variables v_{n}, \ldots, v_{0}, with integral
coefficients, defined as

$$
D_{n}\left(v_{n}, \ldots, v_{0}\right)=R\left(f, f^{\prime}\right) / v_{n}
$$

where $R($,) denotes the resultant of two polynomials. The following property is easy to check:

$$
D_{n}\left(0, v_{r-1}, \ldots, v_{0}\right)=(-1)^{n-1} v_{n-1}^{2} D_{n-1}\left(v_{n-1}, \ldots, v_{0}\right)
$$

Let k be a field and $v_{0}, v_{1}, \ldots, v_{n} \in k$. If $v_{n} \neq 0$, then $D_{n}\left(v_{n}, \ldots, v_{0}\right)=0$ if and only if the polynomial $v_{n} x^{n}+\cdots+v_{0}$ has multiple roots.

The $n t h$ discriminant variety is defined as the projective variety $\Delta \subseteq \mathbb{P}^{n}$ defined by the equation $D_{n}\left(v_{n}, \ldots, v_{0}\right)=0$.

For any $0 \leq i \leq n$, let Z_{i} be the closed subvariety of \mathbb{P}^{n} defined by $v_{i}=0$ and let $U_{i}=\mathbb{P}^{n}-Z_{i}$. We can express the discriminant variety as the disjoint union, $\Delta=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$, where

$$
\Delta_{1}=\Delta \cap U_{n}, \quad \Delta_{2}=\Delta \cap Z_{n} \cap U_{n-1}, \quad \Delta_{3}=\Delta \cap Z_{n} \cap Z_{n-1}
$$

We call Δ_{1} the affine nth discriminant variety. By the considerations above, the sets of k-points of the three subvarieties $\Delta_{1}, \Delta_{2}, \Delta_{3}$ are in bijection respectively with

$$
\begin{aligned}
& \Delta_{1}(k) \leftrightarrow\left\{\text { inseparable polynomials } x^{n}+v_{n-1} x^{n-1}+\cdots+v_{0} \in k[x]\right\} \\
& \Delta_{2}(k) \leftrightarrow\left\{\text { inseparable polynomials } x^{n-1}+v_{n-2} x^{n-2}+\cdots+v_{0} \in k[x]\right\}
\end{aligned}
$$

$$
\Delta_{3}(k) \leftrightarrow \mathbb{P}^{n-2}(k)
$$

The nth discriminant variety is the dual variety of the rational normal curve C in \mathbb{P}^{n}, with points $P_{\infty}=(0, \ldots, 0,1)$ and $\left(1, t, t^{2}, \ldots, t^{n-1}\right), t \in \bar{k}$. Under this point of view, the points of Δ_{1} correspond to hyperplanes $v_{0} x_{0}+\cdots+v_{n} x_{n}$ cutting the affine part of C with multiplicity greater than one at some point and not containing P_{∞}, the points of Δ_{2} correspond to hyperplanes cutting the affine part of C with multiplicity greater than one at some point and cutting C with multiplicity one at P_{∞}, whereas the points of Δ_{3} correspond to hyperplanes cutting C with multiplicity greater than one at P_{∞}.

Our aim in this section is to count, when k is a finite field, the number of k-rational points of the affine and projective discriminant varieties. The variety Δ is birrationally equivalent to \mathbb{P}^{n-1}, but it has many singularities, so that it is not clear how could one compute the number of k-points by geometric methods. Nevertheless, as we have seen, this computation amounts
to counting the number of inseparable polynomials of a given degree. By unique factorization, it is not difficult to find explicit formulas for the number $s(n)$ of monic separable polynomials of degree n in terms of the numbers N_{m} of monic irreducible polynomials of degree m. Considering that a polynomial is in a unique way a product of r_{1} irreducible polynomials of degree one, r_{2} irreducible polynomials of degree two, etc., we have

$$
s(n)=\sum_{r_{1}+2 r_{2}+\cdots+n r_{n}=n}\binom{N_{1}}{r_{1}}\binom{N_{2}}{r_{2}} \cdots\binom{N_{n}}{r_{n}},
$$

understanding that $\binom{N}{r}=0$ if $N<r$.
However, these kind of formulas where the sum runs over all partitions of n are very unsatisfactory from the combinatorial point of view. The partitions are easy to generate, but we cannot consider that the expression above is quite explicit as a closed formula for $s(n)$. In the next theorem we find a very simple computation of $s(n)$.

As a general rule for the rest of the paper, a term $[a]_{b=c}$ in a formula means "add a if $b=c$." Similarly, a term $[a]_{b \equiv c(d)}$ in a formula means "add a if b is congruent to c modulo d."

