# Additive reduction of algebraic tori 

By<br>Enric Nart and Xavier Xarles*)

Let $K$ be a number field and $T_{/ K}$ a group scheme admitting a Néron model $\mathscr{T}$ over $\mathcal{O}$, the ring of integers of $K$. The connected components of the finite fibers of $\mathscr{T}$ are interesting arithmetic invariants of $T$. In the case of bad reduction, the description of these finite fibers is sometimes difficulted by the presence of unipotent components. If $T$ is an algebraic torus and $\mathfrak{p}$ is a finite prime of $K$, the reduction of $\mathscr{T}^{0}$, the connected component of $\mathscr{T}$, modulo $\mathfrak{p}$ is an affine, connected, smooth group scheme over a finite field; hence, it has a canonical decomposition:

$$
\mathscr{T}_{p}^{0}:=\mathscr{T}^{0} \otimes_{\mathcal{O}} \mathcal{O} / \mathfrak{p}=T_{\mathfrak{p}} \times U,
$$

where $T_{\mathfrak{p}}$ is a torus and $U$ is unipotent. Since $T$ is completely determined by an integral Galois representation:

$$
\varrho: \operatorname{Gal}(\bar{K} / K) \rightarrow G L_{d}(\mathbb{Z}),
$$

it should be possible to describe $T_{\mathfrak{p}}$ and $U$ in terms of $\varrho$. The description of $T_{\mathfrak{p}}$ is easy (see Section 1), whereas the description of $U$ in full generality is much more difficult to deal with.

We consider in this note an easier question: when is $U$ isomorphic to a power of $\mathbb{G}_{a}$ ? Sometimes the fact that all these unipotent components are additive, enables one to carry on local-to-global processes. For instance, assuming additivity of the unipotent components and that the torus splits by an abelian extension of $K$, in [3] it is shown how to construct from the $L$-series of $T$ an explicit formal group law for the formal completion of $\mathscr{T}$ along the zero section. Our aim is to prove the following:
(0.1) Theorem. Let $e$ be the ramification index of $\mathfrak{p}$ in the splitting field of $T$ and let $p$ be the prime number lying under $\mathfrak{p}$. Then:

$$
p>e \Rightarrow U \cong \mathbb{G}_{a} \times \cdots \times \mathbb{G}_{a} .
$$

The proof is based on a theorem of Ono [6] stablishing an isogeny between a power of $T$ and certain products of Weil restrictions of $\mathbb{G}_{m}$.

[^0]1. Generalities. The toric component. It is clear that the study of $\mathscr{T}_{p}^{0}$ can be reduced to the local case. Therefore, we fix the prime number $p$ once and for all and we assume throughout that $K$ is a finite extension of $\mathbb{Q}_{p}, \mathcal{O}$ its ring of integers, $p$ the maximal ideal of $\mathcal{O}$ and $k$ the residue field.

Let $S$ be a scheme. A group scheme $\mathscr{T}$ over $S$ is called a $d$-dimensional torus if there exists a surjective étale morphism, $S^{\prime} \rightarrow S$, such that $\mathscr{T} \otimes_{S} S^{\prime} \cong \mathbb{G}_{m, S^{\prime}}^{d}$. The $d$-dimensional tori are thus classified by:

$$
H^{1}\left(\pi_{1}(S, \vec{s}), \operatorname{Aut}\left(\mathbb{G}_{m}^{d}\right)\right)=\operatorname{Hom}\left(\pi_{1}(S, \vec{s}), G L(d, \mathbb{Z})\right) ;
$$

that is, by continuous integral representations:

$$
\varrho: \pi_{1}(S, \vec{s}) \rightarrow G L(d, \mathbb{Z})
$$

Now, let $S$ denote either $\operatorname{Spec}(K)$, $\operatorname{Spec}(\mathcal{O})$ or $\operatorname{Spec}(k)$. By the well-known canonical isomorphisms between $\pi_{1}(S, s)$ and respective Galois groups, we have a commutative diagram of functors:

$$
\begin{gathered}
\frac{k-\text { tori }}{\downarrow} \leftarrow \frac{0-\text { tori }}{\downarrow} \rightarrow \frac{K-\text { tori }}{\downarrow} \\
\underline{G_{k}-\text { mods } s} \leftarrow G_{K^{n r}}-\bmod s \rightarrow G_{K}-\operatorname{mods}
\end{gathered},
$$

where $G_{k}=\operatorname{Gal}(\bar{k}, k), G_{K}=\operatorname{Gal}(\bar{K}, K), G_{K^{n r}}=\operatorname{Gal}\left(K^{n r} / K\right)$ and $K^{n r}$ is the maximal unramified extension of $K$. In the upper horizontal row we have the base-change functors, in the lower horizontal row the natural functors deduced from the canonical identifications:

$$
G_{k} \cong G_{\mathbf{K}^{n n}} \cong G_{K} / I_{K},
$$

where $I_{K}$ is the inertia subgroup. The vertical functors are the equivalence of categories:

$$
X: \underline{S-\text { tori }} \rightarrow \underline{\pi_{1}(S, \bar{s})-\text { mods }},
$$

where $X(\mathscr{T})$ is the character group of $\mathscr{T}$; that is, the $\pi_{1}(S, s)$-module associated to the étale sheaf $\operatorname{Hom}\left(\mathscr{T}, \mathbb{G}_{m}\right)$. In particular, the functor $\mathcal{O}-$ tori $\rightarrow \underline{k}$-tori is an equivalence of categories. Also, base change by $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(\mathcal{O})$ stablishes an equivalence between $\mathcal{O}$ - tori and the full subcategory of $\underline{K}$-tori of the tori with good reduction (see (1.1) below).

By definition, the Néron model of a smooth group scheme Tover $K$ is the sheaf $j_{*}(T)$ with respect to the smooth topology. Since $j$ is smooth, $T \cong j^{*} j_{*}(T)$. By a theorem of Raynaud [4] (cf. also [1] 10.1), if $T$ is a torus over $K$, then its Néron model is representable by a smooth group scheme $\mathscr{T}$ locally of finite type over $\mathcal{O}$. Hence, there is a group-scheme isomorphism:

$$
\psi: \mathscr{F} \otimes_{\mathbb{C}} K \xlongequal[\rightarrow]{\rightarrow}
$$

and functorial group isomorphisms, compatible with $\psi$ :

$$
\mathscr{T}(\mathscr{X}) \underset{\rightarrow}{\rightarrow} T\left(\mathscr{X} \otimes_{\mathcal{O}} K\right),
$$

for any smooth scheme $\mathscr{X}$ over $\mathcal{O}$. For instance, the Néron model $\mathscr{G}$ of $\mathbb{G}_{m}$ fits into the exact sequence:

$$
1 \rightarrow \mathbb{G}_{m, \mathfrak{C}} \rightarrow \mathscr{G} \rightarrow i_{*} \mathbb{Z} \rightarrow 1
$$

where $i: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(\mathcal{O})$ is the natural morphism. The connected component $\mathscr{T}^{0}$ of $\mathscr{T}$ is then an affine [5, Lemme IX 2.2] smooth group scheme over $\mathcal{O}$ of finite type and we have a canonical decomposition over $k$ :

$$
\mathscr{T}_{p}^{0}:=\mathscr{T}^{0} \otimes_{\mathcal{O}} k=T_{p} \times U,
$$

where $T_{p}$ is a torus and $U$ is unipotent. The toric component is easy to describe. Let us see first the case of good reduction:
(1.1) Proposition-Definition. Let $T_{/ K}$ be a torus and $\mathscr{T}_{10}$ its Néron model. $T$ has good reduction when it satisfies any of the following equivalent conditions:
(1) $\mathscr{T}_{\mathfrak{T}}{ }^{0}$ is a torus over $k$;
(2) $\mathscr{T}^{0}$ is a torus over $\mathcal{O}$;
(3) there exists a torus over $(1)$ with generic fiber isomorphic to $T$;
(4) $I_{K}$ acts trivially on $X(T)$;
(5) $T$ splits over an unramified extension of $K$.

