
A very mild introduction to surface
group representations and Higgs bundles

A geometrical and topological introductory promenade

Roberto Rubio
Weizmann Institute of Science

February 19, 2018





Disclaimer

These are lecture notes about geometry and topology leading to the initial
study of surface group representations and the definition of Higgs bundle.
They reflect the contents of the course Introduction to surface group repre-
sentations and Higgs bundles, taught at the Weizmann Institute of Science in
the first semester of 2017/2018. Note that these notes are better understood
with the images from the lectures.

They are meant to be the first iteration of a future set of improved and
more complete lecture notes, so the text has not been carefully proofread. If
you find any typos, mistakes, or if there is something not sufficiently clear, I
will appreciate if you can let me know by email: roberto . rubio @ uab . es

Conventions: we omit sets of indices, which may be countable or uncount-
able, like in {(Ui, ci)}. When taking two arbitrary elements, we use i and j.
Some definitions are given inside a paragraph by using bold type, or in the
case of formulas by the symbol :=.
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Chapter 1

Preliminaires

1.1 Manifolds

Each mathematical theory has a starting concept. In set theory, it is sets. In
group theory, we look at groups. In linear algebra, we focus on vector spaces.
In topology, we go nowhere without a topological space. In calculus, we study
Rn in and out. And in differential geometry, we work with differentiable
manifolds. This is the first concept we want to talk about.

An important part of our early mathematical life was spent in Rn. We
started measuring distances, angles and drawing shapes in R2. We studied
one or multi-variable real functions: continuity, differentiability, integrabil-
ity... That took years and A differentiable manifold is just a way to assemble
different copies of Rn in possibly an unusual way. For instance, a sphere.
Some of the things we knew of Rn will still work, but others are very differ-
ent: the angles of a triangle do not add up to 180 degrees.

In order to define differentiable manifolds, it is useful to talk about charts
first. Let n ∈ N. An n-dimensional chart on a set M consists of a pair
(U, c) where U is a subset of M and c is a bijection between U and an open
subset A of Rn, c : U → A ⊂ Rn. This chart allows us to already do some
things on U ⊂ M . For instance, we can say that a function f : U → R is
smooth (i.e., of class C∞) when f ◦ c−1 : A→ R is.

If we have two n-dimensional charts (Ui, ci), (Uj, cj) on a set and the
intersection Uij := Ui ∩ Uj is not empty, the map

cij := ci ◦ c−1
j : cj(Uij)→ ci(Uij)

is called a change of chart. This is actually the concept that allows us to
do things consistently. As we said, a function f : Ui ∩ Uj → R is smooth
if and only if f ◦ c−1

i is, but also if and only if f ◦ c−1
j is. Since this must

1
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happen to every f , the changes of chart cij = ci ◦ c−1
j and cji = cj ◦ c−1

i must
be smooth. In this case, or if Ui ∩ Uj = ∅, we say that the charts (Ui, ci),
(Uj, cj) are compatible.

A chart allows us to do calculus on U ⊂M . With two compatible charts
(Ui, ci), (Uj, cj) we can do it on Ui ∪Uj. In order to do calculus on the whole
of M , we need to cover M with compatible chart of the same dimension.
This is called an atlas: a collection of charts {(Ui, ci)} compatible among
them such that

⋃
Ui = M . With an atlas on a set M , we have seen that we

have a well-defined concept of differentiable function on M .

A set with an atlas is almost a differentiable manifold, and is actually our
working definition. As for the formal definition, the thing is that we can give
different atlases to the same set, say {(Ui, ci)}, {(U ′j, c′j)}, which could lead
to exactly the same concept of smooth functions. By the argument above,
this will be the case exactly when all the charts are compatible among them.
Since being compatible is an equivalence relation1, we can, given an atlas,
take all the compatible charts and form a maximal atlas. It should not
come to a surprise that we refer to the integer n as the dimension of M .
One can define a differentiable manifold as a set with a maximal atlas.

Despite the maximal atlas, this is a very minimal definition of a manifold,
and perhaps not the one you may have seen before. Many definitions start
with a topological space. This does not mean that we are not interested in
having a topology2 for the set M . The point is that we automatically get
one by taking the usual topology in Rn, coming from the balls of the (usual)
Euclidean metric, as this is the topology used to do calculus in Rn. The
open sets in M are generated by the preimage by our charts of open sets
(i.e., c−1

i (Ai) with Ai ⊂ ci(Ui) an open set).

Fine print 1.1. We have defined our manifolds to be finite-dimensional. This simple
choice of topology gets much more complicated when dealing with infinite-dimensional
manifolds... is there a ”usual” topology in R∞?

A couple of properties that are usually included in the definition are
Haussdorf and have a countable basis of open sets (known as second-countable).
We will actually come across an example of a non-Hausdorff manifold in this
course, but as it will be an exception, you may probably feel homier with the
following definition.

1This means reflexive, a chart is compatible with itself; symmetric, if a chart U is
compatible with a chart V , then V is compatible with U ; and transitive, if U is compatible
with V and V is compatible with W , then W is compatible with U .

2A topology is a collection of subsets of M including the empty set and the total set
that is closed under union or finite intersection of sets. This collection consists of the
so-called open sets.
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Definition 1.1. A differentiable manifold is a set with a maximal atlas
such that the induced topology is Haussdorf and second-countable.

Fine print 1.2. There are some nice theorems that only work for Haussdorf and second-
countable, like the fact that manifolds are metrizable spaces or that any n-dimensional
manifold can be embedded, or seen as a “differentiable subspace” (formally, embedded
submanifold) of R2n+1.

We have talked so far about smoothness, as we were thinking about cal-
culus. If we were only concerned about continuos maps and topology, we do
not need the changes of chart to be smooth, but just continuous. A set with
a maximal atlas with continuous changes of chart is a topological mani-
fold. On the other hand, we may want to talk about holomorphicity, and
in this case our charts need to map onto open sets of the standard complex
Euclidean space Cn. Let us call them complex charts, and use complex atlas
for an atlas made of complex charts. A set with a maximal complex atlas
with holomorphic changes of chart is a complex manifold. We are focusing
on differentiable manifolds, but we will talk about topological manifolds and
definitely work with complex manifolds.

Everything so far has been very theoretical, so let us show several exam-
ples.

Example 1.2. The following are examples of differentiable manifolds:

1. The very Rn, or generally any finite-dimensional vector space, is a
differentiable manifold. We can take only one chart, id : Rn → Rn,
or we could take many charts. For any collection of open sets {Ai}
covering Rn, consider the collection of charts {(Ai, id|Ai)}. All the
transtion functions are identity maps and hence differentiable.

2. The circle S1 = {eiθ | θ ∈ [0, 2π]} is a 1-dimensional manifold. Let us
consider the two subsets

S1
w = {eiθ | θ ∈ (0, 2π)}, S1

e = {eiθ | θ ∈ (−π, π)}.

We have charts cw : S1
w → (0, 2π), given by cw : eiθ 7→ θ, and ce : S1

e →
(−π, π1), given by ce : eiθ 7→ θ. We have cw(S1

w ∩ S1
e) = (0, π)∪ (π, 2π),

and ce(S
1
w ∩ S1

e) = (−π, π) ∪ (0, π), and the change of chart ce ◦ c−1
w is

given by the identity on (0, π) and Id−2π on (π, 2π).

Alternatively, one can give charts by considering the half circles

S1
t = {eiθ | θ ∈ (0, π)}, S1

l = {eiθ | θ ∈ (
π

2
,
3π

2
)},

S1
b = {eiθ | θ ∈ (π, 2π)}, S1

r = {eiθ | θ ∈ (−π
2
,
3π

2
)},
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which project to the x-axis (S1
t and S1

b) or y-axis (S1
l and S1

r). The
changes of chart over non-empty intersections are maps defined in quar-
ters of circle sending cos θ 7→ sin θ or sin θ 7→ cos θ. These two maps are
plus or minus the map x 7→

√
1− x2, which is smooth because x is not

equal to 1 (those are exactly the points missing in the interesection).

3. The sphere is also a manifold as can be seen with spherical angular
coordinates or projections on six hemispheres.

4. Any open subset of a manifold is again a manifold. For instance, the
interval I = (−1, 1) is a manifold.

5. When we act by a group on a manifold and we look at the quotient,
or space of orbits, things are much more subtle. This is not an easy
subject at all, but it is worth give some intuition about it. For instance,
Z2 = {±1} acts on both R2 and S2 by (x, y) 7→ (x,−y) and (x, y, z) 7→
(−x,−y,−z). We then have that R2/Z2 is essentially the upper-half
plane

{(x, y) ∈ R2 | y ≥ 0},

which is not a manifold, as it has a border: the points where y = 0.
On the other hand, for S2/Z2, we can take an atlas of S2 such that the
open sets satisfy Ui ∩ (−1) · Ui = ∅. This atlas descends to an atlas
of S2/Z2 and we get a manifold structures. This manifold describes
the possible directions of lines passing through the origin of R3 and is
called the projective plane.

6. Given any two manifolds M,N , their Cartesian product M×N is again
a manifold.

7. The cylinder S1 × (−1, 1) can be given charts (cw, Id) : S1
w × (−1, 1)→

(0, 2π) × (−1, 1) and (ce, Id) : S1
e × (−1, 1) → (0, 2π) × (−1, 1). The

differentiability of the changes of chart follows from the one in S1 for
the charts cw, ce, as we have

(ce, Id) ◦ (cw, Id)−1 = (ce ◦ c−1
w , Id),

and analogously for (cw, Id) ◦ (ce, Id)−1.

8. The Möbius band can be understood as a segment doing half a turn
along a circle. If we describe the circle by {(cos θ, sin θ, 0)}, the turning
segment is on the plane generated by {(cos θ, sin θ, 0), (0, 0, 1)}. As
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we want it to do half a turn, we combine these two vectors with the
coefficients cos θ

2
, sin θ

2
and add it to the point in the circle:

m(θ, r) := (cos θ, sin θ, 0) + r cos
θ

2
(cos θ, sin θ, 0) + r sin

θ

2
(0, 0, 1).

The Möbius band is then given by

{m(θ, r) : θ ∈ [0, 2π], r ∈ (−1, 1)}.

Finding charts for the Möbius band is easy if we consider a projection
to S1 given by

π : m(θ, r) 7→ eiθ ∈ S1.

Define the charts π−1(S1
w) → (0, 2π), given by m(θ, r) 7→ (θ, r) and

π−1(S1
e) → (−π, π) given by m(θ, r) 7→ (θ, r). When looking at the

change of chart, one has that

(ce, Id) ◦ (cw, Id)−1 =

{
(ce ◦ c−1

w , Id) on (0, π)× (−1, 1),
(ce ◦ c−1

w ,− Id) on (−π, 0)× (−1, 1),

as m(θ, r) = m(θ − 2π,−r).

9. Any discrete collection of points is naturally a 0-dimensional manifold.

Fine print 1.3. The line R has the trivial chart id : R → R, but it could also have the
chart x 7→ x3. These two are not compatible as the map x

1
3 is not smooth at 0, so we get

two differentiable structures, the usual real line and the, say, cubic real line.

We are used to look at manifolds inside Euclidean space, mostly sitting
into R3. However, we can define the cylinder and the Möbius band very
easily in S1 ×D ⊂ R4, where D is the unit disk:

{(eiθ, r) | θ ∈ [0, 2π], r ∈ (−1, 1)},

{(eiθ, rei
θ
2 ) | θ ∈ [0, 2π], r ∈ (−1, 1)}. (1.1)

The torus is also easily described in R4.

S1 × S1 = {(eiθ, eiσ) | θ, σ ∈ [0, 2π]}.

Given a manifold, we know when to say that a map M → R is smooth.
A map f : M → N between a manifold M with atlas {(Ui, ci)} and another
manifold N with atlas {(Vi, bi)} is said to be a smooth map if c−1

i ◦ f ◦ bj is
smooth for any i, j. In order to check the smoothness we can, and practically
must, take any atlas but not a maximal one. If f is smooth with respect to
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a particular choice of atlases, by the compatibility, it will be for a maximal
one.

If a smooth map f : M → N has a smooth inverse, we call it a diffeo-
morphism. In this case we say that M and N are diffeomorphic and we
write M ∼= N .

Example 1.3. The manifolds M × N and N ×M are diffeomorphic. The
projection map M ×N → M is smooth but not a diffeomorphism unless N
is just a point.

Fine print 1.4. Diffeomorphism between the two real lines. The map t 7→ t3 from the
cubic line to the usual line is a diffeomorphisms, as it is the identity when seen through
the charts.

There are many things one usually studies on manifolds before getting to
the concept we shall introduce next. But this is not a course on differentiable
manifolds and we want to get to the point.

1.2 Bundles

Definition 1.4. A fibre bundle over a manifold M with typical fibre a
manifold F is a manifold E together with a differentiable and surjective
map π : E → M such that there exists an open cover {Ui} of M and a
diffeomorphism ϕi : π−1(Ui)→ Ui × F for each Ui satisfying prUi ◦ ϕi = π.

Note that the open cover {Ui} and the diffeomorphisms {ϕi} are not
fixed. The definition says that M is locally trivial for some choice of open
cover {Ui}. A particular choice of open sets and diffeomorphisms {(Ui, ϕi)}
is called a trivialization. We will refer to a single pair (Ui, ϕi) as a local
trivialization. For any point x ∈ M , we define Ex := π−1(x), the fibre at
x, which is diffeomorphic to F by using any local trivialization, but not in a
canonical way, as we can change the trivialization.

