Additive reduction of algebraic tori

By

ENRIC NART and XAVIER XARLES*)

Let K be a number field and $T_{/K}$ a group scheme admitting a Néron model \mathscr{T} over \mathscr{O} , the ring of integers of K. The connected components of the finite fibers of \mathscr{T} are interesting arithmetic invariants of T. In the case of bad reduction, the description of these finite fibers is sometimes difficulted by the presence of unipotent components. If T is an algebraic torus and p is a finite prime of K, the reduction of \mathscr{T}^0 , the connected component of \mathscr{T} , modulo p is an affine, connected, smooth group scheme over a finite field; hence, it has a canonical decomposition:

$$\mathscr{T}_{\mathbf{p}}^{\mathbf{0}} := \mathscr{T}^{\mathbf{0}} \otimes_{\mathscr{O}} \mathscr{O}/\mathfrak{p} = T_{\mathbf{p}} \times U,$$

where T_{p} is a torus and U is unipotent. Since T is completely determined by an integral Galois representation:

$$\varrho: \operatorname{Gal}\left(\overline{K}/K\right) \to GL_d(\mathbb{Z}),$$

it should be possible to describe $T_{\mathfrak{p}}$ and U in terms of ϱ . The description of $T_{\mathfrak{p}}$ is easy (see Section 1), whereas the description of U in full generality is much more difficult to deal with.

We consider in this note an easier question: when is U isomorphic to a power of \mathbb{G}_a ? Sometimes the fact that all these unipotent components are additive, enables one to carry on local-to-global processes. For instance, assuming additivity of the unipotent components and that the torus splits by an abelian extension of K, in [3] it is shown how to construct from the L-series of T an explicit formal group law for the formal completion of \mathscr{T} along the zero section. Our aim is to prove the following:

(0.1) Theorem. Let e be the ramification index of p in the splitting field of T and let p be the prime number lying under p. Then:

$$p > e \Rightarrow U \cong \mathbf{G}_a \times \cdots \times \mathbf{G}_a.$$

The proof is based on a theorem of Ono [6] stablishing an isogeny between a power of T and certain products of Weil restrictions of \mathbf{G}_m .

^{*)} Partially supported by grant PB 89-0215 from CAICYT

the study of π^0 can be reduce

1. Generalities. The toric component. It is clear that the study of \mathscr{T}_p^0 can be reduced to the local case. Therefore, we fix the prime number p once and for all and we assume throughout that K is a finite extension of \mathbb{Q}_p , \mathscr{O} its ring of integers, \mathfrak{p} the maximal ideal of \mathscr{O} and k the residue field.

Let S be a scheme. A group scheme \mathscr{T} over S is called a d-dimensional torus if there exists a surjective étale morphism, $S' \to S$, such that $\mathscr{T} \otimes_S S' \cong \mathbb{G}^d_{m,S'}$. The d-dimensional tori are thus classified by:

$$H^{1}(\pi_{1}(S, \vec{s}), \operatorname{Aut}(\mathbf{G}_{m}^{d})) = \operatorname{Hom}(\pi_{1}(S, \vec{s}), GL(d, \mathbb{Z}));$$

that is, by continuous integral representations:

$$\varrho: \pi_1(S, \bar{S}) \to GL(d, \mathbb{Z}).$$

Now, let S denote either Spec (K), Spec (\emptyset) or Spec (k). By the well-known canonical isomorphisms between $\pi_1(S, \bar{S})$ and respective Galois groups, we have a commutative diagram of functors:

$$\begin{array}{ccc} \underline{k-tori} & \leftarrow & \underline{\mathcal{O}-tori} & \rightarrow & \underline{K-tori} \\ \downarrow & & \downarrow & & \downarrow \\ G_k - mods \leftarrow G_{K^{nr}} - mods \rightarrow G_K - mods \end{array},$$