In this case, $X\left(\mathscr{T}_{p}^{0}\right)$ is isomorphic to $X(T)$ as $G_{k}$-module.
Proof. By [2, X, 8.2], $\mathscr{T}^{0}$ is a torus if and only if all its fibers are tori; hence, (1) is equivalent to (2). (2) $\Rightarrow(3)$ is clear and $(3) \Rightarrow(4)$ is a consequence of the commutative diagram of functors above. (4) $\Leftrightarrow(5)$ is also clear. Finally, (5) $\Rightarrow(2)$ is a consequence of the fact that the Néron model is stable by étale basis change [4].

In general, the toric component of $\mathscr{T}^{9}$ can be described as the reduction of the maximal subtorus of $T$ with good reduction. This is well defined:
(1.2) Proposition. Let $T$ be a torus over $K$ with splitting field L. Given a normal subgroup $H$ of $\mathrm{Gal}(L / K)$, there exists a unique subtorus $T_{H}$ of $T$, maximal with the property that $H$ acts trivially on $X\left(T_{H}\right)$. Moreover, $X\left(T_{H}\right) \cong X(T) / \operatorname{ker}(t r)$, where:

$$
\operatorname{tr}: X(T) \rightarrow X(T)^{H}
$$

is the homomorphism defined by $\operatorname{tr}(x)=\sum_{\sigma \in H} x^{\sigma}$.
Proof. Imitate [8, 7.4].
(1.3) Theorem. Let $T_{0}$ be the maximal subtorus of $T$ with good reduction. Then, $T_{\mathfrak{p}}$ is isomorphic to the reduction of the connected component of the Néron model of $T_{0}$. In particular,

$$
X\left(T_{\mathfrak{p}}\right) \cong X\left(T_{0}\right) \cong X(T) / \operatorname{ker}\left(X(T) \xrightarrow{t r} X(T)^{I_{K}}\right),
$$

as $G_{k}$-modules.

Proof. It suffices to show that:

$$
\mathscr{T}_{m} \otimes_{\mathbb{C}} k \cong \mathscr{T}_{p}, \quad \mathscr{T}_{m} \otimes_{\mathbb{C}} K \cong T_{0}
$$

where $\mathscr{T}_{m}$ is the maximal subtorus of $\mathscr{T}^{0}$. More generally, there are bijections:
\{subtori of $\left.\mathscr{T}_{\mathfrak{p}}^{0}\right\} \leftrightarrow\left\{\right.$ subtori of $\left.\mathscr{T}^{0}\right\} \leftrightarrow\{$ subtori of $T$ with good reduction $\}$.
For the first one see [2, XII]. The second mapping from left to right is injective by (1.1). It remains to show that given a subtorus of $T$ with good reduction, $T^{\prime} \hookrightarrow T$, the corresponding map between the connected components of the Néron models, $\mathscr{T}^{\prime 0} \rightarrow \mathscr{T}^{0}$, is also injective. As a map between two sheafs for the smooth topology it is clearly injective because of the left-exactness of $j_{*}$; but this is not sufficient in general. In our case where $\mathscr{T}^{\prime 0}$ is a torus over $\mathcal{O}$, the assertion is clear because the kernel is a group-scheme of multiplicative type with trivial generic fiber.

Remark. The most natural torus over $k$ which can be obtained from $T$ is the one determined by the $G_{k}$-module $X(T)^{I_{K}}$. It is easy to check that this torus is isomorphic to $\left(\left(T^{\vee}\right)_{p}\right)^{\vee}$, where ${ }^{\vee}$ indicates dual. The dual torus satisfies $X\left(T^{\vee}\right)=X(T)^{\vee}$ by definition.
2. Weil restriction. In this paragraph we collect some results we need about the Weil restriction functor.