THEOREM 1.1. For any positive integer n the number $s(n)$ of monic separable polynomials of degree n with coefficients in $k=\mathbb{F}_{q}$ is

$$
s(n)=q^{n}-q^{n-1}+[1]_{n=1} .
$$

Proof. Any monic polynomial $t(x)$ of degree n with coefficients in k can be written in a unique way as $t(x)=a(x)^{2} b(x)$, where $a(x)$ is a monic polynomial of degree $0 \leq r \leq\left[\frac{n}{2}\right]$ and $b(x)$ is a monic separable polynomial of degree $n-2 r$, both $a(x)$ and $b(x)$ with coefficients in k. Hence we have

$$
\begin{equation*}
q^{n}=\sum_{r=0}^{[n / 2]} q^{r} s(n-2 r), \tag{1}
\end{equation*}
$$

where we put $s(0)=1$ understanding that the constant 1 is the unique monic separable polynomial of degree 0 .

We can proceed now to prove the theorem by induction on n. For $n=1$ the assertion $s(1)=q$ is clear. Assume $n>1$; by (1) and the induction hypothesis we can calculate $s(n)$ as

$$
\begin{aligned}
s(n) & =q^{n}-\sum_{r=1}^{[n / 2]} q^{r} s_{n-2 r}(q)=q^{n}-\sum_{r=1}^{[n / 2]-1} q^{r}\left(q^{n-2 r}-q^{n-2 r-1}\right)-q^{[n / 2]} S\left(n-2\left[\frac{n}{2}\right]\right) \\
& =q^{n}-q^{n-1}+q^{n-[n / 2]}-q^{[n / 2]} s\left(n-2\left[\frac{n}{2}\right]\right) .
\end{aligned}
$$

Moreover, in both cases $n=2 r$ even or $n=2 r+1$ odd we have

$$
q^{n-[n / 2]}-q^{[n / 2]} s\left(n-2\left[\frac{n}{2}\right]\right)= \begin{cases}q^{r}-q^{r} s(0)=0, & \text { if } n \text { is even } \\ q^{r+1}-q^{r} s(1)=0, & \text { if } n \text { is odd }\end{cases}
$$

Corollary 1.1. For $n>1$, the number of \mathbb{F}_{q}-points of the affine and projective nth discriminant varieties is

$$
\begin{aligned}
& \left|\Delta_{1}\left(\mathbb{F}_{q}\right)\right|=q^{n-1} \\
& \left|\Delta\left(\mathbb{F}_{q}\right)\right|=q^{n-1}+q^{n-2}+[-1]_{n=2}+\frac{q^{n-1}-1}{q-1}=\frac{q^{n}-1}{q-1}+q^{n-2}+[-1]_{n=2} .
\end{aligned}
$$

This result suggests that the affine nth discriminant variety could be parameterized by $n-1$ affine parameters. We have not been able to check this.

2. ORBITS OF GALOIS INVARIANT n-SETS OF $\mathbb{P}^{1}(\bar{k})$ UNDER THE ACTION OF $\mathrm{PGL}_{2}(k)$

Let p be a prime number, q a power of p, and $k=\mathbb{F}_{q}$ the finite field with q elements. We choose a point $\infty \in \mathbb{P}^{1}(k)$, which we call infinity. This choice determines a k-embedding $\mathbb{A}^{1} \hookrightarrow \mathbb{P}^{1}$, as well as an identification: $\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\mathrm{PGL}_{2}$. From now on we denote the group $\mathrm{PGL}_{2}(k)$ simply by Γ. We recall that the galois group $G:=\operatorname{Gal}(\bar{k} / k)$ is topologically generated by the Frobenius automorphism F, acting as $x^{F}=x^{q}$, for all $x \in \bar{k}$. The group G has a natural action over $\mathbb{P}^{1}(\bar{k})$ and by our choice we have $\infty^{F}=\infty$. To say that some object is galois invariant or defined over k means that it is fixed by all elements of G, or equivalently, that it is fixed by F.

Let us fix throughout a positive integer $n>2$. The number of orbits of n-sets of $\mathbb{P}^{1}(k)$ under the action of Γ have been counted in [5, Theorem C]. As we explain in Section 3, taking $n=2 g+2$ one obtains an explicit formula, in the odd characteristic case, for the number of hyperelliptic curves of genus g defined over k having all Weierstrass points defined over k. In order to count all hyperelliptic curves defined over k we have to count orbits under the action of Γ of n-sets of $\mathbb{P}^{1}(\bar{k})$ which are defined over k (as a set).

