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Abstract

In this MSc thesis, we study the space of Dirac structures on a smooth manifold X. First, we give a
description of the space of all linear Dirac structures over a given vector space in terms of linear orthogonal
maps on it. We then characterize the space of maximally isotropic subbundles of TX ⊕ T ∗X in terms of
sections of a bundle of orthogonal groups, and use this description in order to reformulate the integrability
condition of Dirac structures. In addition, we state the complement problem for Dirac structures: when
does a Dirac structure admit a complement that is also a Dirac structure? Using the language of quasi-
Lie algebroids, we analyze the different curved L3 algebras that arise from choosing different complements
to a given maximally isotropic subbundle, and the relations between them. Our main contribution is the
derivation of a curved Maurer-Cartan equation that describes when such a complement exists. This is a first
step towards defining new invariants for Dirac structures that may describe the obstruction for the existence
of a Dirac complement. Finally, we use our representation of Dirac structures as sections of a group bundle
in order to outline a possible method for constructing a Dirac complement to a given Dirac structure.
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Chapter 1

Introduction

Symplectic and Poisson structures arise naturally in physics. Classically, the phase space of a mechanical
system is an even-dimensional manifold X with dynamics governed by an energy function H : X → R called
the Hamiltonian. To this function we associate a vector field VH whose flow describes the energy-dependent
trajectories via the differential equation ẋ = VH(x), where x denotes the state of the system - usually the
values of its position and momentum. Since H and H + c should give the same dynamics for any constant
c, and the flow dictated by H should preserve H itself (due to the principle of conservation of energy), the
assignment of a vector flow to a Hamiltonian is done via a skew bundle map

π : T ∗X → TX, α 7→ iαπ,

which lets us define, for a Hamiltonian H, VH = π(dH). In many natural situations, π is nondegenerate and
its inverse ω := π−1, the skew map

ω : TX → T ∗X,

is considered. This map ω can be seen as a 2-form and the fact that physical laws should be time-independent
is mathematically summarized by the condition dω = 0. Since ω is nondegenerate, this condition turns it into
a symplectic form. A (possibly degenerate) closed 2-form of constant rank is called a presymplectic form.
Presymplectic forms describe the dynamics in the presence of constraints, which mathematically corresponds
to a submanifold of the phase space. Analogously, π above can be seen as a (skew) bivector and then dω = 0

translates into [π, π] = 0 for the Schouten bracket. When π is possibly degenerate but still satisfies [π, π] = 0,
we talk about Poisson structures, which describe the dynamics in the presence of symmetries.

The condition dω = 0 or [π, π] = 0 is indeed very natural in physics. Noether’s theorem relates the
symmetries of a mechanical system to conserved quantities: for a simply connected symplectic phase space
(X,ω) and a Lie group G acting on X via symplectomorphisms (diffeomorphisms preserving ω), there is a
Lie algebra homomorphism Lie(G) → C∞(X). The existence of this homomorphism is guaranteed by the
fact that dω = 0. The image of Lie(G) consists of the subalgebra of conserved quantities in the following
sense: if G preserves some Hamiltonian H, all the functions in the image of Lie(G) are invariant under the
flow of H. In many instances, these functions are related to physical parameters of a mechanical system,
such as momentum, centre of mass or angular momentum.

Despite their physical origin, Poisson and especially symplectic geometry play nowadays a fundamental
role on geometry and topology, as the basis for Gromov-Witten invariants [23] or Floer homology [5, 17] as
well as in far-reaching applications like the infinite-dimensional analogue of symplectic reduction that endows
the moduli space of flat connections with a symplectic structure [1, 22].
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Dirac structures originate from the natural question of what structure describes a mechanical system
with symmetries (given by a Poisson structure) when there are moreover constraints. An advantage of Dirac
structures over symplectic or Poisson structures is that, under the hypothesis of so-called clean intersection,
they can be both be pushed forward and pulled back, in contrast to Poisson or symplectic structures which can
only be pushed forward or pulled back, respectively, via smooth maps. Indeed, when considering submanifolds
of a symplectic manifold, the symplectic structure is pulled back to a presymplectic (possibly not of constant
rank) via the inclusion, whereas when considering quotients of a Poisson manifold by Poisson group actions,
we can push the Poisson bivector to the quotient. Concatenating these operations, we see that a submanifold
of a quotient, or the quotient of a submanifold, need not be a Poisson or symplectic manifold, but it is a
manifold with a Dirac structure, as shown in the following diagram:

(X,ω) ∼ (X,π)

X ′ ⊆ X,ω′ = i∗ω X ′ = X/G, π′ = p∗π

(X ′′, L = Dirac str.)

p (projection)i (inclusion)

p i

Figure 1.1: Constraints and symmetries for presymplectic and Poisson structures

Formally, given a manifold X, a Dirac structure is a subbundle of TX ⊕ T ∗X that is maximally isotropic
under the natural pairing defined on TX ⊕T ∗X (a condition which unifies the skew-symmetry conditions of
presymplectic and Poisson structures, as shown in section 2.2), and is involutive under the (possibly twisted)
Dorfman bracket (section 3.1). Geometrically, Dirac structures correspond to presymplectic foliations whose
leaves are not necessarily of the same dimension. The variation on this dimension is captured by the so-called
’type’, a pointwise invariant of Dirac structures defined as codim(πT (L)), that is, the codimension of the
presymplectic leaf passing through the point

In this MSc thesis, we probe some basic properties of the space of all Dirac structures, inspired by
similar approaches used for the symplectic and Poisson cases. First, we will ask what structure the space of
Dirac structures over a manifold carries. In the linear case, choosing an inner product on a vector space V

induces a correspondence between Dirac structures L over V and orthogonal operators OL : V → V (section
2.3). Using this description, we identify properties of Dirac structures as properties of their corresponding
orthogonal maps (section 2.3). For the type, defined earlier, we find:

Proposition 2.17. The type of a Dirac structure L is equal to the number of −1 eigenvalues of OL.

As our first main result, we show the space of Dirac structures is isomorphic to the subset of sections of
a certain group bundle satisfying an integrability condition:

Theorem 3.25. On a Riemmanian manifold (X, g), the space of Dirac structures can be identified with the
space of sections of the group bundle O(X, g) satisfying the equation:

g(Z, (I +O−1)(∇Y O)X) + c.p = 0

(where O ∈ Γ(O(X, g))) for any X,Y, Z ∈ Γ(TX).

The deformation theory of Dirac structures, while having similar flavour to that of presymplectic, Poisson,
or complex structures, includes in it complications which make it more involved. In the three classical cases,
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a differential graded Lie algebra (DGLA) is constructed, and the integrable deformations are in bijective
correspondence with the Maurer-Cartan elements of this DGLA (as we show in section 4.1). When a Dirac
structure L admits a complementary Dirac structure, that is, a second Dirac structure M such that M ∩L =

{0}, its deformation theory is again governed by a DGLA. The three classical examples of presymplectic,
Poisson, and complex, all share the property of admitting such a complementary Dirac structure. While
every Dirac structure admits a maximally isotropic complement, some Dirac structures do not admit an
integrable (Dirac) complement (proposition 5.1). In this case (as we show in section 4.2 as well as chapter
5), the deformation theory is not defined by a DGLA anymore, but by a curved L3 algebra:

Theorem ([11]). Let M be a maximally isotropic subbundle of TX⊕T ∗X, and let L be another maximally
isotropic subbundle such that M ∩ L = {0}. Then Γ(

∧
L) carries the structure of a curved L3 algebra, and

the integrable ‘small’ deformations of L are in bijective correspondence with the Maurer-Cartan elements of
this algebra, that is, the elements ω ∈ Γ(

∧2 L) satisfying the equation:

l0 + l1(ω) +
1

2
l2(ω, ω) +

1

3!
l3(ω, ω, ω) = 0.

By small deformations of M , we mean those that remain transverse to L. In the linear case, small
deformations correspond to an open subset in the space of maximally isotropic subspaces. These can be
described as graphs of skew maps ω : M → L (proposition 4.4). Curved L3 algebras are higher generalizations
of DGLA’s. They are a subcase of curved L∞ algebras, which consist of a graded vector space V along with
an infinite collection of multilinear graded skew-symmetric maps lk : ⊗kV → V . Curved L∞ arise frequently
in deformation theory.

In order to define the L3 structure on Γ(
∧
L), we first introduce the notion of a quasi-Lie algebroid, and

show that the choice of any two such M,L induces a quasi-Lie algebroid structure on both (section 5.1).
This is an alternative approach to [11], where the theorem above is originally proved.

The question of when a Dirac structure admits a Dirac complement can be rephrased in terms of these
curved L3 algebras. Our main contribution is showing that the existence of an integrable complement is
equivalent to the existence of a solution to the curved Maurer-Cartan equation in a curved L3 algebra:

Theorem 5.19. Let M be a Dirac structure and L be a maximally isotropic complementary subbundle.
Then M has an integrable complement if and only if there is a solution ω ∈ Γ(

∧2M) for the equation

NL + dLω +
1

2
[ω, ω] = 0

in the curved DGLA Γ(
∧
M).

Additionally, rechoosing the complementary subbundle L yields a different L3 algebra, and the two
algebras admit an invertible map between them. As we show, this map gives certain relations between the
different L3 structures (propositions 5.18 and 5.21), but is not a curved L3 algebra isomorphism in one of the
several ways described in the current literature [13, 15]. Thus, whenever the L3 algebra of a Dirac structure
is not isomorphic, through a map in this class, to a DGLA, the Dirac structure does not admit a Dirac
complement, but the contrary does not hold. This suggests a more precise description of the obstruction
for the existence of a Dirac complement is needed, perhaps by means of an invariant in some cohomology
related to the Dirac structure.

Finally, through a stronger version of the complement problem, we give a sufficient condition to explicitly
construct a complementary Dirac structure (section 5.4).



Chapter 2

Linear generalized geometry

2.1 The pairing on V ⊕ V ∗

We shall make use of the following notation:

•
∧

V is the exterior algebra of a vector space V , including
∧0 V = F where F is the base field of V .

• pW is the projection to a subspace W ⊆ V with respect to some splitting, which has been fixed
beforehand or is clear from the context.

• By using ‘+c.p’ in an expression evaluated on arguments, we mean the addition of the same expression
evaluated on all cyclic permutations of the arguments. For example, f(x, y, z) + c.p = f(x, y, z) +

f(z, x, y) + f(y, z, x).