Recall that for any scheme $S$, a $S$-functor is a covariant functor from $S-S c h$ to Sets. Given a morphism $u: S^{\prime} \rightarrow S$ of schemes, the Weil restriction $R_{S^{\prime} / S}$ is the right-adjoint functor of the scalar-extension functor. That is, for any $S^{\prime}$-functor $X, R_{S^{\prime} / S}(X)$ is the $S$-functor defined by:

$$
R_{S^{\prime} / S}(X)(Y)=X\left(Y \times{ }_{S} S^{\prime}\right),
$$

for any $S$-scheme $Y$. The following properties of $R_{S^{\prime} / S}$ are easy (see [1, 7.6 Thm 4] for (2.1)).
(2.1) Proposition. If $S=\operatorname{Spec}(R), S^{\prime}=\operatorname{Spec}\left(R^{\prime}\right)$ are affine, $R^{\prime}$ is projective and of finite type as $R$-module and $X$ is representable by an affine group scheme, then $R_{S^{\prime} / S}(X)$ is also representable by an affine group scheme.
(2.2) Proposition. Let $S^{\prime} \rightarrow S$ be a finite étale Galois covering of $S$ and $\Gamma=\operatorname{Gal}\left(S^{\prime} / S\right)$. Let $X$ be a $S^{\prime}$-functor and for any $\sigma \in \Gamma$, let $X^{\sigma}$ be the $S^{\prime}$-functor defined by:

$$
X^{\sigma}(Y):=X\left(Y \times_{S^{\prime}} \not \overparen{\sigma} S^{\prime}\right) .
$$

Then, there is a canonical isomorphism:

$$
R_{S^{\prime} / S}(X) \times{ }_{S} S^{\prime} \underset{\rightarrow}{\boldsymbol{\leftrightarrows}} \prod_{\sigma \in \Gamma} X^{\sigma} .
$$

If, moreover, $X$ is defined over $S$, then we obtain an isomorphism:

$$
R_{S^{\prime} / S}(X) \times{ }_{S} S^{\prime} \underset{\rightarrow}{\boldsymbol{\sim}} X^{\# \Gamma} .
$$

In particular, the Weil restriction of a torus by a finite étale morphism is again a torus.
(2.3) Proposition. Suppose that we have morphisms of schemes: $S^{\prime} \rightarrow S \rightarrow S^{\prime \prime}$. Let $T$ be a scheme over $S, T^{\prime}=T \times{ }_{S} S^{\prime}$ and let $X, X^{\prime}$ be arbitrary $S^{\prime}$-functors. Then, there are canonical isomorphisms:
(1) $R_{S^{\prime} / S}(X) \times{ }_{S} T=R_{T^{\prime} / T}\left(X \times{ }_{S^{\prime}} T^{\prime}\right)$
(2) $R_{S^{\prime} / S^{\prime \prime}}(X)=R_{S / S^{\prime \prime}}\left(R_{S^{\prime} / S}(X)\right)$
(3) $R_{S^{\prime} / S}\left(X \times_{S^{\prime}} X^{\prime}\right)=R_{S^{\prime} / S}(X) \times{ }_{S} R_{S^{\prime} / S}\left(X^{\prime}\right)$.

The Weil restriction functor does not commute with the connected component. For instance, if $L / K$ is a finite extension of local fields and $A_{/ L}$ is an abelian variety with good reduction, then its Néron model, $\mathscr{A}$ is connected, but $R_{\mathscr{O}_{\mathcal{L}} / \mathscr{O}_{K}}(\mathscr{A})$, which is the Néron model of $R_{L / K}(A)$, may be disconnected, since $R_{L / K}(A)$ may have bad reduction. Nevertheless we have the following:
(2.4) Proposition. Let $S^{\prime} \rightarrow S$ be a finite morphism and let $T$ be a torus over $S^{\prime}$. Then, $R_{\mathbf{S}^{\prime} / \mathbf{S}}(T)$ is connected.