where $G_k = \text{Gal}(\overline{k}, k)$, $G_K = \text{Gal}(\overline{K}, K)$, $G_{K^{nr}} = \text{Gal}(K^{nr}/K)$ and K^{nr} is the maximal unramified extension of K. In the upper horizontal row we have the base-change functors, in the lower horizontal row the natural functors deduced from the canonical identifications:

$$G_k \cong G_{K^{nr}} \cong G_K/I_K,$$

where I_K is the inertia subgroup. The vertical functors are the equivalence of categories:

$$X: \underline{S-tori} \to \underline{\pi_1(S, \bar{s}) - mods},$$

where $X(\mathscr{T})$ is the character group of \mathscr{T} ; that is, the $\pi_1(S, \bar{s})$ -module associated to the étale sheaf <u>Hom</u>($\mathscr{T}, \mathbf{G}_m$). In particular, the functor $\underline{\mathscr{O} - tori} \to \underline{k - tori}$ is an equivalence of categories. Also, base change by $j: \operatorname{Spec}(K) \to \operatorname{Spec}(\mathscr{O})$ stabilishes an equivalence between $\underline{\mathscr{O} - tori}$ and the full subcategory of $\underline{K - tori}$ of the tori with good reduction (see (1.1) below).

By definition, the Néron model of a smooth group scheme T over K is the sheaf $j_*(T)$ with respect to the smooth topology. Since j is smooth, $T \cong j^* j_*(T)$. By a theorem of Raynaud [4] (cf. also [1] 10.1), if T is a torus over K, then its Néron model is representable by a smooth group scheme \mathcal{T} locally of finite type over \mathcal{O} . Hence, there is a group-scheme isomorphism:

$$\psi: \mathscr{T} \otimes_{\mathscr{A}} K \xrightarrow{\sim} T,$$

and functorial group isomorphisms, compatible with ψ :

$$\mathscr{T}(\mathscr{X}) \xrightarrow{\sim} T(\mathscr{X} \otimes_{\mathscr{O}} K),$$

for any smooth scheme \mathscr{X} over \mathscr{O} . For instance, the Néron model \mathscr{G} of \mathbf{G}_m fits into the exact sequence:

$$1 \to \mathbf{G}_{\mathbf{m}, \emptyset} \to \mathscr{G} \to i_* \mathbb{Z} \to 1,$$

where $i: \text{Spec}(k) \to \text{Spec}(\mathcal{O})$ is the natural morphism. The connected component \mathcal{T}^0 of \mathcal{T} is then an affine [5, Lemme IX 2.2] smooth group scheme over \mathcal{O} of finite type and we have a canonical decomposition over k:

$$\mathscr{T}_{\mathbf{p}}^{0} := \mathscr{T}^{0} \otimes_{\mathscr{O}} k = T_{\mathbf{p}} \times U,$$

where T_p is a torus and U is unipotent. The toric component is easy to describe. Let us see first the case of good reduction:

(1.1) Proposition-Definition. Let T_{K} be a torus and \mathcal{T}_{0} its Néron model. T has good reduction when it satisfies any of the following equivalent conditions:

- (1) *T*⁰_p is a torus over k;
 (2) *T*⁰ is a torus over 𝔅;
- (3) there exists a torus over O with generic fiber isomorphic to T;
- (4) I_{κ} acts trivially on X(T);
- (5) T splits over an unramified extension of K.

In this case, $X(\mathcal{F}_{\mathbf{p}}^{\mathbf{0}})$ is isomorphic to X(T) as G_k -module.

Proof. By [2, X, 8.2], \mathcal{T}^0 is a torus if and only if all its fibers are tori; hence, (1) is equivalent to (2). $(2) \Rightarrow (3)$ is clear and $(3) \Rightarrow (4)$ is a consequence of the commutative diagram of functors above. (4) \Leftrightarrow (5) is also clear. Finally, (5) \Rightarrow (2) is a consequence of the fact that the Néron model is stable by étale basis change [4].