As described in the introduction, Dirac structures are generalizations of both presymplectic and Poisson
structures. First, we formally define presymplectic and Poisson structures on a vector space V .

Definition 2.1. A presymplectic structure on a vector space V is any ω ∈
∧2 V ∗.

Definition 2.2. A Poisson structure on a vector space V is any π ∈
∧2 V .

Before seeing how these structures fit into Dirac structures in section 2.2, we need to make some basic
constructions.

On V ⊕ V ∗ we have a natural pairing: for X + α, Y + β ∈ V ⊕ V ∗,

⟨X + α, Y + β⟩ = 1

2
(α(Y ) + β(X)).

Lemma 2.3. The pairing ⟨ , ⟩ has signature (n, n), where n = dimV .

Proof. Choose a basis {Xi} for V and let {αi} be its dual basis. The set {Xi +αi}∪ {Xi −αi} is a basis for
V ⊕ V ∗ and satisfies ⟨Xi + αi, Xj + αj⟩ = δij , ⟨Xi − αi, Xj − αj⟩ = −δij and ⟨Xi + αi, Xj − αj⟩ = 0, which

gives ⟨ , ⟩ the form

(
In 0

0 −In

)
.

The group of orthogonal transformations for ⟨·, ·⟩ can be shown to be generated by 3 types of transfor-
mations [7]:

4



2.2. MAXIMALLY ISOTROPIC SUBSPACES 5

1. Lifts of linear transformations G : V → V , given by:(
G 0

0 (G−1)∗

)

acting as X + α 7→ GX + (G−1)∗α.

2. B-transformations, given by: (
Id 0

B Id

)
for some skew B : V → V ∗, acting as X + α 7→ X + α+ iXB.

3. β-transformations, given by: (
Id β

0 Id

)
for some skew β : V ∗ → V , acting as X + α 7→ X + iαβ + α.

2.2 Maximally isotropic subspaces

As we will show, presymplectic and Poisson structures can both be thought of as maximally isotropic
subspaces of V ⊕ V ∗ (an isotropic subspace is a subspace on which the pairing vanishes, and a maximally
isotropic subspace is an isotropic subspace which is not a subspace of any other isotropic subspace). Since
the form ⟨·, ·⟩ has signature (n, n), the following is a known linear algebra fact:

Proposition 2.4. The dimension of any maximally isotropic subspace of V ⊕ V ∗ is exactly n.

Maximally isotropic subspaces can be represented in a unique form in terms of their projection to V :

Proposition 2.5. [7] For any maximally isotropic subspace L ≤ V ⊕V ∗ there are unique E ≤ V , ϵ ∈
∧2E∗

so that L = L(E, ϵ) = {X + α |X ∈ E, iXϵ = α
∣∣
E
}.

Proof. Let L ≤ V ⊕ V ∗ be maximally isotropic and let E = pV (L) (the projection of L to V ). Define the
map ϵ : E → V ∗/Ann(E) ∼= E∗ as follows: for X + ξ ∈ L, ϵ(X) = [ξ].

Let us check this map is well defined: if α, α′ ∈ V ∗ satisfy that X + α and X + α′ are in L, then since
L is a subspace, α − α′ ∈ L, but L is maximally isotropic, so ⟨X + α, α − α′⟩ = 0 = (α − α′)(X), so
α− α′ ∈ Ann(E), therefore [α] is well defined.

Therefore, we have a well defined ϵ ∈
∧2E∗. Following our construction, L takes the form mentioned

above.

Reciprocally, for any choice of E and ϵ ∈
∧2E, L(E, ϵ) is maximally isotropic: It is isotropic since

⟨X +α,X +α⟩ = ϵ(X,X) = 0, and of maximal dimension since L(E, ϵ) = eBL(E, 0) = eB(E⊕Ann(E)) for
any B with i∗B = ϵ, where i : E → V is the inclusion.

Example 2.6. 1. V = L(V, 0), and more generally E ⊕Ann(E) = L(E, 0)

2. V ∗ = L({0}, 0)

3. For any skew ω : V → V ∗, graph(ω) = L(V, ω)
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4. For any skew π : V ∗ → V , graph(π) = L(Im(π), ω̃), where ω̃ is given as follows: through π, Im(π) ∼=
V ∗/Ker(π) ∼= Im(π)∗, which gives an invertible skew map ω̃ : Im(π) → Im(π)∗. This is the linear
case for the known fact that Poisson structures on a manifold yield symplectic foliations.

Definition 2.7. The type of a maximally isotropic subspace is defined as type(L) = codim(pV (L))

Later, when we move to the global case where we endow these structures with a bracket, we will see
the type is an important invariant, since it is stable under the symmetry group of both the pairing and the
bracket.

A useful object in linear generalized geometry is the Clifford algebra of (T ⊕ T ∗, ⟨·, ·⟩). Since we will use
it later, we present its construction here.

Definition 2.8. The Clifford algebra Cliff(V, ⟨·, ·⟩) of a pair (V, ⟨·, ·⟩) where V is a vector space and ⟨·, ·⟩ is
an arbitrary bilinear form on V , is the quotient of the tensor algebra ⊗V = ⊕i ⊗i V by the ideal generated
by elements of the form v ⊗ v − ⟨v, v⟩ for all v ∈ V , where ⟨v, v⟩ is considered as an element of ⊗0V = F.
The product · on Cliff(V, ⟨·, ·⟩) is the one induced from the tensor product on ⊗V . For v, u ∈ V , the product
satisfies

v · u+ u · v = 2⟨u, v⟩.

Additionally, Cliff(V, ⟨·, ·⟩) has a natural grading on it. It can be shown to be isomorphic (as a vector space,
not as an algebra) to

∧
V , which has a grading given by the degrees of multivectors. This grading pulls back

to a grading on Cliff(V, ⟨·, ·⟩). We denote the degree of a homogeneous element a by |a|.

Definition 2.9. Let a, b ∈ Cliff(V, ⟨·, ·⟩) be homogeneous elements (using the grading above). The graded
commutator is defined as:

{a, b} = a · b− (−1)|a||b|b · a.

More generally, the graded commutator is defined as the linear extension of the above expression.

Proposition 2.10. The graded commutator satisfies the following properties:

• Graded antisymmetry:
{a, b} = (−1)|a||b|{b, a}.

• Graded Leibniz rules:

{a, b · c} = {a, b} · c+ (−1)|a||b|b · {a, c}

{a · b, c} = a · {b, c}+ (−1)|b||c|{a, c} · b.

Proof. The proofs of the second and third propositions are similar, so we focus on the second one. Note that:

{a, b · c} = a · b · c− (−1)|a|(|b|+|c|)b · c · a

= a · b · c− (−1)|a|(|b|+|c|)b · c · a+ (−1)|a||b|b · a · c− (−1)|a||b|b · a · c

= {a, b} · c+ (−1)|a||b|b · {a, c}.

For ⟨·, ·⟩ = 0, the Clifford algebra coincides with the exterior algebra [6]. Therefore, for an isotropic
subspace L ≤ V , the inclusion i : L → V induces an inclusion of algebras i :

∧
L → Cliff(V, ⟨·, ·⟩).
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We will now derive some identities which will be useful for us later. Our interest lies in the case V ⊕ V ∗

with the canonical pairing. We find that the exterior algebra of any maximally isotropic subspace can be
thought of naturally as a subalgebra of the Clifford algebra of V ⊕ V ∗. Consider the case where we have
two such maximally isotropic subspaces M,L which are complementary- that is, M ∩L = {0}. Since ⟨·, ·⟩ is
nondegenerate, L ∼= M∗ through ⟨·, ·⟩. In this case, we have the following:

Proposition 2.11. Let m ∈
∧

M , l ∈
∧1 L. Then {m, l} = ilm.

Proof. By induction on k = |m|. For k = 1, this is the Clifford algebra identity. Assume, without loss of
generality, that m is decomposable, and write m = x1 · ... · xk. Then {m, l} = {x1, l}x2 · ... · xk − x1 · {x2 ·
... · xk, l} = ilm by the definition of the wedge product.

Proposition 2.12. If l, l′ ∈
∧
L, {l, l′} = 0.

Proof. For l, l′ ∈
∧1 L this is the Clifford algebra defining identity. Using the Leibniz rule and bilinearity

the proposition follows.

2.3 The space of maximally isotropic subspaces

We can now move to discussing the space of all maximally isotropic subspaces of V ⊕ V ∗. It turns out
that this space has a simple geometric description. The original construction is by Courant [4], but here
we give a basis-free description of it that uses slightly more general terms, which are also more natural in
generalized geometry.

Definition 2.13. A generalized metric is a splitting V ⊕ V ∗ = P ⊕ N , where P is positive definite under
⟨·, ·⟩, N is negative definite, and P⊥N .

Every inner product on V , which we refer to as a metric, defines a generalized metric in a simple
way: choose an orthonormal basis {Xi} for V and let {αi} be its dual basis. Our calculations in the
proof of Theorem 2.3 show that P = Span({Xi + αi}) = {X + g(X, ·) | X ∈ V } is positive definite,
N = Span({Xi − αi}) = {X − g(X, ·) |X ∈ V } is negative definite, and they are orthogonal to each other.

Proposition 2.14. For any generalized metric there are is a unique metric g and a unique skew 2-form B

so that:
P = {X + g(X, ·) + iXB},

and
N = {X − g(X, ·) + iXB}.

Proof. Note Ker(pV
∣∣
P
) = P ∩ V ∗, and since V ∗ is isotropic while P is positive definite, this intersection is

zero, so pV
∣∣
P

is an isomorphism (by dimension considerations). Similarly, pV
∣∣
N

is an isomorphism. Therefore
we can define the maps:

ζ1 = πV ∗ ◦ pV
∣∣
P

−1
: V → V ∗

ζ2 = πV ∗ ◦ pV
∣∣
N

−1
: V → V ∗,

so P = {X + ζ1(X) |X ∈ V } and N = {X + ζ2(X) |X ∈ V }. Since P⊥N , for any X,Y ∈ V , ζ1(X,Y ) +

ζ2(Y,X) = 0. Let gi, Bi be the symmetric and antisymmetric parts of ζi. For X = Y , the above calculation
shows g1 = −g2, which leaves us with B1 = B2. The fact that P is positive definite assures that g = g1 is a
metric, as needed.
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The techniques from this proof allow us to characterize the space of all maximally isotropic subspaces of
V ⊕V ∗. Note that the fact that pV

∣∣
P

is an isomorphism relied only on the fact that V is isotropic. Similarly,
for any maximally isotropic L ≤ V ⊕ V ∗, pP

∣∣
L

is an isomorphism. Therefore for any L we uniquely can
define the linear map:

pN ◦ pP
∣∣
L

−1
:= ÕL : P → N,

which sends p ∈ P to the unique n ∈ N such that p + n ∈ L. Now, equip N with −⟨·, ·⟩, which is positive
definite. We have the following:

Proposition 2.15. The operator ÕL is an orthogonal map from (P, ⟨·, ·⟩) to (N,−⟨·, ·⟩).