Proof. By (2.3) we can assume that $S$ is the spectrum of an algebraically closed field $\kappa$. Then, $S^{\prime}$ is the spectrum of a finite dimensional $\kappa$-algebra $A$. Since $A$ is a product of strictly henselian rings, we have $T=\mathbb{G}_{m}^{d}$, and $R_{A / \kappa}\left(\mathbb{G}_{m}\right)$ is clearly connected. In fact,

$$
R_{A / \kappa}\left(\mathbb{G}_{m}\right)=\operatorname{Spec}\left(\kappa\left[X_{1}, \ldots, X_{n}, Y\right] / Y \cdot N\left(X_{1}, \ldots, X_{n}\right)-1\right),
$$

where $n=\operatorname{dim}_{\kappa} A$ and $N\left(X_{1}, \ldots, X_{n}\right)$ is the polynomial obtained by computing the determinant of the endomorphism of $A$ given by multiplication by $X_{1} e_{1}+\cdots+X_{n} e_{n}$, for a fixed $\kappa$-basis $e_{1}, \ldots, e_{n}$ of $A$.
3. The unipotent component. Let $K, \mathcal{O}, \mathfrak{p}, k$ be as in Section 1 . Let $L$ be a finite extension of $K$ with ring of integers $\mathcal{O}_{L}$ and residue field $k_{L}$. Let $e, f$ be the ramification index and residual degree of $L / K$.

We prove first Theorem (0.1) for the torus $R_{L / K}\left(\mathbb{G}_{m}\right)$. We begin with the following observation:
(3.1) Lemma. $R_{\mathcal{O}_{L} / \mathscr{O}_{K}}\left(\mathbb{G}_{m}\right)$ is the connected component of the Néron model of $R_{L / K}\left(\mathbb{G}_{m}\right)$.

Proof. Let $\mathscr{G}$ be the Néron model of $\mathbb{G}_{m}$ over $\mathcal{O}_{\mathbf{L}}$. Clearly, the Weil restriction functor commutes with $j_{*}$; hence, $R_{O_{L} / O_{K}}(\mathscr{G})$ is the Néron model of $R_{L / K}\left(\mathbb{G}_{m}\right)$. By (2.4) we have:

$$
R_{\mathscr{O}_{L} / \mathscr{O}_{K}}\left(\mathbb{G}_{m}\right)=R_{\mathscr{U}_{L} / \mathscr{O}_{K}}\left(\mathscr{G}^{0}\right) \hookrightarrow R_{\mathscr{U}_{L} / \mathscr{Q}_{K}}(\mathscr{G})^{0} .
$$

Since, on the other hand, the Weil restriction functor preserves open and closed immersions [1, 7.6 Prop 2], the last morphism must be an isomorphism.
(3.2) Proposition. Let $T_{p}, U$ be the toric and unipotent component of the finite fiber of $R_{\mathscr{O}_{L} \mathscr{\theta}_{K}}\left(\mathbb{G}_{m}\right)$. Then, $T_{p}$ is the f-dimensional torus $R_{k_{L} / k}\left(\mathbb{G}_{m}\right)$. Moreover $U$ is additive $\left(U \cong \mathbb{G}_{a}^{(e-1) f}\right)$ if and only if $p \geqq e$.

Proof. Assume first that $L / K$ is totally ramified. Then $L$ is defined by an Eisenstein polynomial:

$$
\mathcal{O}_{L} \cong \mathcal{O}[X] /\left(X^{e}+p \cdot q(X)\right), \operatorname{deg}(q(X))<e .
$$