In general, the toric component of \mathscr{T}_{p}^{0} can be described as the reduction of the maximal subtorus of T with good reduction. This is well defined:

(1.2) Proposition. Let T be a torus over K with splitting field L. Given a normal subgroup H of Gal (L/K), there exists a unique subtorus $T_{\rm H}$ of T, maximal with the property that H acts trivially on $X(T_H)$. Moreover, $X(T_H) \cong X(T)/\ker(tr)$, where:

 $tr: X(T) \to X(T)^H$,

is the homomorphism defined by $tr(x) = \sum_{x \in W} x^{\sigma}$.

Proof. Imitate [8, 7.4].

(1.3) Theorem. Let T_0 be the maximal subtorus of T with good reduction. Then, T_p is isomorphic to the reduction of the connected component of the Néron model of T_0 . In particular,

$$X(T_{\mathbf{p}}) \cong X(T_{\mathbf{0}}) \cong X(T)/\ker(X(T) \xrightarrow{\mathrm{tr}} X(T)^{I_{\mathbf{K}}}),$$

as G_k -modules.

Vol. 57, 1991

Proof. It suffices to show that:

$$\mathcal{T}_{m} \otimes_{\mathfrak{o}} k \cong \mathcal{T}_{p}, \quad \mathcal{T}_{m} \otimes_{\mathfrak{o}} K \cong T_{0},$$

where \mathcal{T}_m is the maximal subtorus of \mathcal{T}^0 . More generally, there are bijections:

{subtori of \mathscr{T}_{p}^{0} } \leftrightarrow {subtori of \mathscr{T}^{0} } \leftrightarrow {subtori of T with good reduction}.

For the first one see [2, XII]. The second mapping from left to right is injective by (1.1). It remains to show that given a subtorus of T with good reduction, $T' \hookrightarrow T$, the corresponding map between the connected components of the Néron models, $\mathcal{T}'^0 \to \mathcal{T}^0$, is also injective. As a map between two sheafs for the smooth topology it is clearly injective because of the left-exactness of j_* ; but this is not sufficient in general. In our case where \mathcal{T}'^0 is a torus over \mathcal{O} , the assertion is clear because the kernel is a group-scheme of multiplicative type with trivial generic fiber.

R e m a r k. The most natural torus over k which can be obtained from T is the one determined by the G_k -module $X(T)^{I_K}$. It is easy to check that this torus is isomorphic to $((T^{\vee})_p)^{\vee}$, where $^{\vee}$ indicates dual. The dual torus satisfies $X(T^{\vee}) = X(T)^{\vee}$ by definition.

2. Weil restriction. In this paragraph we collect some results we need about the Weil restriction functor.

Recall that for any scheme S, a S-functor is a covariant functor from $\underline{S-Sch}$ to <u>Sets</u>. Given a morphism $u: S' \to S$ of schemes, the Weil restriction $R_{S'/S}$ is the right-adjoint functor of the scalar-extension functor. That is, for any S'-functor X, $R_{S'/S}(X)$ is the S-functor defined by:

$$R_{S'/S}(X)(Y) = X(Y \times_S S'),$$

for any S-scheme Y. The following properties of $R_{S'/S}$ are easy (see [1, 7.6 Thm 4] for (2.1)).

(2.1) Proposition. If S = Spec(R), S' = Spec(R') are affine, R' is projective and of finite type as R-module and X is representable by an affine group scheme, then $R_{S'/S}(X)$ is also representable by an affine group scheme.

(2.2) **Proposition.** Let $S' \to S$ be a finite étale Galois covering of S and $\Gamma = \text{Gal}(S'/S)$. Let X be a S'-functor and for any $\sigma \in \Gamma$, let X^{σ} be the S'-functor defined by:

$$X^{\sigma}(Y) := X(Y \times_{S'} \not\subset S').$$

Then, there is a canonical isomorphism:

$$R_{S'/S}(X) \times_S S' \xrightarrow{\sim} \prod_{\sigma \in \Gamma} X^{\sigma}.$$

If, moreover, X is defined over S, then we obtain an isomorphism:

$$R_{S'/S}(X) \times_S S' \xrightarrow{\sim} X^{\#\Gamma}$$
.