Proof. Write ÕL(p) = n. So, pP
∣∣
L

−1
(p) = p+n. Since L is isotropic and P⊥N , ∥p+ n∥2 = ∥p∥2−∥n∥2 = 0,

so ∥p∥ =
∥∥∥ÕL(p)

∥∥∥, therefore ÕL is orthogonal.

For simplicity, consider the case where we have a metric on V (that is, the case B = 0 as in proposition
2.14). Considering P = {X + g(X, ·) |X ∈ V } and N = {X − g(X, ·) |X ∈ V }, we have the two isometries
(where again, we equip N with minus the pairing)

q±(X) =
1√
2
(X ± g(X, ·))

from V to P or N respectively. The composition OL = q−1
− ◦ ÕL ◦ q+ is therefore an orthogonal map from

V to itself. We find:

Corollary 2.16. Given a metric g on V , the space of all maximally isotropic subspaces of V ⊕ V ∗ can be
identified with O(V, g).

L

P N

V V

pNp−1
P

pVp−1
V

OL

Figure 2.1: Orthogonal transformation defining a maximally isotropic subspaces

Compared to the spaces of presymplectic and Poisson structures, which are both vector spaces, the space
of maximally isotropic subspaces of V ⊕ V ∗ is not only compact, it also carries a (non-canonical) group
structure.

Various geometric properties of a maximally isotropic subspace can be identified with geometric properties
of its corresponding orthogonal transformation. Keeping the same notation as in corollary 2.16, we have for
example:

Proposition 2.17. The type of L is equal to the number of −1 eigenvalues of OL, that is,

type(L) = n− rank(I +OL).
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Proof. Note that, under our previous choices, we can write

L = {X + g(X, ·) +OL(X)− g(OL(X), ·) |X ∈ V }

= {(I +OL)(X) + g((I −OL)(X), ·) |X ∈ V },

and so dim(pV (L)) equals rank(I +OL).

This gives us a stratification of O(V ), given by the type of the corresponding maximally isotropic subspace.
In low dimensions, this stratification can be visualized. In figure 2.2, we represent O(2) as the disjoint union
of two circles, and we see that type 0 is given by a line segment in one of the circles, type 2 is given by a point
in the same circle, and type 1 is given by the other circle. In figure 2.3, we represent O(3) as the quotient of
the disjoint union of two 3-dimensional balls, given by identifying antipodal points on their boundaries.

Figure 2.2: Type splitting of O(2).

As a first example of this equivalence, consider the graph of a 2-form ω. We can write:

L = graph(ω) = {X + iXω |X ∈ V } = {(I +OL)X + g((I −OL)X, · |X ∈ V },

Figure 2.3: Type splitting of O(3) ∼= D3/{x ∼ −x | ∥x∥ = 1}, lifted to D3.
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and since I +OL is invertible according to proposition 2.17,

L = {X + g((I −OL)(I +OL)
−1X, ·) |X ∈ V }.

Defining A = g−1 ◦ ω : V → V , we find the following:

Proposition 2.18. The map Ograph(ω) is given by the Cayley transform of A, which is defined as A 7→
(I +A)−1(I −A).

Similarly, for the graph of a Poisson structure, OL is the Cayley transform of π ◦ g. As special cases, we
find that OT = Id and OT ∗ = −Id.

Another special case is L = E ⊕Ann(E). It can be easily shown that OL = pE − pE⊥ where pE , pE⊥ are
the orthogonal projections to E,E⊥ respectively.

Proposition 2.19. Let L and L′ be maximally isotropic subspaces. Then L∩L′ = {0} if and only if OLO
−1
L′

has no fixed points.

Proof. The subspaces L and L′ are the graphs of the corresponding maps ÕL, ÕL′ : P → N , so L ∩ L′ =

{p ∈ P | ÕL(p) = ÕL′(p)}, from which the result easily follows.

Corollary 2.20. The subspace L′ corresponding to −OL is always complementary to the subspace L.

Geometrically, L′ as in the corollary is given by the orthogonal complement to L in V ⊕V ∗ after equipping
N with −⟨·, ·⟩.

More generally, the space of maximally isotropic subspaces which are complementary to a given maximally
isotropic subspace can be described in a simple way. Consider first the case L = V . If L′ is a complement,
OL′ must have no fixed points, so OL′ ∈ O(n) \ f−1(0) where f : O(n) → R is the map f(O) = det(O − I).
Since f is continuous, we find:

Proposition 2.21. The set of complements to a given maximally isotropic subspace is an open subset in the
set of maximally isotropic subspaces, under the natural topology on O(V, g).

Finally, we are interested in what happens when we rechoose g.

Proposition 2.22. For a given maximally isotropic subspace L, let OL and 0′L be the orthogonal operators
equivalent to L when choosing metrics g and g′ on V , respectively. Then:

O′
L = (I +OL + g′−1 ◦ g(I −OL))(I +OL − g′−1 ◦ g(I −OL))

−1.

Proof. As we have seen, L = {(I + OL)X + g((I − OL)X, ·) | X ∈ V }. Rechoosing g 7→ g′ and getting
OL 7→ O′

L, we have {(I + O′
L)X

′ + g′((I − O′
L)X

′, ·) |X ′ ∈ V }. Since this is the same subspace, any vector
v ∈ L can be written as:

v = (I +OL)X + g((I −OL)X, ·) = (I +O′
L)X

′ + g′((I −O′
L)X

′, ·).

Projecting to V, V ∗ we have the pair of equations:

I +OL)X = (I +O′
L)X, g((I −OL)X) = g′((I −O′

L)X
′)

where we consider g, g′ as maps V → V ∗. We can rewrite the second equation as:

g′−1 ◦ g(I −OL)X = (I −O′
L)X

′.
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Summing the two equations we find:

X ′ =
1

2
(I +OL + g′−1 ◦ g(I −OL))X.

By a symmetry argument, the map 1
2(I + OL + g′−1 ◦ g(I − OL)) is invertible. Plugging into the first

equation we have:

(I +OL)X =
1

2
(I +O′

L)(I +OL + g′−1 ◦ g(I −OL))X.

Therefore:

O′
L = (I +OL + g′−1 ◦ g(I −OL))(I +OL − g′−1 ◦ g(I −OL))

−1.

Remark 2.1. This shows the topology on the set of maximally isotropic subspaces is well defined. We
can choose it to be the natural topology on O(V, g) for some g, and since the map O(V, g) → O(V, g′) is a
homeomorphism, this topology is independent of g.

Remark 2.2. The map O → O′ is, generally, not a group homomorphism. So, while the set of maximally
isotropic subspaces carries a group structure, it is not canonical.



Chapter 3

Dirac structures and generalized geometry

3.1 Dorfman bracket and Dirac structures

Presymplectic and Poisson structures on a manifold both come with their own integrability conditions.
We will see both of these conditions can be unified to one – the involutivity of a certain vector subbundle
under the so-called the Dorfman bracket.

Our discussion from section 2.1 can be generalized to the tangent and cotangent bundles of a manifold
X. We define the generalized tangent bundle as TX ⊕T ∗X, usually dropping X and writing simply T ⊕T ∗.
Again, T ⊕ T ∗ carries on it a natural pairing on sections, given by the same formula as in section 2.1.

Both T and T ∗ carry on them additional geometric structure – we can take the Lie bracket of two sections
of T , and we can take the exterior derivative of sections of T ∗. Both of these structures are actually combined
to give a bracket on T ⊕ T ∗.

Definition 3.1. The Dorfman bracket of two sections X + α, Y + β of T ⊕ T ∗ is given by:

[X + α, Y + β]Dorfman = [X,Y ]Lie + LXβ − iY dα.

From now on, we will simply use the notations [X + α, Y + β]Dorfman = [X + α, Y + β] and [X,Y ]Lie =

[X,Y ]. Since the Lie and Dorfman brackets coincide whenever α = β = 0, there is no ambiguity.

Proposition 3.2. [7] Let x1, x2, x3 ∈ Γ(T ⊕ T ∗). The Dorfman bracket has the following properties:

1. pT ([X + α, Y + β]) = [X,Y ]

2. pT (x1)⟨x2, x3⟩ = ⟨[x1, x2], x3⟩+ ⟨x2, [x1, x3]⟩

3. [x1, x2] + [x2, x1] = 2d⟨x1, x2⟩

4. [x1, [x2, x3]] = [[x1, x2], x3] + [x2, [x1, x3]]

5. [x1, fx2] = f [x1, x2] + pT (x1)(f)x2

6. [fx1, x2] = f [x1, x2]− pT (x2)(f)x1 + 2⟨x1, x2⟩df

The above properties of the Dorfman bracket are almost enough to define it completely. As we will show
in definition 3.11, it is also possible to ‘twist’ the Dorfman bracket while still maintaining these properties.

Definition 3.3. A Dirac structure is a maximally isotropic subbundle L of T ⊕T ∗ which is involutive under
the Dorfman bracket. That is, for any x1, x2 ∈ Γ(L), [x1, x2] ∈ Γ(L).

12
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Proposition 3.4. Let ω ∈ Γ(
∧2 T ∗). Then dω = 0 if and only if graph(ω) is a Dirac structure.

Proposition 3.5. Let π ∈ Γ(
∧2 T ). Then [π, π] = 0 (where [·, ·] is the Schouten bracket, defined as the

unique graded bracket on the space of alternating multivector fields that makes the alternating multivector
fields into a Gerstenhaber algebra) if and only if graph(π) is a Dirac structure.

The integrability of Dirac structures can equivalently be encoded by the vanishing of a certain tensor,
similar to the Nijenhuis tensor of an almost complex structure. As such, they carry the same name:

Definition 3.6. Let L be a maximally isotropic subbundle. The Nijenhuis tensor NL is defined via

NL(x1, x2, x3) = ⟨[x1, x2], x3⟩,

where x1, x2, x3 are extended to local sections of L.

Proposition 3.7. The operator NL is tensorial, that is, independent of the local extensions of the xi, and
skew symmetric.