A trivial example of a fibre bundle is a product manifold M × F , where
we cover M with the total open set M . In particular, the cylinder is a fibre
bundle, say, with fibre I over S1. The Möbius band is also a fibre bundle,
similarly to the charts of Example 1.2, we have now local trivializations

π−1(S1
w)→ S1

w × I π−1(S1
e)→ S1

e × I
m(θ, r) 7→ (eiθ, r) m(θ, r) 7→ (eiθ, r).

Note that we are not using any charts for S1
w or S1

e.
If we cut the cylinder or the Möbius band into two pieces, transversally

to S1, we get exactly the same, two rectangular pieces. They way these
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Figure 1.1: The cylinder and the Möbius band

pieces are glued to recover the original manifolds is what determines their
global bundle structure. This simple idea is actually the way we think about
bundles.

Given two local trivializations (Ui, ϕi), (Uj, ϕj), consider the map

Uij × F
ϕ−1
j−−→ π−1(Uij)

ϕi−→ Uij × F.

By the compatibility of the charts with the projection π, we have

prUi ◦ (ϕi ◦ ϕ−1
j ) = π ◦ ϕ−1

j = prUj .

Since we are in the intersection Uij, this means that, for x ∈ Uij and r ∈ F ,

(ϕi ◦ ϕ−1
j )(x, r) = (x, gij(x, r))

for some smooth map gij : Uij×F → F , which we call the transition maps
from Uj to Ui. We will sometimes write gij(x,−) ∈ Diff(F ), and eventually
omit the point x.

Example 1.5. Since we did a nice choice of charts, we have already com-
puted the transition functions for the cylinder and the Möbius band. For the
cylinder we have

gew(x,−) =

{
Id for x ∈ S1

t ,
Id for x ∈ S1

b .
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whereas for the Möbius band,

gew(x,−) =

{
Id for x ∈ S1

t ,
− Id for x ∈ S1

b .

As a general principle, any definition we do for bundles will be the same
as for manifolds, but respecting the fibres. For instance, we say that two
bundles E,E ′ over the same base are diffeomorphic (as bundles) if there
exists a diffeomorphism f : E → E ′, as manifolds, such that π′ ◦ f = π.

E E ′

M

f

π π′

Note that the transition maps trivially satisfy, for any point x ∈M ,

i) gii = Id,

ii) gji = g−1
ij .

Moreover, if there are triple intersections Uijk := Ui∩Uj ∩Uk, we must have,
for any x ∈M ,

iii) gij ◦ gjk ◦ gki = Id .

We are going to see that all the information about the bundle, up to dif-
feomorphism, is contained in {(Uij, gij)}. This is why we make this definition
abstract: for an open cover {Ui} of a manifold M , a collection

{(Uij, gij : Uij × F → F )}

satisfying the the properties i), ii), iii) above is called a cocycle of transi-
tion maps.

We do prove now, at the same time, that any cocycle determines a bundle,
and that the cocycle coming from a bundle recovers a diffeomorphic bundle to
the original one. Given a cocycle associated to an open cover {Ui}, consider
all the sets Ui × F and glue them following gij: so (x, v) ∼ (x,w) when
(x, v) ∈ Ui × F , (x,w) ∈ Uj × F and v = gij(x,w). This means doing a
quotient

E ′ =
∐
i

Ui × F/ ∼ .

The set E ′ is given charts around [(x, v)] by taking charts around x ∈ Ui
and v ∈ F . A different choice gives compatible charts by the compatibility
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of the charts of M and F and the fact that the maps gij are smooth. One
has to check that the resulting topology is Hausdorff and second countable.
In order to separate two points [(x, v)] and [(y, w)], with x 6= y, we take
two separating neighbourhoods of x, y ∈ M , say, Nx and Ny, and consider
π−1(Nx) and π−1(Ny). If x = y, we choose a trivialization over an open set
Ui, take two separating neighbourhoods of v, w ∈ M , say, Nv and Nw, and
consider Ui×Nv and Ui×Nw. For second countable, asM is second countable,
we can take the open cover {Ui} to be second countable (by considering as
open sets the basic open sets contained in some Ui). Since for each Ui we are
taking products of one of the countable charts of Ui with one of the countable
charts of F , we have a countable number of charts, which bring the second
countable topology of Rn to a second countable topology in M .

The projection π : E ′ → M , given by π([(x, v)]) = x is well defined,
differentiable and surjective. For the local triviality it is immediate that
π−1(Ui) ∼= Ui × F . Moreover, if the cocycle {(Uij, gij)} came from a fibre
bundle E, there is a diffeomorphism E → E ′ given by e 7→ [ϕi(e)] for any i
such that π(e) ∈ Ui.

For arbitrary bundles E, E ′, a diffeomorphism of bundles f : E → E ′

can be see through the trivializations {(Wi, ϕi)}, {(Vj, ψj)}. To start with,
the open covers may be different, but taking the intersections Wi ∩ Vj and
restricting the maps ϕi, ψj, we can assume that the open cover is the same,
say {Ui}. Over an open set Ui, we have

Ui × F π−1(Ui) π′−1(Ui) Ui × F,
ϕi f ψi

(prUi , fi)

so the diffeomorphism is determined by a map fi : Ui × F → F , in such a
way that

f|π−1(Ui) = ψ−1
i ◦ (prUi , fi) ◦ ϕi.

On an intersection Uij we must have that the identities for f|π−1(Uij) agree:

ψ−1
i ◦ (prUi , fi) ◦ ϕi = ψ−1

j ◦ (prUj , fj) ◦ ϕj,

or in terms of changes of chart, over a point x ∈ Uij,

fi = hij ◦ fj ◦ gji, (1.2)

where gij, hij are the transition maps for E and E ′ respectively.
Just as giving a cocycle {(Uij, gij)} determines a bundle, giving {(Ui, fi)},

with smooth maps Ui × F → F , such that (1.2) is satisfied, determines a
bundle diffeomorphism. This is important, so let us draw it:
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Uj × F Uj × F

π−1(Uij) π′−1(Uij)

Ui × F Ui × F,

(prUj , fj)

ϕj ψj

f

ψiϕi

(prUi , fi)

(prUij , gji) (prUij , hji)

where we replace Ui, Uj by Uij when we look at (prUij , gji) and (prUij , hji).
With this generality, fibre bundles are as complicated as manifolds, if not

more, but the idea is that the fibres will have some extra structure we know
well. We will then be concerned only about how the fibres glue together
globally and take for granted the manifold structure of the base. Let us start
with vector spaces.

Definition 1.6. A vector bundle is a fibre bundle V → M such that the
generic fibre F is a vector space and the transition maps between any two
local trivializations are linear, i.e., gij(x,−) ∈ GL(F ).

The dimension of the vector space F is called the rank of the vector
bundle V . Note that the dimension of V as a manifold satisfies

dimV = dimM + rkV.

Example 1.7. The cylinder and the Möbius band can easily be upgraded to
vector bundles if we replace the interval (−1, 1) with R, that is, the cylinder
becomes S1 × R. In the case of the Möbius band, to avoid self-intersections
in R3, it is better to look at it as

{(eiθ, rei
θ
2 ) | θ ∈ [0, 2π], r ∈ R}.

In both cases, we can find linear transition functions, as in Example 1.5.
Analogously one can define the n-twisted cylinder as

{(eiθ, rein
θ
2 ) | θ ∈ [0, 2π], r ∈ R},

whose transition functions are Id on S1
t and (−1)n Id on S1

b . You can see a
twisted cylinder, embedded in R3, not in R4 in Figure 1.2.

Note that the fibres of a vector bundle have canonically the structure of
a vector space, as the transition maps are linear, that is, the vector space
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Figure 1.2: The 2-twisted cylinder

structure given by two different trivializations will coincide. The zero ele-
ment, sum of vectors and scalar products are thus well defined. For example,
for v, w ∈ Vx we use a trivialization restricted to x, ϕi|x, to define the sum

v + w := ϕ−1
i|x(ϕi|x(v) + ϕi|x(w)).

When using a different trivialization ϕj|x we have ϕj|x = gji(x,−)◦ϕi|x, with
gji(x,−) linear. This implies

ϕ−1
j|x(ϕj|x(v) + ϕj|x(w)) = ϕ−1

i|x(ϕi|x(v) + ϕj|x(w)).

Notice that this does not mean that Vx is canonically isomorphic to F .

Fine print 1.5. Actually, an alternative way to define a vector bundle is to ask that the
fibres are vector spaces and that the local trivializations preserve this structure. The
transition maps will automatically be linear.

When we look at a diffeomorphism of vector bundles f : V → V ′, we
must ask the restriction fx : Vx → V ′x to be a linear map. Or alternatively,
we ask that the maps fi : Ui×F → F are actually given by fi : Ui → GL(F ).
We can prove now, just by knowing GL(R) ∼= R∗, that the cylinder and the
Möbius band are not diffeomorphic. If there was a diffeomorphism f sending
the cylinder to the Möbius band, there would exist maps fe : S1

e → GL(R),
fw : S1 → R such that, by (1.2) and Example 1.5,

fe = fw on S1
t , fw = −fe on S1

b .

This is not possible as fe and fw must have a constant sign on S1
e and S1

w

respectively. However, witt the notation of Example 1.7, it is possible to
write a diffeomorphism between the cylinder and the 2-twisted cylinder just
by taking fe(x,−) = Id, fw(x,−) = Id. Actually, the same argument easily
applies to see that the 2k-cylinders are diffeomorphic to the cylinder, whereas
the 2k + 1-cylinders are diffeomorphic to the Möbius band.
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Fine print 1.6. We are implicitly calculating the first Stiefel-Whitney class, which is some-
thing lying, in the case of bundles over S1, into H1(S1,Z2) ∼= Z2. The cylinder has trivial
first Stiefel-Whitney class. This class, in the case of vector bundles of rank 1 completely
determines the bundle up to diffeomorphism.

Fine print 1.7. Why have we waited till now to show that the cylinder and the Möbius
band are not diffeomorphic? It is much easier to see that their vector bundle versions are
not diffeomorphic as vector bundles. To see that the are not diffeomorphic as fibre bundles,
we would need to use, for instance, the concept of orientation. Positive and negative maps
would be replaced by orientation-preserving and orientation-reversing.

Fine print 1.8. If we want to describe mathematically the fact that we are not able to
deform the 2-twisted cylinder into the cylinder, we will talk about isotopy in R3. We
will mention isotopy in Section 1.3. Here you can ready how we mathematically prove
that they are not isotopic. https://math.stackexchange.com/questions/2383751/

how-is-a-doubly-twisted-cylinder-different-from-a-cylinder

However, there may be a way to deform one into the other if we embed them in a larger
space. Indeed, it is possible to do that already in R4. You can see the formular for an
isotopy in the following link: https://math.stackexchange.com/questions/2271970/

twists-and-half-twists-on-ribbons-in-mathbbr4

Another possibility is to take as the fibre a Lie group3 G and ask the
transition maps to be elements of G.

Definition 1.8. A principal G-bundle for a Lie group G is a fibre bundle
E → M with fibre G, such that the transition functions are maps Uij → G,
where G acts on the fibre G by left multiplication.

The fibres of a vector bundle are vector spaces, the fibres of a principal
G-bundle are... not groups! This may be shocking, but there was a way of
defining the 0 element in the fibres of a vector bundle as 0 is preserved by
GL(F ). However, e is not preserved by the left action ofG, quite the opposite.
We do have, though, a right G-action on each fibre. If we see a point, through
a trivialization, as (m, g), we act with h ∈ G by (m, g) · h = (m, gh). This
action is well defined, as if the same point is given by (m, gijg) in a different
trivialization, we also have that (m, gijg) · h = (m, gijgh) corresponds to
(m, gh) in the first trivialization. This action is free (non-identity elements
have no fixed points), and transitive (any two points of the fibre are connected
by the action of some g). A space with such an action is called a G-torsor.

Fine print 1.9. Choosing an element of a G-torsor as the identity defines a group structure
isomorphic to G.

The fibres of a principal bundle are G-torsors. Actually, an alternative
way of defining a principal G-bundle is as a fibre bundle E → M with a
fibre-preserving action of G that is free and transitive on the fibres. Or you

3A group with a differentiable structure so that the product and the inverse are smooth
maps.

https://math.stackexchange.com/questions/2383751/how-is-a-doubly-twisted-cylinder-different-from-a-cylinder
https://math.stackexchange.com/questions/2383751/how-is-a-doubly-twisted-cylinder-different-from-a-cylinder
https://math.stackexchange.com/questions/2271970/twists-and-half-twists-on-ribbons-in-mathbbr4
https://math.stackexchange.com/questions/2271970/twists-and-half-twists-on-ribbons-in-mathbbr4
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may also find the definition of a manifold E with a free right action of a
Lie group G, such that the natural projection E → E/G satisfies the local
triviality condition.

Given a vector bundle E → M , we have transition maps gij : Uij →
GL(F ) ' GLn. This cocycle determines a principal bundle called the frame
bundle of E. To give a more concrete description, recall that the fibre
Em := π−1(m) is a vector space. Consider the set of all possible bases of
Em. A choice of basis can be seen as an isomorphism ϕ : Rn → Em, since a
basis is determined by the image of the orthonormal basis of Rn. The frame
bundle of E has the set of all possible bases as the fibre and the group GLn
acts on the bases, seen as isomorphisms, by ϕ · g = ϕ ◦ g.

