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Abstract
As machine learning models continue to grow in significance, mathematics play a
crucial role in comprehending the complex underlying principles behind them. How
can we ensure the existence of a predictive function from a given dataset? In this
work, we will take an analytical approach to machine learning, emphasizing function
approximation as a central component. This research seeks to address these concerns
by exploring the mathematical foundations of function approximation in machine
learning, with a specific focus on neural networks.

In particular, we delve into a significant finding, the theorem proved by Leshno-
Lin-Pinkus-Schocken in 1993 [LLPS93], which states that a multilayer feedforward
network equipped with a non-polynomial activation function can effectively ap-
proximate any continuous function. Our work revolves around understanding and
reinterpreting the proof, while expanding and providing further details. Through
this study, we aim to bridge the gap between the practical application of machine
learning and the mathematical principles that underpin its success.

*Cover image generated by an AI (DALL-E).
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Resum
A mesura que els models de machine learning continuen guanyant rellevància, les
matemàtiques juguen un paper essencial en la seva comprensió. Com podem garan-
tir l’existència d’una funció predictiva a partir d’un conjunt de dades donat? En
aquest treball prendrem una visió analitica del machine learning posant èmfasi en
l’aproximació de funcions com a component central. Aquesta recerca pretén explorar
els fonaments matemàtics de l’aproximació de funcions en l’aprenentatge automàtic
amb un focus específic en les xarxes neuronals.

En particular, aprofundim en una troballa important, el teorema demostrat per
Leshno-Lin-Pinkus-Schocken el 1993 [LLPS93], que afirma que una xarxa neuronal
equipada amb una funció d’activació no polinomial pot aproximar qualsevol funció
contínua. El nostre treball gira entorn a comprendre i reinterpretar la demostració,
alhora que ampliar i proporcionar més detalls. A través d’aquest estudi, pretenem
establir un nexe entre l’aplicació pràctica de l’aprenentatge automàtic i els principis
matemàtics que sustenten el seu èxit.
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Chapter 1

Introduction

Computers are like a bicycle for our minds.
— Steve Jobs, Michael Lawrence Films

Our brain is constantly classifying and recognizing. For instance, when we spot a
dog on the street, one easy classification we can make is {dog, not dog}, which is
probably too easy for our brain—it’s almost instantaneous. However, things get a
bit more complex when we read the teacher’s whiteboard. What happens when we
encounter a symbol that confuses us because it resembles another? We can interpret
the mathematics behind this reasoning as the brain seeking/creating a function that
provides us with the certainty of recognizing that particular letter. Eventually, we
reach a point where we feel confident enough to write it down in our notes.

Artificial intelligence aims to replicate the remarkable capabilities of our brains.
It seeks to develop computational models and algorithms that can perform tasks
such as classification, recognition, and decision-making with a level of accuracy
and efficiency comparable to human intelligence. When AI first emerged, one of
the initial challenges was actually hand-written digit recognition, exemplified by
the MNIST digits dataset. This dataset comprises 60,000 examples of handwritten
digits from 0 to 9. To enable a machine learning model to recognize these digits,
it must effectively map each image to its corresponding number. This problem
naturally aligns with a mathematician’s perspective of function learning, where the
goal is to approximate a function based on a given dataset consisting of points in space.

Neural networks are widely employed in artificial intelligence to address various
problems. The theory of function approximation using neural networks has a long
history, dating back to the work by McCulloch and Pitts in the 1940s [MP43]. These
pioneers laid the groundwork for understanding how neural networks can mimic the
behavior of biological neurons to compute complex functions. Since then, significant
advancements have been made in the design, training, and optimization of neural
networks, enabling them to tackle increasingly challenging tasks.
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3

This Bachelor’s thesis aims to explore the Leshno-Lin-Pinkus-Schocken Theorem
[LLPS93], a fundamental result in deep learning that establishes the necessary and
sufficient conditions for an activation function to enable neural networks to act
as universal approximators. Let M denote certain class of L∞

loc(R) functions (see
Definition 22).

The statement is the following:

Theorem 30

Let σ ∈ M. Set

Σn = span{σ(w · x+ θ) : w ∈ Rn, θ ∈ R}.

Then Σn is dense in C(Rn) if and only if σ is not a polynomial.

To motivate this theorem, in the first chapter we start by introducing some basic
concepts of machine learning, accompanied by examples of models such as linear
regression and logistic regression. We then proceed with a detailed description of
a neural network model, accompanied by its purely mathematical definition. Since
we take an analytical perspective on machine learning, in the following chapter,
we provide definitions and results from functional analysis focused on function
approximation. The fourth and final chapter presents the main theorem along with
its extensive and detailed proof.



Chapter 2

Machine Learning

2.1 Machine Learning Basics
Machine Learning focuses on the development of algorithms and models that enable
computers to learn from data with the aim of making predictions without being
explicitly programmed.

The machine learning model is built using one or more input variables which are also
called predictors or independent variables. The output of this model is the response
or dependent variable which we want to predict. Machine learning is about learn-
ing an approximate function that can be used to predict the value of response variable.

We can think about learning as the way we understand it as a human. We can
classify a learning problem based on the degree of feedback. Machine learning models
fall into three primary categories:

• Supervised learning, where we have immediate feedback.