Let $\mathscr{X}:=\binom{\mathbb{P}^{1}(\bar{k})}{n}^{G}$ be the set of galois invariant elements of $\binom{\mathbb{P}^{1} 1(\bar{k})}{n}$. The elements of \mathscr{X} are families $\left\{P_{1}, \ldots, P_{n}\right\}$ of n different points of $\mathbb{P}^{1}(\bar{k})$ such that

$$
\left\{P_{1}, \ldots, P_{n}\right\}=\left\{P_{1}^{\sigma}, \ldots, P_{n}^{\sigma}\right\}, \quad \forall \sigma \in G .
$$

Our aim is to count the number of orbits of the finite set \mathscr{X} under the action of Γ. To this end we need to consider the following subsets of \mathscr{X},

$$
\begin{gathered}
\mathscr{X}_{1}=\binom{\mathbb{P}^{1}(\bar{k})-\{\infty\}}{n}^{G}, \quad \mathscr{X}_{2}=\binom{\mathbb{P}^{1}(\bar{k})-\{\infty, 0\}}{n}^{G}, \\
\mathscr{X}_{0}=\binom{\mathbb{P}^{1}(\bar{k})-\left\{\alpha, \alpha^{\prime}\right\}}{n}^{G},
\end{gathered}
$$

where $\alpha \in \mathbb{F}_{q^{2}}-\mathbb{F}_{q}$ and $\alpha^{\prime}=\alpha^{q}$ is the conjugate of α.
We denote the cardinals of these sets by

$$
S(n):=|\mathscr{X}|, \quad S_{i}(n):=\left|\mathscr{X}_{i}\right|, \quad \text { for } i=0,1,2 .
$$

To any n-subset $T=\left\{P_{1}, \ldots, P_{n}\right\}$ of $\mathbb{P}^{1}(\bar{k})$, not containing ∞, we can attach the separable polynomial $f_{T}(x)=\left(x-P_{1}\right), \ldots,\left(x-P_{n}\right)$ and the fact that T is galois invariant is equivalent to $f_{T}(x)$ having coefficients in k. Needless to say, the n-set T is recovered from $f_{T}(x)$ as the set of roots in \bar{k} of this polynomial. This correspondence between certain galois invariant subsets of the set of n-sets and certain subsets of separable polynomials with coefficients in k enables us to use Theorem 1.1 to find very explicit formulas for the numbers $S(n), S_{i}(n)$ as polynomials in q.

Lemma 2.1. For any positive integer $n>1$ we have:
(1) $S(n)=q^{n}-q^{n-2}+[1]_{n=2}$,
(2) $S_{1}(n)=q^{n}-q^{n-1}$,
(3) $S_{2}(n)=(q-1)\left(q^{n}+(-1)^{n-1}\right) /(q+1)$,
(4) $S_{0}(n)=(q+1)\left(q^{n+1}-q^{n}+(-1)^{[n / 2]}+(-1)^{[(n-1) / 2} q\right) /\left(q^{2}+1\right)$.

Proof. The first two assertions are clear. In fact, $s(n)$, (resp. $s(n-1)$) coincides with the number of elements in \mathscr{X} not containing (resp. containing) ∞, so that $S(n)=s(n)+s(n-1)$ and $S_{1}(n)=s(n)$.

Let us think that $S_{2}(n)$ is equal to the number of monic separable polynomials of degree n with coefficients in \mathbb{F}_{q}, which are not divisible by x. We prove now (3) for all $n \geq 1$ by induction on n. For $n=1$ the formula says $S_{2}(1)=q-1$, which is true. For $n>1$ we have $s(n)=S_{2}(n)+S_{2}(n-1)$, since each separable polynomial is either not divisible by x or decomposes as $x g(x)$, where $g(x)$ is separable and not divisible by x. Hence, by induction hypothesis,

$$
\begin{aligned}
S_{2}(n)=s(n)-S_{2}(n-1) & =q^{n}-q^{n-1}-(q-1)\left(q^{n-1}+(-1)^{n-2}\right) /(q+1) \\
& =(q-1)\left(q^{n}+(-1)^{n-1}\right) /(q+1)
\end{aligned}
$$

Finally, let $q(x) \in k[x]$ be a fixed irreducible quadratic polynomial and let us denote by $s_{0}(n)$ the number of monic separable polynomials of degree n with coefficients in k and not divisible by $q(x)$. We claim that

$$
s_{0}(n)=\frac{q^{n+2}-q^{n+1}+(-1)^{[n / 2]} q^{n-2[n / 2]}(q+1)}{q^{2}+1}, \quad \forall n \geq 1 .
$$