Conversely, if we have a principal G-bundle E → M and G acts on a
vector space F , i.e., ρ : G ⊂ GL(F ), we can define a vector bundle by
composing the transition maps gij : Uij → G of E with ρ, so that we get a
set of transition maps ρ ◦ gij : Uij → GL(F ) that determine a vector bundle,
called the associated vector bundle. More concretely, this bundle is given
by E × F quotiented by the equivalence relation (e, f) ∼ (eg, g−1f) for all
e ∈ E, f ∈ F and g ∈ G.

So far we have given simple examples and constructions of bundles. Let
us move to a more involved example, the tangent bundle of a manifold. In
the mental image we have of a surface, sitting on R3, we have a clear notion
of a tangent space at a point. This strong intuition relies on the actual
embedding on R3 and is not available if we work with abstract manifolds.
It is, say, extrinsic, and we want something intrinsic. An intrinsic way to
think about a tangent vector on p on a surface would be looking at a curve
γ : (−ε, ε) → M passing through p at time 0. The tangent vector, in the
extrinsic way, is γ′(0). There are many curves giving the same vector. We
want to say that two curves γ, σ are equivalent if γ′(0) = σ′(0)... but we
cannot do this, it does not make sense for an abstract manifold. Instead,
we can take a chart c around p and move this to Rn, where we can take
derivatives. Two curves are hence equivalent if (c ◦ γ)′(0) = (c ◦ σ)′(0).
This clearly defines an equivalence relation and a tangent vector at p is an
equivalence class of curves passing through p (for any (−ε, ε). The tangent
space at a point p ∈M is

TpM = {γ : (−ε, ε)→M | γ(0) = p}/(γ ∼ σ ↔ (c ◦ γ)′(0) = (c ◦ σ)′(0)).

This definition does not depend on the choice of chart, as for ci, cj,

(cj ◦ γ)′(0) = D(cj ◦ c−1
i )p(ci ◦ γ)′(0). (1.3)

What kind of structure does TpM have, if any? In our intuitive image of a
tangent space, we get a plane, a vector space. Do we have this structure for
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the equivalence classes of curves? We do, thanks to the chart:

[γ] + [σ] = [c−1(c ◦ γ + c ◦ σ)], λ[γ] = [c−1(λ(c ◦ σ))],

and the zero element is the constant curve γ(t) = p. We define the fol-
lowing n tangent vectors coming from the coordinates of the chart c(q) =
(x1(q), . . . , xn(q))

∂

∂xi |p
:= [c−1(t 7→ (0, . . . , 0, t︸︷︷︸

i

, 0, . . . , 0))].

At this point, the ∂
∂xi |p

are just notation, which will be more meaningful later.

We see that { ∂
∂xi |p
} generate TpM , as

[γ] =
∑

(xi ◦ γ)′(0)
∂

∂xi |p
. (1.4)

Indeed
(c ◦ γ)′(0) = ((x1 ◦ γ)′(0), . . . , (xn ◦ γ)′(0)).

And they are actually linearly independent as
∑
ai

∂
∂xi |p

= 0 implies

(a1, . . . , an) = (0, . . . , 0).

This is a very geometrical way of understanding the tangent space to a
point, but we also want to see vectors in action. This is done by generalizing
the concept of directional derivative. Given [γ] ∈ TpM and a smooth function
f : U → R on an open neighbourhood U of p, set

[γ](f) := (f ◦ γ)′(0).

This action is linear and satisfies, for f, g defined on U ,

[γ](fg) = (fg ◦ γ)′(0) = ((f ◦ γ)(g ◦ γ))′(0)

= [γ](f)g(p) + f(p)[γ](g).

This means that [γ] acts as a derivation. We will see at other moment what
this means.

We may have already forgotten why we were doing all this. We wanted
a meaningful example of a vector bundle. We just associated to each point
p of any manifold M a vector space TpM . Can they all together be given
the structure of a vector bundle? As a set, we have TM = ∪p∈MTpM, and
the projection π is quite clear v ∈ TpM is sent to p. But we need to give
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charts, or even better trivializations. We use (1.4), to give a trivialization on
π−1(Uα)

∪p∈UαTpM → Uα × Rn∑
ai

∂

∂xi |p
7→ (p, (ai)).

These trivializations, when composed with a chart on Uα will give charts
for TM . It is very easy to show that for these charts, π is smooth and
the trivializations are diffeomorphisms. Now, by (1.3) and again (1.4), the
transition functions on Uαβ are given by

D(cα ◦ c−1
β ),

which are smooth, as cα◦c−1
β is smooth, and most importantly linear, as they

are just a matrix!

Fine print 1.10. By giving first the local trivializations on a set, which we still do not
know it is a manifold, we make the calculations much simpler, but we have to be sure
about all the things we must formally check.

The latest examples have been quite abstract. We were actually doing
better with the cylinder, the Möbius band... let us look at surfaces so that
we get more tangible examples.

1.3 Surfaces

Surfaces are 2-dimensional manifolds, that is it. We have already seen some
surfaces: the sphere, the projective plane, the torus, the cylinder and the
Möbius band. The two latter are optimal examples to understand the con-
cepts of fibre bundle, transition maps, diffeomorphisms... but they are not
compact, and we are going to be concerned with compact surfaces. We also
assume connectedness, as a non-connected surface would just be a disjoint
union of connected ones, actually a countable union in order to preserve
the second countability. Note that compactness and connectedness are both
topological conditions. Actually, let us start working with topological sur-
faces.

A way to construct more surfaces is the connected sum, of which we
give the idea. Given two surfaces, we remove a disk in each and we glue
along the boundary circle. It is then possible to give charts for this new
object so that it is a topological manifold. We just have to take care of the
boundary we are using to glue. A good example is the connected sum of g
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Figure 1.3: The connected sum of two tori.

tori, which intuitively is a surface with g holes. This can be easily seen in
terms of polygons.

Connected compact topological surfaces are classified up to homeomor-
phism by the following theorem.

Theorem 1.9. Any connected compact surface is homeomorphic to either
the sphere, a connected sum of g torus or a connected sum of g projective
planes.

This is a big theorem, but let us show the path of the proof. One has first
to see that compact surfaces admit a triangulation, another big theorem.
By cutting this triangulation, one obtains a polygon where the edges are
identified, as in a square with identified edges for the Möbius band. The
next step is to find a normal form for these polygons with identified edges.
This is done by getting rid of some repetitions, transforming it into a polygon
whose vertices are all identified at one point, and finally cutting this polygon
into two pieces and using the identified edges to glue them again until getting
to a normal form. The resulting polygon corresponds to one of the surfaces
of the theorem. However, this is not the end, as one needs to prove that all
these surfaces are different. To do this one uses orientability and the Euler
characteristic (the integer #vertices – #edges + #faces of any triangulation,
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which is well defined). They are indeed complete invariants of topological
surfaces, and they are easily computable from the polygon model. The Euler
class of the sphere is 2, of the connected sum of g torus is 2− 2g, and of the
connected sum of g projective planes is 2 − g. The nonorientable compact
surfaces are the connected sum of g projective planes, with g ≥ 1.

The following will apply for a general topological space, which may or may
not be a manifold. We introduce now the notion of homotopy. Let X, Y
be two topological spaces. We say that two continuous maps f, g : X → Y
are homotopic when there exists a continuous map H : X × [0, 1]→ Y such
that H(x, 0) = f(x), H(x, 1) = g(x) for x ∈ X. We will first deal with
homotopic loops on X. Let I be the interval [0, 1]. A path is a continuous
map γ : I → X. If moreover γ(0) = γ(1) it is called a loop. In the
case of paths γ, γ′ such that γ(0) = γ′(0) and γ(1) = γ′(1), we can ask
for fixed end point homotopy, a homotopy H such that H(0, s) = γ(0)
and H(1, s) = γ(1) for any s ∈ [0, 1]. Fixep end point homotopy defines an
equivalence relaction.

On the other hand, given any two paths γ, γ′ such that γ(1) = γ′(0), we
define the juxtaposition of paths by

(γγ′)(t) =

{
γ(2t) for t ∈ [0, 1

2
],

γ′(2t− 1) for t ∈ (1
2
, 1].

The fundamental group of X based on a point x ∈ X is the set

π1(X, x) = { loops γ : [0, 1]→ X such that γ(0) = x}
/ fixed end point

homotopy

together with the product given by the juxtaposition of paths,

[γ][γ′] = [(γγ′)].

The first thing to check is that this operation is well defined (it does not
depend on the representatives chosen) and is indeed a group operation. The
identity element is given by the class of the constant path γ(t) = x for t ∈ I.

The next thing to check is that the definition of the fundamental group
up to isomorphism does not depend on the base point. If the manifold is path
connected (that is, for any two points x, x′ ∈M there is a path σ connecting
them, σ(0) = x, σ(1) = x′), the isomorphism is given by

π1(X, x)→ π1(X, x′)

[γ] 7→ [(σ(γσ−1))].

So if X is path connected, we will then talk about the fundamental
group of X and denote it by π1X, without caring about the base point.
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When a space has trivial fundamental group, we say that it is simply con-
nected. This is the case for instance, of a point, a line, a plane, or in general
Rn.

The first and most important example is the fundamental group of the
circle: (Z,+), generated by t 7→ e2πit. It should not surprise us, and is not
difficult to prove, that the fundamental group of a product of a topological
spaces is the direct product of their fundamental groups.

π1(X × Y ) ∼= π1X × π1Y.

Thus, the fundamental group of the torus is (Z× Z,+).
The fundamental group is clearly the same for homeomorphic spaces, but

we can go much further. We define a retraction of X to a subset A ⊂ X
as a continuous map r : X → A such that r|A = IdA. We say that A is a
deformation retract of X when the identity map X → X is homotopic
to r : X → A via a homotopy H satisfying H(a, s) = a for any a ∈ A.
and s ∈ [0, 1] In this case, the retraction commutes with the fixed end point
homotopy and the fundamental groups of X and A are isomorphic. For
example, a point is a deformation retract of a disk, and they both have
trivial fundamental group. A torus without a point can be retracted to a
figure eight, of two circles joined at a point, and their fundamental group is
isomorphic, but we do not know either yet.

When we said the most important fundamental group was the one of
the circle, we were really serious, as long as we have the Seifert-Van Kam-
pen theorem. Given a path-connected topological space, consider two open
subspaces U, V ⊂ X such that U ∪ V = X. The inclusions U ∩ V → U
and U ∩ V → V give group homomorphisms u : π1(U ∩ V ) → π1U and
v : π1(U ∩ V ) → π1V . Seifert-Van Kampen theorem states that we can
compute the fundamental group by taking the so-called amalgamated free
product

π1U ∗π1(U∩V ) π1V,

which is the free product4 of π1U and π1V quotiented by the normal subgroup
generated by u(c)v(c)−1 for c ∈ π1(U ∩ V ). In terms of (possibly infinite)
presentations

π1U = 〈a1, . . . | r1, . . .〉,
π1V = 〈b1, . . . | s1, . . .〉,

π1(U ∩ V ) = 〈c1, . . . | t1, . . .〉,
4The free product is just, when taking presentations, the union of generators and

relations. For instance, the free product of Z with Z is not Z × Z, but the free group of
two generators.
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this means that

π(X) = 〈a1, . . . , b1, . . . | r1, . . . , s1, . . . , u(c1)v(c1)−1, u(c2)v(c2)−1, . . .〉,

where the relations t1, . . . do not play any role.
For instance, in the figure eight one can take as open sets the total minus

the highest point and the total minus the lowest point. These open sets both
retract to a circle and their intersection retracts to a point, all as deformation
retracts. Consequently, the fundamental group of the figure eight, and hence
of a torus without a point, is the free group of two generators.

Even though we know what the fundamental group of a torus is, it is a
good exercise to compute it again using Seifert-Van Kampen’s theorem. Let
y be a point in the torus and V a small disk around it. Define U = T \ {y}.
We have in mind the model of the square with identified edges and take a
point y in the middle of the square. We base all the fundamental groups on
a point x1 in U ∩ V . We know that π1U is the free group of two generators
represented by d−1ad, d−1bd, whereas π1V is just trivial. The intersection
U ∩ V retracts to a circle. Take a loop c containing y in its interior as the
generator of π1(U ∩ V ). Its image in π1(V ) is trivial and its image in π1(U)
can be computed by looking at the model:

u([c]) = [d−1aba−1b−1d] = [d−1ad][d−1bd][d−1a−1d][d−1b−1d].

So we deduce, by getting rid of the conjugation by d, that

π1T = 〈a, b | aba−1b−1〉.

b

a

b
a

d

c

�

y

Figure 1.4: Computation of π1 of a torus using Seifert-van Kampen.

Similarly, we compute the fundamental group of the connected sum of g
torus. This is what we are really going to use.
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Proposition 1.10. The fundamental group of a compact connected ori-
entable surface of genus g is

π1Σg
∼= {a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg] = 1}.

a1

b1

a1

b1
a2

b2

a2

b2

d

c

�y

Figure 1.5: Computation of π1Σ2 using Seifert-van Kampen.