• Reinforcement learning, where we have indirect feedback. For example when
we are playing the game of chess.

• Unsupervised learning, where we have non-feedback signal. For example,
deducing which dog belongs to each owner.

Machine learning models simplify reality for the purposes of understanding or pre-
diction. This prediction can be either a numerical prediction or a classification
prediction. Several machine learning algorithms are commonly used, for example to
name a few: linear regression, logistic regression, decision trees, random forests...

4
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2.1.1 Motivation

In order to motivate our study of machine learning, we are going to present some
examples.

Example 1. Let us consider the following hypothetical scenario. Imagine that we
are the Data Scientist of a big football club. The club needs a new main striker
for the next season and we are tasked with evaluating each candidate and decide
whether to sign them or not. We have loads of data from each player.

Player Attributes Last Season:

Age 21
Matches Played 38
Goals 14
Assists 11
Expected goals 10.56
Shots on target 32
... ...

• Input: xc = (xc1 , ..., xcd) "attributes of the player".

• Output:

y =

{
sign
not sign

• Target function: f "ideal player signing formula".

• The dataset {(x1, y1), (x2, y2), ..., (xn, yn)} consists of historical records of strik-
ers, where xi represents the player’s attributes and yi indicates the classification
of whether they were signed or not.

We are looking for the function f such that f(xc) = y.

An important aspect of machine learning is that many supervised learning tasks are
about function learning. In general, a fundamental problem in machine learning can
be defined as follows: given a dataset of the form {(xi, yi)}mi=1 ⊂ Rn × R, the goal is
to find a model f that accurately predicts the output yi for a given input xi.

Example 2. An example of a supervised learning task is digit recognition. The
objective is to identify handwritten digits (0-9) based on input images. In this task,
we aim to learn a probability distribution function denoted as f , which maps a set
of pixel values ranging from 0 (black) to 255 (white), representing a 28x28 image,
to a probability distribution over the digits 0 to 9. In practice, we often learn the
function

f : {0, ..., 255}28×28 −→ R10

where big values represent that is very likely and small very unlikely.
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Example 3. Example of a classification problem. We want to classify if an image is
a dog or not a dog. We would like to produce a value which is correlated with the
probability of this image being a dog or not a dog. We can approach the problem
in the following way. We want to find a function that takes very high values when
dog-image and very low values when non dog images and takes the value 0 when its
uncertain. That function is

d : R#pixels in image → R.

This is what we mean by many problems can be recast as function learning. Note
that there is not a God-given reason why this function should exist. We know that
certain points in space, and they have certain values associated to them, but we dont
know that there is some function.

2.1.2 Linear Regression

A linear regression algorithm is used to predict numerical values, based on a linear
relationship between different values. A simple linear model is defined by the following
equation:

yi = w0 + w1xi + ϵi

where i = 1, ..., n.

Note that y is the dependent variable (response), x is the independent variable
(predictor), w0 is the intercept, w1 is the slope coefficient and ϵ is the error term or
the residual.

Figure 2.1: y response variable: unemployment rate , x predictor: GDP growth. [BS17]

We can add additional p predictors to a simple linear model, transforming it into a
multivariate linear model, which we define as follows:

yi = w0 + w1x1i + . . .+ wpxpi + ϵi.

More commonly, the multivariate linear regression equation is expressed in matrix
form as: y = wTx+ θ.
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2.1.3 Logistic Regression

Logistic regression is a model for predicting the probability that a binary response
is 1. It is suitable for classification tasks, as well as for prediction of probabilities.
From a statistical perspective, it is defined by assuming that the distribution of the
binary response variable, y, given the features, x, follows a Bernoulli distribution
with success probability p.

P (y = 1|X = x) = p and P (y = 0|X = x) = 1− p.

We need to define the concept of sigmoid function that will be important along the
work. A sigmoid function is a mathematical function that maps input values to a
range between 0 and 1. We consider the following sigmoid function, the logit inverse
function:

logit : (0, 1) → R and is expressed as: logit(x) = log

(
x

x− 1

)
logit−1 : R → (0, 1) and is expressed as: logit−1(x) =

ex

1 + ex

The linear predictor, wTx+ θ, fluctuates between (−∞,∞) where x represents all
predictors in the model. To address this difference in scale, the outcome variable is
transformed using the logit function. The logistic regression model assumes a linear
(affine) relationship between the feature vector xi and the log odds of p. Namely,

logit(p) = wTx+ θ.

The logistic model can be alternatively expressed using the inverse logit function:

P (y = 1|X = x) = logit−1(wTx+ θ).

2.2 Multilayer Feedforward Networks
Artificial Neural Networks (ANN) are the quintessential deep learning models, espe-
cially multilayer feedforward networks. They are widely used for nonlinear function
approximation. The goal of an artificial neural network is to approximate some
function f ∗. For example, for a classifier, y = f ∗(x) maps an input x to a category y.

The term neural refers to the fact that this model was originally inspired by how
biological neurons process information.

The term feedforward indicates the direction of information flow within the network,
moving only forward in contraposition to backwards. Each layer processes the input
data and passes its output to the next layer, creating a sequence of transformations
until the final output is produced.
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The term network refers to the interconnected structure of artificial neurons. A
multilayer network consists of multiple layers, including an input layer, one or more
hidden layers, and an output layer.

