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A d d i t i v e  r e d u c t i o n  o f  a l g e b r a i c  t o r i  
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Let K be a number field and T m a group scheme admitting a N6ron model ~-- over (9, 
the ring of integers of K. The connected components of the finite fibers of Y are 
interesting arithmetic invariants of T. In the case of bad reduction, the description of 
these finite fibers is sometimes difficulted by the presence of unipotent components. If T 
is an algebraic torus and p is a finite prime of K, the reduction of ~--o the connected 
component of J-,  modulo p is an affine, connected, smooth group scheme over a finite 
field; hence, it has a canonical decomposition: 

~ o : =  j -0  | (9/P = T~ x U, 

where T~ is a torus and U is unipotent. Since Tis completely determined by an integral 
Galois representation: 

0 : Gal (K/K) --. G L a (]g), 

it should be possible to describe Tp and U in terms of 0. The description of Tp is easy (see 
Section 1), whereas the description of U in full generality is much more difficult to deal 
with. 

We consider in this note an easier question: when is U isomorphic to a power of 11~a? 
Sometimes the fact that all these unipotent components are additive, enables one to carry 
on local-to-global processes. For instance, assuming additivity of the unipotent compo- 
nents and that the torus splits by an abelian extension of K, in [3] it is shown how to 
construct from the L-series of Tan  explicit formal group law for the formal completion 
of J -  along the zero section. Our aim is to prove the following: 

(0.1) Theorem. Let  e be the ramification index of  p in the splitting field of  T and let p be 
the prime number lying under p. Then: 

p > e ~ U ~ - I I ~ . x . . ,  x ~ a .  

The proof is based on a theorem of Ono [6] stablishing an isogeny between a power 
of T and certain products of Weil restrictions of ll'm. 
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1. Generalities. The toric component. It is clear that the study of ~ o  can be reduced to 
the local case. Therefore, we fix the prime number p once and for all and we assume 
throughout that K is a finite extension of Q,,  (9 its ring of integers, p the maximal ideal 
of (9 and k the residue field. 

Let S be a scheme. A group scheme ~- over S is called a d-dimensional torus if there 
exists a surjective 6tale morphism, S' ~ S, such that ~-- |  S' _-__ ~ , s , -  The d-dimensional 
tori are thus classified by: 

H 1 (zq (S, sO, Aut (II~)) = Horn (~z 1 (S, sO, G L ( d ,  Z)); 

that is, by continuous integral representations: 

Q : Trl (S, s~ ~ G L ( d , Z ) .  

Now, let S denote either Spec (K), Spec ((9) or Spec (k). By the well-known canonical 
isomorphisms between nl (S, s-) and respective Galois groups, we have a commutative 
diagram of functors: 

k -  tor i  ~-  (9 - tor i  -~ K - tor i  

G k - -  rnods ~-  G r . .  - roods ~ G ~  - m o d s  

where G~ = Gal (k, k), GK = Gal (K, K), GK,, -- Gal ( K " ' / K )  and K "  is the maximal un- 
ramified extension of K. In the upper horizontal row wehave the base-change functors, 
in the lower horizontal row the natural funct0rs deduced from the canonical identifica- 
tions: 

Gk ~ GK.~ ~ G r J l K ,  

where I s is the inertia subgroup. The vertical functors are the equivalence of categories: 

X : S - tor i  ~ ~1 (5;,. s-) - m o d s ,  

where X(~ ' )  is the character group of ~-'; that is, the 7 h (S, s-)-module associated to the 
6tale sheaf Horn  (J ' ,  ~m)" In particular, the functor (9 - tor i  - .  k - tor i  is an equivalence 
of categories. Also, base change by j : Spec (K) ~ Spec ((9) stablishes an equivalence be- 
tween (9 - tor i  and the full subcategory of K - tor i  of the tori with good reduction (see 
(1.1) below). 