Denoting by $s: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(\mathcal{O})$ the finite fiber of $\mathcal{O}$, we have:

$$
R_{\mathcal{O}_{L} / \mathscr{O}_{K}}\left(\mathbb{G}_{m}\right)_{s}(A)=R_{\mathcal{O}_{L} \times s / s}\left(\mathbb{G}_{m}\right)(A)=\left(A[X] / X^{e}\right)^{*},
$$

for any $k$-algebra $A$. Let $B=A[X] / X^{e}$; we have a split exact sequence:

$$
1 \rightarrow 1+X B \rightarrow B^{*} \rightarrow A^{*} \rightarrow 1
$$

If $p<e, U(A)=1+X B$ is not additive because it is not annihilated by $p$. Whereas if $p \geqq e$, there is a functorial-in- $A$ isomorphism:

$$
1+X B \xrightarrow{\log } X B \cong A^{e-1},
$$

given by the logarithm:

$$
\log (1+q(X))=\sum_{i=1}^{\infty}(-1)^{i+1}\left(q(X)^{i}\right) / i
$$

In the general case, if $K^{n r}$ is the maximal unramified subextension of $L / K$, with ring of integers $\mathcal{O}^{n r}$ and finite fiber $s_{0}: \operatorname{Spec}\left(k_{L}\right) \rightarrow \operatorname{Spec}\left(\mathcal{O}^{n r}\right)$, we have by (2.3):

$$
\begin{aligned}
R_{\mathcal{O}_{L} / \theta_{K}}\left(\mathbb{G}_{m}\right)_{s} & =R_{Q^{n r} / \mathscr{O}_{K}}\left(R_{\mathscr{O}_{L} / 0^{n r}}\left(\mathbb{G}_{m}\right)\right)_{s}=R_{k_{L} / k}\left(R_{\mathscr{O}_{L} / 0^{n r}}\left(\mathbb{G}_{m}\right)_{s_{0}}\right) \\
& =R_{k_{L} / k}\left(\mathbb{G}_{m} \times U_{0}\right)=R_{k_{L} / k}\left(\mathbb{G}_{m}\right) \times R_{k_{L} / k}\left(U_{0}\right) .
\end{aligned}
$$

If $p<e$, then $U_{0}$ is not annihilated by $p$, hence, $U=R_{k_{L} / k}\left(U_{0}\right)$ has the same property. If $p \geqq e$ we have seen that $U_{0}=\mathbb{G}_{a}^{(e-1)}$, and it is clear that $R_{k_{L} / k}\left(\mathbb{G}_{a}\right)=\mathbb{G}_{a}^{f}$.

We can now deduce Theorem (0.1) from the theorem of Ono [6, 1.5]:
(3.3) Proof of Theorem (0.1). Let $L$ be the splitting field of $T$ and $K^{n r}, \mathcal{O}^{n r}, s, s_{0}$, $k_{L}$ as above. Since the Néron model is stable by étale basis change, $\mathscr{T} \otimes_{\mathcal{O}} \mathcal{O}^{n r}$ is the Néron model of $T^{n r}:=T \otimes_{K} K^{n r}$ and:

$$
\left(\mathscr{T} \otimes_{\mathcal{O}} \mathcal{O}^{n r}\right)_{s_{o}}^{0}=\left(\mathscr{T}^{0} \otimes_{\mathcal{O}} \mathcal{O}^{n r}\right)_{s_{0}}=\mathscr{T}_{s}^{0} \otimes_{k} k_{L}
$$

If the theorem were true for $T^{n r}$, we would have:

$$
U \otimes_{k} k_{L} \cong \mathbb{G}_{a} \times \cdots \times \mathbb{G}_{a},
$$

but since $\mathbb{G}_{a}$ admits no torsors [2, XVII, 4.1.5], $U$ must be already additive. Hence, we can reduce the proof to the case $L / K$ totally (and tamely) ramified. By the theorem of Ono, we have an isogeny between the two following tori:

$$
\alpha: T^{m} \times \prod_{v} R_{K_{v} / K}\left(\mathbb{G}_{m}\right)^{m_{v}} \rightarrow \prod_{v} R_{K_{v} / K}\left(\mathbb{G}_{m}\right)^{n_{v}},
$$

where $K_{v}$ runs over all subextensions of $L / K$ and $m, m_{v}, n_{v}$ are uniquely determined non-negative integers. Let $\hat{\alpha}$ be the dual isogeny and let $n$ be the degree of $\alpha$, so that:

$$
(*) \hat{\alpha} \circ \alpha=n^{\cdot}, \quad \alpha \circ \hat{\alpha}=n^{\cdot} .
$$