The architecture of the network entails determining its depth, width, and acti-
vation functions used. Depth is the number of hidden layers. Width is the number
of units (nodes) on each hidden layer. The activation function defines how the
weighted sum of the input is transformed into an output from a node in a layer of
the network. Because the activation function plays a crucial role in our work, further
details regarding its importance will be provided in the next section.

2.3 Architecture of a Multilayer Feedforward Net-
work

2.3.1 Artificial neuron

The equation
y = σ(wTx+ θ) (2)

represents what we may call a single layer of a deep learning model, also called
an artificial neuron. Observe that the artificial neuron is composed of an affine
transformation z = wTx+ θ followed by a (generally) non-linear transformation σ(z).

In more detail, x ∈ Rn is the input vector and represents a set of n features or
predictors, w ∈ Rn is the weights vector where each element of the weights vector
wi corresponds to the importance assigned to the corresponding input feature xi. θ
is the bias and σ is the activation function. The result variable is a scalar output
y ∈ R.

Figure 2.2: Components of an artificial neuron. [LMN23]
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2.3.2 Activation Function

The introduction of the activation function in ANN was inspired by biological neural
networks whose purpose is to decide whether a particular neuron fires or not. The
simple addition of such function can tremendously help the network to exploit more,
thereby learning faster. There are various activation functions proposed in the
literature, and it is difficult to find the optimal activation function that can tackle
any problem.

Note that a logistic regression is an artificial neuron where the activation function σ
is logit−1. Two widely popular activation functions are the Hyperbolic Tangent and
Rectified Linear Unit (ReLU):

Hyperbolic Tangent (tanh): R → (−1, 1)

and

ReLU : R → (0,∞) and is expressed as: ReLU(x) = max(0, x)

1

−1

1

Figure 2.3: Graphs of the sigmoid, hyperbolic tangent, and ReLU functions.

2.3.3 Definition

The general architecture of a multilayer feedforward network consists of an input
layer with n input-units, an output layer with m output-units, and one or more
hidden layers consisting of intermediate processing units.

Because a mapping f : Rn → Rm can be computed by m mappings : fj : Rn → R it is
(theoretically) sufficient to focus on networks with one output-unit only. In addition,
since our findings require only a single hidden layer, we will assume hereafter that
the network consists of three layers only: input, hidden, and output.

The Figure 2.4 show a more general network with several hidden layers and several
outputs, meanwhile the Figure 2.4 depricates a simplifyed one with one output and
one hidden layer.
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Figure 2.4: Neural Network with 3
hidden layers and 4 outputs.

Figure 2.5: Neural Network with 1
hidden layer and 1 output.

Definition 1. A multilayer feedforward network is the function

f(x) =
k∑

j=1

βj · σ(wj · x− θj)

where x ∈ Rn is the input vector, k ∈ N is the number of processing units in the
hidden layer, wj ∈ Rn is the weight vector that connects the input to processing unit
j in the hidden layer, σ : R → R is an activation function, θj ∈ R is the threshold (or
bias) associated with processing unit j in the hidden layer, and βj ∈ R is the weight
that connects the processing unit j in the hidden layer to the output of the network.

Let Nw be the family of all functions that can be describe with a given network
architecture. If we can show that Nw is dense in C(Rn), we can conclude that for
every continuous function g ∈ C(Rn) and each compact set K ⊂ Rn, there is a
function f ∈ Nw such that f is a good approximation to g on K.

The guiding question of the present work is: under which necessary and suffi-
cient conditions on σ will the family of networks Nw be capable of approximating to
any desired accuracy any given continuous function?



Chapter 3

Definitions and some results on
function approximation

Creating a machine learning model to predict or classify from given data is a similar
process than when we calculate a function from given points in the space. This is
called function approximation and among the most famous techniques of function
approximation, we find interpolation: such as Taylor polynomial and Chebyshev
polynomial or also the splines approximation.

In this chapter we present some mathematical definitions and known results of
function approximation. If we want to approximate functions, we need to recall the
following notions: metric spaces, distance between functions and density. Also, we
will introduce the Lebesgue measure and the Baire’s theorem which will be crucial
for our understanding of the proof.

Definition 2. We dentoe by C(Rn) the set of continuous functions defined on Rn.

Definition 3. The support of a function u is denoted by

supp(u) = {x|u(x) ̸= 0}

Definition 4. We denote by C∞
0 the set of infinitely differentiable functions C∞, also

called smooth functions, with compact support.

3.1 Metric spaces
Definition 5. A metric (or distance) on a set X is a function d : X ×X → R such
that for all s, t, u ∈ X the following properties are satisfied:

1. d(s, t) ≥ 0 and d(s, t) = 0 if and only if s = t.

2. d(s, t) = d(t, s).

3. d(s, t) ≤ d(s, u) + d(u, t) (triangle inequality).

Definition 6. A metric space is a pair (X, d), where X is a set and d is a distance
in X.

11
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If we take X to be a set of functions, the metric d(f, g) will enable us to measure
the distance between functions f, g ∈ X.

Proposition 7. Let (X, d) be a metric space and B be a basis of open sets for X.
Then, for all open set U in X, we have:

U =
⋃

{Bx : x ∈ U,Bx ⊆ U,Bx ∈ B}.

