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Additive reduction of algebraic tori

By

ENRIC NART and XAVIER XARLES *)

Let K be a number field and T; a group scheme admitting a Néron model 7 over 0,
the ring of integers of K. The connected components of the finite fibers of J are
interesting arithmetic invariants of 7. In the case of bad reduction, the description of
these finite fibers is sometimes difficulted by the presence of unipotent components. If T
is an algebraic torus and p is a finite prime of K, the reduction of 7% the connected
component of 4, modulo p is an affine, connected, smooth group scheme over a finite
field; hence, it has a canonical decomposition:

F2i=T°®,0p =T, x U,

where T, is a torus and U is unipotent. Since T'is completely determined by an integral
Galois representation:

0:Gal (R/K) ~ GL,(),

it should be possible to describe T, and U in terms of ¢. The description of T, is easy (see
Section 1), whereas the description of U in full generality is much more difficult to deal
with.

We consider in this note an easier question: when is U isomorphic to a power of G,?
Sometimes the fact that all these unipotent components are additive, enables one to carry
on local-to-global processes. For instance, assuming additivity of the unipotent compo-
nents and that the torus splits by an abelian extension of K, in [3] it is shown how to
construct from the L-series of Tan explicit formal group law for the formal completion
of 7 along the zero section. Our aim is to prove the following:

(0.1) Theorem. Let ¢ be the ramification index of p in the splitting field of T and let p be
the prime number lying under p. Then:

p>e=>UxG,x - xG,.

The proof is based on a theorem of Ono [6] stablishing an isogeny between a power
of T and certain products of Weil restrictions of @,,.

*) Partially supported by grant PB89-0215 from CAICYT



Vol. 57, 1991 Additive reduction of algebraic tori 461

1. Generalities. The toric component. It is clear that the study of Z,° can be reduced to
the local case. Therefore, we fix the prime number p once and for all and we assume
throughout that K is a finite extension of @, ¢ its ring of integers, p the maximal ideal
of O and k the residue field.

Let S be a scheme. A group scheme 7~ over S is called a d-dimensional torus if there
exists a surjective étale morphism, S’ — S, such that 7 ®; S’ = G, 5. The d-dimensional
tori are thus classified by:

H1 (Rl (S: §)3 Aut (an)) = Hom (nl (S, Sl GL(da Z))a
that is, by continuous integral representations:

Q:xl(sag)_)GL(d:Z)'

Now, let S denote either Spec (K), Spec (@) or Spec (k). By the well-known canonical
isomorphisms between 7, (S, 5) and respective Galois groups, we have a commutative
diagram of functors:

k—tori « O—tori - K —tori

{ { Lo

G, — mods « Gy — mods — Gy — mods

where G, = Gal (k, k), G¢ = Gal (K, K), Ggn = Gal (K"/K) and K™ is the maximal un-
ramified extension of K. In the upper horizontal row we have the base-change functors,
in the lower horizontal row the natural functors deduced from the canonical identifica-
tions:

G = Ggm = Gy/lg,
where I is the inertia subgroup. The vertical functors are the equivalence of categories:

X :8 —tori - 1y (8,5) — mods,

where X (7} is the character group of 7 ; that is, the =, (S, 5)-module associated to the
étale sheaf Hom(7, G,,). In particular, the functor ¢ — tori — k — tori is an equivalence
of categories. Also, base change by j: Spec(K) — Spec(() stablishes an equivalence be-
tween @ — tori and the full subcategory of K — tori of the tori with good reduction (see
(1.1) below).

By definition, the Néron model of a smooth group scheme Tover K is the sheaf j, (T)
with respect to the smooth topology. Since j is smooth, T2 j*j,(T). By a theorem of
Raynaud [4] (cf. aiso {1] 10.1), if T is a torus over K, then its Néron model is representable
by a smooth group scheme " locally of finite type over ¢. Hence, there is a group-scheme
isomorphism:

VT @,K>T,

and functorial group isomorphisms, compatible with y:

T @) > TE QuK),
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for any smooth scheme & over ¢. For instance, the Néron model % of G, fits into the
exact sequence:

1-6G,,~9—-i -1,

where i: Spec (k) — Spec (¢) is the natural morphism. The connected component J° of
J is then an affine [5, Lemme IX 2.2] smooth group scheme over ¢ of finite type and we
have a canonical decomposition over k:

TL:=T°®k=T,xU,

where T, is a torus and U is unipotent. The toric component is easy to describe. Let us
see first the case of good reduction:

(1.1) Proposition-Definition. Let Ty be a torus and 7, its Néron model. T has good
reduction when it satisfies any of the following equivalent conditions:

(1) 70 is a torus over k;

(2) 7° is a torus over O,

(3) there exists a torus over O with generic fiber isomorphic to T;
(4) I acts trivially on X (T);

(5) T splits over an unramified extension of K.