Proof. We clearly have:
NL(x1, x2, fx3) = fNL(x1, x2, x3).

Therefore, showing NL is skew symmetric would also show it is tensorial. NL(x1, x2, x3) = −NL(x2, x1, x3)

is guaranteed by property 3 of the Dorfman bracket, since L is isotropic. By property 2, and again due to L

being isotropic,
⟨[x1, x2], x3⟩ = pT (x1)⟨x2, x3⟩ − ⟨x2, [x1, x3]⟩ = −⟨[x1, x3], x2⟩,

so NL(x1, x2, x3) = −NL(x1, x3, x2), as needed.

The Nijenhuis tensor measures the failure of a maximally isotropic subbundle to be integrable. For
presymplectic and Poisson structures, the quantities dω and [π, π] play the same role. The following examples
show this is no coincidence (as shown in [7]):

Example 3.8. Ngraph(ω)(x1 + ix1ω, x2 + ix2ω, x3 + ix3ω) = dω(x1, x2, x3)

Example 3.9. Ngraph(π)(α1 + iα1π, α2 + iα2π, α3 + iα3π) =
1
2 [π, π](α1, α2, α3)

Proposition 3.10. [7] NL = 0 ↔ L is a Dirac structure

The Dorfman bracket is not antisymmetric. Its failure to be antisymmetric is encoded by [X,Y ]+[Y,X] =

2d⟨X,Y ⟩. Therefore, its restriction to involutive maximally isotropic subbundles is indeed antisymmetric.
The Dorfman bracket, along with the natural pairing ⟨·, ·⟩ and the projection to T , endow T ⊕ T ∗ with

the structure of a Courant algebroid.

Definition 3.11. A Courant algebroid over a manifold X is given by a vector bundle E, a nondegenerate
pairing ⟨·, ·⟩ on E, a bundle map a : E → TX, called the anchor, and a bracket [·, ·] on the sections of E,
satisfying the following compatibility conditions: Let xi ∈ Γ(E), f ∈ C∞(X)

1. [x1, [x2, x3]] = [[x1, x2], x3] + [x2, [x1, x3]].

2. a(x1)⟨x2, x3⟩ = ⟨[x1, x2], x3⟩+ ⟨x2, [x1, x3]⟩.

3. [x1, fx2] = f [x1, x2] + (a(x1)(f))x2.
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4. [x, x] = 2D⟨x, x⟩, where D is defined via ⟨Df, x⟩ = a(X)(f) for any x ∈ Γ(E).

All properties of the Dorfman bracket as in proposition 3.2 can be deduced from the above properties.
One could also consider the twisted version of the Dorfman bracket - given by

[X + α, Y + β]H = [X + α, Y + β]Dorfman + iXiY H,

where H is a closed 3-form. The twisted Dorfman bracket again endows T ⊕ T ∗ with the structure of a
Courant algebroid. Furthermore, an exact Courant algebroid E, that is, one that fits into a short exact
sequence:

0 T ∗ E T 0a∗ a

is isomorphic to the Courant algebroid given by T ⊕T ∗ with the twisted Dorfman bracket for some H, which
is unique up to the addition of an exact 3-form [21, 20]. Using the definitions above, we can now give a more
general definition of a Dirac structure:

Definition 3.12. Let E be a Courant algebroid with split signature pairing. A Dirac structure is a maximally
isotropic involutive subbundle L ⊆ E.

Dirac structures themselves carry the structure of a Lie algebroid.

Definition 3.13. A Lie algebroid over a manifold X is given by a vector bundle L, a bundle map a : L → TX

called the anchor, and a Lie bracket [·, ·] on the sections of L, such that:

[l1, f l2] = f [l1, l2] + (a(l1)(f))l2

for any l1, l2 ∈ Γ(L), f ∈ C∞(X).

Example 3.14. The tangent bundle TX with the usual Lie bracket and a = Id is a Lie algebroid.

Example 3.15. A Lie algebroid over X = {pt} is a Lie algebra.

Example 3.16. Since the Dorfman bracket on T⊕T ∗ does not satisfy the Jacobi identity whenever dimX ≥
2, T ⊕ T ∗ is, generically, not a Lie algebroid.

Remark 3.1. The fact that [·, ·] is a Lie bracket satisfying the compatibility condition with the anchor also
guarantees that a([l1, l2]) = [a(l1), a(l2)], as we will show in corollary 5.9.

As a final remark, we define the generalized diffeomorphism group of a manifold X.

Definition 3.17. The generalized diffeomorphism group GDiff(X) is the group of orthogonal bundle auto-
morphisms of (T ⊕ T ∗, ⟨·, ·⟩) preserving the Dorfman bracket.

As mentioned before, the automorphism group of (V ⊕V ∗, ⟨·, ·⟩) is generated by lifted linear transforma-
tions, B-transformations and β-transformations. The addition of the condition of preserving the Dorfman
bracket further restricts these transformations:

Theorem 3.18. [7] GDiff(X) is generated by two kinds of transformations:

• Lifted diffeomorphisms, given by the bundle map

(x, v, α) 7→ (f(x), f∗v, (f
−1)∗α)

for f ∈ Diff(X) (where x ∈ X and (v, α) ∈ T ⊕ T ∗∣∣
x
).

• B-field transformations, given by the bundle map (x, v, α) 7→ (x, v, α+ ivB), for B closed.
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3.2 Integrability in terms of sections of Γ(O(T ))

Our previous representation in section 2.3 of maximally isotropic subspaces as orthogonal operators can
also be moved to the global setting. Choosing a Riemmanian metric g on X, we have a correspondence
between maximally isotropic subbundles of T ⊕ T ∗ and smooth sections of the group bundle O(X).

The technique used in proving this correspondence gives the following result on the global structure of a
maximally isotropic subbundle:

Theorem 3.19. Let L be a maximally isotropic subbundle. Then, as a vector bundle, L ∼= T .

Proof. Consider g as a map g : T → T ∗, and consider the map Pg : T ⊕T ∗ → T given by X+α 7→ X+g−1α.
We show Pg

∣∣
L

is injective on each fiber: if Pg(X + α) = 0, we have:

g(Pg(X + α), Pg(X + α)) = 0 = g(X,X) + g∗(α, α) + 2α(X) = g(X,X) + g∗(α, α)

since L is isotropic. Therefore, X = 0, α = 0 and by dimension considerations Pg

∣∣
L

is an isomorphism on
each fiber.

Just as in section 2.3, the pointwise linear invariants of maximally isotropic subbundles can be encoded as
invariants of their corresponding orthogonal transformations. The type of a maximally isotropic subbundle
at a point is again defined as

type(L
∣∣
p
) := codim(pT (L)

∣∣
p
).

Proposition 3.20. The type is an upper-semicontinuous function.

Proof. Let p be a point in X. Let {li} be a local basis of sections of L. Then, codim(Span({a(li(p))})) =
type(L

∣∣
p
). Assume, without loss of generality, that a(l1), ..., a(lk) are linearly independent at p, where

k = dim(Span({a(li(p))})). Then, by continuity, a(l1), ..., a(lk) are linearly independent at a neighbourhood
U of p, and so dim(Span({a(li(p′))})) ≥ dim(Span({a(li(p))})) for any p′ ∈ U , which gives type(L

∣∣
p′
) ≤

type(L
∣∣
p
).

The topology of O(X, g) gives us the following result:

Theorem 3.21. The parity of L at a point p, given by type(L
∣∣
p
) mod 2 is constant (independent of p).

Proof. By proposition 2.17, the type of L at p is equal to the number of −1 eigenvalues of OL at p. So,
type(L

∣∣
p
) mod 2 is proportional to det(O

L
∣∣∣
p

), which is constant since OL is a continuous function of p.

In addition, the integrability of a maximally isotropic subbundle can be restated in terms of its corre-
sponding orthogonal operator. Let ∇ be the Levi-Civita connection for g. We need the following lemma:

Lemma 3.22. Let X,Y, Z ∈ Γ(T ), α ∈ Γ(T ∗) defined by α(Y ) = g(Z, Y ). Then:

dα(X,Y ) = g(Y,∇XZ)− g(X,∇Y Z).

Proof. Applying Koszul’s formula, we have:

dα(X,Y ) = Xα(Y )− Y α(X)− α([X,Y ])

= Xg(Z, Y )− Y g(Z,X)− g([X,Y ], Z)

= g(∇XZ, Y ) + g(Z,∇XY )− g(∇Y Z,X)− g(Z,∇Y X)− g(Z, [X,Y ]).
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Since ∇ is torsion free, [X,Y ] = ∇XY −∇Y X [16], so:

dα(X,Y ) = g(∇XZ, Y )− g(∇Y Z,X).

As needed.

Using Cartan’s magic formula LX = diX + iXd we find:

Corollary 3.23. Using the above notation:

LXα = g(∇·X,Z) + g(∇XZ, ·).

Finally, this allows us to express the Nijenhuis tensor in these terms.

Proposition 3.24. The Nijenhuis tensor of LO can be expressed in terms of O as:

(2Pg

∣∣
LO

−1
)∗NL(X,Y, Z) = g(Z, (I +O−1)(∇Y O)X) + c.p.

Proof. Our calculations give the following expression for the Dorfman bracket:

[x1 + ix2g, x3 + ix4g] = ∇x1x3 −∇x3x1 + g(∇x1, x4) + g(∇x1x4, ·)− g(∇x3x2, ·) + g(x3,∇x2).

Plugging in x1 + ix2g = x = (I + O)X + g((I − O)X, ·), x3 + ix4g = y = (I + O)Y + g((I − O)Y, ·), we
have:

[(I +O)X+g((I −O)X, ·), (I +O)Y + g((I −O)Y, ·)]

=∇(I+O)X((I +O)Y )−∇(I+O)Y ((I +O)X) + g(∇((I +O)X), (I −O)Y )

+ g(∇(I+O)X((I −O)Y ), ·)− g(∇(I+O)Y ((I −O)X, ·) + g((I +O)Y,∇((I −O)X)).

Pairing this expression with z = (I +O)Z + g((I −O)Z, ·) to get the Nijenhuis tensor of LO, we have:

2NL(x, y, z) = g((I −O)Z,∇(I+O)X((I +O)Y )−∇(I+O)Y ((I +O)X))

+ g(∇(I+O)Z((I +O)X), (I −O)Y ) + g(∇(I+O)X((I −O)Y ), (I +O)Z)

− g(∇(I+O)Y ((I −O)X, (I +O)Z) + g((I +O)Y,∇(I+O)Z((I −O)X)).