In particular, the Weil restriction of a torus by a finite étale morphism is again a torus.

(2.3) Proposition. Suppose that we have morphisms of schemes: $S' \rightarrow S \rightarrow S''$. Let T be a scheme over S, $T' = T \times_S S'$ and let X, X' be arbitrary S'-functors. Then, there are canonical isomorphisms:

(1)
$$R_{S'/S}(X) \times_S T = R_{T'/T}(X \times_{S'} T')$$

- (2) $R_{S'/S''}(X) = R_{S/S''}(R_{S'/S}(X))$
- (3) $R_{S'/S}(X \times_{S'} X') = R_{S'/S}(X) \times_{S} R_{S'/S}(X').$

The Weil restriction functor does not commute with the connected component. For instance, if L/K is a finite extension of local fields and $A_{/L}$ is an abelian variety with good reduction, then its Néron model, \mathscr{A} is connected, but $R_{\mathscr{O}_L/\mathscr{O}_K}(\mathscr{A})$, which is the Néron model of $R_{L/K}(A)$, may be disconnected, since $R_{L/K}(A)$ may have bad reduction. Nevertheless we have the following:

(2.4) Proposition. Let $S' \to S$ be a finite morphism and let T be a torus over S'. Then, $R_{S'/S}(T)$ is connected.

Proof. By (2.3) we can assume that S is the spectrum of an algebraically closed field κ . Then, S' is the spectrum of a finite dimensional κ -algebra A. Since A is a product of strictly henselian rings, we have $T = \mathbf{G}_m^d$, and $R_{A/\kappa}(\mathbf{G}_m)$ is clearly connected. In fact,

$$R_{A/\kappa}(\mathbf{G}_m) = \operatorname{Spec}\left(\kappa\left[X_1,\ldots,X_n,Y\right]/Y \cdot N(X_1,\ldots,X_n) - 1\right),$$

where $n = \dim_{\kappa} A$ and $N(X_1, \ldots, X_n)$ is the polynomial obtained by computing the determinant of the endomorphism of A given by multiplication by $X_1 e_1 + \cdots + X_n e_n$, for a fixed κ -basis e_1, \ldots, e_n of A. \Box

3. The unipotent component. Let K, \mathcal{O} , \mathfrak{p} , k be as in Section 1. Let L be a finite extension of K with ring of integers \mathcal{O}_L and residue field k_L . Let e, f be the ramification index and residual degree of L/K.

We prove first Theorem (0.1) for the torus $R_{L/K}(\mathbb{G}_m)$. We begin with the following observation:

(3.1) Lemma. $R_{\mathcal{O}_L/\mathcal{O}_K}(\mathbb{G}_m)$ is the connected component of the Néron model of $R_{L/K}(\mathbb{G}_m)$.

Proof. Let \mathscr{G} be the Néron model of \mathbb{G}_m over \mathscr{O}_L . Clearly, the Weil restriction functor commutes with j_* ; hence, $R_{\mathscr{O}_L/\mathscr{O}_K}(\mathscr{G})$ is the Néron model of $R_{L/K}(\mathbb{G}_m)$. By (2.4) we have:

$$R_{\mathscr{O}_{L}/\mathscr{O}_{K}}(\mathbb{G}_{m}) = R_{\mathscr{O}_{L}/\mathscr{O}_{K}}(\mathscr{G}^{0}) \hookrightarrow R_{\mathscr{O}_{L}/\mathscr{O}_{K}}(\mathscr{G})^{0}.$$

Since, on the other hand, the Weil restriction functor preserves open and closed immersions [1, 7.6 Prop 2], the last morphism must be an isomorphism. \Box

(3.2) Proposition. Let $T_{\mathfrak{p}}$, U be the toric and unipotent component of the finite fiber of $R_{\mathfrak{G}_{L}/\mathfrak{G}_{K}}(\mathbb{G}_{m})$. Then, $T_{\mathfrak{p}}$ is the f-dimensional torus $R_{k_{L}/k}(\mathbb{G}_{m})$. Moreover U is additive $(U \cong \mathbb{G}_{a}^{(e^{-1})f})$ if and only if $p \ge e$.