The fundamental group can endowed with a topology. Its source is
a topology on the space of maps Hom(S1, X). In order to motivate this
topology, consider three topological spaces T , X and Y . We know what it
means for a map Ψ : T × X → Y to be continuous, but if we write it as
Ψ̂ : T → Hom(X, Y ), where we have not put any topology yet on Hom(X, Y ),
we cannot say anything. The idea behind the so-called compact-open topol-
ogy is to define a topology in Hom(X, Y ) such that any map Ψ is continuous
if and only if Ψ̂ is continuous. R.H. Fox defined this topology (On topolo-
gies for function spaces) and proved that this is the case under some mild
assumptions (for instance, X and T being first countable is sufficient). The
compact-open topology is defined for the space of continuous maps be-
tween any two topological spaces X, Y as the topology generated by the
sets

C(K,U) = {f ∈ Hom(X, Y ) | f(K) ⊂ U},

where K is any compact set of X and U is any open set of Y . Give
Hom(S1, X) the compact-open topology, consider the subspace Homx(S

1, X)
of loops that start and end at a fixed base point x, and finally consider the
quotient topology when we quotient by the equivalence relation of fixed end
point homotopy.

Fine print 1.11. One can define other topologies in Hom(X,Y ), usually by defining what
it means to converge. If we talk about pointwise convergence, that would be equivalent
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to the point-open topology, which is generated by C(K,U) where K is just a point5. So
the topology in Hom(X,Y ) given by pointwise convergence is coarser (has the same or
less open subsets) than the compact-open topology. On the other hand, if we consider the
topology of compact convergence, we need Y to be a metric space and we say that {fn}
converges to f when for ε > 0 we can find N such that supx∈K d(fn(x), f(x)) < ε for any
compact set K ⊂ X. In the case of Y being a metric space, the compact-open topology
is exactly the topology of compact convergence. Note that the topologies above defined
using convergence can be defined for the space of all maps from X to Y , whereas for the
compact-open topology we do need to consider the continuous maps Hom(X,Y ).

If we have a group with a topology, the first question is whether it is
a topological group. And the answer in general is no. The fundamental
group is a quasi-topological group, where only the product by the left or the
product by the right, but not the product map, are continuous. In our case,
as we are dealing with manifolds, we will be safe, as we can say much more
about the fundamental group.

To start with, we defined the fundamental group for path-connected topo-
logical spaces, but we like to consider connected manifolds, which is in general
a weaker condition. However, in the case of manifolds they are the same, as
the set of points connected by a path to a base point x is both open and
close, by using a local chart.

We chose our manifolds to be second countable and, as a consequence
of that, the fundamental group will be countable. This is done by covering
the manifold with a countable number of coordinate balls (preimages of balls
by a chart), and defining a set I by choosing a point for every intersection
of any two balls, including the intersection of a ball with itself. This set is
countable. For every ball B and any two points x, x′ ∈ B, choose a path
pBx,x′ connecting them and lying in B. We get a countable number of paths.
Choose a base point x0 in I and consider the set P of loops starting at x0 that
they are a finite product of some pBx,x′ . Again, there is a countable number
of loops. The last step is to see that any loop γ is homotopic to one in P , so
the fundamental group is a subset of P and must be countable. For this we
use the compactness of S1, the set of the preimages by γ of the coordinate
balls is an open cover of S1. We can choose a finite subcover, so that the
image of the loop lies in this finite number of balls. In each ball the path is
homotopic to some pBx,x′ , preserving the end point x0 if necessary, so we can
make any path homotopic to a path in P . More details and an image can be
found in Prop. 1.9 of [Lee13].

Assignment 6: prove that the topology of the fundamental group in the
case of manifolds is the discrete topology.

5Points are always compact as, given any cover, one can always find a finite subcover,
consisting actually of any open set of the original cover.
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Hence, in the case of topological manifolds, the topology is always discrete
and hence we do have a topological group.

We have come all the way here to define a new manifold. Fix any x0 ∈M
and define the universal cover M̃ of a manifold M as the set

M̃ = {paths γ : [0, 1]→M starting at x0}
/ fixed end point

homotopy.

The universal cover of a manifold is again a manifold. We define a chart
for [γ] by using a chart (U,ϕ) around γ(1) ∈M whose image is a ball in M .

U[γ] = {[σγ] | σ is a path from γ(1) to any x ∈ U}.

Since U is simply connected, two paths σγ, τγ are (fixed end point) homo-
topic if and only if the end points of σ and τ are the same, so U[γ] is bijective
to U and we can use ϕ to map it onto an open subset of Rn. If we have
U[γ] ∩ U ′[γ′] 6= ∅ we also have that U ∩ U ′ 6= ∅ and the change of chart in M̃

is given exactly by the change of chart in M . Thus, M̃ is a manifold. The
best example to have in mind is M = S1 and M̃ = R.

We interrupted our review on bundle theory to introduce surfaces and the
fundamental group because the universal cover of a manifold is perhaps the
most important example of a principal bundle in this course. Note that we
have a canoncial projection p : M̃ →M given by p([γ]) = γ(1). We define an
action of π1X, more concretely π1(M,x0), on p−1(x) for any x ∈ M . Given
α ∈ π1(M,x0) and [γ] ∈ p−1(x) ⊂ X̃ we define a right action by

[γ] · [α] = [γα].

Given any other [γ′] ∈ p−1(x), the path γ−1γ is a loop based on x0, so

[γ−1γ′] = [α],

for some [α] ∈ π1M i.e., [γ′] = [γα], so the action is transitive. Also, if
[γ][α] = [γ], then [γ−1γα]] = 1π1M , i.e., [α] = 1π1M , so the action is free.
Thus, the fibres are π1M -torsors and M̃ is actually a principal π1M -bundle.
In order to give a trivialization, from a simply connected chart Uα in M and
x ∈ π−1(Uα), we define a chart p−1(Uα) ∼= Uα×π1(M,x0) by identifying the
path connected component of x in π−1(Uα) with Uα × {1}.

Fine print 1.12. We have taken as the definition of the universal cover of a manifold the
proof of the existence of a universal cover in the general sense. In the usual exposition of
this theory, one first defines covering maps as surjections p : C → X such that any point
x : X has an open neighbourhood U with p−1(U) a disjoint union of open sets mapping,
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each of them, homeomorphically to U by the map p. One then defines a universal cover
to be a covering space covering any covering space of the initial space, or, equivalently, to
be a simply connected covering space. In categorical terms, one can say that the universal
cover is an initial object for the category of covering maps of a given pointed space as
objects and covering maps between the domains of the covering maps as morphisms. This
universal cover may or may not be exist. A universal cover of a topological space X
exists if and only if the space is connected, any point x in an open set U has an open
neighbourhood U ′ ⊂ U that is pathwise connected (locally path-connected), and any point
x has an open neighbourhood where loops based at x are contractible in X (semilocally
simply connected). Actually, when the two latter conditions are satisfied then topology of
the fundamental group is discrete. Hatcher’s Algebraic Topology, Sect. 1.3, from p64.

Fine print 1.13. An example of a space without a universal cover and such that the
fundamental group is not a topological group is given by the Hawaiian earring. You can
check https://wildtopology.wordpress.com/2013/11/23/the-hawaiian-earring/ to
know more about the Hawaiian earring. For the proof that the multiplication is not
continuous, see https://arxiv.org/pdf/0909.3086.pdf.

Fine print 1.14. After talking so much about surfaces, you may also wonder what happens
for 1-dimensional manifolds: a connected 1-dimensional manifold is homeomorphic to
either the circle or the open interval (0, 1).

1.4 More on bundles and their sections

We define a section s, sometimes called cross section, of a fibre bundle
π : E → M on an open set U ⊂ M as a smooth map s : U → E such that
π ◦ s = IdU . When U = M we say that we have a global section. It is very
easy to find global sections in trivial bundles M × F , as for any f ∈ F , the
map x→ (x, f) defines one.

In the case of vector bundles, since we have a canonically defined vector
space structure, we can define the zero section, mapping any x ∈ M to
ϕ−1
i (x, 0) whenever x ∈ Ui for a trivialization (Ui, ϕi). This does not depend

on the choice trivialization as the transition maps are linear. For a vector
bundle, we say that a section vanishes or is vanishing at x ∈ U if ϕi(s(x)) =
(x, 0) whenever x ∈ Ui.

For a principal bundle P , we cannot do the same with the identity ele-
ment, as it is not preserved by left multiplication. In this case we get some-
thing more involved: over an open set U , trivializations and local sections
of a principal G-bundle are in correspondence. On the one hand, for any
trivialization ϕ we define x 7→ ϕ(x, e). On the other hand, given a section s,
define the trivialization p ∈ P 7→ (x, g) where x = π(p) and g is the unique
element of G such that p · g = s(x).

What do sections do for us in vector bundles? They may tell us informa-
tion about the bundles. For instance, you will never find a nowhere vanishing

https://wildtopology.wordpress.com/2013/11/23/the-hawaiian-earring/
https://arxiv.org/pdf/0909.3086.pdf
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section on the Möbius band, whereas it is easy to do that for the cylinder,
as it is a trivial bundle. This is no coincidence.

* * *

Let us look again at cocycles of transition maps, as we took some advan-
tage from them when passing from vector to principal bundles and back. We
can do much more.

Let us consider two vector bundles E, E ′ over the same manifold M with
cocycles of transition maps defined over the same open cover:

{Uij, gij : Uij → GL(V )}, {Uij, hij : Uij → GL(W )}.

We can define a new cocycle by

{Uij, gij : Uij → GL(V )×GL(W ) ⊂ GL(V ⊕W )},

which defines a vector bundle with typical fibre V ⊕W . This vector bundle
is denoted by E⊕E ′ and is called the direct sum of E and E ′. It is possible
to define this by considering the set ∪x∈MEx⊕E ′x and defining trivializations
by (π, pr2ϕ, pr2ϕ

′) using the trivializations ϕ of E and ϕ′ of E ′ on the same
open set.

Fine print 1.15. The cocycle takes values in GL(V )×GL(W ), so it is more exact to say
that we get a principal GL(V ) × GL(W )-bundle. The fact that the principal bundle has
structure group GL(V )×GL(W ) means that the vector bundle bundle with typical fibre
V ⊕W is not any vector bundle, but one coming from this direct sum operation.

Another construction is the tensor product of the vector bundles E and
E ′, which we denote by E ⊗ E ′. The transition maps are given in this case
by the tensor product of matrices gij ⊗ hij. In this case, it may be clearer to
consider the set

∪x∈MEx ⊗ E ′x
and consider trivializations

e⊗ e′ 7→ (π(e), pr2ϕ(e)⊗ pr2ϕ
′(e′)).

For a single vector bundle we can consider its dual bundle by considering
the inverse of the dual of the transition maps, that is, tij(x) = gji(x)∗ for
x ∈ Uij. They define a cocycle of transition maps, as both the dual and the
inverse are contravariant -they invert the order of the product- and hence
their composition is covariant -it preserves the order of the product. Again,
one can give trivializations for the set ∪x∈ME∗x.
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A very important example of a dual bundle is the cotangent bundle,
the dual space of the tangent bundle.

We also have the determinant bundle of E, which has det gij(x) as
transition maps. The result is a line bundle, which can be obtained also by
considering the set ∪x∈M ∧rkE Ex and using detϕ(x) as trivializations.

In the case of principal G-bundles we may be tempted to take the product
of the cocycles, but this will not be in general satisfy the cocycle condition. A
sufficient condition for this to happen is that the group G is abelian. In this
case we can talk about the product of two principal G-bundles. An important
example of this are principal C∗-bundles, which correspond to complex line
bundles. The product of two principal C∗-bundles corresponds to the tensor
product of the corresponding complex line bundles.

* * *

We defined tangent vectors at a point p ∈ M as equivalence classes of
curves on M . We saw that they define derivations at p, i.e., R-linear maps
from functions defined around p to R,

D(fg) = D(f)g(p) + f(p)D(g).

We argue now that any derivation at p is indeed given by a curve. It is
enough to do that in a chart.

For a function defined around a point p, it is a theorem that there exists
a neighbourhood and a smooth function gi(x) defined on it such that

f(x) = f(p) +
∑
i

(xi − pi)gi(x),

where the functions gi satisfy gi(p) = ∂f
∂xi

(p).

Fine print 1.16. I will add a sketch of the proof.

By applying the property of a derivation, we first see that a derivation of
a constant function is zero. This is clear for the constant function 1,

D(1) = D(1 · 1) = D(1)1(p) + 1(p)D(1) = 2D(1),

and follows by R-linearity for any other D(c) = cD(1) = 0.
We then have

Df =
∑
i

D(xi)gi(p) +
∑
i

(pi − pi)gi(x) =
∑
i

D(xi)
∂f

∂xi
(p),
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so D is a linear combination of the derivations ∂
∂xi |p

with coefficients D(xi).

In general, derivations come equipped with the commutator operation,

[X, Y ](f) = X(Y (f))− Y (X(f)).

In the case of TpM , this is just zero, as[
a
∂

∂xi |p
, b

∂

∂xj |p

]
(f) = ab

( ∂2f

∂xj∂xi
− ∂2f

∂xi∂xj

)
(p) = 0,

by the symmetry of second derivatives.
When one upgrades this picture from vectors in TpM to vector fields

around p (sections of the tangent bundle) one can define the Lie bracket in
the same way

[X, Y ](f) = X(Y (f))− Y (X(f)),

but we do not get zero anymore, as in the expression above a and b would
become functions around p and the bracket would be[

a
∂

∂xi
, b

∂

∂xj

]
(f) = a

∂b

∂xi

∂f

∂xj
− b ∂a

∂xj

∂f

∂xi
.