Focus on all terms containing ∇X . Using ∇X(A(Y )) = (∇XA)(Y )+A(∇X(Y )) for any A ∈ Γ(End(T )),
we have that they sum to:

g((I −O)Z,∇(I+O)X((I +O)Y )) + g(∇(I+O)X((I −O)Y ), (I +O)Z)

=g((I −O)Z, (I +O)∇(I+O)X(Y )) + g((I −O)∇(I+O)X(Y ), (I +O)Z)

+ g((I −O)Z, (∇(I+O)XO)Y )− g((∇(I+O)XO)Y, (I +O)Z).

Since O is orthogonal, the above expression equals:

−2g(Z,O−1(∇(I+O)XO)Y ).
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Similarly, the rest of the terms sum to:

2g(Z,O−1(∇(I+O)Y O)X)− 2g(Y, (O−1)(∇(I+O)ZO)X).

Note, that the map Pg defined earlier gives Pg((I +O)X + g((I −O)X, ·)) = 2X. Overall we find:

(2Pg

∣∣
LO

−1
)∗NL(X,Y, Z) = g(Z, (I +O−1)(∇Y O)X) + c.p.

Theorem 3.25. The space of Dirac structures is isomorphic to the space of sections of O(T ) satisfying:

g(Z, (I +O−1)(∇Y O)X) + c.p. = 0 ∀X,Y, Z ∈ Γ(T )

Remark 3.2. After having proved this theorem, we were told that a similar approach to ours of calculating
the Nijenhuis tensor in terms of O is taken in [24], where an equivalent result is achieved.

Corollary 3.26. Let O be a section of orthogonal operators such that ∇O = 0. Then LO is integrable.

Example 3.27. Let (X, g, ω, J) be a Kahler manifold. First, note J = g−1 ◦ ω. In addition, ∇J = 0 [2].
Following the notation in section 2.3, Ograph(ω) is the Cayley transform of J = A. Since ∇J = 0, one easily
shows ∇Ograph(ω) = 0 by the Leibniz rule for ∇. The integrable complement given by −Ograph(ω) in this
case is simply graph(−ω).



Chapter 4

Deformation theory

First, we briefly recall the deformation theories of presymplectic, Poisson, and complex structures, draw-
ing the similarities between them. Then, we will give a unified description of the first two in the framework
of Dirac structures.

4.1 Deformations of symplectic, Poisson, and complex structures

As we will see, deformations of symplectic, Poisson, and complex structures share similarities. They are
all controlled by a Maurer-Cartan type equation, or more precisely, they are all governed by a differential
graded Lie algebra (DGLA), defined formally in definition 4.2. As we will show, deformations of a given
Dirac structure will have a similar flavor, with a possible complication arising from the failure of a certain
technical requirement.

Definition 4.1. A deformation of a (pre)symplectic structure ω0 is a 1-parameter family ωt of (pre)symplectic
structures, that is smooth as a map ωt : TX × R → T ∗X.

Of course, since ωt are all (pre)symplectic structures, the only integrability condition they must satisfy
is dωt = 0 for all t. If we write ωt = ω0 + σt, this is simply captured by:

dσt = 0.

A similar definition can be given for Poisson structures. Here, the description of integrable deformations
is a bit more complicated: a Poisson structure must satisfy [π, π] = 0. Again, considering a deformation
πt = π0 + ηt, we see ηt must satisfy 2[π0, ηt] + [ηt, ηt] = 0. Defining dπλ = [π, λ] for any λ ∈ Γ(

∧
T ), we find

ηt must satisfy the equation:

dπ0ηt +
1

2
[ηt, ηt] = 0.

Note, in addition, that the Jacobi identity for the Schouten bracket gives dπ[x, y] = [dπx, y]− (−1)|x|[x, dπy]

for x ∈ Γ(
∧

T ) homogeneous.
For complex structures, the constructions are more complicated, but are even more similar to those

used when deforming Dirac structures, as we will see in section 4.2. For a given complex structure J0, let
T 1,0, T 0,1 ⊆ T ⊗ C be the +i and −i eigenbundles, respectively. A small enough deformation Jt can be
shown to be equivalent to the graph of a bundle map ϕt : T

0,1 → T 1,0, that is, a section of
∧0,1⊗T 1,0. It

can be shown [10, 12] that Jt is a complex structure if and only if ϕt satisfies the Maurer-Cartan equation:

∂̄ϕt + [ϕt, ϕt] = 0.

18
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4.2 Deformations of Dirac structures

Note the common denominator in all three of the deformation problems presented in section 4.1:

1. First, a graded vector bundle is chosen, and small deformations are encoded by sections of this vector
bundle of a given rank. For presymplectic structures the vector bundle is

∧
T ∗, for Poisson structures

it is
∧
T , and for complex structures it is

⊕
p

∧0,p⊗T 1,0.

2. Second, both a differential and a bracket are defined on sections of this bundle (for the presymplectic
case, the bracket is zero). The differential chosen in all three cases is also a graded derivation of the
bracket. This gives the space of sections of the aforementioned bundle the structure of a DGLA.

3. The integrable deformations are now those satisftying the Maurer-Cartan equation in this DGLA.

This phenomena is actually generic in geometry, and could actually be captured by the following vague
statement, originating in Quillen’s work [9]:

Many deformation problems over characteristic 0 can be captured by Maurer-Cartan
elements in some DGLA.

We now formally present the definition of a DGLA:

Definition 4.2. A differential graded Lie algebra (DGLA) is given by a graded vector space V , a linear map
d : V → V satisfying d2 = 0, and a graded Lie bracket on V , that is, a bilinear map [·, ·] : V ⊗ V → V

satisfying graded-antisymmetry
[x, y] + (−1)|x||y|[y, x] = 0,

and the graded Jacobi identity

(−1)|x||z|[x, [y, z]] + (−1)|y||z|[y, [z, x] + (−1)|y||z|[z, [x, y]] = 0,

such that d and [·, ·] satisfy the graded Leibniz rule:

d[x, y] = [dx, y] + (−1)|x|[x, dy].

When a Dirac structure admits a complementary Dirac structure, the exterior algebra of the latter can
be given the structure of a DGLA. This DGLA, as we will show, is exactly the DGLA controlling the
deformations of the Dirac structure.

Let M be a Dirac structure over a manifold X. Assume there exists a Dirac structure L complementary
to M , that is, M ⊕ L = T ⊕ T ∗. In this case, we call L a ‘Dirac complement’ to M .

Definition 4.3. A small deformation of M is a maximally isotropic subbundle M ′ that is complementary
to L.

The term ‘small’ here is captured by the fact that, on each fiber, the set of subspaces complementary to
L is open, as shown in proposition 2.21.

We now show how to describe these small deformations as sections of a certain vector bundle. Since ⟨·, ·⟩
is nondegenerate, the fibers of L can be identified through ⟨·, ·⟩ with the duals of the fibers of M . Therefore,
maps M → L can be considered as elements of ⊗2M∗, and vice-versa, and we have the notion of ‘skew’ maps
M → L, those identified with elements of

∧2M∗. We have the following:
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Proposition 4.4. A maximally isotropic subbundle M ′ is complementary to L if and only if M ′ is the graph
of a skew map ω : M → L.

Proof. If M ′ is complementary to L, pM (M ′ ⊕ L) = pM (M ′) = M , so pM
∣∣
M ′ gives an isomorphism, and we

can define ω = pL ◦ p−1
M

∣∣
M ′ : M → L, and by definition M ′ = {m+ ω(m) |m ∈ M}. Since M ′ is maximally

isotropic, it is easy to check ω is skew. The other direction is obvious.

Using the notation from before, we write M ′ = eωM . We can now ask when M ′ is integrable in terms
of ω. Recall that proposition 3.10 showed integrability is equivalent to the vanishing of the Nijenhuis tensor
N(x, y, z) = ⟨[x, y], z⟩. We can consider the pullback of this tensor to M along the isomorphism eω. We have
the following:

Ñ = eω∗NM ′(x, y, z) = ⟨[x, y], z⟩

+ ⟨[ixω, y], z⟩+ ⟨[x, iyω], z⟩+ ⟨[x, y], izω⟩

+ ⟨[ixω, iyω], z⟩ + ⟨[ixω, y], izω⟩+ ⟨[x, iyω], izω⟩

+ ⟨[ixω, iyω], izω⟩.

(4.1)

The equation splits into terms of order of homogeneity 0, 1, 2, and 3 in ω. We note that the degree 0
term is the Nijenhuis tensor of M , whereas the degree 3 term is the pullback of the Nijenhuis tensor of L
along ω : M → L. Since M,L are both integrable, these terms vanish, and we are left with the order 1 and
2 terms in ω. It is a known fact, also appearing in [8], that these terms can be identified with the following
operations on Γ(

∧
L).

Proposition 4.5. The order 1 term in ω can be written as:

⟨[ixω, y], z⟩+ ⟨[x, iyω], z⟩+ ⟨[x, y], izω⟩ = dMω(x, y, z).

Proposition 4.6. The order 2 term in ω can be written as:

⟨[ixω, iyω], z⟩ + ⟨[ixω, y], izω⟩+ ⟨[x, iyω], izω⟩ =
1

2
[ω, ω](x, y, z)

where [·, ·] is the extension of the Dorfman bracket to the sections of the exterior algebra of T ⊕ T ∗, similar
to how the Schouten bracket is defined in terms of the Lie bracket. As a consequence of L being integrable,
[ω, ω] ∈ Γ(

∧3 L).

The bracket and exterior derivative also satisfy the following important relation:

Lemma 4.7. The exterior derivative is a graded derivation of the bracket. That is, for any homogenous
α, β ∈ Γ(

∧
L),

dM [α, β] = [dMα, β] + (−1)|α|[α, dMβ]

where |α| is the degree of α as an element of
∧
L.

Proposition 4.8. The two operations dM , [·, ·], along with the relation between them, endow Γ(
∧
L) with

the structure of a differential graded Lie algebra (DGLA).

Observing equation 4.1 again, and using the above lemmas, we have:
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Theorem 4.9. [7] The small deformation M ′ = eωM is integrable ↔ ω is a Maurer-Cartan element in the
DGLA (Γ(

∧
L), dM , [·, ·]), that is,

dMω +
1

2
[ω, ω] = 0.