This proposition states that any open set U in a metric space X can be expressed as
the union of elements in the basis Bx.

Definition 8. Let (X, d) be a metric space. The closure of a set A is defined as
follows:

closure(A) = A = {t | ∀ϵ > 0,∃a ∈ A, d(a, t) < ϵ}.

Proposition 9. Let (X, d) be a metric space and A ⊆ X. Then, a ∈ A if and only
if there exists a sequence (an) in A such that for every ϵ > 0, there exists N ∈ N
such that d(an, a) < ϵ for all n ≥ N.

Proposition 10. [Tre67, Prop. 7] Let ρ be a metric defined on the set C∞
0 [a, b] as

follows:

ρ(φ1, φ2) =
∞∑
n=0

2−n ∥φ1 − φ2∥n
1 + ∥φ1 − φ2∥n

where

∥φ∥n =
n∑

j=0

sup
x∈[a,b]

|φ(j)(x)|.

Then the metric space (C∞
0 [a, b], ρ) is complete.

3.2 Baire’s Theorem
The Baire’s theorem is used in the proof, which is why we are going to give a brief
overview.

Definition 11. Let (X, d) be a metric space and A ⊆ X subset. A is said to be
nowhere dense if for every (nonempty) open subset U ⊆ X, the intersection U ∩A is
not dense in U , meaning that U contains a point that is not in the closure of A.

Definition 12. A set it is said to be category I if it can be written as a countable
union of nowhere-dense sets. Otherwise it is said to be of category II.

Theorem 13. (Baire’s Category Theorem) [BN72]. Any complete metric space is of
category II.
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3.3 Lebesgue measure
Definition 14. Let Σ be a σ-algebra over a set Ω. A measure over Ω is any function

µ : Σ −→ [0,∞]

satisfying the following properties:

1. µ(∅) = 0.

2. σ-additivity : If (An) ∈ Σ are pairwise disjoint, then:

µ

(
∞⊔
n=1

An

)
=

∞∑
n=1

µ(An).

Definition 15. A box in Rd is a set of the form

Q = [a1, b1]× ...× [ad, bd] =
d∏

i=1

[ai, bi]

and the volume of the box is

vol(Q) = (b1, a1)...(bd − ad) =
d∏

i=1

(bi − ai).

Definition 16. The exterior measure (or outer measure) of a set E ⊆ Rd is

|E|∗ = inf{
∑
k

vol(Qk)}

where the infimum is taken over all finite or countable collection of boxes {Qk} such
that E ⊆ ∪kQk.

Definition 17. A set E ⊆ Rn is Lebesgue mesurable (or mesurable) if ∀ϵ > 0, there
exist U open set such that E ⊆ U and |U \ E|∗ < ϵ.

Definition 18. A set N ⊂ Rn is called a null set if |N |∗ = 0.

Definition 19. We say that a property holds almost everywhere (a.e.) if the set of
points that doesn’t hold it is null.

Definition 20. A function u that is measurable on Ω ∈ Rn is said to be essentially
bounded on Ω if there is a constant λ such that |u(x)| ≤ λ a.e on Ω. The greatest
lower bound of such constants λ is called the essential supremum of |u| on Ω and is
denoted by ess supx∈Ω |u(x)|. We denote by L∞(Ω) the space of all functions u that
are essentially bounded on Ω. We denote the norm on L∞(Ω) by ∥∥L∞(Ω) defined by

∥u∥L∞(Ω) = ess sup
x∈Ω

|u(x)|.
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Definition 21. A function u defined almost everywhere on a domain Ω (a domain is
an open set in Rn) is said to be locally essentially bounded on Ω if for every compact
set K ⊂ Ω, u ∈ L∞(K). We denote u ∈ L∞

loc(K).

Definition 22. Let M denote the set of functions which are in L∞
loc(R) and have the

following property. The closure of the set of points of discontinuity of any function
in M is of zero Lebesgue measure.

This implies that for any σ ∈ M, interval [a, b]. and δ > 0, there exists a finite
number of open intervals, the union of which we denote by U, of measure δ, such
that σ is uniformly continuous on [a, b]/U .

Definition 23. We say that a set of functions F ⊂ L∞
loc(R) is dense in C(Rn) if for

every function g ∈ C(Rn) and for every compact K ⊂ Rn, there exist a sequence of
functions fj ∈ F such that

lim
j→∞

∥g − fj∥L∞(K) = 0.

Definition 24. φ : I → R is uniformly continuous on I if ∀ϵ > 0∃ δ > 0 such that
|φ(x)− φ(y)| < ϵ whenever |x− y| < δ.

3.4 Convolution
Definition 25. Let f, g be real-valued functions with compact support. We define
the convolution of f with g as

(f ∗ g)(x) =
∫

f(x− t)g(t) dt.

Proposition 26. [AFF03] If f is a smooth function that is compactly supported
and g is a distribution, then f ∗ g is a smooth function defined by∫

Rd

f(y)g(x− y) dy = (f ∗ g)(x) ∈ C∞(Rd).

Proposition 27. Also we have

∂

∂xi

(f ∗ g) = ∂f

∂xi

∗ g = f ∗ ∂g

∂xi

.
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3.5 Annihilator
Definition 28. Let V be a vector space over a field F, and X ⊆ V subset. The
annihilator of X is defined as the set of all linear functionals V → F that evaluate
to zero on every element of X:

ann(X) = {φ ∈ V ∗ : for all x ∈ X φ(x) = 0}.