Let us prove this by induction on n. For $n=1$ the formula claims that $s_{0}(1)=q$, which is true. For $n>1$ we have as above $s(n)=s_{0}(n)+s_{0}(n-2)$, since each separable polynomial is either not divisible by $q(x)$ or decomposes as $q(x) g(x)$, where $g(x)$ is separable and not divisible by $q(x)$. Hence, by induction hypothesis,

$$
\begin{aligned}
s_{0}(n) & =q^{n}-q^{n-1}-\frac{q^{n}-q^{n-1}+(-1)^{[n / 2]-1} q^{n-2[n / 2]}(q+1)}{q^{2}+1} \\
& =\frac{q^{n+2}-q^{n+1}+(-1)^{[n / 2]} q^{n-2[n / 2]}(q+1)}{q^{2}+1}
\end{aligned}
$$

as claimed. We can now deduce (4) from $S_{0}(n)=s_{0}(n-1)+s_{0}(n)$, since any n-set in \mathscr{X}_{0} either contains ∞ or not.

The main tool in counting $|\mathscr{X} \backslash \Gamma|$ is the following formula, which in [1] is called the Cauchy-Frobenius Lemma,

$$
|\mathscr{X} \backslash \Gamma|=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma}\left|\mathscr{X}_{\gamma}\right|=\sum_{\gamma \in \mathscr{C}} \frac{\left|\mathscr{X}_{\gamma}\right|}{\left|\Gamma_{\gamma}\right|},
$$

where

$$
\mathscr{X}_{\gamma}=\{T \in \mathscr{X} \mid \gamma(T)=T\}, \quad \Gamma_{\gamma}=\left\{\rho \in \Gamma \mid \rho \gamma \rho^{-1}=\gamma\right\}
$$

and \mathscr{C} is a system of representatives of conjugation classes of Γ. The set \mathscr{C} and the cardinals $\left|\Gamma_{\gamma}\right|$ are well known. To compute the last sum in the above formula we need also to know for any fixed positive integer m the number of elements in \mathscr{C} of order m as elements of the group Γ. This was computed in [5, Lemma 2.4]. For convenience of the reader we sum up all this information in the following lemma:

LEMMA 2.2. In the finite field $k=\mathbb{F}_{q}$ let U_{0} be the subset of elements $a \in k^{*}$ such that the polynomial $x^{2}-x-a$ is irreducible over k and let U_{2} be a system of representatives of $k^{*}-\{ \pm 1\}$ under the equivalence relation,
$b \sim b^{-1}$. Let us consider the following elements and subsets of Γ :

$$
\gamma_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \Sigma_{0}=\left\{\left.\left(\begin{array}{cc}
0 & a \\
1 & 1
\end{array}\right) \right\rvert\, a \in U_{0}\right\}, \quad \Sigma_{2}=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
0 & b
\end{array}\right) \right\rvert\, b \in U_{2}\right\}
$$

If q is odd we take also into consideration the following two elements of Γ,

$$
\gamma_{0}=\left(\begin{array}{ll}
0 & c \\
1 & 0
\end{array}\right), \quad \gamma_{2}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

where c is some fixed non-square in k. Then,

$$
\mathscr{C}= \begin{cases}\{1\} \cup \Sigma_{0} \cup \Sigma_{2} \cup\left\{\gamma_{1}\right\}, & \text { if } q \text { is even }, \\ \{1\} \cup \Sigma_{0} \cup \Sigma_{2} \cup\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}\right\}, & \text { if } q \text { is odd } .\end{cases}
$$

For $\gamma \in \Gamma, \gamma \neq 1$, let $f(\gamma)$ denote the number of fixed points of γ in $\mathbb{P}^{1}(k)$. Then

$$
f(\gamma)= \begin{cases}0, & \text { if } \gamma \in \Sigma_{0}, \text { or } \gamma=\gamma_{0} \\ 1, & \text { if } \gamma=\gamma_{1} \\ 2, & \text { if } \gamma \in \Sigma_{2}, \text { or } \gamma=\gamma_{2}\end{cases}
$$

Moreover,

$$
\left|\Gamma_{\gamma}\right|= \begin{cases}q+1, & \text { if } \gamma \in \Sigma_{0} \\ q-1, & \text { if } \gamma \in \Sigma_{2} \\ q, & \text { if } \gamma=\gamma_{1} \\ 2 q+2, & \text { if } \gamma=\gamma_{0} \\ 2 q-2, & \text { if } \gamma=\gamma_{2}\end{cases}
$$

If $m(\gamma)$ denotes the order of γ as an element of Γ we have

$$
m(\gamma)= \begin{cases}p, & \text { if } \gamma=\gamma_{1} \\ 2, & \text { if } \gamma=\gamma_{0} \text { or } \gamma_{2}, \\ a \text { divisor greater than } 2 \text { of } q+1, & \text { if } \gamma \in \Sigma_{0}, \\ a \text { divisor greater than } 2 \text { of } q-1, & \text { if } \gamma \in \Sigma_{2}\end{cases}
$$

Moreover, for any divisor m of $q+1$ (resp. $q-1$), $m>2$, there are exactly $\varphi(m) / 2$ elements in $\Sigma_{0}\left(\right.$ resp. $\left.\Sigma_{2}\right)$ with $m(\gamma)=m$.