In this case, X (7,°) is isomorphic to X (T) as G,-module.

Proof By [2,X,8.2], 7% is a torus if and only if all its fibers are tori; hence, (1) is
equivalent to (2). (2)=>(3) is clear and (3)=>(4) is a consequence of the commutative
diagram of functors above. (4) <> (5) is also clear. Finally, (5) = (2) is a consequence of the
fact that the Néron model is stable by €tale basis change [4]. [

In general, the toric component of Z,° can be described as the reduction of the maximal
subtorus of T with good reduction. This is well defined:

(1.2) Proposition. Let T be a torus over K with splitting field L. Given a normal subgroup
H of Gal (L/K), there exists a unique subtorus Ty of T, maximal with the property that H
acts trivially on X (Ty). Moreover, X (Ty) = X (T)/ker (tr), where:

tr: X(T) - X (T)",

is the homomorphism defined by tr(x) = 3 x°.

aeH

Proof Imitate [8,74]. O

(1.3) Theorem. Let Ty be the maximal subtorus of T with good reduction. Then, T, is
isomorphic to the reduction of the connected component of the Néron model of Ty. In
particular,

X(T,) = X (To) = X (T)/ker (X (T) = X (T)'®),

as G,-modules.
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Proof. It suffices to show that:
%@(’)kgg-n’ ‘9~m®0Kg TO’

where 7, is the maximal subtorus of 7 °. More generally, there are bijections:

{subtori of 7,°} « {subtori of 7°} <> {subtori of T with good reduction}.

For the first one see [2, XII]. The second mapping from left to right is injective by (1.1).
It remains to show that given a subtorus of T with good reduction, T’ < T, the corre-
sponding map between the connected components of the Néron models, 7° — 779, is
also injective. As a map between two sheafs for the smooth topology it is clearly injective
because of the left-exactness of j; but this is not sufficient in general. In our case where
J'° is a torus over 0, the assertion is clear because the kernel is a group-scheme of
multiplicative type with trivial generic fiber. [

R emark. The most natural torus over k which can be obtained from T is the one
determined by the G,-module X (T)'=. It is easy to check that this torus is isomorphic to
((T"),)", where ¥ indicates dual. The dual torus satisfies X (T V) = X (T)" by definition.

2. Weil restriction. In this paragraph we collect some results we need about the Weil
restriction functor.

Recall that for any scheme S, a S-functor is a covariant functor from S — Sch to Sets.
Given a morphism u: S’ — S of schemes, the Weil restriction Rg. 5 is the right-adjoint
functor of the scalar-extension functor. That is, for any §’-functor X, Ry 5(X) is the
S-functor defined by:

Rss(X)(Y) = X(Yx S,
for any S-scheme Y. The following properties of Ry s are easy (see [1, 7.6 Thm 4] for (2.1)).
(2.1) Proposition. If S = Spec (R), S’ = Spec (R’) are affine, R’ is projective and of finite

type as R-module and X is representable by an affine group scheme, then Ry, 15 (X) is also
representable by an affine group scheme.

(2.2) Proposition. Let S’ — S be a finite étale Galois covering of S and I' = Gal (§'/S).
Let X be a §'-functor and for any oI, let X° be the S'-functor defined by:

X°(Y):= X (Yxg 2 5.

Then, there is a canonical isomorphism:

Rs,s(X)x s8> [T X°.

oel

If, moreover, X is defined over S, then we obtain an isomorphism:
Rss(X)x 58" 5> X*T.

In particular, the Weil restriction of a torus by a finite étale morphism is again a torus.
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(2.3) Proposition. Suppose that we have morphisms of schemes: S’ - S — S”". Let T be a
scheme over S, T' = Tx ¢S’ and let X, X' be arbitrary S'-functors. Then, there are canonical
isomorphisms:

m Rs:s X)xsT= Reyr XxsT)

) RS’/S (X)) = RS/S” (RS’/S (X))

(3) Rsys(X x ¢ X') = Rgs(X) x sRg/s(X’).

The Weil restriction functor does not commute with the connected component. For
instance, if L/K is a finite extension of local fields and A, is an abelian variety with good
reduction, then its Néron model, .« is connected, but Ry, 4, (), which is the Néron
model of Ry x(4), may be disconnected, since R, jx(4) may have bad reduction. Never-
theless we have the following:

(2.4) Proposition. Let S" — S be a finite morphism and let T be a torus over S’. Then,
Ry 5(T) is connected.