Definition 29. Let V be a finite-dimensional vector space over a field F , and let
F ⊂ V ∗. The annihilator of F is defined as the set of all vectors in V that are
annihilated by every functional in F :

ann(F ) = {x ∈ V : for allφ ∈ F φ(x) = 0}.



Chapter 4

Theorem and proof

This chapter revolves around the Leshno-Lin-Pinkus-Schocken theorem. We first
state the theorem and mention some more specific results that were previously
documented in the literature. Furthermore, we provide an extensive and detailed
proof for the theorem, and draw conclusions based on this finding.

4.1 Theorem
Theorem 30. Let σ ∈ M. Set

Σn = span{σ(w · x+ θ) : w ∈ Rn, θ ∈ R}.

Then Σn is dense in C(Rn) if and only if σ is not a polynomial.

4.1.1 Previous results

There has been significant research on the approximation capabilities of feedforward
networks prior to the proof of this theorem. Previous studies have demonstrated
that if the activation functions of the network satisfy certain explicit assumptions,
then the network can be proven to be as they call it, a universal approximator. For
instance, [Hor91] have established two results, which are as follows:

Theorem 31. (Hornik Theorem 1). Multilayer feedforward networks with a bounded
and nonconstant activation function can approximate any function in Lp(µ) arbitrary
well, given a sufficiently large number of hidden units.

Theorem 32. (Hornik Theorem 2) Multilayer feedforward networks with a continu-
ous, bounded and nonconstant activation function can approximate any continuous
function on X arbitrarily well (with respect to the uniform distance) given a suffi-
ciently large number of hidden units.

Theorem 30 generalizes Hornik’s Theorem 2 by establishing necessary and sufficient
conditions for universal approximation. Note that the theorem merely requires
"nonpolynomiality" in the activation function. Unlike Hornik’s result, the activa-
tion functions do not need to be continuous or smooth. This has an important
biological interpretation because the activation functions of real neurons may well be
discontinuous or even non-elementary.

16
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4.2 Proof

4.2.1 If σ is not a polynomial then Σn is dense in C(Rn)

Consider that σ is not an algebraic polynomial and we aim to show that Σn is dense
in C(Rn). In order to show that, we divided the proof into 3 steps, each one aims to
prove one proposition that needs some previous lemmas.

Step 1

Proposition 33. If σ is not a polinomial then σ ∗ φ is not a polynomial for some
φ ∈ C∞

0 .

To proof this proposition we need the following two lemmas.

Lemma 34. If we have that σ ∗φ is a polynomial for all φ ∈ C∞
0 , then the degree of

the polynomial σ ∗ φ is finite, i.e. there exists an m ∈ N such that deg(σ ∗ φ) ≤ m
for all φ ∈ C∞

0 .

Proof. We first prove the claim in the case of φ ∈ C∞
0 [a, b], for some a < b.

By Proposition 10 we have that (C∞
0 [a, b], ρ) is a complete metric space.

Consider the following set,

Vk = {φ ∈ C∞
0 [a, b] | deg(σ ∗ φ) ≤ k}.

It is clear that this set Vk ⊆ C∞
0 [a, b]. We want to show that C∞

0 [a, b] = Vk.

The set Vk fulfills the following properties: Vk ⊂ Vk+1, Vk is a closed subspace,
∪∞

k=0Vk = C∞
0 [a, b] and Vk is a vector space. We can easily see that C∞

0 [a, b] is also a
vector space.

As C∞
0 [a, b] is a complete metric space, by Baire’s Category Theorem 13, this set is

of category II, i.e. C∞
0 [a, b] cannot be written as a countable union of nowhere-dense

sets. Recall that C∞
0 [a, b] can be written as a countable union of Vk, therefore some

Vm is not a nowhere-dense set, that is, there exists an open set U ⊆ C∞
0 [a, b] that is

contained in the closure of Vm, but, as Vm is closed, for that we have that U ⊆ Vm.
For topology results, any open set of a vector space contains a basis of the vector
space, in our case U contains a baisis of C∞

0 [a, b] , and U ⊆ Vm, therefore Vm contains
a baisis of C∞

0 [a, b]. Now we can conclude that C∞
0 [a, b] ⊆ Vk. And consequently

C∞
0 [a, b] = Vk. This means that any φ ∈ C∞

0 [a, b] also satisfies φ ∈ Vk, that means
that the convolution σ ∗ φ has degree finite.

For the general case where φ ∈ C∞
0 , we note that the number m does not depend on

the interval [a, b]. This can be seen as follows. By translation m depends at most of
the length of the interval. Let [A,B] be any interval. For φ ∈ C∞

0 [A,B] we can find
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φi ∈ C∞
0 [ai, bi] for i = 1, ..., k such that [A,B] ⊂ ∪k

i=1[ai, bi] where bi − ai = b− a and
φ =

∑k
i=1 φi Thus

σ ∗ φ =
k∑

i=1

σ ∗ φi

and for every i = 1, ..., k we have that σ ∗ φ is a polynomial of degree less than or
equal to m. Therefore deg(σ ∗ φ) ≤ m.