Since $p>e$ (in fact, for any prime number not dividing $e=[L: K]$ ), we can choose $\alpha$ so that $p$ doesn't divide $n$ (cf. the proof of [6, 1.3.3]). By the universal property, we have morphisms $\alpha, \hat{\alpha}$ between the respective Néron models:

$$
\alpha: \mathscr{T}^{m} \times \prod_{v} R_{\mathscr{O}_{K_{v}} / \mathscr{C}}(\mathscr{G})^{m_{v}} \leftrightarrows \prod_{v} R_{\mathscr{O}_{K_{v} / \mathcal{L}}}(\mathscr{G})^{n_{v}}: \hat{\alpha},
$$

still satisfying (*). By (3.1), taking connected components we get morphisms:

$$
\alpha:\left(\mathscr{T}^{0}\right)^{m} \times \prod_{v} R_{\mathcal{U}_{k_{v}} / 0}\left(\mathbb{G}_{m}\right)^{m_{v}} \leftrightarrows \prod_{v} R_{\mathscr{U}_{\mathrm{K}_{v}} / 0}\left(\mathbb{G}_{m}\right)^{n_{v}}: \hat{\alpha}
$$

Now, by (3.2) we have:

$$
R_{\mathcal{O}_{\mathrm{K}} / O}\left(\mathbb{G}_{m}\right)_{s}=T_{v} \times \mathbb{G}_{a}^{r_{v}}
$$

where $T_{v}$ is a torus and $r_{v}$ is an integer depending on $K_{v}$. Therefore, by taking finite fiber and unipotent component we have morphisms:

$$
\alpha: U^{m} \times \mathbb{G}_{a}^{r} \leftrightarrows \mathbb{G}_{a}^{t}: \hat{\alpha},
$$

still satisfying (*). Since $p$ does not divide $n$, multiplication by $n$ on $U^{m} \times \mathbb{G}_{a}^{r}$ is a monomorphism and:

$$
0=\hat{\alpha} \circ(p \cdot) \circ \alpha=n p \cdot \Rightarrow(p \cdot)=0
$$

hence $p$ annihilates $U$ and this property characterizes additivity among the unipotent, connected, smooth group schemes over a perfect field (see [7, 2.6.7] for algebraically closed fields and apply again that $\mathbb{G}_{a}$ has no torsors).

## References

[1] S. Bosch, W. LÜtkebohmert and M. Raynaud, Néron models. Betlin-Heidelberg-New York 1990.
[2] M. Demazure et A. Grothendieck, Séminaire de Géometrie Algébrique: Schémas en groupes II. LNM 152, Berlin-Heidelberg-New York 1970.
[3] C. Deninger and E. Nart, Formal groups and $L$-series. Comment. Math. Helv. 65, 318-333 (1990).
[4] M. Raynaud, Modèles de Néron. C. R. Acad. Sci. Paris 262, 345-347 (1966).
[5] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes. LNM 119, Berlin-Heidelberg-New York 1970.
[6] T. Ono, Arithmetic of algebraic tori. Ann. of Math. 74, 101-139 (1961).
[7] T. Springer, Linear algebraic groups. Basel 1981.
[8] W. C. Waterhouse, Introduction to affine group schemes. Graduate Texts in Math. 66, Berlin-Heidelberg-New York 1979.

Eingegangen am 17.4.1990
Anschrift der Autoren:
Enric Nart, Xavier Xarles
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra, Barcelona
Catalunya, Spain


[^0]:    *) Partially supported by grant PB 89-0215 from CAICYT