Proof By (2.3) we can assume that S is the spectrum of an algebraically closed field
k. Then, S’ is the spectrum of a finite dimensional k-algebra A. Since A is a product of
strictly henselian rings, we have T= G, and R, (G,,) is clearly connected. In fact,

R, (@,) = Spec (x[X4,..., X,, Y)Y N(Xy,....X,)— 1),

where n =dim, 4 and N(X,,...,X,) is the polynomial obtained by computing the
determinant of the endomorphism of A given by muitiplication by X, e, + ---+ X, e, for
a fixed k-basis e;,..., ¢, of 4. [

3. The unipotent component. Let K, @, p, k be as in Section 1. Let L be a finite extension
of K with ring of integers ¢, and residue field k; . Let e, f be the ramification index and
residual degree of L/K.

We prove first Theorem (0.1) for the torus Ry . (@,). We begin with the following
observation:

(3.1) Lemma. Ry, 0, (G,) is the connected component of the Néron model of Ry x (G,,).

Proof Let 4 be the Néron model of G,, over 0, . Clearly, the Weil restriction functor
commutes with j,; hence, Ry, o, (%) is the Néron model of R; ¢ (G,,). By (2.4) we have:

R, 10x (@,) = Ra,_/mx (go) S R@,_/wx (g)o_

Since, on the other hand, the Weil restriction functor preserves open and closed immer-
sions [1, 7.6 Prop 2], the last morphism must be an isomorphism. [

(3.2) Proposition. Let T,, U be the toric and unipotent component of the finite fiber of
Ry, 10 (G,). Then, T, is the f-dimensional torus Ry ,(G,). Moreover U is additive
(UG Y)ifand only if p 2 e.
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Proof. Assume first that L/K is totally ramified. Then L is defined by an Eisenstein
polynomial:
0, = O[XIAX* + p- q(X)),deg (X)) <e.
Denoting by s: Spec (k) — Spec (0) the finite fiber of ¢, we have:
Ro, 0 (Gr)s (A) = Ro, x5 (@) (A) = (A [X]/X)*,
for any k-algebra A. Let B = A[X]/X*?; we have a split exact sequence:
1514+ XB->B*>A4*>1.

If p<e U(4) =1+ X B is not additive because it is not annihilated by p. Whereas if
p = e, there is a functorial-in-A isomorphism:
log

1+XB—>XB=A!,
given by the logarithm:

log 1 +q(X) = ¥ (~1)** (@(X)Yi.

In the general case, if K™ is the maximal unramified subextension of L/K, with ring of
integers 0™ and finite fiber s, : Spec (k;) — Spec (0™), we have by (2.3):

R%Mx (Gm)s = anr/a X (Rw jonr (Gm))s = Rk /k (Ra,_/wnr (Gm)so)
=Ry i (G, xUp) = Ry, 4 (G,,) x Ry i Uy).

If p < e, then U, is not annihilated by p, hence, U = R, (U,) has the same property. If
p 2 e we have seen that U, = G¥ ™", and it is clear that R, ,(G,) =GJ. O

We can now deduce Theorem (0.1) from the theorem of Ono [6, 1.5]:

(3.3) Proof of Theorem (0.1). Let L be the splitting field of T and K™, 0™, s, s,,
k; as above. Since the Néron model is stable by étale basis change, 7 ®, 0™ is the Néron
model of T":= T®x K™ and:

& ®4 (9")2., = ('70 R0 (pm)so = 9;0 & kL'
If the theorem were true for T™, we would have:
Uik, =G, x - xG,,

but since G, admits no torsors [2, XVII, 4.1.5], U must be already additive. Hence, we can
reduce the proof to the case L/K totally (and tamely) ramified. By the theorem of Ono,
we have an isogeny between the two following tori:

a:T™xJ] Ry x (G,)™—T1 Ry x (G,)™,

where K, runs over all subextensions of L/K and m, m,, n, are uniquely determined
non-negative integers. Let & be the dual isogeny and let n be the degree of o, so that:

(¥*)doa=n, aod=n.
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Since p > e (in fact, for any prime number not dividing e = [L : K]), we can choose o so
that p doesn’t divide » (cf. the proof of [6, 1.3.3]). By the universal property, we have
morphisms «, & between the respective Néron models:
a:T"*x[IR_ (9™ sTIR_ (94,
v v

Oy 1€ Oy 1O

still satisfying (*). By (3.1), taking connected components we get morphisms:
a: (T x I;[wav/fﬂ G s IVIR%/@((IJr,,,)"v 4.

Now, by (3.2) we have:

Ry, 0@ =T, x G,

where T, is a torus and r, is an integer depending on K, . Therefore, by taking finite fiber
and unipotent component we have morphisms:

a:U"x G, sG.: 4,

still satisfying (*). Since p does not divide n, multiplication by n on U™ x &, is a monomoz-
phism and:

0=do(p)oa=np =(p)=0,

hence p annihilates U and this property characterizes additivity among the unipotent,
connected, smooth group schemes over a perfect field (see [7, 2.6.7} for algebraically closed
fields and apply again that @&, has no torsors). [
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