Lemma 35. If σ ∗ φ is a polynomial such that deg(σ ∗ φ) ≤ m for all φ ∈ C∞
0 , then

σ is a polynomial of degree at most m.

Proof. If σ ∗ φ is a polynomial of degree m. For all φ ∈ C∞
0 , using (27) we have that

(σ ∗ φ)(m+1) (x) =

∫
σ(x− y)φ(m+1)(y) dy = 0

From standard results in Distribution Theory [Fri63, p. 57], σ is itself a polynomial
of degree at most m (a.e.).

Proof of Proposition 33. We will show the contrapositive. Suppose that the convolu-
tion σ ∗φ is a polynomial for all φ ∈ C∞

0 , by Lemma 34 the degree of the convolution
is finite. Now we have that σ ∗ φ is a polynomial of finite degree, by Lemma 35 we
have that σ is a polynomial.

Step 2

Proposition 36. If for some φ ∈ C∞
0 we have that σ ∗ φ is not a polynomial, then

Σ1 is dense in C(R).

Lemma 37. For each φ ∈ C∞
0 , σ ∗ φ ∈ Σ1.

Proof. We recall the definition of the set

Σ1 = span{σ(w · x+ θ) : w ∈ R, θ ∈ R}. (1)

Without loss of generality, assume that supp φ ⊆ [−α, α]. To show that σ ∗ φ ∈ Σ1

we will use the characterization for elements in the closure. We will to prove that
there exists a sequence in Σ1 such that uniformly converges to σ ∗φ on [−α, α]. Note
that we usually denote for un⇒)

We shall consider the following sequence:

hm =
m∑
i=1

φ(yi)∆yiσ(x− yi).

Which satisfies hj ∈ Σ1 for j = 1, ...,m. Note that we have wi = 1, θi = −yi and
βi = φ(yi)∆yi.
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We will define a partition of the interval [−α, α] to be the following, where

yi = −α +
2iα

m
i = 1, ...,m

and ∆yi =
2α
m

.

Given ϵ > 0, we choose δ > 0 such that

10δ∥σ∥L∞{−2α,2α}∥φ∥L∞ ≤ ϵ

3
.

We know that σ ∈ M . Hence, for the previous choosen δ > 0 and [−α, α] interval,
there exists r(δ) finite number of intervals the measure of whose union U is δ such
that σ is uniformly continuous on [−2α, 2α]/U . We now choose mi sufficiently large
so that

1. m1δ > αr(δ). We can do this by Archimedes’ principle.

2. From the uniform continuity of φ we know that

if |s− t| ≤ δ2 =
2α
m2

then

|φ(s)− φ(t)| ≤ ϵ2 =
ϵ

2α∥σ∥L∞[−2α,2α]

3. From the previous, σ is uniformly continuous on [−2α, 2α]/U thus we have,

if s, t ∈ [−2α, 2α]/U and |s− t| ≤ δ3 =
2α
m3

then

|σ(s)− σ(t)| ≤ ϵ3 =
ϵ

∥φ∥L

We choose m such that m = max{m1,m2,m3}.

Now, fix x ∈ [−α, α]. Set ∆i = [yi−1, yi] where y0 = α.

First, recall that, ∫
σ(x− y)φ(y)dy =

m∑
i=1

∫
∆i

σ(x− y)φ(y)dy.

Consider the following difference:
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∣∣∣∣∣
∫

σ(x− y)φ(y)dy −
m∑
i=1

∫
∆i

σ(x− yi)φ(y)dy

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

∫
∆i

σ(x− y)φ(y)dy −
m∑
i=1

∫
∆i

σ(x− yi)φ(y)dy

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

∫
∆i

φ(y)
(
σ(x− y)− σ(x− yi)

)
dy

∣∣∣∣∣
≤

m∑
i=1

∫
∆i

|φ(y)| |σ(x− y)− σ(x− yi)| dy.

If x−∆i ∩ U = ∅. Since x− y /∈ U , x− yi /∈ U and x− yi ∈ [−2α, 2α]. For choice
of m in property 2, we have

m∑
i=1

∫
∆i

|φ(y)| |σ(x− y)− σ(x− yi)| dy ≤ ϵ

∥φ∥L1

m∑
i=1

∫
∆i

|φ(y)|

=
ϵ

3∥φ∥L1

∫
|φ(y)| dy =

ϵ

3∥φ∥L1

|φ(y)|L1
=

ϵ

3
.

If x−∆i ∩ U ̸= ∅ then we will denote such intervals by ∆̃i.∑
i |∆̃i| =

∑
i |(x−∆i ∩ U)| ≤ |U |+ 2|∆i|r(δ) ≤ δ + 2 · 2α

m
r(δ) ≤ δ + 4δ = 5δ

We used the property mδ > αr(δ), indeed δ > α·r(δ)
m

.

m∑
i=1

∫
∆̃i

|φ(y)| |σ(x− y)− σ(x− yi)| dy ≤
m∑
i=1

∫
∆̃i

∥φ∥L∞ 2∥σ∥L∞[−2α,2α]

= ∥φ∥L∞ 2∥σ∥L∞[−2α,2α]