The deformation problems for presymplectic and Poisson structures, as described in section 4.1, can
be now described in terms of deformation problems of a Dirac structure. The Dirac structures for both
presymplectic and Poisson (and, in fact, complex structures as well) admit a natural choice for a Dirac
complement.

Example 4.10. Consider M = graph(σ) and L = T ∗, for σ a closed 2-form. Since the bracket on M is given
by [x+ ixσ, y+ iyσ] = [x, y]Lie+ i[x,y]σ, the Lie algebroid exterior derivative on

∧
T ∗ coincides with the usual

one, and so we have the DGLA (Γ(
∧
T ∗), d, 0). The integrable deformations eωgraph(σ) = graph(σ + ω)

are now those with dω = 0, as expected.

Example 4.11. Let M = graph(π) and L = T , for π a Poisson structure. The Lie algebroid exterior
derivative on sections of L can be shown to be dMα = [π, α], so the deformation equation reads:

[π, α] +
1

2
[α, α] = 0,

which is the usual deformation equation for Poisson structures [18].



Chapter 5

The complement problem

In the derivation of the deformation equation in theorem 4.9, we made two crucial assumptions: integra-
bility of M , and integrability of L. These assumptions guaranteed the terms of order 0 and 3 in ω vanished.
However, the assumption of the existence of an integrable L complementing M is nontrivial, and in fact
impossible in some cases.

Proposition 5.1. Let H be a 3-form which is not exact, that is, the de Rham cohomology class [H] is
nonzero. Then the Dirac structure T ∗, under the twisted Courant bracket [·, ·]H , has no Dirac complement.

Proof. Any complementary maximally isotropic subbundle of T ∗ is of the form graph(ω) for some 2-form ω. A
calculation shows the Nijenhuis tensor of graph(ω) is given by N(x+ixω, y+iyω, z+izω) = (dω+H)(x, y, z).
Since H is not exact, N will not vanish for any ω. Therefore, T ∗ has no integrable complement.

A natural question therefore arises:

In an exact Courant algebroid, which Dirac structures admit Dirac complements?

This question, currently, remains unanswered in the literature. It is in our interest to examine the effect
of choosing a nonintegrable complement, making the first steps towards defining obstructing the existence
of an integrable complement. In order to do so, we will first need to introduce some basic concepts and
constructions related to a pair of complementary maximally isotropic subbundles.

5.1 Quasi-Lie algebroids and deformations revisited

One could also ask what geometric structure a nonintegrable maximally isotropic subbundle carries.
Choosing a maximally isotropic complement endows it with a structure similar to that of an almost Lie
algebroid, which we will soon introduce. Based on the definitions in [19], we introduce the concept of a
quasi-Lie algebroid.

Definition 5.2. A quasi-Lie algebroid over a manifold X is given by a vector bundle M over X, along with
a bundle map a : M → TX called the anchor and an antisymmetric bracket [·, ·]′ on the sections of M ,
satisfying the following compatibility condition: for any m1,m2 ∈ Γ(M) and f ∈ C∞(X),

[m1, fm2] = (a(m1)f)m2 + f [m1,m2].

Remark 5.1. A slightly stronger notion is that of an almost Lie algebroid, differing by the addition of the
assumption a([X,Y ]′) = [a(X), a(Y )], that is, the anchor is a morphism of Lie algebras from Γ(M) to Γ(T ).

22
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Remark 5.2. Note that the bracket [·, ·]′ does not necessarily satisfy the Jacobi identity. In the case it does,
the notions of quasi-Lie algebroids, almost-Lie algebroids, and Lie algebroids, coincide.

For any maximally isotropic subbundle M , choosing a maximally isotropic complement L endows it with
a natural quasi-Lie algebroid structure.

Proposition 5.3. Let M,L be complementary maximally isotropic subbundles of T ⊕ T ∗, and let pM be the
projection to M with respect to the splitting M ⊕ L. Then a = pT and [·, ·]′ = pM ([·, ·]) (where [·, ·] is the
Dorfman bracket) give a quasi-Lie algebroid structure on M .

Proof. Since the Dorfman bracket [x1, x2] is antisymmetric whenever ⟨x1, x2⟩ = 0, so is [·, ·]′. In addition,

pM ([m1, fm2]) = pM (a(m1)f)m2 + f [m1,m2])

= (a(m1)f)pM (m2) + fpM ([m1,m2])

= (a(m1)f)m2 + f [m1,m2]
′.

Remark 5.3. We make the following observations:

• Of course, the splitting also endows L with a quasi-Lie algebroid structure.

• In the case where at least one of M or L is a Dirac structure, (M,L) forms a quasi-Lie bialgebroid, in
the sense of [19].

• We wrote [·, ·]′ to differentiate it from the usual Dorfman bracket [·, ·]. One can easily verify the
difference [·, ·]− [·, ·]′ : Γ(M)⊗ Γ(M) → Γ(M) is tensorial.

• As mentioned before, the Dorfman bracket satisfies [a(m1), a(m2)] = a([m1,m2]), which guaranteed
that a maximally isotropic integrable subbundle of T ⊕ T ∗ carries the structure of a Lie algebroid.
Since we now include a projection, this is no longer guaranteed to hold.

Example 5.4. For the graph of a 2-form M = graph(ω), choosing L = T ∗, it can be shown that pM ([X +

iXω, Y + iY ω]) = [X,Y ] + i[X,Y ]ω.

Example 5.5. Let E be a regular distribution and choose a metric g. Consider M = E ⊕ Ann(E), L =

E⊥⊕Ann(E⊥). We can use the metric to identify M ∼= E⊕E⊥ ∼= T . Let e1+f1, e2+f2 ∈ Γ(E⊕E⊥) = Γ(T ).
Using corollary 3.23 we find the bracket:

pM ([e1 + f1, e2 + f2]) =p⊥E([e1, e2])

+ p⊥E⊥(∇e1f2)− p⊥E⊥(∇e2f1)− p⊥E⊥ ◦ g−1(g(e1,∇f2)− g(e2,∇f1)),

where g−1 : T ∗ → T is the inverse of g.

The remarks above lead us to define two natural operators on sections of a quasi-Lie algebroid:

Definition 5.6. The Alm tensor is defined as

Alm(m1,m2) = [a(m1), a(m2)]− a([m1,m2]
′).

Remark 5.4. One can easily verify Alm is tensorial, that is, defines a bilinear operation M ⊗M → T . The
name Alm is chosen since this tensor exactly measures the failure of M to be an almost Lie algebroid.
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Remark 5.5. In the notation of proposition 5.3, we have

Alm(m1,m2) = a(pL([m1,m2])).

Definition 5.7. The Jacobiator of sections m1,m2,m3 ∈ Γ(L) is defined as

Jac(m1,m2,m3) = [[m1,m2]
′,m3]

′ + c.p.

In contrast to Alm, the operator Jac is generally non-tensorial. However, the obstruction for Jac to be
tensorial is exactly Alm:

Proposition 5.8. For f ∈ C∞(X),

Jac(m1,m2, fm3) = fJac(m1,m2,m3)− (Alm(m1,m2)f)m3,

that is, Alm measures the failure of Jac to be tensorial.

Proof. Note that

[[m1, fm3]
′,m2]

′ =− (a(m1)a(m2)f)m3 + (a(m2)f)[m3,m1]
′

− (a(m1)f)[m2,m3]
′ + f [[m2,m3]

′,m1]
′,

therefore a quick calculation shows

[[m1,m2]
′, fm3]

′ + c.p = (a([m1,m2]
′)f)m3 − ([a(m1), a(m2)]

′f)m3 + fJac(m1,m2,m3).

Corollary 5.9. If [·, ·]′ satisfies the Jacobi identity, the anchor a is a Lie algebra homomorphism.

Another basic object in the theory of quasi-Lie algebroids is the quasi-Lie algebroid exterior derivative.

Definition 5.10. Let M be a quasi-Lie algebroid. The quasi-Lie algebroid exterior derivative dM is the linear
map Γ(

∧k M∗) → Γ(
∧k+1M∗) defined via the Koszul formula: For α ∈ Γ(

∧k M∗), X0, ..., Xk ∈ Γ(M),

dMα(X0, ..., Xk) =
∑
i

a(Xi)α(X0, ..., X̂i, ..., Xk)

+
∑
i<j

(−1)i+jα([Xi, Xj ]
′, X0, ..., X̂i, ..., X̂j , ..., Xk).

While the quasi-Lie algebroid exterior derivative is a graded derivation on Γ(
∧
L∗), its failure to be a

differential is encoded by both Alm and Jac:

Proposition 5.11. For α ∈ Γ(M∗),

d2Mα(m1,m2,m3) = α(Jac(m1,m2,m3)) + (Alm(m1,m2)α(m3) + c.p).
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Proof. We calculate:

d2Mα(m1,m2,m3) =a(m1){a(m2)α(m3)− a(m3)α(m2)− α([m2,m3]
′)}

− a(m2){a(m1)α(m3)− a(m3)α(m1)− α([m1,m3]
′)}

+ a(m3){a(m1)α(m2)− a(m2)α(m1)− α([m1,m2]
′)}

− a([m1,m2]
′)α(m3)− a(m3)α([m1,m2]

′)− α([[m1,m2]
′,m3]

′)

+ a([m1,m3]
′)α(m2)− a(m2)α([m1,m3]

′)− α([[m1,m3]
′,m2]

′)

− a([m2,m3]
′)α(m1)− a(m1)α([m2,m3]

′)− α([[m2,m3]
′,m1]

′).

All terms of the form a(mi)α([mj ,mk]
′) cancel out, The terms of the form a([[mi,mj ]

′,mk]
′) add up to

give α ◦ Jac, and the terms left sum up to give (Alm(m1,m2)α(m3) + c.p) as needed.

In the special case of a pair of complementary maximally isotropic subbundles M,L of T ⊕ T ∗, the
quasi-Lie algebroid exterior derivative has the property of allowing us to calculate the bracket of a section
of M with a section of L. We have:

Proposition 5.12. Let X ∈ Γ(M), ω ∈ Γ(
∧

L). Then:

p∧L([X,ω]) = LXω,

where LX = dM iX + iXdM .

Proof. It is not hard to show that LX is again a graded derivation, so it is enough to prove this for α ∈ Γ(L).
Indeed:

pL([X,α])(Y ) = ⟨[X,α], Y ⟩ = a(X)α(Y )− ⟨α, [X,Y ]⟩ = a(X)α(Y )− α([X,Y ]),

and
LXα(Y ) = dMα(X,Y ) + a(Y )α(X) = a(X)α(Y )− α([X,Y ]),

just as we needed.