By definition, the Nrron model of a smooth group scheme Tover K is the sheaf j ,  (T) 
with respect to the smooth topology. Since j is smooth, T ~ j * j . ( T ) .  By a theorem of 
Raynaud [4] (el. also [1] 10.1), if T is a torus over K, then its Nrron model is representable 
by a smooth group scheme f locally of finite type over (9. Hence, there is a group-scheme 
isomorphism: 

and functorial group isomorphisms, compatible with ~: 

~-- (Y') -~ T(3Y |162 
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for any smooth  scheme W over (9. For  instance, the N6ron model (# of ~m fits into the 
exact sequence: 

1 -> ~ . . ~  -> f~ ~ i , Z - ~  1, 

where i : Spec (k) --, Spec ((9) is the natural  morphism. The connected component  j - o  of 
9-  is then an affine [5, Lemme IX 2.2] smooth  group scheme over (9 of finite type and we 
have a canonical decomposit ion over k: 

~ ~  :=  ~-~ |  = T ~ x U ,  

where Tp is a torus and U is unipotent. The toric component  is easy to describe. Let us 
see first the case of good reduction: 

(1.1) Proposition-Definition. Let T/K be a torus and ~//~ its Ndron model. T has good 
reduction when it satisfies any of  the following equivalent conditions: 

(1) ~ o  is a torus over k; 
(2) ~-o is a torus over (9; 
(3) there exists a torus over (9 with generic fiber isomorphic to T; 
(4) I K acts trivially on X(T) ;  
(5) T splits over an unramified extension of  K. 

In this case, X ( ~  ~ is isomorphic to X (T) as Gk-module. 

P r o o f. By [2, X, 8.2], j - o  is a torus if and only if all its fibers are tori; hence, (1) is 
equivalent to (2). ( 2 ) ~  (3) is clear and ( 3 ) ~  (4) is a consequence of the commutat ive  
diagram of functors above. (4) ~ (5) is also clear. Finally, (5) =~ (2) is a consequence of the 
fact that  the N6ron model is stable by 6tale basis change [4]. []  

In general, the toric component  of ~ o  can be described as the reduction of the maximal  
subtorus of T with good reduction. This is well defined: 

(1.2) Proposition. Let T be a torus over K with splitting field L. Given a normal subgroup 
H of  Gal  (L/K), there exists a unique subtorus T n of  T, maximal with the property that H 
acts trivially on X (Tn). Moreover, X (Tn) ~ X (T)/ker (t r), where: 

tr  : X ( T )  ~ X ( T )  n,  

is the homomorphism defined by t r (x) = ~. xL 

P r o o f. Imitate [8, 7.4]. [ ]  

(1.3) Theorem. Let  To be the maximal subtorus of  T with good reduction. Then, T~ is 
isomorphic to the reduction of  the connected component of  the Nbron model of  T o. In 
particular, 

X (T~) ~ X (To) "~ X (T)/ker (X (T) -~ X (T)'K), 

as Gk-modules. 
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P r o o f. It suffices to show that: 

~ | ~- ~ ,  J-m | ~ To, 

where ~--m is the maximal subtorus of 9-0. More generally, there are bijections: 
{subtori of ~-~po} ~ {subtori of y o }  ~ {subtori of r with good reduction}. 
For  the first one see [2, XII]. The second mapping from left to right is injective by (1.1). 

It remains to show that given a subtorus of T with good reduction, T '  ~ T, the corre- 
sponding map between the connected components of the N t r o n  models, ~--,o ~ ~--o, is 
also injective. As a map between two sheafs for the smooth topology it is clearly injective 
because of the left-exactness of j , ;  but  this is not  sufficient in general. In our case where 
~--,o is a torus over (9, the assertion is clear because the kernel is a group-scheme of 
multiplicative type with trivial generic fiber. [ ]  

R e m a r k. The most natural torus over k which can be obtained from T is the one 
determined by the Gk-module X ( T )  IK. It is easy to check that this torus is isomorphic to 
((T v )v) v, where v indicates dual. The dual torus satisfies X (T v) = X (T) v by definition. 