∑
i

|∆̃i|

≤ ∥φ∥L∞ 2∥σ∥L∞[−2α,2α] 5δ ≤
ϵ

3

Moreover,∣∣∣∣∣
m∑
i=1

∫
∆i

σ(x− yi)φ(y)dy −
m∑
i=1

σ(x− yi)φ(yi)∆yi

∣∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

∫
∆i

σ(x− yi)[φ(y)− φ(yi)]dy

∣∣∣∣∣
≤

m∑
i=1

∫
∆i

|σ(x− yi)| |φ(y)− φ(yi)| dy

≤
m∑
i=1

∫
∆i

|σ(x− yi)| dy
[

ϵ/3

2α∥σ∥L∞[−2α,2α]

]
≤ ϵ

3
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Finally, we have the result hm ⇒ σ ∗ φ because∣∣∣∣∣
∫

σ(x− y)φ(y)dy −
m∑
i=1

σ(x− yi)φ(yi)∆yi

∣∣∣∣∣ ≤ ϵ

for all x ∈ [−α, α].

Lemma 38. If σ ∈ C∞, then Σ1 is dense in C(R).

Proof. We suppose that σ ∈ C∞ and recall by the theorem hypothesis σ is not a
polynomial. We can write any function f of the set Σ1 as

f =
∑
i

βiσi(wix+ θi) = β1σ1(w1x+ θ1) + ...

We can see that the function

σ([w + h]x+ θ)− σ(wx+ θ)

h
∈ Σ1

because is a linear combination, where β1 =
1
h
, β2 =

−1
h

.

By hypothesis, σ ∈ C∞. By definition of derivative we have

d

dw
σ(wx+ θ) = lim

h→0

σ([w + h]x+ θ)− σ(wx+ θ)

h
∈ Σ1

because the limit of a set belongs to the closure of the set.

By the same argument,
dk

dwk
σ(wx+ θ) ∈ Σ1

for all k ∈ N, w, θ ∈ R.

If we differentiate this expression k times, we obtain

dk

dwk
σ(wx+ θ) = σ(k)(wx+ θ) · xk

We are going to see that if σ is not a polynomial (by hypothesis) then there exists a
θk ∈ R such that σ(k)(θk) ̸= 0. To show that, let us assume that does not exist any
θk ∈ R such that σ(k)(θk) ̸= 0. This means that the k-th derivative at every point is
0, i.e.

σ(k)(θ) = 0 ∀θ ∈ R

If we integrate this expression, we will have
∫
σ(k) =

∫
0. This implies that

σ(k−1)(x) = C1
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for some constant C1, as integrating zero results in a constant. If we integrate again,
we have:

σ(k−2)(x) = C1x+ C2

for some constants C1 and C2.
Continuing this process, we arrive at

σ(x) = C1x
k−1 + C2x

k−2 + . . .+ Ck−1x+ Ck

for constants C1, C2, . . . , Ck. Hence, σ is a polynomial of degree k − 1, which contra-
dicts our assumption that σ is not a polynomial. Therefore, there always exists a
point where the derivative does not vanish.

Thus, we evaluate at the point where the derivative does not vanish, we call it
θk.

σ(k)(θk) · xk =
dk

dwk
σ(wx+ θ)

∣∣∣
w=0,θ=θk

∈ Σ1

This implies that Σ1 contains all polynomials, because the expression σ(k)(θk)x
k

generates all polynomials. By the Weierstrass theorem, we know that the polynomials
are dense in C(R). This concludes that the set Σ1 contains a set which is dense in
C(R), therefore Σ1 is dense in C(R).

Proof of Proposition 36. From Lemma 37, σ ∗φ ∈ Σ1 for each φ ∈ C∞
0 . It immedialy

follows that, σ ∗ φ(wx+ θ) ∈ Σ1, for each w, θ ∈ R and φ ∈ C∞
0 .

Now, we shall see the results in distributions 26 to proof the following result. For
σ and φ ∈ C∞

0 , we have that σ ∗ φ ∈ C∞. From Lemma 38 applied in σ = σ ∗ φ, if
σ ∗ φ ∈ C∞, then Σ1 dense in C(R).

Step 3

We will prove that approximating a C(R) function with one from the set Σ1 implies
approximating a function C(Rn) from the set Σn. We can see this from the density
characterization.

Proposition 39. If Σ1 is dense in C(R), then Σn is dense in C(Rn).

Proof. The following proof is inspired by [CL92].

Consider the set
V := span{f(ax) : a ∈ Rn, f ∈ C(R)}.

First, we shall see that V is dense in C(Rn). If we show that V contains the polyno-
mials, which are dense in C(Rn) by Weierstrass Theorem, that will be enough.

In fact, we have the set

H = ⟨(ax)k⟩ = span{p(ax) : a ∈ Rn, p ∈ R[x]} ⊆ V.
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We only need to show that H := R[x], in other words, that the polynomials of degree
k can be generated by (a · x)k. For the isomorphism theorem, we know that

R[x]∗/ann(H) ∼= H∗.

Since
Dm1xm2 = δm1,m2k!,

we see that R[x]∗ can be generated by ⟨Dm1⟩|m1|=k. Consider any element of R[x]∗,
say

∑
αjD

mj and suppose that annihilates H. That is

(
∑

αjD
mj)xmj = αjk! = 0.

This implies that for all j, αj = 0 and then the element
∑

αjD
mj = 0 For that

reason, it means that ann(H) = 0 which implies that R[x]∗ ∼= H∗, which is what we
wanted to see. Thus, we have the set V dense in C(R).