In section 4.2, a pair of transverse Dirac structures endowed the exterior algebra of either of them with
DGLA structure. Now, dropping the assumption of integrability, a pair of maximally isotropic subbundles,
along with their quasi-Lie algebroid structures, will endow the exterior algebra of either of them with a
curved L3-algebra structure.

To define curved L3 algebras formally, we first need to recall a few concepts:

Definition 5.13. An (i,j) shuffle is a permutation σ ∈ Si+j satisfying σ(1) < ... < σ(i) and σ(i+1) < ... <

σ(i+ j). The set of all (i,j) shuffles is denoted Sh(i, j).

Definition 5.14. The Koszul sign χ(σ, v1, ..., vn) of a permutation σ ∈ Sn and a collection v1, ..., vn of
homogeneous elements of a graded vector space V is the product of the factors (−1)|vi||vj | for any interchange
of neighbours i, j when decomposing σ to a product of interchanges, multiplied by the sign of the permutation σ.

Example 5.15. If all of the vi’s are of even degree, the Koszul sign χ(σ, v1, ..., vn) is simply sgn(σ). If all
of the vi’s are of odd degree, the Koszul sign χ(σ, v1, ..., vn) is 1.
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Put in simple terms, a curved L3 algebra is given by a graded vector space, along with four graded-
antisymmetric brackets lk : ⊗V → V for k = 0, 1, 2, 3, satisfying certain relations between them. One can
think of these relations as a sequence of obstructions for the L3 algebra to reduce to a simpler structure-
such as a differential complex, a differential graded Lie algebra, and so on.

Definition 5.16. A curved L3 algebra is a Z-graded vector space V =
⊕

i Vi along with multilinear graded-
antisymmetric maps lk : ⊗kV → V for k = 0, 1, 2, 3, satisfying the following relations between them for
n = 0, 1, 2, 3:

n∑
k=0

∑
σ∈Sh(k,n−k)

ln−k+1(lk(vσ(1), ..., vσ(k)), vσ(k+1), ..., vσ(n)) = 0. (5.1)

Remark 5.6. By ‘graded antisymmetric’, we mean

lk(vσ(1), ..., vσ(k)) = χ(σ, v1, ..., vk)lk(v1, ..., vk).

Remark 5.7. A curved L3 algebra is a special case of a curved L∞ algebra, where all of the higher brackets
lk vanish for k > 3.

Properties. • For n = 0, we have l1(l0) = 0, showing the curvature is always ‘closed’ under l1.

• For n = 1, we have l21(·) = l2(l0, ·), showing the failure of l1 to be a differential is exactly measured by
l2 and l0.

• For n = 2, we have l3(l0, v1, v2) + l2(l1(v1), v2) + l2(l1(v2), v1) + l1(l2(v1, v2)) = 0, showing the failure
of l1 to be a graded derivation of the bracket l2 is measured by l0, l3.

• The explicit n = 3 is cumbersome, but it shows the failure of the graded Jacobiator of l2 to vanish is
given by an expression involving l0, l1 and l3.

• When l0 and l3 both vanish, we have a DGLA.

We are now ready to construct the curved L3 algebra for a pair of complementary maximally isotropic
subbundles M,L of T ⊕ T ∗. Recall first our notation: the splitting T ⊕ T ∗ = M ⊕ L gives projections
pM , pL, which can be naturally extended to projections p∧M , p∧L from

∧
T ⊕ T ∗ to

∧
M ,

∧
L respectively.

In addition, since ⟨·, ·⟩ is nondegenerate, we can use it to identify L ∼= M∗, so by α(X) for α ∈ L, X ∈ M

we mean 2⟨α,X⟩, and again we naturally extend this pairing to
∧
M ,

∧
L.

Theorem 5.17. ([8, 11]) Using our previous notation, given a pair of complementary maximally isotropic
subbundles M,L of T ⊕ T ∗, the following objects form a curved L3 algebra:

1. V = Γ(
∧
L)[1] with grading given by the natural grading on

∧
L shifted by +1. For example, sections

of L are considered to be of degree 2. Using this conventions, lk is a degree 3 − 2k map, meaning the
degree of lk(α1, ..., αk) is |α1|+ ...+ |αk|+ 3− 2k.

2. l0 = NM which is naturally an element of
∧3 L.

3. l1 = dM is the quasi-Lie algebroid exterior derivative.

4. l2 given by the Schouten bracket given by extending pL[α, β] from Γ(L) to Γ(
∧

L).
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5. l3 given as follows: consider NL as an element of the Clifford algebra Cliff(T ⊕ T ∗, ⟨·, ·⟩). Define
l3(α, β, γ) as the graded-antisymmetrization of {{{NL, α}, β}, γ}, where {·, ·} is the graded bracket.
(Note that, when taking the graded commutator here, we use the original grading on Γ(

∧
L) as in

definition 2.9).

Remark 5.8. (a) The shift in degree is to guarantee the curved L3 algebra defined above satisfies the same
graded-antisymmetry conditions that appear in the literature. Compare for example, the requirement
l2(x, y) = −(−1)|x||y|l2(y, x), with the fact that for the Schouten bracket,
[x, y] = −(−1)(|x|−1)(|y|−1)[y, x].

(b) At first glance it might not be obvious why l3 returns an element of Γ(
∧
L). If any of α, β, γ is a degree

0 element, the expression vanishes. If α, β, γ are all degree 1 elements, l3(α, β, γ) = 3!NL(α, β, γ). By
the Leibniz rule the bracket of higher degree elements remains an element of

∧
L.

(c) In the literature, sometimes instead of the Koszul sign, the brackets are assumed to be ‘graded-
symmetric’, dropping the factor sign(σ) from χ. The two definitions are equivalent, in the sense that
an L∞ structure which is graded-antisymmetric in the first sense uniquely defines an L∞ structure that
is graded-antisymmetric in the second sense and vice versa.

A possible invariant, which controls whether or not a Dirac structure admits a Dirac complement, could
possibly exist in one of the curved L3 algebras associated with choosing a complementary maximally isotropic
subbundle. Of course, different maximally isotropic complements L,L′ give different L3 structures. Since
our definition of the L3 algebra on

∧
M∗ heavily relied on the splitting itself, we get two different structures,

given by two different sets of brackets.

5.2 Rechoosing M

Let M,M ′ be maximally isotropic complements for a given maximally isotropic subbundle L. Since M ′

is transverse to L, it can be written as the graph of some ϵ : M → L, that is, M ′ = {m + ω(m) |m ∈ M},
and since M ′ is isotropic, we have that ω is skew when considered as an element of

∧2M∗ after identifying
L ∼= M∗. We write M ′ = eωM . Note that by our choices, the following diagram commutes:

L∗

M ′ M

⟨ · , · ⟩

eω

⟨ · , · ⟩

We have two splittings of T ⊕ T ∗, given by M ⊕ L and M ′ ⊕ L, thus two sets of projections, one which
we will mark pM , pL and one which we will mark pM ′ , p′L. We have for m+ l ∈ M ⊕ L:

p′L(m+ l) = p′L(m+ l + ω(m)− ω(m)) = l − ω(m).

Therefore,
p′L = pL − ω ◦ pM ,

and
pM ′ = pM + ω ◦ pL.

We can extend the natural isomorphism eω : M → M ′ to an isomorphism
∧
M →

∧
M ′. We find the

following:
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Proposition 5.18. The two different L3 structures on Γ(
∧
L) differ by the following operations:

1. For the Nijenhuis tensors of M,M ′,

NM ′ = NM + dMω +
1

2
[ω, ω]L + ω∗NL.

If L is integrable,

NM ′ = NM + dMω +
1

2
[ω, ω].

2. For a 1-form α:

(dM ′ − dM )α(X,Y ) = a(ω(X))α(Y )− a(ω(Y ))α(X)

− α(pM ([iXω, Y ] + [X, iY ω] + [iXω, iY ω]).

If L is integrable,

(dM ′ − dM )α(X,Y ) = a(ω(X))α(Y )− a(ω(Y ))α(X)

+ a(α)ω(X,Y ) + dLY (ω(X), α)− dLX(ω(Y ), α).

3. For two sections α, β ∈ Γ(L),

p′L([α, β]) = pL([α, β])− ω ◦ pM ([α, β]).

If M is integrable, the difference vanishes.

4. For the Nijenhuis tensor of L, NL = N ′
L.

Proof. 1. NM versus NM ′ : Our previous derivation of the deformation equation 4.1 allows us to find:

NM ′ = NM + dMω +
1

2
[ω, ω]L + ω∗NL.

If L is integrable, the last term drops, and [ω, ω]L is defined independently of the splitting M ⊕ L, so
we can write

NM ′ = NM + dMω +
1

2
[ω, ω].

2. dM versus dM ′ : For a 1-form α, we have:

dMα(X,Y ) = a(X)α(Y )− a(Y )α(X)− α(pM [X,Y ]),

and,

dM ′α(X + iXω, Y + iY ω) = a(X)α(Y )− a(Y )α(X) + a(ω(X))α(Y )

− a(ω(Y ))α(X)− α(pM ([X,Y ]

+ [iXω, Y ] + [X, iY ω] + [iXω, iY ω]),

where we used the fact that L is isotropic.

Assuming L is integrable, we can further simplify this expression. Since dMα, dM ′α are both sections
of
∧
L, they are completely described by their pairing with sections of

∧2M . Since the pairing with
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a section of L is unaffected by eω, we have:

(dM ′ − dM )α(X,Y ) = a(ω(X))α(Y )− a(ω(Y ))α(X)− α(pM ([iXω, Y ] + [X, iY ω]))

= a(ω(X))α(Y )− a(ω(Y ))α(X)

+ α(dLω(X,Y ) + iω(X)dLY − iω(Y )dLX)

= a(ω(X))α(Y )− a(ω(Y ))α(X)

+ a(α)ω(X,Y ) + dLY (ω(X), α)− dLX(ω(Y ), α).

3. pL([·, ·]) versus p′L([·, ·]): For two sections α, β ∈ Γ(L),

p′L([α, β]) = pL([α, β])− ω ◦ pM ([α, β]).

If M is integrable, the difference vanishes.