Vol. 57, 1991

Proof. Assume first that L/K is totally ramified. Then L is defined by an Eisenstein polynomial:

$$\mathcal{O}_L \cong \mathcal{O}[X]/(X^e + p \cdot q(X)), \deg(q(X)) < e.$$

Denoting by $s: \text{Spec}(k) \to \text{Spec}(\mathcal{O})$ the finite fiber of \mathcal{O} , we have:

$$R_{\mathcal{O}_{L}/\mathcal{O}_{K}}(\mathbf{G}_{m})_{s}(A) = R_{\mathcal{O}_{L}\times s/s}(\mathbf{G}_{m})(A) = (A \ [X]/X^{e})^{*},$$

for any k-algebra A. Let $B = A[X]/X^e$; we have a split exact sequence:

$$1 \to 1 + XB \to B^* \to A^* \to 1.$$

If p < e, U(A) = 1 + XB is not additive because it is not annihilated by p. Whereas if $p \ge e$, there is a functorial-in-A isomorphism:

$$1 + XB \xrightarrow{\log} XB \cong A^{e-1},$$

given by the logarithm:

$$\log (1 + q(X)) = \sum_{i=1}^{\infty} (-1)^{i+1} (q(X)^i) / i.$$

In the general case, if K^{nr} is the maximal unramified subextension of L/K, with ring of integers \mathcal{O}^{nr} and finite fiber s_0 : Spec $(k_L) \rightarrow$ Spec (\mathcal{O}^{nr}) , we have by (2.3):

$$R_{\mathscr{O}_{L}/\mathscr{O}_{K}}(\mathbb{G}_{m})_{s} = R_{\mathscr{O}^{nr}/\mathscr{O}_{K}}(R_{\mathscr{O}_{L}/\mathscr{O}^{nr}}(\mathbb{G}_{m}))_{s} = R_{k_{L}/k}(R_{\mathscr{O}_{L}/\mathscr{O}^{nr}}(\mathbb{G}_{m})_{s_{0}})$$
$$= R_{k_{L}/k}(\mathbb{G}_{m} \times U_{0}) = R_{k_{L}/k}(\mathbb{G}_{m}) \times R_{k_{L}/k}(U_{0}).$$

If p < e, then U_0 is not annihilated by p, hence, $U = R_{k_L/k}(U_0)$ has the same property. If $p \ge e$ we have seen that $U_0 = \mathbb{G}_a^{(e-1)}$, and it is clear that $R_{k_L/k}(\mathbb{G}_a) = \mathbb{G}_a^f$. \Box

We can now deduce Theorem (0.1) from the theorem of Ono [6, 1.5]:

(3.3) Proof of Theorem (0.1). Let L be the splitting field of T and K^{nr} , \mathcal{O}^{nr} , s, s₀, k_L as above. Since the Néron model is stable by étale basis change, $\mathscr{T} \otimes_{\mathscr{O}} \mathscr{O}^{nr}$ is the Néron model of $T^{nr} := T \otimes_{K} K^{nr}$ and:

$$(\mathscr{T} \otimes_{\mathscr{O}} \mathscr{O}^{nr})^0_{s_o} = (\mathscr{T}^0 \otimes_{\mathscr{O}} \mathscr{O}^{nr})_{s_0} = \mathscr{T}^0_s \otimes_k k_L.$$

If the theorem were true for T^{nr} , we would have:

 $U \otimes_k k_L \cong \mathbf{G}_a \times \cdots \times \mathbf{G}_a$,

but since G_a admits no torsors [2, XVII, 4.1.5], U must be already additive. Hence, we can reduce the proof to the case L/K totally (and tamely) ramified. By the theorem of Ono, we have an isogeny between the two following tori:

$$\alpha: T^m \times \prod_{\nu} R_{K_{\nu}/K}(\mathbb{G}_m)^{m_{\nu}} \to \prod_{\nu} R_{K_{\nu}/K}(\mathbb{G}_m)^{n_{\nu}},$$

where K_{ν} runs over all subextensions of L/K and m, m_{ν}, n_{ν} are uniquely determined non-negative integers. Let $\hat{\alpha}$ be the dual isogeny and let n be the degree of α , so that:

$$(*) \hat{\alpha} \circ \alpha = n \cdot, \quad \alpha \circ \hat{\alpha} = n \cdot.$$

Archiv der Mathematik 57

Since p > e (in fact, for any prime number not dividing e = [L:K]), we can choose α so that p doesn't divide n (cf. the proof of [6, 1.3.3]). By the universal property, we have morphisms α , $\hat{\alpha}$ between the respective Néron models:

$$\alpha: \mathscr{F}^m \times \prod_{\nu} R_{\mathscr{O}_{K_{\nu}}/\mathscr{O}}(\mathscr{G})^{m_{\nu}} \leftrightarrows \prod_{\nu} R_{\mathscr{O}_{K_{\nu}}/\mathscr{O}}(\mathscr{G})^{n_{\nu}}: \hat{\alpha},$$

still satisfying (*). By (3.1), taking connected components we get morphisms:

$$\alpha: (\mathscr{T}^0)^m \times \prod_{\nu} R_{\mathcal{O}_{K_{\nu}}/\mathcal{O}}(\mathbb{G}_m)^{m_{\nu}} \leftrightarrows \prod_{\nu} R_{\mathcal{O}_{K_{\nu}}/\mathcal{O}}(\mathbb{G}_m)^{n_{\nu}}: \hat{\alpha}.$$

Now, by (3.2) we have:

$$R_{\mathcal{O}_{K_{\nu}}/\mathcal{O}}(\mathbf{G}_{m})_{s}=T_{\nu}\times\mathbf{G}_{a}^{r_{\nu}},$$

where T_v is a torus and r_v is an integer depending on K_v . Therefore, by taking finite fiber and unipotent component we have morphisms:

$$\alpha: U^m \times \mathbf{G}^r_a \leftrightarrows \mathbf{G}^t_a: \hat{\alpha},$$

still satisfying (*). Since p does not divide n, multiplication by n on $U^m \times \mathbf{G}_a^r$ is a monomorphism and:

$$0 = \hat{\alpha} \circ (p \cdot) \circ \alpha = n p \cdot \Rightarrow (p \cdot) = 0,$$

hence p annihilates U and this property characterizes additivity among the unipotent, connected, smooth group schemes over a perfect field (see [7, 2.6.7] for algebraically closed fields and apply again that \mathbf{G}_a has no torsors).

References

- S. BOSCH, W. LÜTKEBOHMERT and M. RAYNAUD, Néron models. Berlin-Heidelberg-New York 1990.
- [2] M. DEMAZURE et A. GROTHENDIECK, Séminaire de Géometrie Algébrique: Schémas en groupes II. LNM 152, Berlin-Heidelberg-New York 1970.
- [3] C. DENINGER and E. NART, Formal groups and L-series. Comment. Math. Helv. 65, 318-333 (1990).
- [4] M. RAYNAUD, Modèles de Néron. C. R. Acad. Sci. Paris 262, 345-347 (1966).
- [5] M. RAYNAUD, Faisceaux amples sur les schémas en groupes et les espaces homogènes. LNM 119, Berlin-Heidelberg-New York 1970.
- [6] T. ONO, Arithmetic of algebraic tori. Ann. of Math. 74, 101-139 (1961).
- [7] T. SPRINGER, Linear algebraic groups. Basel 1981.
- [8] W. C. WATERHOUSE, Introduction to affine group schemes. Graduate Texts in Math. 66, Berlin-Heidelberg-New York 1979.

Eingegangen am 17.4.1990

Anschrift der Autoren:

Enric Nart, Xavier Xarles Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona Catalunya, Spain