Note that for two vector fields X,Y , the value of [X, Y ](f)(p) does not nec-
essarily coincide with [Xp, Yp](f), since the latter is always zero as the com-
mutator of derivations at p.

Fine print 1.17. When we looked at the vector space structure of TpM we did everything
by using curves. However, if we had to write the bracket in terms of curves, we would not
get a nice expression, just a linear combination of the expressions above.

The Lie bracket is clearly linear and skew-symmetric, and it is a derivation
of itself (Jacobi identity)

[X, [Y, Z] = [X, [Y, Z]] + [Y, [X,Z]].

A bracket with these three properties on a vector space gives the vector space
the structure of a Lie algebra.

In the case of vector fields, note that the vector space is the infinite-
dimensional vector space of functions defined around p.

Fine print 1.18. In this case of vector fields there is an action of f ∈ C∞(M) on a vector
field X by (fX)(p) = f(p)X(p) ∈ TpM . The Lie bracket of vector fields also satisfies the
so-called Leibniz rule

[X, fY ] = X(f)Y + f [X,Y ].

* * *
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We defined the tangent bundle of a manifold. We can also define the
tangent of smooth maps f : M → N . At a point m we define

Tfp : TmM → Tf(m)N

[γ] 7→ [f ◦ γ],

which extends to a map Tf : TM → TN , which we will denote also by f∗
and call push-forward. For the composition of two smooth maps f : M → N ,
g : N → L we have

Tp(f ◦ g) = Tg(p)f ◦ Tpg.

You may remember the definition of exponential map in riemannian ge-
ometry. The idea behind it is just that the riemannian metric allows you to
pick up a unique representative curve (the unique local geodesic) of the vec-
tor, seen as an equivalence class of curves. Once we associate γ to X ∈ TpM ,
the geodesic exponential of X is the point γ(1) ∈M if defined. The geodesic
exponential is a local homeomorphism from the tangent space at a point onto
a neighbourhood of the point.

In the case of a Lie group G, we have a different way to pick up a unique
representative curve. Any left translation Lg is a smooth map and its dif-
ferential defines a map TLg : TeG → TgG. For X ∈ TeG, it is a theorem,
by existence and uniqueness of ordinary differential equations (the same one
used for the existence of geodesics), that there is an only curve γ such that
the tangent vector of γ at γ(t) is precisely TLγ(t)X. We could write this like

γ′(t) = TLγ(t)X.

The exponential is then defined by X 7→ γ(1) ∈ G. In the case of a Lie
group, since the action of {Lg} is transitive, we have that these curves are
defined for all time, so the exponential is defined as a map exp : TeG → G.
This does not mean that it is surjective, but that is a different story.

A last and very important remark is that TeG is endowed with the struc-
ture of a Lie algebra, but not just with the zero bracket. We can identify
TeG with left-invariant vector fields, which means that for Xe ∈ TeG we have
Xg = TLgXe ∈ TgG. We then use the Lie bracket of vector fields to get an-
other left-invariant vector field (this is something to be checked explicitly),
which is identified with another element of TeG. We will use the notation

g := TeG

for the Lie algebra TeG with the bracket of left-invariant vector fields.

* * *
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We finish this section by giving some ideas about Čech cohomology. We
have been working a lot on a suitable open cover and functions defined on
its open sets or on two-fold intersections. An open cover consisting of simply
connected open sets whose intersections (of any number of them) are simply
connected is called a good cover. For instance, the cover of the sphere with
two hemispheres is not good, as the intersection is not simply connected.
However, since we are assuming second countability, which implies paracom-
pactness, a smooth manifold always admits a good cover.

Fine print 1.19. A proof of that fact can be found in https://ncatlab.org/nlab/show/

good+open+cover#ExistenceOnParacompactManifolds

Fix a good cover {Ui} and define the following sets of so-called 0, 1 and
2-Čech cochains.

C0 := { {fi} | fi : Ui → G}
C1 := { {gij} | gij : Uij → G}
C2 := { {hijk} | hi : Uijk → G}.

Define a differential operator δ by

δ : C0 → C1

{fi} 7→ {fif−1
j },

where f−1
j : Uj → G denotes the map x 7→ (fj(x))−1 for x ∈ Uj, and the

juxtaposition denotes the product (not the composition) of the two functions
restricted to the intersection of their domains (that is, Ui ∩ Uj). Following
the same notation, define

δ : C1 → C2

{gij} 7→ {gijgjkgkj}.

It is easy to check that δ2 = 0, and some of these formulas they are actually
familiar, as we will see. Let us start with the 0-cocycles, that is, the 0-
cochains in the kernel of δ. Being in the kernel means that fif

−1
j is the

identity in the intersection Uij, or alternatively that fi = fj on Uij. Hence,
{fi} actually defines a global function M → G, and this is precisely the
zeroth Čech cohomology group Ȟ0(M,G).

Next, 1-cocycles: here we have our cocycles of transition maps, which
give principal G-bundles. And what are the 1-coboundaries, elements in the
image of δ? They are principal G-bundles with very special transition maps
given by {fif−1

j }. These are precisely trivial bundles, as we saw in (1.2). And
if we take the first cohomology group, 1-cocycles modulo 1-coboundaries, we

https://ncatlab.org/nlab/show/good+open+cover#ExistenceOnParacompactManifolds
https://ncatlab.org/nlab/show/good+open+cover#ExistenceOnParacompactManifolds
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obtain, also by (1.2), principal G-bundles up to diffeomorphism. Thus, if we
choose a nice open cover, the first Čech cohomology group, denoted by

Ȟ1(M,G),

gives a classification of the principal G-bundles.

Fine print 1.20. Čech cohomology can be defined in general, but the differential gets a
bit more complicated. We just wanted to show what the first two cohomology groups are.
On the other hand, in general, instead of an open cover, the cohomology is defined as a
direct limit of open covers ordered by refinement.

1.5 Connections

When you studied differential geometry you talked a lot about curvature.
This notion did not have to do so much with the metric, but with the con-
nection that was canonically attached to it, the Levi-Civita connection.

For a fibre bundle π : E →M , consider the tangent map of the projection,
π∗ : TE → TM . Its kernel kerπ∗ defines a subset V E ⊂ TE, which has a
clear projection π : V E → E. This set is indeed a bundle itself, a subbundle.
By looking at the trivializations of TE, as a bundle over E, all the fibres of
V E (preimages of a point) have the same rank, and then the restriction of
the trivializations of TE will give a set of trivializations for V E.

The inclusion Eπ(x) ⊂ E comes together with a map Tx(Eπ(x)) → TxE,
which happens to be an inclusion. Indeed, for an open trivializing neigh-
bourhood U around π(x), we have E|U ∼= U × F , which restricts to Eπ(x)

∼=
{π(x)} × F . By choosing a chart around x coming from a product of charts
of U ×F , say c = (c1, c2) with image in Rn×Rk with k = dimF , we see that

Tx(E|U) ∼= Tc1(x)(Rn)⊕ Tc2(x)(Rk) ⊂ {0} × Tc2(x)(Rk) ∼= Tx(Eπ(x))

and the inclusion follows. One can similarly prove that the map TxE →
Tπ(X)M is surjective.

The image of the inclusion Tx(Eπ(x)) → TxE lies in Vx(E) as π(Eπ(x)) =
{x}, and the map

Tx(Eπ(x))→ VxE (1.5)

[γ] 7→ [γ]

is actually an isomorphism, as the dimension of TxE is dimM + dimF ,
whereas, from the surjectivity of TxE → Tπ(X)M , the dimension of VxE is

dimVxE = dimTxE − dimM = dimF = dimTx(Eπ(x)).
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Fine print 1.21. It is not true in general that if i : N → M is an inclusion, the map
i∗ : TxN → TxM is an inclusion. This property, the differential being injective, is called
being an immersion. And, by the way, an immersion is not necessarily injective! Like the
immersion of the Klein bottle in R3, which self-intersects.

To sum up, the vertical bundle is the vector bundle whose fibres are the
tangent spaces to the fibres.

A connection at x ∈ E is then a complement HxE to VxE inside TxE,
that is, a vector subspace HxE such that TxE = VxE ⊕ HxE. Note that
VxE is canonically defined while there are many choices for HxE. If we had
a metric, we could take HxE to be the orthogonal complement, but that is
only one possible choice, there are infinitely many more.

A connection of E is the smooth choice of a connection for every x ∈ E,
that is {HxE}x∈E. In order to make sense of the word smooth, we give a few
definitions of theory of distributions (as in differential geometry, nothing to
do with the distributions related to generalized functions). A distribution
is a choice of a subspace Dx ⊂ TxM for every point x ∈ M . A distribution
is smooth when around any x ∈ M , say in an open neighbourhood Vx,
there exist smooth (locally defined) vector fields X1, . . . , Xr such that Dy

is generated by X1
y , . . . , X

r
y for y ∈ Vx. Our distribution {HxE}x∈E has the

additional property of having always the same rank. We call this to be a
regular distribution, although many authors include this hypothesis in
the definition of distribution.

A natural way of obtaining distributions is through regular foliations of
manifolds. A regular foliation is a decomposition of a manifold into disjoint
submanifolds of the same dimension, called leaves, a disjoint collection {Nα}
such that M = ∪αNα with the property that locally there are charts

U → Rn ∼= Rk × Rn−k

where the leaves Nα are locally given by the preimage of Rk × {a}. The
tangent spaces of a regular foliation define a regular distribution, which sat-
isfies an additional property, their sections are closed under the Lie bracket
of vector fields. This is a very important property and has its own name.
We say that a distribution {Dx} is involutive when the smooth vector fields
with image in Dx, which we denote by Γ(Dx), satisfy

[Γ(Dx),Γ(Dx)] ⊂ Γ(Dx).

When a distribution is given by the tangent vector fields of a foliation, we
say that the foliation is integrable.

Frobenius’ theorem states that an involutive regular distribution is inte-
grable, that is, must come from a foliation. In other words, involutivity is not
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only a necessary condition for integrability but it is actually sufficient in the
case of regular distributions. A good example for this is the vertical bundle,
which comes from the regular foliation {Eπ(x)}x∈M , and is hence involutive.

Fine print 1.22. Distributions may be not regular, sometimes referred to as generalized
distributions. This is the case, for M = R2 with polar coordinates (r, θ), of

〈r(− sin θ, cos θ)〉 ⊂ T(r,θ)R2,

which gives a one-dimensional subspace for every point apart from the origin, where it
gives the zero vector space. It is clear by the definition that this is a smooth distribution
as it is globally generated by a smooth vector field. There is a foliation associated to,
integrating if you want, this singular distribution. It is given by the origin and concentric
circles centered at the origin (this picture was the inspiration to define the foliation). This
is a decomposition of the plane into leaves that do not have the same dimension. There
are some points where the dimension is lower. In these points, and only in these points,
the leaves will not satisfy the chart property above either. If one wants to make sense of
singular foliations, one usually says that they are the ones coming from involutive singular
distributions.

Fine print 1.23. Distributions may not be integrable. A good example for this is R3 and
the kernel of the differential form dz + xdy. A distribution given as the kernel of an ideal
of differential forms (where the algebra operation is the wedge product) is integrable if
and only if this ideal is closed under the exterior derivative. When we do this for only one
form α, being a differential ideal is the same as satisfying α∧ dα = 0. This is not the case
for α = dz + xdy, as α ∧ dα = dz ∧ dx ∧ dy. This non-integrable distribution is also the
simplest example of a contact form, leading to contact geometry, the geometry described
my maximallly non-integrable distributions.

A connection is equivalently defined as a surjective bundle map

Φ : TE → V E

such that Φ2 = Id, giving for each vector its vertical part. This can be
though as a 1-form with values in the bundle V E, i.e., Φ ∈ Ω1(E, V E). The
horizontal complements to V E are then defined by HE = ker Φ. If Φ is
giving the vertical part of a vector, the map Id−Φ : TE → TE gives the
horizontal part. This point of view is suitable to introduce the curvature as
an operator.

We mentioned above that the bracket of vertical vector fields is again ver-
tical. What about the bracket of horizontal vector fields? The measurement
of how far is the bracket of horizontal vector fields from being horizontal is
measured by the curvature. The curvature of the connection Φ is given by

Ω(X, Y ) = Φ[(Id−Φ)(X), (Id−Φ)(Y )],

so that Ω ∈ Ω2(E, V E). This means taking the horizontal parts of two vector
fields, doing their bracket and looking at the vertical part. If the curvature
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is zero, the bracket of horizontal fields is again horizontal, and we say that
the connection is flat.

Being flat means that the distribution of horizontal subspaces is inte-
grable, i.e., there exists a foliation of E by submanifolds such that the tangent
spaces to these submanifolds are exactly the horizontal subspaces.

Example 1.11. The following, although seemingly trivial, is a fundamental
example. For a trivial bundle U × G, the vertical subspace at each (u, g)
is given by {0} × TgG. A complement, and hence a distribution, is given
by TuU × {0}. This is clearly integrable, as there are integral submanifolds
U × {g} whose tangent space at (u, g) is precisely TuU × {0}.

One very basic question is whether connections exist for any manifold.
The answer is yes and uses the connections of the example above together
with partitions of unity.

Fine print 1.24. One can actually describe the space of all connections. The differences of
any two connections lies in a (infinite dimensional) vector space, so the space of connection
is an affine space.