4. NL versus N ′
L: Since NL is defined independently of M,M ′, we again have NL = NL′

A curved L3-algebra with l3 = 0 is called a curved DGLA. As we have shown, if L is integrable, any
complement M to L gives Γ(

∧
L) the structure of a curved DGLA. Therefore, we find a first equivalent

formulation of the complement problem:

Theorem 5.19. Let L be a Dirac structure and M be a maximally isotropic complementary subbundle. Then
L has an integrable complement if and only if there is a solution ω ∈ Γ(

∧2 L) for the equation

NM + dMω +
1

2
[ω, ω] = 0

in the curved DGLA Γ(
∧
L).

Remark 5.9. The equation above is called the Maurer-Cartan equation. It is defined generally, for a curved
L∞ algebra, as: ∑

k

1

k!
lk(ω) = 0.

Solutions to this equation are called Maurer-Cartan elements.

Remark 5.10. This contrasts with the usual Maurer-Cartan equation derived in the literature, for example
in [11], where the authors deform a Dirac structure by choosing a maximally isotropic complement. In that
case, the deformation is given by a section ω of the second exterior power of the complement, which was
generally nonintegrable, and the Maurer-Cartan equation was of the form:

dMω +
1

2
[ω, ω]L +

1

3!
l3(ω, ω, ω).

On the contrary, we are deforming a Dirac structure’s complement into an integrable one. Note the difference
in the equations - the one derived here does not contain an order 3 term, whereas the one derived in [11]
does not contain an order 0 term.

We can also define the nonlinear operator Q : Γ(
∧
M) → Γ(

∧
M), acting as

Q(α) = NL + dLα+
1

2
[α, α]M .



5.3. RECHOOSING L 30

In this notation, we have the following:

Proposition 5.20. The complement problem is equivalent to the following question:

When is ker(Q
∣∣∧2 M

) ̸= 0?

Although seemingly mysterious, the operator Q is related to an equivalent, but more complicated, defi-
nition of an L3 algebra, involving a derivation on the symmetric coalgebra of a graded vector space which
squares to 0.

5.3 Rechoosing L

It is also in our interest to consider the different curved L3 algebra structures on Γ(
∧
M∗) ∼ Γ(

∧
L) given

by re-choosing L. Compared to the previous case where we got a curved DGLA, in this case we get a flat L3

algebra, which has slightly more complicated operations and relations to keep track of. Consider L,L′ two
maximally isotropic subbundles, both complementary to M . Again, we could write L′ = {l + ϵ(l) | l ∈ L}
for some skew ϵ : L → M which can be thought of as an element of

∧2M .
Define (pM , pL) and (p′M , pL′) as before. Again, we have the relations

pL′ = pL + ϵ ◦ pL

and
p′M = pM − ϵ ◦ pL.

Proposition 5.21. The two different L3 structures on Γ(
∧
M∗) ∼ Γ(

∧
L) differ by the following operations:

1. For the Nijenhuis tensor of M , NM = N ′
M .

2. For α ∈ Γ(L),
(d′Mα− dMα)(X,Y ) = NM (X,Y, ϵ∗α).

If M is integrable, the difference vanishes.

3. For two sections X,Y ∈ Γ(L):

e−ϵpL′([X + iXϵ, Y + iY ϵ])− pL([X,Y ]) = pL([X, iY ϵ] + [iXϵ, Y ] + [iXϵ, iY ϵ]).

If M is integrable,

pL′([X + iXϵ, Y + iY ϵ])− eϵpL([X,Y ]) = eϵ(dM (ϵ(X,Y )) + iϵ(X)dMY − iϵ(Y )dMX).

4. For the Nijenhuis tensors of L,L′,

NL′ = e−ϵ∗(NL + dLϵ+
1

2
[ϵ, ϵ]M + ϵ∗NM ).

If M is integrable,

NL′ = e−ϵ∗(NL + dLϵ+
1

2
[ϵ, ϵ]M ).

Proof. 1. N ′
M versus NM : The element NM ∈

∧3M∗ depends only on M , thus does not change.
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2. dM versus d′M : For dM , since it is a derivation, it is enough to examine how it changes for 1-forms. By
the Koszul formula,

(d′Mα− dMα)(X,Y ) = α(ϵ(pL([X,Y ]))).

Note that pL([X,Y ]) = [X,Y ] − pM ([X,Y ]) is tensorial, and is also related to NM (X,Y, Z) =

⟨[X,Y ], Z⟩ = ⟨pL([X,Y ]), Z⟩ (since M is isotropic). Therfore we could write

(d′Mα− dMα)(X,Y ) = NM (X,Y, ϵ∗α).

Of course, if M is integrable, the difference vanishes as expected. In that case, eϵ is a cochain complex
morphism.

3. pL([·, ·]) versus e−ϵpL′([·, ·]): The bracket on L is given by pL([X,Y ]) whereas the bracket on L′ = eϵL

is given by pL′([X + iXϵ, Y + iY ϵ]) = (I + ϵ)pL([X + iXϵ, Y + iY ϵ]). The difference is therefore:

e−ϵpL′([X + iXϵ, Y + iY ϵ])− pL([X,Y ]) = pL([X, iY ϵ] + [iXϵ, Y ] + [iXϵ, iY ϵ]).

In the case that M is integrable, we have:

e−ϵpL′([X + iXϵ, Y + iY ϵ])− pL([X,Y ]) = pL([X, iY ϵ] + [iXϵ, Y ])

= eϵ(pL([iXϵ, Y ]− [iY ϵ,X])− dM (ϵ(X,Y ))).

Using proposition 5.12, we find that this term reads:

e−ϵpL′([X + iXϵ, Y + iY ϵ])− pL([X,Y ])

= dM (ϵ(X,Y )) + iϵ(X)dMY − iϵ(Y )dMX.

4. NL versus eϵ∗NL′ : For NL, our previous derivation of the deformation equation 4.1 allows us to imme-
diately find:

eϵ∗NL′ = NL + dLϵ+
1

2
[ϵ, ϵ]M + ϵ∗NM .

Again, if M is integrable, the last term vanishes.

A second equivalent statement of the complement problem is, therefore:

Remark 5.11. Again, in the case where M is Dirac, we find the same Maurer-Cartan equation as in section
5.2 dictating the condition on L′ to be integrable in terms of ϵ. However, this Maurer-Cartan equation is
that of the curved DGLA Γ(

∧
M), and not of the flat L3 algebra Γ(

∧
L). The difference occurs since in

the previous section we derived it by observing the bracket l0 = NM , whereas now we observe how the
bracket l3 = NL changes. We find that, generically, when deforming a nonintegrable (‘curved’) structure, a
curved DGLA controls the deformations. We can compare this to the deformation of Dirac structures with
a nonintegrable complement (such as in [8, 11]) where a flat L3 algebra controls the deformations instead.

5.4 Choosing a complement in terms of O

In corollary 2.20 we saw that for a given orthogonal operator O, the subspace L−O is always complemen-
tary to LO as maximally isotropic subspaces. Of course, the same is true for maximally isotropic subbundles:
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for a given section O ∈ O(X, g), the maximally isotropic subbundle L−O is always complementary to LO.
The integrability condition presented in theorem 3.25 is not invariant under O 7→ −O. That is, given that
LO is integrable, L−O is not necessarily integrable. However, if the stronger condition ∇O = 0 is satisfied,
L−O is guaranteed to be integrable. A third possible direction for answering the complement problem could
come from answering the following question:

Which Dirac structures L admit a metric g such that ∇OL = 0?

In general, the holonomy principle [3] states that there is a bijective correspondence between sections of
orthogonal operators O with ∇O = 0 and orthogonal operators at a point which are invariant under the
holonomy group. For instance, we have the following examples:

Example 5.22. On Rn using the euclidean metric, the only sections of orthogonal operators with ∇O = 0

are the constant ones. These correspond to Dirac structures that admit a basis of constant sections.

Example 5.23. On a Riemannian manifold with holonomy SO(n) or O(n), the only sections of orthogonal
operators with ∇O = 0 are ±Id, corresponding to the Dirac structures T and T ∗.

We thus have a possible method for constructing a Dirac complement for a Dirac structure L by finding
a metric which satisfies ∇OL = 0. Note that the condition ∇O = 0 is stronger than the condition enforced
by the vanishing of the tensor in proposition 3.24, and so it is ambitious to expect such a metric exists for
every Dirac structure. On the other hand, disproving the existence of such a metric does not disprove the
existence of a Dirac complement. Although not giving a precise criterion for the existence of an integrable
complement, this approach could help find more examples of complementary Dirac structures.



Chapter 6

Discussion and conclusions

The results in sections 5.3 and 5.2 give the first steps for constructing new invariants for Dirac structures
related to the two possible L3 algebras arising from choosing a complement. It remains unclear in which
category the maps eϵ and eω fall into, when considering them as maps between L3 algebras. It is possible
that one could frame them as (iso)morphisms of L3 (or, more generally, L∞) algebras in some (possibly new)
sense. In such a case, it would be fruitful to construct invariants of L3 algebras that are stable under such
maps, which would again give invariants of the Dirac structure considered. A first step would be answering
the questions:

What is the obstruction for a flat L3 algebra to be isomorphic, in the sense described
above (that is, through a map in the same category as eϵ) to a flat DGLA?

and

What is the obstruction for a curved DGLA to be isomorphic, in the sense described
above (that is, through a map in the same category as eω) to a flat DGLA?

Of course, it is possible that no such obstruction exists, and that the problem remains in constructing a
section ω or a section ϵ generating this (iso)morphism. We can compare this to a classical result in the theory
of L∞ algebras, stating that for any L∞ algebra F there exists a quasi-isomorphism (that is, a morphism
of L∞ algebras which induces an isomorphism between cohomologies) F → G, where G is a DGLA [14].
Therefore, further understanding of these morphisms is still required. In the case of section 5.3, we had that
the map eϵ was a chain map descending to an isomorphism on cohomology. Therefore, it could be possible
that the above obstruction exists in the form of a cohomology class. The theory of characteristic classes of
L∞ algebras is well established [15], and so it is possible the methods from this theory could be applied to
the complement problem.

In addition, the results from section 3.2 as well as the discussion in section 5.4 could be further developed.
First, the geometric interpretation of the tensor given in proposition 3.24 is yet to be understood. It is
possible that, through further exploration of these structures, a method of constructing a section O′ satisfying
both the vanishing of the tensor in proposition 3.24 as well as the conditions of proposition 2.19 could be
developed. The vanishing of the tensor in proposition 3.24 could also be interpreted as a partial differential
equation on the components of O. Analyzing the initial conditions of this PDE could, again, yield a method
of constructing a complement by defining one on some lower dimensional manifold and extending it to a
solution of this PDE.
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