Let g ∈ C(Rn), for any compact subset K ⊂ Rn, V dense in C(K). That is,
given ϵ > 0, there exist fi ∈ C(R) and ai ∈ Rn

i = 1, ..., k such that

∣∣g(x)− k∑
i=1

fi(a
i · x)

∣∣ < ϵ

2

for all x ∈ K. We now consider the set of all the points in the compact K multiplied
by the vector ai. That is {ai · x|x ∈ K} ⊆ [αi, βi] for some finite interval [αi, βi],
i = 1, ..., k. By hypothesis Σ1 dense in C(R), specifically Σ1 is dense in [αi, βi]
i = 1, ..., k. Hence there exist constants cij, wij and θij , j = 1, ...,mi, i = 1, ..., k such
that

∣∣fi(y)− m∑
j=1

cijσ(wijy + θij)
∣∣ < ϵ

2k

for all y ∈ [αi, βi].

Therefore, ∣∣g(x)− k∑
i=1

m∑
j=1

cijσ(wij(a
i · x) + θij)

∣∣ < ϵ

for all x ∈ K. We have shown that Σn is dense in C(Rn) which is what we wanted.

4.3 Proof of Theorem 30
Proof.

⇒ To prove this implication statement, we aim to show that if Σn is dense in
C(Rn), then σ is not a polynomial. We will proceed to prove the contrapositive
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statement, assuming that σ is indeed a polynomial, and demonstrate that in
this case, Σn cannot be dense in C(Rn).

Let σ be a polynomial of degree k, then σ(wx + θ) is a polynomial of de-
gree k for every w, θ. Recall that

Σn = span{σ(w · x+ θ) : w ∈ Rn, θ ∈ R}

that is the set of algebraic polynomials of degree at most k. To show that Σn

is not dens in C(Rn), for the definition of density, we need to find a function
f(x) ∈ C(Rn), ϵ > 0 and K such that ∥p− f∥ > ϵ for all p polynomial of degree
k. For example, let f(x) = cos(x), and let p(x) = σ(wx+ θ) that has degree
at most k. This implies has maximum k roots. We can find a interval where
cos(x) has k+1 roots. Therefore, Σn is not dense in C(Rn).

⇐ In order to prove this implication, we need to show that if σ is not an algebraic
polynomial, then Σn is dense in C(Rn).

By hypothesis, σ is not a polynomial, by Proposition 1 this implies that σ ∗ φ
is not a polynomial for some φ ∈ C∞

0 . By Proposition 2 if σ ∗ φ is not a
polynomial for some φ, then Σ1 is dense in C(R). Finally in Proposition 3 we
have showed that this implied that Σn is dense in C(Rn).

4.4 About the theorem

4.4.1 Why does it not contradict the Weierstrass approxima-
tion theorem?

In mathematical analysis, we prove the Weierstrass approximation theorem, which
we will now recall.

Theorem 40. (Weierstrass approximation theorem) Let f : [a, b] → R be a continuous
function. Then, there exists polynomials pn ∈ R[x] such that the sequence (pn)
converge uniformly to f on [a, b].

Corollary 41. The set of polynomial functions Rn[x] is dense in the space of
continuous functions on a compact set K ⊂ Rn, C(K). So any continuous function
on a compact set can be approximated arbitrarly well by a polynomial.

The theorem 30 states that: if Σn is dense in C(Rn) then σ is not an algebraic
polynomial. But why this statment does not contradict the Weierstrass approximation
theorem? This does not work because σ has degree fixed k, then any element in the
set Σn has degree at most k. Hence, the set Σn is a finite vector space and can not be
dense in C(Rn). Not all contiunous functions can be approximated with a polynimial
of degree fixed. We argued this in the proof where with the example of the cosine
function. For example, if k = 3, we cannot approximate the cosine function with
linear combinations of polynomials of maximum degree 3.
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Figure 4.1: Cosine function cannot be approximated with linear combinations of polyno-
mials of maximum degree 3.

4.4.2 Conclusion

The theorem only requires the activation function to be non-polynomial; we do
not need continuity in sigma. Our finding that the activation function need not be
continuous or smooth also has an important biological interpretation because the
activation functions of real neurons may well be discontinuous or even non-elementary.
Note that the ReLU function mentioned before is commonly regarded as one of the
best activation functions in deep learning. We can see that it is non-smooth, and due
to the proven theorem, we can still assure that it can be used in any case (because it
is non-polynomial).

4.4.3 Corollaries

Definition 42. The set Lp(µ) contains all mesurable functions f such that:

∥f∥Lp(µ) =
(∫

Rn

|f(x)|pdµ(x)
)1/p

< ∞.

Proposition 43. Let µ be a non-negative finite measure on R with compact support,
absolutely continous with respect to Lebesgue measure. Then Σn is dense in Lp(µ) ,
1 ≤ p < ∞, if and only of, σ is not a polynomial.

Proposition 44. If σ ∈ M is not a polynomial (a.e) then,

Σn(A) = span{σ(λw · x+ θ) : λ, θ ∈ R, w ∈ A}

is dense in C(Rn) for some A ⊂ Rn if and only if there does not exist a nontrivival
polynomial vanishing on A.
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