Our aim now is to count $\left|\mathscr{X}_{\gamma}\right|$ for each $\gamma \in \mathscr{C}$. The following observation is useful:

LEMMA 2.3. Let γ be an element with finite order $m>1$ in the group Γ and let $P \in \mathbb{P}^{1}(\bar{k})$. If P is not a fixed point of γ then the orbit of P under the cyclic group $\langle\gamma\rangle$ consists of m different points $P, \gamma(P), \ldots, \gamma^{m-1}(P)$.

Proof. The jordan normal form of any representative of γ in $\mathrm{GL}_{2}(k)$ determines if γ has 1 or 2 fixed points in $\mathbb{P}^{1}(\bar{k})$. It is easy to check that the powers $\gamma^{r}, 1 \leq r<m$, have a jordan normal form of the same type; hence, all these powers have the same set of fixed points.

The crucial result allowing us to count $\left|\mathscr{X}_{\gamma}\right|$ is the following:
THEOREM 2.1. For any $\gamma \in \operatorname{Aut}\left(\mathbb{P}^{1}\right)$ of finite order, the quotient $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \backslash\langle\gamma\rangle$ exists in the category of algebraic varieties over k and the quotient variety $\mathbb{P}^{1} \backslash\langle\gamma\rangle$ is k-isomorphic to \mathbb{P}^{1}.

Proof. The existence of the quotient under the action of a finite group is well known [3, Lect. 10]. Moreover, it is easy to check that the quotient of a normal variety is again normal. In our case, the quotient will be a smooth projective curve, which by Lüroth's theorem is birrationally equivalent (thus isomorphic) to \mathbb{P}^{1}.

We are ready to give an explicit formula for $\left|\mathscr{X}_{\gamma}\right|$ in terms of the number $f(\gamma)$ of fixed points of γ in $\mathbb{P}^{1}(k)$ (which can be 0,1 , or 2) and the order $m(\gamma)$ of γ as an element of Γ :

Proposition 2.1. Let γ be an element of order m in Γ and, for $\gamma \neq 1$, let $f \in\{0,1,2\}$ be the number of fixed points of γ in $\mathbb{P}^{1}(k)$. Then

$$
\left|\mathscr{X}_{\gamma}\right|= \begin{cases}S(n) & \text { if } \gamma=1 \\ S_{0}\left(\frac{n}{m}\right)+S_{0}\left(\frac{n-2}{m}\right) & \text { if } f=0 \\ S_{1}\left(\frac{n}{m}\right)+S_{1}\left(\frac{n-1}{m}\right) & \text { if } f=1 \\ S_{2}\left(\frac{n}{m}\right)+2 S_{2}\left(\frac{n-1}{m}\right)+S_{2}\left(\frac{n-2}{m}\right) & \text { if } f=2\end{cases}
$$

where we understand that $S_{i}(x)=0$ if $x \notin \mathbb{Z}$.
Proof. Let T be a galois invariant n-subset of $\mathbb{P}^{1}(\bar{k})$ such that $\gamma(T)=T$. We can express T as a disjoint union, $T=T_{f} \cup T^{\prime}$, where T_{f} is the set of all fixed points of γ contained in T and T^{\prime} is a union of orbits of cardinal m by

Lemma 2.3. Clearly T_{f} is galois invariant too, hence, it contains either fixed points defined over k, or a pair of quadratic conjugate elements (if $f=0$). On the other hand, T^{\prime} is also galois invariant and if it has r orbits then it corresponds in a unique way with an r-subset defined over k of the quotient variety $\mathbb{P}^{1} /\langle\gamma\rangle$. By Theorem 2.1 the number of possibilities for T^{\prime} is equal to the number of r-subsets defined over k of $\mathbb{P}^{1}(\bar{k})-\{$ fixed points of $\gamma\}$ and these numbers are given by $S_{i}(r), i=0,1,2$, according to the three different possibilities for the set of fixed points of γ.

The formulas for $\left|\mathscr{X}_{\gamma}\right|$ are obtained by taking into consideration for each possible set T_{f} the different possibilities for T^{\prime}.