2. Weil restriction. In this paragraph we collect some results we need about the Weil 
restriction functor. 

Recall that for any scheme S, a S-functor is a covariant functor from S - Seh to Sets. 
Given a morphism u : S'  -~ S of schemes, the Weil restriction Rs,/s is the right-adjoint 
functor of the scalar-extension functor. That is, for any S'-functor X,  Rs,/s (X) is the 
S-functor defined by: 

Rs, /s(X ) (Y) = X (Yx  sS') ,  

for any S-scheme Y. The following properties of Rs,/s are easy (see [1, 7.6 Thm 4] for (2.1)). 

(2.1) Proposition. I f  S = Spec (R), S' = Spec (R') are affine, R '  is projective and of  finite 
type as R-module and X is representable by an affine group scheme, then Rs,/s (X) is also 
representable by an affine group scheme. 

(2.2) Proposition. Let  S' -~ S be a finite ~tale Galois covering of  S and F = Gal (S'/S). 
Let  X be a S'-functor and for any a ~ F, let X ~ be the S'-functor defined by: 

X ~ ( Y )  : =  X ( Y x  s, ~ S'). 

Then, there is a canonical isomorphism: 

Rs,/s(X) • sS '  ~ 1-[ X ~ �9 

I f  moreover, X is defined over S, then we obtain an isomorphism: 

R s , / s ( X ) x s S '  =~ X ~r.  

In particular, the Weil restriction of a torus by a finite 6tale morphism is again a torus. 
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(2.3) Proposition. Suppose that we have morphisms of  schemes: S' ~ S ~ S". Let  T be a 
scheme over S, T' = Tx  sS'  and let X ,  X '  be arbitrary S'-functors. Then, there are canonical 
isomorphisms: 

(1) Rs,/s (X) x s T = Rr,/r (X • s" T') 
(2) R s,/s,, (X) = Rs/s,, (R s,/s (X)) 
(3) Rs,/s(X x s ,X')  = Rs,/s(X) x sRs, /s(X') .  

The Weil restriction functor does not commute with the connected component. For 
instance, if L / K  is a finite extension of local fields and AlL is an abelian variety with good 
reduction, then its N6ron model, ~r is connected, but RoL/~,: (d) ,  which is the N6ron 
model of RL/~ (A), may be disconnected, since RL/K (A) may have bad reduction. Never- 
theless we have the following: 

(2.4) Proposition. Let S' --* S be a finite morphism and let T be a torus over S'. Then, 
Rs, /s(T ) is connected. 

P r o o f. By (2.3) we can assume that S is the spectrum of an algebraically closed field 
x. Then, S' is the spectrum of a finite dimensional x-algebra A. Since A is a product of 
strictly henselian rings, we have T =  ~d,  and RA/~ (~m) is dearly connected. In fact, 

RA/~ (~,~) = Spec (x[X 1 . . . . .  X , ,  Y]/Y" N ( X 1 , . . . ,  X , ) -  1), 

where n = dim~A and N ( X  1 . . . . .  X,) is the polynomial obtained by computing the 
determinant of the endomorphism of A given by multiplication by X 1 el + . . .  + X , e . ,  for 
a fixed x-basis e~ . . . . .  e. of A. [] 

3. The tmipotent component. Let K, 6o, p, k be as in Section 1. Let L be a finite extension 
of K with ring of integers 6oL and residue field k L. Let e, f be the ramification index and 
residual degree of L/K.  

We prove first Theorem (0.1) for the torus RL/K(~s). We begin with the following 
observation: 

(3.1) Lemma. RoL/~,, (~,,) is the connected component of the N~ron model of RL/r (~m)" 

P r o o f. Let (~ be the N6ron model of ~ , ,  ove r  6OL. Clearly, the Weil restriction functor 
commutes with j . ;  hence, Rr162 ((~) is the N6ron model of RLm(~m). By (2.4) we have: 

R~m~ (ff~m) = R ~ / ~  (f#o) ~ Ro~/~K (~)o . 