When the fibre bundle has extra structure, we will ask the connection to
keep this extra structure. Let E have the structure of a principal G-bundle.
For each g ∈ G and x ∈ E, we have a bundle map Rg : E → E whose
differential gives (Rg)∗ : TxE → TxgE. A principal connection on E is a
connection such that

HxgE = (Rg)∗HxE. (1.6)

On principal G-bundles we will only talk about principal connections and
just say connection.

On a principal bundle we can understand the vertical subbundle via the
group action. For each x ∈ E we have a map Lx : G → E. Its differential
at the identity, by recalling the notation g = TeG, gives (Lx)∗ : g → TxE.
Exactly as in 1.5, this map is an isomorphism

(Lx)∗ : g→ VxE. (1.7)

The inverse of this map can be combined with Φ ∈ Ω1(E, V E) to define

θ := −(Lx)−1
∗ ◦ Φ ∈ Ω1(E, g).

This map θ is zero in vertical vectors and gives the corresponding element of
g via 1.7 for horizontal vectors.

The equivalent of condition (1.6) in terms of θ is proved to be

(Rg)
∗θ = Ad(g−1)θ.
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Fine print 1.25. Similarly the curvature can be regarded as Ω ∈ Ω2(E, g) and the Maurer-
Cartan formula is satisfied,

Ω = dθ +
1

2
[θ, θ].

Remark 1.12. A good reference for connections on principal G-bundles is
Figueroa O’Farrill’s lecture notes on Gauge Theory, https://empg.maths.
ed.ac.uk/Activities/GT/ or on Spin Geometry, Lecture 5, https://empg.
maths.ed.ac.uk/Activities/Spin/.

You may have been wondering for a while where the connections you stud-
ied in differential geometry are, even whether that covariant derivative has
something to do with all we have done so far. The connections above, usually
when expressed as differential forms taking values elsewhere, are sometimes
known as Ehresmann connections. We will mention its relation with the
sometimes called Koszul connections, or covariant derivatives. Let us look
at that.

Given a connection on a principal bundle E, we shall define a covariant
derivative in any associated vector bundle E(F ), or E×GF with typical fibre
a vector space F where G acts. We mean

E(F ) := {(x, f) : x ∈ E, f ∈ F}/〈(x, f) ∼ (xg, g−1f) for g ∈ G〉.

To do that we first understand sections of E ×G F as certain maps from E
to F . A section is a map s : M → E(F ) such that π ◦ s = Id, so for m ∈M ,
we have s(m) = [(x, f)] and we could start by defining a map by x 7→ f .
If we have a different representative s(m) = [(x′, f ′)], we should also have
x′ 7→ f ′. As x′ = xg for some g, and f ′ = g−1f , the map we are defining
is G-equivariant, that is, ϕ(xg) = g−1f . Conversely, any G-equivariant map
E → F gives rise to a section of E(F ). This can be written as

Ω0(M,E(F )) ∼= Ω0
G(E,F ).

We explain this notation: Ω0(M,E(F )) denotes functions on M taking
values on the bundle E(F ). This means that we map m 7→ f(m) ⊗ v(m),
where f(m) ∈ R and v(m) ∈ E(F ). As f(m) is a function, we can multiply
v(m) by f(m) and get f(m)v(m) ∈ E(F ), so we have a section. Note that
v already defines a section. Conversely, any section s corresponds to the
function 1 ⊗ F . On the other hand, Ω0

G(E,F ) denotes the G-equivariant
maps from E to F .

Thus, sections of E(F ) are in correspondence with G-equivariant maps
E → F . Something similar happens with one-forms, but in this case we
have to ask for an extra condition, horizontality. We say that a differential
form is horizontal when its value only depends on the horizontal part. If we

https://empg.maths.ed.ac.uk/Activities/GT/
https://empg.maths.ed.ac.uk/Activities/GT/
https://empg.maths.ed.ac.uk/Activities/Spin/
https://empg.maths.ed.ac.uk/Activities/Spin/
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denote by h∗ the dual of the horizontal projection, we can write horizontality
as h∗ω = ω. Of course h∗ω is horizontal for any ω. A horizontal and G-
invariant differential form is said to be basic. It is proved that one-forms
taking values in E(F ) correspond to basic one-forms on E taking values in
F (see Section 2.2.1 or Proposition 5.7 of Figueroa-O’Farrill’s notes if you
want more details). Similarly, as before we would have

Ω1(M,E(F )) ∼= Ω1
basic(E,F ).

With this reinterpretation we can now give a covariant derivative on
E(F ). Given a section s of E(F ), we regard it as a G-equivariant map
E → F . This could be thought as a function α on E taking values in F . We
take the exterior derivative dα of this function and get a 1-form on E, again
with values in F . This is again G-invariant, but it is not necessarily horizon-
tal. This is the point where we use the connection. We take the horizontal
projection of this form, h∗(dα), and get a basic form. By the correspondence
above, this is a one-form with values in E(F ). Let us make it clear:

Ω0(M,E(F )) Ω1(M,E(F ))

Ω0
G(E,F ) Ω1

G(E,F ) Ω1
basic(E,F ).

∇

d h∗

We have thus obtained a map

∇ : Ω0(M,E(F ))→ Ω1(M,E(F )) (1.8)

s 7→ ∇s. (1.9)

which for each vector field X ∈ Γ(TM) gives a section ∇Xs ∈ Γ(E(F )).
We recall the properties of a covariant derivative. A covariant derivative

on a fibre bundle E is an operator ∇ : Ω0(M,E)→ Ω1(M,E) satisfying

∇(fs) = f∇s+ df ⊗ s.

From this formula it is clear that the difference of two connections satisfies

(∇−∇′)(fs) = f(∇−∇′)(s),

that is, it is given by a 1-form with values on the bundle of endomorphisms,

∇−∇′ ∈ Ω1(EndE).
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Fine print 1.26. A connection on a principal G-bundle E defines a connection on any
associated fibre bundle, for a fibre with an action of G that is not necessarily a vector
space. In this generality we will not have a covariant derivative as we know it, since the
properties of a covariant derivative, like for ∇Xfs, make sense for vector bundles but not
for a general fibre bundle. For more details on the induced connection see Section 19.8
of [Mic08].
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Chapter 2

Surface group representations

You may have seen before the definition of a representation of a group H in a
vector space V as a map H×V → V with some properties. When V is finite
dimensional, a simple way to encompass all the properties is the definition
or a representation of H in V as a homomorphism of groups

ρ : H → GL(V ).

The vector space may come with extra structure (euclidean or hermitian
metric, symplectic structure, etc.) and we may want to talk about a rep-
resentation that preserves this structure. We would have to replace GL(V )
by O(V ), U(V ), Sp(V ), etc. So in order to have a general setting, we just
say that a group H represents into a group G if we have a homomorphism
ρ : H → G. In this chapter we look at the case where H is a surface group
(the fundamental group of a compact connected orientable surface) and G is
a Lie group.

2.1 The set of representations

Let Σ be a compact connected orientable surface of genus g. Denote its fun-
damental group by π1Σ. Let G be a Lie group. The set of all representations
of π1Σ into G is the set of all homomorphisms

Hom(π1Σ, G).

As the topology of π1G is discrete, all these homomorphisms are moreover
continuous, and we can endow this set with the compact-open topology.

As the group π1Σ is finitely presented by

π1Σ ∼= {a1, b1, . . . , ag, bg |
g∏
j=1

[aj, bj] = 1},

37
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giving a representation ρ ∈ Hom(π1Σ, G) is the same as giving 2g elements
of G, say,

A1, B1, . . . Ag, Bg,

which correspond to the images of the ρ(aj) and the ρ(bj), such that

g∏
j=1

[Aj, Bj]− Id = 0. (2.1)

In other words, by the choice of the generators, any ρ ∈ Hom(π1Σ, G) can be
seen inside G2g as a tuple (A1, . . . , Ag, B1, . . . , Bg) satisfying (2.1), i.e., the
vanishing set of a function.

Assume G ⊂ GL(n,R). By looking at the matrix coefficients, one usually
sees GL(n,R) as an open set Rn2

, but we can see it as a vanishing set of
Rn2+1 if we consider

{(A, x) | A ∈ Rn2 ' Mat(n,R), x ∈ R, detA · x = 1}.

The set G2g corresponds then to the vanishing of some polynomials equations
in (Rn2+1)2g, and Hom(π1Σ, G) corresponds to the vanishing of some extra
polynomial equations1 coming from (2.1). The vanishing set of polynomials
in an affine space (like (Rn2+1)2g) is an object called affine algebraic set
and is the very starting point of algebraic geometry.

We spent a lot of time talking about manifolds in Chapter 1, so someone
who sees these affine algebric sets for the first time may think they are mani-
folds, as GL(n,R) is. This is very far from being true, as some examples show
immediately. The vanishing set of xy = 0 consists of the two axis, which is
not a manifold, as no neighbourhood of the origin (a cross) is homeomorphic
to an open set of R. We could say that this was not a good example as it can
be seen as the union of two vanishing sets x = 0 and y = 0, it is reducible.
For an irreducible example, take the vanishing set of y2 − x(x2 + 1) = 0.

1Note that the components of (2.1) are not necessarily polynomials, as we have some
determinants as denominators, but we can either multiply by them, or use the fact that
we have added detA−1 as a variable in our description of GL(n,R) inside Rn2+1.
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x

y

However, an algebraic set is a manifold apart from the singular points,
where intuitively the dimension of the tangent space is not the dimension of
the manifold. The point is that having the vanishing of polynomials means
that the vanishing is not too bad, it has codimension at least one, like the
points in curves that we just saw, so it is very mild bad behaviour. If we
were to do this with smooth functions, the vanishing set could go really wild.

In general, if G is not inside GL(n,R), it is known that Lie groups are
analytic manifolds, and one can give Hom(π1Σ, G) has the structure of a
real analytic variety, and by variety we mean that it looks locally as a real
analytic set, that is, as the vanishing set of analytic functions.

2.2 The action of the group

We have a natural left action of (ϕ, γ) ∈ Aut π1Σ×AutG on ρ ∈ Hom(π1Σ, G)
given, for a ∈ π1Σ by

((ϕ, γ) · ρ)(a) = γ(ρ(ϕ−1(a)).

Note that the action of Inn π1Σ is contained in the action of InnG. Given
β ∈ π1Σ acting by conjugation cβ, we have

((cβ, 1) · ρ)(a) = ρ(βaβ−1) = ρ(β)ρ(a)ρ(β)−1 = ((1, cρ(β)) · ρ)(a),

where cρ(β) is the conjugation in G by ρ(β). Thus, one can just look at
the action of Outπ1Σ := Aut π1Σ/ Inn π1Σ, and AutG, whose action can be
decomposed in the action of InnG and the action of OutG := AutG/ InnG.
Although we will only look at InnG, it is good to be aware of the other
actions.

Fine print 2.1. In our case, the group Outπ1Σ coincides with the mapping class group of
Σ, which, by definition is the group of diffeomorphisms up to isotopy, or, in the smooth
category, DiffM/Diff0M , where Diff0M denotes the identity component of the group of
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diffeomorphisms. For instance, the mapping class group of the sphere is Z2, and a generator
is given by any mirror image of the sphere (x, y, z) 7→ (−x, y, z). The mapping class group
may depend on the category (topological, smooth, etc.) we are working with.

From now on we will only consider the action of G on Hom(π1Σ, G) by
conjugation, that is, for a ∈ π1Σ and g ∈ G,

(g · ρ)(a) = gρ(a)g−1.

Let us look at some example. When G is abelian, the relation of the
commutators is trivially satisfied and we have

Hom(π1Σ, G) ' G2g.

Moreover

Hom(π1Σ, G) ≡ Hom(π1/[π1Σ, π1Σ], G) ≡ Hom(H1(Σ), G)

where the last equivalence follows from the fact that the abelianization of
the fundamental group is the first homology group (Hurewicz theorem).

When G = R, we get Hom(H1(Σ),R) ' H1(Σ,R), by the universal co-
efficient theorem. As Σ is a genus g surface we have H1(Σ,R) ' R2g. A
worthwhile remark is that the cup product2 defines a map

H1(Σ,R)×H1(Σ,R)→ H2(Σ,R).

By choosing a volume form in Σ, which we can as Σ is orientable, we get a
symplectic form (non-degenerate closed 2-form) in H1(Σ,R). This symplectic
form is indeed a general feature.

We want to show next with an example how the orbit space for the action
of G by inner automorphisms can result in a non-Hausdorff space.

Let Σ be a genus 2 surface and G = SL(2,R). Note that if we choose
images of the generators of π1Σ in such a way that ρ(a1) = ρ(b2) and ρ(a2) =
ρ(b1) the relation is automatically satisfied.

Fix a real number a > 1 and define the matrix

A :=
(
a 0
0 a−1

)
.

Give two representations ρ1, ρ2 by

ρ1(a2) = ρ1(b1) = ρ2(a2) = ρ2(b1) = g

2Cohomology class of the wedge product of two representatives of cohomology classes
[α] ∪ [β] = [α ∧ β].
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and
ρ1(a1) = ρ1(b2) = ( 1 1

0 1 )

ρ2(a1) = ρ2(b2) = ( 1 0
1 1 )

We check that ρ1 is not in the same SL(2,R)-orbit of ρ2. If there were, there
would exist S = ( x yz t ) ∈ SL(2,R) such that Sρ1(h)S−1 = ρ2(h) for h ∈ π1Σ.
This would mean that S would commute with A = ρ1(a2) = ρ2(a2),

( x yz t )
(
a 0
0 a−1

)
=
(
ax a−1y
az a−1t

)
=
( ax ay
a−1z a−1t

)
=
(
a 0
0 a−1

)
( x yz t ),

i.e., y = z = 0, and hence t = x−1. But then, for x = a1 we would have(
x 0
0 x−1

)
( 1 1

0 1 )
(
x−1 0

0 x

)
=
(

1 x2

0 1

)
6= ( 1 0

1 1 ).