After this result and Lemma 2.2 we are able to write down an explicit formula for $|\mathscr{X} \backslash \Gamma|$, as the sum of the terms

$$
\begin{gathered}
\frac{|\mathscr{X}|}{|\Gamma|}=\frac{S(n)}{q(q-1)(q+1)}, \\
\frac{\left|\mathscr{X}_{\gamma_{1}}\right|}{\left|\Gamma_{\gamma_{1}}\right|}=\frac{S_{1}(n / p)+S_{1}((n-1) / p)}{q}, \\
\sum_{\gamma \in \mathscr{C}, f(\gamma)=0} \frac{\left|\mathscr{X}_{\gamma}\right|}{\left|\Gamma_{\gamma}\right|}=\sum_{m \mid(q+1), m>1} \frac{\varphi(m)}{2} \frac{S_{0}(n / m)+S_{0}((n-2) / m)}{q+1}, \\
\sum_{\gamma \in \mathscr{C}, f(\gamma)=2} \frac{\left|\mathscr{X}_{\gamma}\right|}{\left|\Gamma_{\gamma}\right|}=\sum_{m \mid(q-1), m>1} \frac{\varphi(m)}{2} \frac{S_{2}(n / m)+2 S_{2}((n-1) / m)+S_{2}((n-2) / m)}{q-1} .
\end{gathered}
$$

Note that the contributions of γ_{0} and γ_{2} have been introduced in the last two sums by letting m take the value $m=2$. If q is even, this never happens since m is a divisor of $q+1$ or $q-1$, whereas for q odd, $\varphi(m) / 2$ times $1 /(q+1)$, resp. $1 /(q-1)$, takes for $m=2$ the right value $1 /(2 q+2)$, resp. $1 /(2 q-2)$ corresponding to the contribution of γ_{0}, resp. γ_{2}.

As a consequence of Lemma 2.1 our formula reads:
THEOREM 2.2 For $n>2$ a positive integer we have

$$
\begin{aligned}
|\mathscr{X} \backslash \Gamma|= & q^{n-3}+\frac{1}{2(q+1)} \sum_{e=0}^{2}\binom{2}{e}_{m \mid(q-1, n-e), m>1} \varphi(m)\left(q^{(n-e) / m}-(-1)^{(n-e) / m}\right) \\
& +\frac{1}{q} \sum_{e=0}^{1}\left(\left[q^{(n-e) / p}-q^{(n-e) / p-1}\right]_{n \equiv e(p)}+[1]_{n-e=p}\right) \\
& +\frac{1}{2\left(q^{2}+1\right)} \sum_{e \in\{0,2\}} \sum_{m \mid(q+1, n-e), m>1} \varphi(m)\left(q^{(n-e) / m+1}-q^{(n-e) / m}+(-1)^{[(n-e) / 2 m]}\right. \\
& \left.+(-1)^{[(n-e-m) / 2 m]} q\right) .
\end{aligned}
$$

Remarks 2.1 (1) It is easy to check that $|\mathscr{X} \backslash \Gamma|=n$ for $n=1,2$.
(2) The term q^{n-3} can be expressed as

$$
q^{n-3}=\frac{q^{n}+2 q^{n-1}+q^{n-2}}{2(q+1)}-\frac{q^{n}-q^{n-2}}{q}+\frac{q^{n+1}-q^{n}+q^{n-1}-q^{n-2}}{2\left(q^{2}+1\right)}
$$

hence we can obtain a more compact formula just by distributing this term q^{n-3} among the others, taking into consideration all cases $m=1$,

$$
\begin{aligned}
|\mathscr{X} \backslash \Gamma|= & \frac{1}{2(q+1)} \sum_{e=0}^{2}\binom{2}{e} \sum_{m \mid(q-1, n-e)} \varphi(m)\left(q^{(n-e) / m}-(-1)^{(n-e) / m}\right. \\
& +\frac{1}{q} \sum_{e=0}^{1} \sum_{m \mid(p, n-e)}(-1)^{\varphi\left(m^{2}\right)}\left(q^{(n-e) / m}-q^{(n-e) / m-1}+[1]_{n-e=m}\right) \\
& +\frac{1}{2\left(q^{2}+1\right)} \sum_{e \in\{0,2\}} \sum_{m \mid(q+1, n-e)} \varphi(m)\left(q^{(n-e) / m+1}-q^{(n-e) / m}\right. \\
& \left.+(-1)^{[(n-e) / 2 m]}+(-1)^{[(n-e-m) / 2 m]} q\right) .
\end{aligned}
$$