Since, on the other hand, the Weil restriction functor preserves open and closed immer- 
sions [1, 7.6 Prop 2], the last morphism must be an isomorphism. [] 

(3.2) Proposition. Let Tp, U be the toric and unipotent component of the finite fiber of  
RcL/~(~rm). Then, Tp is the f-dimensional torus  RkL/k(~rrn ). Moreover U is additive 
(U ~- ~tae-1)f ) if and only if p > e. 
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P r o o f. Assume first that L / K  is totally ramified. Then L is defined by an Eisenstein 
polynomial:  

(9z ~- (9 [X]/(X e + p .  q (X)) ,  deg (q (X)) < e. 

Denoting by s : Spec (k) ~ Spec ((9) the finite fiber of (9, we have: 

R,L/, , ,  (~,")~ (A) = Rr • s/, (~,") (A) = (A [X] /X  ~)*, 

for any k-algebra A. Let B = A [X]/Xe; we have a split exact sequence: 

I ~ I + X B ~ B * ~ A * ~ I .  

If p < e, U (A) = 1 + X B is not additive because it is not  annihilated by p. Whereas if 
p > e, there is a functorial-in-A isomorphism: 

1 + X B  l ~  

given by the logarithm: 

log (1 + q(X)) = ~ (-- 1) '+1 (q(X)i) / i .  
i = 1  

In the general case, if K "  is the maximal unramified subextension of L / K ,  with ring of 
integers (9" and finite fiber s o :Spec (kz) --* Spec ((9"), we have by (2.3): 

Red~,  ̀  (IF,,.), = R, . , / , , ,  (R,L/ , . ,  (~,.))~ = Rk~/k (R,~/,., (~m),o) 

= Rkdk(~ , "  X Uo) = Rkdk(tl?r," ) X RkL/k(Uo). 

If p < e, then Uo is not annihilated by p, hence, U --- Rk~/k (Uo) has the same property. If 
p > e we have seen that U o = ~ e -  1), and it is clear that  RkL/k(~,) = IFr[. [ ]  

We can now deduce Theorem (0.1) from the theorem of Ono [6, 1.5]: 

(3.3) P r o o f o f T h e o r e m (0.1). Let L be the splitting field of T and K ' ,  (9", s, So, 
kz  as above. Since the N6ron model is stable by 6tale basis change, 3-  |  (9" is the N6ron 
model of T ' : =  T |  and: 

( j  |  n,O | (gnr~ = ~ O  |  69 Lo = (J -~  ~ ,so 

If the theorem were true for T ' ,  we would have: 

U | 1 6 2  " ' "  X C ' a ,  

but since ~ ,  admits no torsors [2, XVII, 4.1.5], U must be already additive. Hence, we can 
reduce the proof  to the case L / K  totally (and tamely) ramified. By the theorem of Ono, 
we have an isogeny between the two following tori: 

a : T," x H RK~/K (~rm) m~ -'r l-I RK./K ({lTrm) "~ , 
v v 

where K~ runs over all subextensions of L / K  and m, m,, n, are uniquely determined 
non-negative integers. Let ~2 be the dual isogeny and let n be the degree of a, so that: 

( * ) ~ o a  = n ' ,  aoo~ = n..  

Archiv der Mathematik 57 30 
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Since p > e (in fact, for any prime number not  dividing e = [L : K]), we can choose ~ so 
that p doesn't  divide n (cf. the proof of [6, 1.3.3]). By the universal property, we have 
morphisms ~, ~ between the respective N6ron models: 

still satisfying (*). By (3.1), taking connected components we get morphisms: 

: (9~ m x I-Iv R~ (~m)m~ ~; I~Re,./r ((IJm)nV : ~" 

Now, by (3.2) we have: 

Re,./o(~m) , = T~ x r 

where T~ is a torus and r, is an integer depending on K, .  Therefore, by taking finite fiber 
and unipotent component  we have morphisms: 

still satisfying (*). Since p does not  divide n, multiplication by n on U m x ~ is a monomor-  
phism and: 

0 = ~ o ( p ' ) o c t  = n p -  =~(p') = O, 

hence p annihilates U and this property characterizes additivity among the unipotent, 
connected, smooth group schemes over a perfect field (see [7, 2.6.7] for algebraically closed 
fields and apply again that ~ has no torsors). 
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