We shall see that the orbits of ρ1 and ρ2 cannot be separated by open sets
by finding a sequence that converges to both of them at the same time. To
claim this we are using the characterization of Fine print 1.11: the compact-
open topology when the target space is a metrizable (any manifold is) is the
uniform convergence over compact subsets. As moreover the source (π1Σ) is
discrete, it coincides with the point convergence. We can think about the
topology by looking at converging sequences, which converge if and only if
they do for every point.

We first define a sequence ϕn of representations converging to ρ1. Define
ϕn by ϕn(a2) = ϕn(b1) = A,

ϕn(a1) = ϕn(b2) =
(

(1+a−2n)1/2 1

a−2n (1+a−2n)1/2

)
.

We have that ϕn converges to ρ1, whereas

AnϕnA
−n =

(
(1+a−2n)1/2 a−2n

1 (1+a−2n)1/2

)
converges to ρ2, so [ρ1] and [ρ2] cannot be separated by two open sets and
the orbit space is not Hausdorff.

In this situation, one can produce a Hausdorff space by identifying points
that do not have disjoint open neighbourhood. This identification generates,
but is not necessarily, an equivalence relation. This process gives the largest
quotient that is Hausdorff. This has two problems. In general, everything
could collapse to a point, like in R2 with the R+ action λ · (x, y) = (λx, λy).
And second, it may not be so easy to understand if one thinks about col-
lapsing orbits. A solution to both problems is the GIT (Geometric Invariant
Theory) quotient: we forget about some points from the beginning in such a
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way that the quotient will be Hausdorff and will have “as many orbits as pos-
sible” (this is not a precise statement). Naively, we get rid of the orbits that
are too bad, and from the remaining we identify the ones with non-disjoint
closure. In the example of R2, we just have to forget about the origin in
order to get a circle as a quotient. If we want to do this in our case, we
should start with the completely reducible, or semisimple, representations
(those that can be decomposed as a sum of irreducible ones).

Fine print 2.2. This is not the best example of a non-Hausdorff quotient to take in your
pocket. Instead, consider the action of R∗ on R2 \ {(0, 0)} by (x, y) ∼ (ax, a−1y). The
orbits are then hyperbolas, the x-axis without the origin, and the y-axis without the origin.
The resulting topology is like the line with double origin (where the neighbourhoods of
one origin do not include the other origin). A visual way to understand this is by drawing
the line y = 1. The point (0, 1) represents the y-axis, and each other point represents a
hyperbola. The x-axis is the second origin, which cannot be separated from y-axis by two
disjoint open sets. Thus, the quotient space is not T2, but it is still T1, as all points are
closed.

Fine print 2.3. It is interesting to have in mind the relation between Hausdorff and metriz-
able, that is, a topological space such that its topology comes from some metric. Any
metrizable space is Hausdorff, as we can take balls. However, the converse is not necessar-
ily true. Nagata-Smirnov metrization theorem states that a topological space is metrizable
if and only if it is regular (a non-empty closed set and a point outside it can be separated
by open neighbourhoods, axiom T3), Hausdorff (this is not necessarily a consequence of
regular) and has a base that is a union of countably many locally finite collections of open
sets (this is called a σ-locally finite base).

2.3 A flat bundle for a representation

We have discussed the space of all representations and the action of the group
on it. We go back now to the study of a single representation and associate
a fibre bundle to it.

Recall that the universal cover Σ̃ is a principal π1Σ-bundle over Σ. Given
a representation ρ : π1Σ→ G, we consider the product manifold Σ̃×G and
quotient it by the right action of the group π1Σ defined by

(x, g) · α = (x · α, ρ(α−1)g).

The resulting space

Eρ = Σ̃×G/〈(x, g) ∼ (x · α, ρ(α)−1g) for α ∈ π1Σ〉

has a projection π : Eρ → Σ, given by π : [(x, g)] 7→ p(x) where p : Σ̃→ Σ is
the projection of the universal cover. It moreover has an action of G on the
right, for h ∈ G,

[(x, g)] · h = [(x, gh)],
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which is well defined by the associativity of the group. The action of π1Σ is
free and transitive on the fibres of the projection π, so this looks a lot like a
principal G-bundle...

In order to prove this claim formally, we use trivializations, as we are
going to need them anyway. Take an open set Ui ⊂ Σ such that p−1(Ui) is a
disjoint union of open sets Uα

i , each of them homeomorphic to Ui. We define
the trivialization ϕαi by

ϕαi : Eρ|Ui → Ui ×G
[(x, g)] 7→ (p(x), g)

where (x, g) is taken such that x ∈ Uα
i . We look now at the transition maps

between Uα
i and Uβ

j . We will have a transition map whenever Uij := Ui∩Uj 6=
∅. Consider the subsets Uα

ij ⊂ Uα
i and Uβ

ij ⊂ Uβ
j that project onto Uij. There

exists an element Γβαij ∈ π1Σ such that Uβ
ij · Γ

βα
ij = Uα

ij. We then have

Ui ×G → Eρ|Ui Eρ|Uj → Uj ×G
(p(x), g) 7→ [(x, g)] = [(x · Γβαij , ρ(Γβαij )−1g)] 7→ (p(x), ρ(Γβαij )−1g)

The transition maps are given by constant maps ρ(Γβαij )−1 = ρ(Γαβij ) ∈ G.

Fine print 2.4. Recall that the property that for each point in Σ there exist an open neigh-
bourhood U whose preimage in Σ̃ consists of a disjoint union of open sets homeomorphic
to U (through the projection) follows from the fact that Σ̃ is a principal π1Σ-bundle, the
discreteness of π1Σ and the way we defined charts for every point (just by concatenation
of paths).

Fine print 2.5. It may seem we are taking too many trivializations, as we have countably
infinitely many for each open set Ui, whereas one would certainly be enough. This is not
an issue but an advantage, as we thus see that the fibre bundle structure is canonical, that
is, does not depend on any choice.

These trivializations with smooth transition maps, together with an atlas
of Σ, define an atlas for Eρ. If we want to properly check that we get a
manifold, it remains to check that the induced topology is second countable
and Hausdorff. The second countability just follows from the fact that π1Σ
is discrete and both Σ and G are second countable.

Proving Hausdorffness requires a bit more of work. Consider [(x, g)] and
[(y, h)]. If p(x) 6= p(y), consider two separating neighbourhoods Ux, Uy ⊂ Σ.
The open sets π−1(Ux), π

−1(Uy) ⊂ Eρ separate [(x, g)] and [(y, h)]. When
p(x) = p(y), we have [(y, h)] = [(x, g′)] for some g′ ∈ G. In order to separate
[(x, g)] and [(x, g′)], we use a trivialization ϕαi such that x, x′ ∈ Ui. We sepa-
rate g and g′ in G by Ug and Ug′ , and consider a small open neighbourhood
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Vx of x. We then have that (ϕαi )−1(Vx×Ug), (ϕαi )−1(Vx×Ug′) ⊂ Eρ separate
[(x, g)] and [(x, g′)].

We have thus associated to any representation ρ : π1Σ → G a principal
G-bundle Eρ, which has a very special property, it admits locally constant
transition maps (hence constant if the domain is connected). Actually, we
are getting these transition maps also from the representation, as they are
the image of the map ρ.

A choice of trivializations with locally constant transition maps on a fibre
bundle E is sometimes called a flat structure on E, and the bundle E is
said to be a flat bundle. We next see why.

2.4 Flat bundles and flat connections

Having constant transition maps can be interpreted geometrically in terms
of a connection. For each trivialization take the trivial connection of Exam-
ple 1.11 and pull it back to the bundle. This will define a global smooth
connection since the transition maps are constant. We can spell it out if we
wish. For a trivialization ϕi : E|Ui → Ui ×G, we have the differential of its
inverse (ϕ−1

i )∗ : T (U ×G)→ TE and we define

HE := (ϕ−1
i )∗(TU × {0}).

This is well defined globally as

(ϕ−1
j )∗(TU × {0}) = (ϕ−1

j ◦ ϕi)∗(ϕ−1
i )∗(TU × {0}) = (ϕ−1

i )∗(TU × {0}),

since ϕ−1
j ◦ ϕi is the product of the identity (on the open set U) times a

constant map (on G, the transition map).
Conversely, a flat connection determines trivializations with locally con-

stant transition maps. A flat connection determines a foliation integrating
the horizontal distribution. One then proves that in a sufficiently small open
set of U , the foliation is such that any leaf intersected with E|U is an open
set that maps diffeomorphically to U via the projection π (this is easy for
principal bundles, as we can do it around a point of E and then use the
G-action). By choosing, for some point x0 ∈ U , an identification with the
typical fibre ϕ : Ex0 ' F . We define a trivialization, for x ∈ E|U belonging
to the leave Lx ⊂ E passing through x, by

x 7→ (π(x), ϕ(Lx ∩ Ex0)).

The trivializations thus defined have transition maps given by locally con-
stants maps, as the group G acts freely and transitively on the leaves of the
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foliation. They are locally constant as it is an element g that moves a leaf to
another leaf, independently over which point of the open set we are.

As we made the choice of ϕ, the real equivalence is between flat structures
up to equivalence (by maps that must be constant on any open set) and flat
connections.

Fine print 2.6. This equivalence is known in general, for any fibre bundle, as the Riemann-
Hilbert correspondence. If you are interested in this for complex-analytic spaces, take a
look at Conrad’s notes: math.stanford.edu/~conrad/papers/rhtalk.pdf

Fine print 2.7. If the curvature is not flat, we can still relate the holonomy of the connec-
tion with the curvature. This is Ambrose-Singer’s theorem.

2.5 A representation for a flat connection

Let E be a principal G-bundle with a flat connection. For any x ∈ E and a
path γ in M starting at π(x), the horizontal lift of γ is the unique path γ̃ in
E starting at x such that π◦ γ̃ = γ and its tangent vectors at each point lie in
the horizontal distribution. If we think of the flat connection as a distribution
that determines a flat structure, that is, trivializations {ϕi} to Ui × G with
constant transition maps, we can actually see the lift. Locally, given a point
x ∈ E with ϕi(x) = (u, g), a path γ(t) in Ui is lifted to ϕ−1

i (γ(t), g). These
local paths glue well as the transition maps are constant.

If the path we are lifting is a loop, we will go back to the same fibre, to
some point x · g, for a uniquely defined g ∈ G, as the action of g is free and
transitive. As the distribution is G-equivariant, the element g only depends
on the path γ (and on π(x)), not on the starting point of the fibre.

Now the slogan, and what you will find written in many places without
proof, is that the flatness of the curvature makes that the horizontal lift
depend only on the homotopy class, so we get a map

ρ : π1Σ→ G.

This is true and in most of the references they will think of connections as
covariant derivatives. This is the case of Chapter 13 of [Tau11], where a
detailed proof is given.

In our approach, the flat connection is given by an integrable horizontal
distribution. It is possible to then take a set of trivializations with constant
transition maps. In this case, the definition above of the horizontal lift gives
an algorithm to compute the holonomy representation. Cover your curves
with a finite sequence of good open sets {Ui}ri=1, the holonomy is given by
gr r−1 . . . g32g21. We just have to prove that this gives the identity for paths
homotopic to the identity. We then cover not only the curve but the bounded

math.stanford.edu/~conrad/papers/rhtalk.pdf


46 CHAPTER 2. SURFACE GROUP REPRESENTATIONS

component it determines with good open sets. If we do this with one open set,
the monodromy is clearly the identity by the definition of the horizontal lift.
For two open sets, it follows from the condition gijgji = Id. For three open
sets, it follows from the cocycle condition gijgjkgki = Id. For an arbitrary
number of open sets, we do it by induction. By modifying the path in one
open set, we get a homotopic path with the same holonomy that now can be
covered with one less open set, allowing us to apply induction.

(The arguments above are of course best, and perhaps only, understood
with the images from the lectures, which at some point in the future will
appear in these lecture notes.)

Remark 2.1. Recall that by good we mean connected and simply connected
with connected and simply connected intersections (you can think of balls,
for instance).

In order to move from here to Higgs bundles, it will be convenient to
look at vector bundle counterpart of all this. For G = GL(n,C) as a real
group, we can restate the correspondence in terms of complex vector bun-
dles (these are bundles whose fibres are complex vector spaces, but whose
transition functions are not necessarily holomorphic). To each representation
ρ : π1Σ → GL(n,C) we can associate a flat complex vector bundle Eρ(Cn)
or equivalentely Σ̃ ×G Cn, which carries a flat connection seen as covariant
derivative.



Chapter 3

The definition of Higgs bundle

Higgs bundles were not introduced from the study of surface group represen-
tations, but by doing it this way, we give a motivation and we will be easily
acquainted with the Hitchin–Kobayashi correspondence.

In this chapter, we will just refer to the main ideas, very sketchily, and
give some references. There are several inaccuracies, but we hope it is for
the best of a first aproach to this theory. Purposely, the desired rigor of the
previous chapters will turn at the end of this chapter into some sort of mild
carelessness for the sake of a better understanding.