3. COUNTING HYPERELLIPTIC CURVES

As a general reference for the basic properties of hyperelliptic curves see $[2,6]$. Let k be a perfect field of characteristic different from 2. Let $f(x)=a_{n} x^{n}+\cdots+a_{0} \in k[x]$ be a separable polynomial of degree $n \geq 5$ and consider the plane affine curve C_{0} defined by the equation

$$
\begin{equation*}
y^{2}=f(x) . \tag{2}
\end{equation*}
$$

The curve C_{0} is smooth and its closure \tilde{C} in \mathbb{P}^{2} has only one point at infinity, P_{∞}, which is always a singular point. The normalization $C \rightarrow \widetilde{C}$ of \widetilde{C} is an hyperelliptic curve of genus [$n-1 / 2$]. If n is odd, the point P_{∞} has only one preimage in C, which we still denote by P_{∞}; this point is a Weierstrass point and it is always defined over k. If n is even the point P_{∞} has two preimages in C, which we denote by $P_{\infty_{1}}, P_{\infty_{2}}$; they are defined over k if and only if a_{n} is a square in k^{*}.

Since the rest of the points of C are in bijection with the points in C_{0}, it is common to attach to these points of C the affine coordinates (x, y) of the corresponding points in C_{0}. If we introduce affine coordinates in \mathbb{P}^{1} (by declaring some point in $\mathbb{P}^{1}(k)$ to be ∞), the map

$$
\begin{equation*}
x: C_{0} \rightarrow \mathbb{P}^{1}, \quad(x, y) \mapsto x \tag{3}
\end{equation*}
$$

extends to a degree 2 map from C to \mathbb{P}^{1} sending P_{∞} or the pair $P_{\infty_{1}}, P_{\infty_{1}}$ to ∞. The Weierstrass points of C coincide with the ramification points of x. Every hyperelliptic curve of genus $g \geq 2$ defined over k is k-isomorphic to some curve C obtained as above. If k is algebraically closed, two hyperelliptic curves of genus g are k-isomorphic if and only if the images in $\mathbb{P}^{1}(k)$ of the $2 g+2$ Weierstrass points under any degree 2 map from the curve to \mathbb{P}^{1} differ by a k-automorphism of \mathbb{P}^{1}. For a non-algebraically closed field there are quadratic twists to deal with.

Given any $\lambda \in k^{*} / k^{* 2}$ and a curve C given by Eq. (2) we define the twisted curve C^{λ} as the one determined by the equation

$$
y^{2}=\lambda f(x)
$$

For a fixed positive integer $g \geq 2$ denote by \mathscr{H} the set of k-isomorphy classes of hyperelliptic curves defined over k of genus g. The curves C and C^{λ} are isomorphic over the quadratic extension $k(\sqrt{\lambda})$, but they are not necessarily k-isomorphic. This induces a well-defined action of $k^{*} / k^{* 2}$ on \mathscr{H} and we denote by \mathscr{H}^{t} the quotient set $\mathscr{H} \backslash\left(k^{*} / k^{* 2}\right)$.

Denote by \mathscr{X} the set of k-points of the variety $\binom{\mathbb{P}^{1}}{2 g+2}$ of $2 g+2$-subsets of \mathbb{P}^{1}. That is, the elements in \mathscr{X} are families $\left\{x_{1}, \ldots, x_{2 g+2}\right\}$ of $2 g+2$ different points of $\mathbb{P}^{1}(\bar{k})$ invariant under the galois action:

$$
\left\{x_{1}, \ldots, x_{2 g+2}\right\}=\left\{x_{1}^{\sigma}, \ldots, x_{2 g+2}^{\sigma}\right\}, \quad \forall \sigma \in \operatorname{Gal}(\bar{k} / k)
$$

The variety $\mathscr{M}=\binom{\mathbb{P}^{1}}{2 g+2} \backslash \mathrm{PGL}_{2}$ is a coarse moduli space for hyperelliptic curves of genus g. Its sets of k-points is $\mathscr{M}(k)=\mathscr{X} \backslash \mathrm{PGL}_{2}(k)$.

Consider the map

$$
\begin{equation*}
W: \mathscr{H}^{t} \rightarrow \mathscr{M}(k) \tag{4}
\end{equation*}
$$

which assigns to any curve C the class of the set $\left\{x\left(P_{1}\right), \ldots, x\left(P_{2 g+2}\right)\right\}$ of images of the Weierstrass points $P_{1}, \ldots, P_{2 g+2}$ of C under any degree 2 map, $x: C \rightarrow \mathbb{P}^{1}$. This map W is well defined and bijective. The inverse map sends $\left\{x_{1}, \ldots, x_{2 g+2}\right\}$ to the curve C defined by the equation

$$
y^{2}=\prod_{x_{i} \neq \infty}\left(x-x_{i}\right) .
$$

Therefore, if $k=\mathbb{F}_{q}$ is a finite field with odd characteristic, the formula of Theorem 2.2 for $n=2 g+2$ counts the number of hyperelliptic curves of genus g defined over k, up to k-isomorphism and quadratic twist.