3.1 Some results on complex geometry

Higgs bundles will be defined as holomorphic objects. Apart from a mention
when we talked about changes of charts or transition maps, we have not really
dealt with holomorphicity. We need some results on complex geometry.

We start with complex structures on manifolds.

� Let M be a complex manifold. By pulling back to the manifold the
linear complex structure on TzCn ∼= Cn, for any z ∈ Cn, we get an
almost complex structure, that is, a bundle map J ∈ End(TM) such
that

J2 = − Id .

The complexification TCM can be decomposed into the +i and −i
eigenspaces of J , namely,

TCM = T 1,0M ⊕ T 0,1M.

We have a dual complex structure J∗ ∈ End(T ∗M), which analogously
decomposes the differential forms into the (1, 0)-forms, which vanish on

47
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T 0,1M , and the (0, 1)-forms, which vanish on T 1,0M .

Ω1
C(M) = Γ(T ∗CM) = Ω1,0(M)⊕ Ω0,1(M).

Thus, the operator d : Ω0
CM → Ω1

CM decomposes into

d = ∂ + ∂̄,

where ∂ : Ω0
C(M) → Ω1,0(M) and ∂̄ : Ω0

C(M) → Ω0,1(M). Note that
we are just making this claim for Ω0

C(M).

� The decomposition into (1, 0) and (0, 1)-forms allows us to define (p, q)-
forms, Ωp,q(M), the space of forms generated by wedge product of p
(1, 0)-forms and q (0, 1)-forms. In our mind, they look like sums of
expressions like

dz1 ∧ . . . ∧ dzp ∧ dz̄1 ∧ . . . ∧ dz̄q.

� If we start with an almost complex structure, J ∈ End(TM) such
that J2 = − Id, it may not necessarily come from a holomorphic
structure on the manifold. That is the case when an integrability
condition is satisfied. This is stated in several ways. One is that
the sections of T (1,0) are involutive with respect to the Lie bracket,
[Γ(T (1,0)),Γ(T (1,0))] = Γ(T (1,0)). This can be restated in terms of the
so-called Nijenhuis tensor. Lastly, in terms of d, the almost complex
structure given by J is integrable if we have d = ∂+ ∂̄ for any Ωp,q(M).

� This type decomposition applies also to forms with values in a vector
bundle. In particular, a covariant derivative

∇ : Ω0(M,E)→ Ω1(M,E),

decomposes into (1, 0) and (0, 1) parts, ∇ = ∇′ +∇′′.

For vector bundles, the notation is a bit clumsy. A “complex manifold” is
a complex manifold, no doubt about it. A complex vector bundle is not
a complex manifold, but a vector bundle whose fibres are complex vector
spaces. The analogous concept to complex manifold for vector bundles will
be holomorphic vector bundle.

� A holomorphic vector bundle E → M is a vector bundle π : E →
M such that E, as a manifold, is a complex manifold, the base M
is a complex manifold, and the map π is holomorphic. Of course, a
holomorphic vector bundle is in particular a complex vector bundle.
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� We will focus on complex vector bundles E → M with M a complex
manifold. In this case, a holomorphic structure on E is equivalently
given by a ∂̄-operator, a linear map

∂̄E : Ω0(M,E)→ Ω0,1(M,E),

satisfying the Leibniz rule and squaring to zero. This map is sometimes
called a partial connection. This is a meaningful name, as it is telling us
that for a complex vector bundle, in the presence of a complex structure
on M , a connection such that ∇′′2 = 0 is carrying in particular a
holomorphic structure for E.

3.2 A funny way to recover a flat connection

We saw how surface group representations correspond to bundles with a
flat connection, passing via flat structures. The equivalence between surface
group representations and flat structures (trivializations with locally constant
transition maps) is quite direct. The equivalence between flat structures and
flat connections is a bit trickier in some more generality and is referred to as
the Riemann-Hilbert correspondence.

Now we are going to relate all these representations and connections with
an object called Higgs bundle, and the way to do it will not be so clear. If a
holomorphic structure on E, when M is complex, is a ∂̄-operator, something
weaker than a connection on E (such that (∇′′)2 = 0), one could expect
to recover a connection from a holomorphic structure, the ∂̄-operator, plus
something else. This something else would be the (1, 0)-part of the connec-
tion, but this is not quite interesting. There is a seemingly intricate way to
do it, and precisely because it is not so clear it is actually interesting. Just
keep your faith.

� Recall that a hermitian metric on a complex vector space W is a linear
pairing h(·, ·) such that, for v, w ∈ W , we have h(v, w) = h(w, v).

� The geometric version of this is a hermitian metric h on a manifold: a
smoothly varying hermitian metric hp on the vector spaces (TpM)C for
p ∈M .

� It is a fact, which requires a proof, that a hermitian metric h on a holo-
morphic vector bundle over a complex manifold uniquely determines a
compatible connection, called the Chern connection. It is the unique
connection ∇h,∂̄E such that, for X, Y ∈ Γ(E), we have

dh(X, Y ) = h(∇h,∂̄EX, Y ) + h(X,∇h,∂̄EY )
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and ∇′′ = ∂̄ ⊗ IdE. Details about this can be found in Section 1.4
of [Kob14].

But we were interested in flat connections.

� The difference between any two connections is an element of Φ ∈
Ω1

C(M,EndE), so a way of recovering a flat connection from the Chern
connection is by choosing wisely Φ such that ∇h,∂̄E + Φ is flat.

� The space Ω1
C(M,EndE) decomposes into Ω1,0(M,EndE)⊕Ω0,1(EndE).

� The hermitian metric allows us to produce an element of Ω0,1(M,EndE)
from an element of ϕ ∈ Ω1,0(M,EndE). If we write ϕ as a combination
of α⊗ T where α ∈ Ω1,0(M) and T ∈ Γ(EndE), we define

(α⊗ T )∗ := ᾱ⊗ T ∗h ,

where h(TX, Y ) = h(X,T ∗hY ) is the adjoint endomorphism with re-
spect to h.

� Since we want to get moreover to a holomorphic object, we will consider
holomorphic ϕ ∈ Ω1,0(M,EndE), which is usually denoted by ∂̄Eϕ = 0,
and define

Φ = ϕ+ ϕ∗.

� From a holomorphic structure on E, we would like to recover a flat
connection by choosing a hermitian metric h and a holomorphic ϕ ∈
Ω1,0(M,EndE) such that

∇h,∂̄E + ϕ+ ϕ∗h

is flat.

When we say we would like we are completely honest: such a ϕ ∈
Ω1,0(EndE) may simply not exist. And perhaps this method will not re-
cover all the possible flat connections.

Fine print 3.1. If we denote by F∇ the curvature of the connection ∇ we have

F∇h,∂̄E
+ϕ+ϕ∗h = F∇h,∂̄E

+ [ϕ,ϕ∗h ].

This together with the holomorphicity condition ∂̄Eϕ = 0 are known as Hitchin’s equa-
tions.
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We were concerned with surface group representations and then with flat
connections on bundles over an orientable surface. The fact of the base
being a manifold means that we can always choose a complex structure. In
general, the hypothesis of having a complex structure on M is very strong.
For instance, it is not known whether the six-sphere S6 admits or not a
complex structure, but we are safe for surfaces. Thus we can try to do the
above process. Before we do that, we forget about the hermitian metric and
put together the holomorphic objects we have got.

Definition 3.1. A Higgs bundle (E,ϕ) over a Riemann surface Σ is a holo-
morphic vector bundle E → Σ together with a Higgs field ϕ, a holomorphic
ϕ ∈ Ω(1,0)(EndE).

Remark 3.2. The bundle of holomorphic top (n, 0)-forms, where n is the com-
plex dimension of the manifold, is called the canonical bundle and denoted by
K. That is why the Higgs field is usually denoted by ϕ ∈ H0(End(V )⊗K),
where H0 stands for holomorphic sections.

3.3 What if I have a Higgs bundle?

The previous Section has described how to get a holomorphic object, which
we defined as Higgs bundle, from a flat connection. What if we start with the
Higgs bundle? If we trace back the process, it all boils down to the crucial
choice of a hermitian metric h. It is crucial because the resulting connection
will be

∇h,∂̄E + ϕ+ ϕ∗,

and we want this connection to have zero curvature. In order words, we are
solving the equation

F∇h,∂̄E
+ [ϕ, ϕ∗h ], (3.1)

for the metric h.

Fine print 3.2. When we talked about Hitchin’s equations, h was fixed and ϕ is the
unknown.

Solving equation (3.1) may and may not be possible. The surprising fact
is that it depends on a topological condition on the Higgs bundle. Let us
sketch what the ingredients of this definition are.

We first introduce the degree. We saw in Section 1.3 that an orientable
surface minus a point retracts to a bunch of circles. It can be proved that
the bundle retracts to the retracted base and a complex line bundle over a
bunch of circles must be trivial, and hence the original bundle restricted to
the base minus a point is also trivial. Thus, a complex line bundle can be
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described with only one set of transition maps, as the ones seen in Problem 2
of Assignment 5. The transition map can be described by a homomorphism
S1 → S1. These homomorphisms are always of the form z 7→ zn for n ∈ Z
(we are somehow defining the degree of a map here) and the number n is the
degree of the complex line bundle. When we have a general bundle, its degree
is defined as the degree of its determinant bundle, as defined in Section 1.4.

We define the slope of a bundle F as the quotient of the degree by the
rank,

µ(F ) :=
degF

detF
.

A subbundle F ⊂ E of a Higgs bundle (E,ϕ) is called ϕ-invariant if ϕ(F ) ⊂
F ⊗ Ω1,0

hol. A Higgs bundle is called stable when for each ϕ-invariant strict
subbundle F , one has

µ(F ) < µ(E).

Finally, a Higgs bundle is called polystable if it is a sum of stable bundles
of the same slope.

We have defined all this to finish this section the following remarkable
fact: a Higgs bundle admits solutions of (3.1) if and only if it is polystable.

3.4 The Hitchin–Kobayashi correspondence

The somehow involved process of passing from flat connections to Higgs
bundles and back has a very neat version in terms of spaces of parameters, or
moduli spaces. These correspond to equivalences classes, and are expressed
as quotients by the group of symmetries, as the inner action of G on the
representations in Section 2.2.

Homred(π1Σ,GL(n,C))

GL(n,C)
∼=
{∇ red. conn. | F∇ = 0}

G
'JΣ

{Polystable (E,ϕ)}
GC

.

There actions of the real and complex gauge groups G and Gc, groups of
automorphism of bundles, such that there is an isomorphism at the level of
moduli spaces. The Hitchin–Kobayashi correspondence refers to the second
isomorphism, which depends on the choice of a complex structure JΣ on the
surface, but we include both to see the whole picture at once.

Somehow, if we started looking at the moduli space of surface group
representations —which can be seen as a moduli space of flat connections—,
Higgs bundles give another presentation of this moduli space, consisting of
holomorphic objects.
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By the way, each of these moduli spaces, although they are isomorphic,
has a different name. From left to right: Betti, de Rham and Dolbeault
moduli spaces.

3.5 Where to look next

We point at two directions where one uses the properties of the moduli space
of Higgs bundle to say something about any of these moduli spaces.

Morse theory

Morse theory is a way to obtain topological information about a smooth man-
ifold by means of a differentiable function satisfying certain properties, called
Morse function. The typical example, which can be found almost everywhere,
including Wikipedia (https://en.wikipedia.org/wiki/Morse_theory), is
that of the torus. The height function is a Morse function and it is possible
to give a cell decomposition of the manifold, by starting with a disk and
adding cells everytime the Morse function has a critical point.

It seems unproportionate to get all the way to holomorphic objects if
we just want something smooth, especially since the moduli space of flat
connections is The point is that the moduli space of Higgs bundles has a
Morse function that is defined in a very simple way: it is just the norm of
the Higgs field. You can see this in page 96 of [Hit87], where the indices of
the critical points of the moduli space for n = 2 and the dimensions of the
homology groups (or Betti numbers) is explicitly computed.

HyperKähler structure

Even though we keep claiming that by passing to Higgs bundles one gets
holomorphic objects, this is not the first time complex geometry appears.
Actually, as we are looking at GL(n,C), one can see from the realization as
a moduli space of flat connections that there is a complex structure, say I.
By fixing a connection, it is essentially multiplying by i the difference of any
connection with the initial connection.

Higgs bundles give also a complex structure, this time coming from the
complex structure we put on the surface, which is not the same as the one
we already had. Call it J . Let us say that corresponds to multiply by i
the Higgs field. A very good place to see how these structures are properly
defined in a simple case is Section 5 of [GX08].

https://en.wikipedia.org/wiki/Morse_theory
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Moreover, the two complex structures I and J satisfy

IJ = −JI

and hence the composition K = IJ defines another complex structure (for-
mally, an almost complex structure that happens to be integrable). But we
do not have one, two or three complex structures, as any expression of the
form

aI + bK = cK

for real numbers a, b, c such that a2 + b2 + c2 = 1 defines again a complex
structure. We have a 3-sphere of complex structure. The complex structure
does not come on its own, but with a symplectic structure (formally, on the
smooth part), which makes all these structure simultaneously complex and
symplectic in a very special way, they are so-called Kähler structures. The
structure that we obtain on the moduli space is a hyperKähler structure,
which is not such a common thing to encounter in mathematics.

But that is already already a different story for a new trip...
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