In the table below we write down these numbers for $g=2,3,4,5$.

Furthermore, it is clear that the set of $2 g+2$ Weierstrass points of an hyperelliptic curve C defined over k is galois invariant. The cardinals of the invariant subsets of this galois set furnish a partition of the positive integer $2 g+2$ and since all galois groups over a finite field are cyclic, this partition actually determines the structure of the galois set. Clearly, the structure of this galois set is invariant under isomorphism and under quadratic twist; thus, the set \mathscr{H}^{t} is the disjoint union of $p(2 g+2)$ subsets, each one gathering classes of curves with the same galois structure of the set Weierstrass points. For instance, if $g=2$ we have

$$
\begin{aligned}
\mathscr{H}^{t}= & \mathscr{H}_{1,1,1,1,1,1}^{t} \cup \mathscr{H}_{2,1,1,1,1}^{t} \cup \mathscr{H}_{2,2,1,1}^{t} \cup \mathscr{H}_{2,2,2}^{t} \cup \mathscr{H}_{3,1,1,1}^{t} \cup \\
& \mathscr{H}_{3,2,1}^{t} \cup \mathscr{H}_{3,3}^{t} \cup \mathscr{H}_{4,1,1}^{t} \cup \mathscr{H}_{4,2}^{t} \cup \mathscr{H}_{5,1}^{t} \cup \mathscr{H}_{6}^{t}
\end{aligned}
$$

where, for instance, $\mathscr{H}_{4,1,1}^{t}$ denotes the set of classes of curves in \mathscr{H} having two Weierstrass points defined over k and four Weierstrass points defined over the quartic extension of k, forming a complete orbit under the action of $\operatorname{Gal}(\bar{k} / k)$.

Exactly in the same way, the sets \mathscr{X} and $\mathscr{M}(k)=\mathscr{X} \backslash \mathrm{PGL}_{2}(k)$ split as the union of $p(2 g+2)$ different subsets and the map W of (4) respects this decomposition. This is clearly seen if we consider the particular degree 2 map from C to \mathbb{P}^{1} given in (3) for which the Weierstrass points have affine coordinates $(x, 0)$.

Corresponding to the partition $n=1+1+\cdots+1$ we get the subset of \mathscr{H}^{t} of classes, modulo k-isomorphism and quadratic twist, of hyperelliptic curves of genus g defined over k having all Weierstrass points defined over k, that is, hyperelliptic curves given by Eqs. (2) with a polynomial $f(x)$ having all its roots in k. By the above considerations, the map W gives a bijection between this set of classes of curves and the set of orbits of n-sets of $\mathbb{P}^{1}(k)$ under the action of $\mathrm{PGL}_{2}(k)$. In [5] a closed formula was obtained for this latter number of orbits.

More generally, it would be interesting to find explicit formulas for the cardinal of each subset of $\mathscr{X} \backslash \mathrm{PGL}_{2}(k)$ gathering classes of n sets with fixed structure as a galois set. In this way we would obtain, in the odd characteristic case, explicit formulas for the number of hyperelliptic curves defined over k, up to k-isomorphism and quadratic twist, with a fixed galois structure for the set of Weierstrass points. We hope to deal with this question elsewhere.

REFERENCES

1. A. Betten, H. Fripertinger, A. Kerber, A. Wassermann, and K.-H. Zimmermann, "Codierungstheorie," Springer-Verlag, New York/Berlin, 1998.
2. J. Cassels and E. Flynn, "Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2," Cambridge Univ. Press, Cambridge, UK, 1996.
3. J. Harris, "Algebraic Geometry, a First Course," Grad. Texts in Math., Vol. 133, SpringerVerlag, New York, 1992.
4. J. W. P. Hirschfeld, "Projective Geometries over Finite Fields," Clarendon, Oxford, 1979.
5. A. López and E. Nart, Classification of Goppa codes of genus zero, J. Reine Angew. Math. 517 (1999), 131-144.
6. A. J. Menezes, Y.-H. Wu, and R. J. Zuccherato, An elementary introduction to hyperelliptic curves, in "Algebraic Aspects of Cryptography," (N. Koblitz, Ed.), Springer-Verlag, New York/Berlin, 1999.
7. M. A. Tsfasman and S. G. Vlǎdut, "Algebraic-Geometric Codes," Kluwer Academic, Dordrecht, 1991.

[^0]: ${ }^{1}$ Supported by CONACYT.
 ${ }^{2}$ Supported by DGI, BHA 2000-0180.

