n-dimensional manifold M with $T:=T M$
n-dimensional manifold M with $T:=T M$

T

n-dimensional manifold M with $T:=T M$

T

frame bundle
$\mathrm{GL}\left(\mathbb{R}^{n}, T\right)$
is a
principal GL(n)-bundle

n-dimensional manifold M with $T:=T M$

[^0]n-dimensional manifold M with $T:=T M$

$$
\text { pairing }\langle X+\xi, X+\xi\rangle=i_{X} \xi
$$
frame bundle
$\mathrm{GL}\left(\mathbb{R}^{n}, T\right)$
is a
principal GL(n)-bundle

$$
\text { pairing }\langle X+\xi, X+\xi\rangle=i_{X} \xi
$$
frame bundle
$\mathrm{GL}\left(\mathbb{R}^{n}, T\right)$
is a
principal GL(n)-bundle
generalized frame bundle $\mathrm{O}\left(\mathbb{R}^{n}+\left(\mathbb{R}^{n}\right)^{*}, T+T^{*}\right)$

$$
\text { pairing }\langle X+\xi, X+\xi\rangle=i_{X} \xi
$$
frame bundle
$\mathrm{GL}\left(\mathbb{R}^{n}, T\right)$
is a
principal GL(n)-bundle
generalized frame bundle $\mathrm{O}\left(\mathbb{R}^{n}+\left(\mathbb{R}^{n}\right)^{*}, T+T^{*}\right)$ is a
principal $\mathrm{O}(n, n)$-bundle

pairing $\langle X+\xi, X+\xi\rangle=i_{X} \xi$
frame bundle
$\mathrm{GL}\left(\mathbb{R}^{n}, T\right)$
is a
principal GL(n)-bundle
generalized frame bundle $\mathrm{O}\left(\mathbb{R}^{n}+\left(\mathbb{R}^{n}\right)^{*}, T+T^{*}\right)$ is a
principal $\mathrm{O}(n, n)$-bundle

Lie bracket [,]

frame bundle
$\mathrm{GL}\left(\mathbb{R}^{n}, T\right)$
is a
principal GL(n)-bundle
Lie bracket [,]
pairing $\langle X+\xi, X+\xi\rangle={ }_{i}{ }_{X} \xi$
generalized frame bundle $\mathrm{O}\left(\mathbb{R}^{n}+\left(\mathbb{R}^{n}\right)^{*}, T+T^{*}\right)$ is a
principal $\mathrm{O}(n, n)$-bundle
Courant bracket [,]

Generalized almost complex structures (Hitchin,Gualtieri)

Generalized almost complex structures (Hitchin,Gualtieri)

$\mathcal{J}: T+T^{*} \rightarrow T+T^{*}$ such that $\mathcal{J}^{2}=-\mathrm{Id}$

Generalized almost complex structures (Hitchin,Gualtieri)

$\mathcal{J}: T+T^{*} \rightarrow T+T^{*}$ such that $\mathcal{J}^{2}=-\mathrm{Id}$ orthogonal w.r.t. the pairing $\langle\mathcal{J} v, \mathcal{J} w\rangle=\langle v, w\rangle$

Generalized almost complex structures (Hitchin,Gualtieri)

$$
\begin{aligned}
\mathcal{J}: T+T^{*} \rightarrow T+T^{*} \text { such that } \mathcal{J}^{2} & =-\mathrm{ld} \\
\text { orthogonal w.r.t. the pairing }\langle\mathcal{J} v, \mathcal{J} w\rangle & =\langle v, w\rangle
\end{aligned}
$$

Examples:

$$
\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

for J almost cplx. str.

Generalized almost complex structures (Hitchin,Gualtieri)

$$
\begin{aligned}
\mathcal{J}: T+T^{*} \rightarrow T+T^{*} \text { such that } \mathcal{J}^{2} & =-\mathrm{ld} \\
\text { orthogonal w.r.t. the pairing }\langle\mathcal{J} v, \mathcal{J} w\rangle & =\langle v, w\rangle
\end{aligned}
$$

Examples:

$$
\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

for J almost cplx. str. for ω presymplectic.

Generalized almost complex structures (Hitchin,Gualtieri)

$$
\begin{aligned}
\mathcal{J}: T+T^{*} \rightarrow T+T^{*} \text { such that } \mathcal{J}^{2} & =-\mathrm{ld} \\
\text { orthogonal w.r.t. the pairing }\langle\mathcal{J} v, \mathcal{J} w\rangle & =\langle v, w\rangle
\end{aligned}
$$

Examples:

$$
\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

for J almost cplx. str. for ω presymplectic.

Constraint: M must admit almost cplx. str. $\rightarrow n=2 m$ even.

Generalized almost complex structures (Hitchin,Gualtieri)

$$
\begin{aligned}
\mathcal{J}: T+T^{*} \rightarrow T+T^{*} \text { such that } \mathcal{J}^{2} & =-\mathrm{ld} \\
\text { orthogonal w.r.t. the pairing }\langle\mathcal{J} v, \mathcal{J} w\rangle & =\langle v, w\rangle
\end{aligned}
$$

Examples:

$$
\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

for J almost cplx. str. for ω presymplectic.

Constraint: M must admit almost cplx. str. $\rightarrow n=2 m$ even.

Almost cplx. str.: reduction from $\mathrm{GL}(2 m, \mathbb{R})$ to $\mathrm{GL}(m, \mathbb{C})$.

Generalized almost complex structures (Hitchin,Gualtieri)

$$
\begin{aligned}
\mathcal{J}: T+T^{*} \rightarrow T+T^{*} \text { such that } \mathcal{J}^{2} & =-\mathrm{Id} \\
\text { orthogonal w.r.t. the pairing }\langle\mathcal{J} v, \mathcal{J} w\rangle & =\langle v, w\rangle
\end{aligned}
$$

Examples:

$$
\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

for J almost cplx. str. for ω presymplectic.

Constraint: M must admit almost cplx. str. $\rightarrow n=2 m$ even.

Almost cplx. str.: reduction from $\mathrm{GL}(2 m, \mathbb{R})$ to $\mathrm{GL}(m, \mathbb{C})$. Generalized ones: reduction from $\mathrm{O}(2 m, 2 m)$ to $\mathrm{U}(m, m)$.

Equivalently, one could define \mathcal{J} by giving:

Equivalently, one could define \mathcal{J} by giving:

- the analogue to $(1,0)$-vectors, $\operatorname{span}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right)$, i.e.,

Equivalently, one could define \mathcal{J} by giving:

- the analogue to $(1,0)$-vectors, $\operatorname{span}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right)$, i.e., the $+i$-eigenspace of \mathcal{J} in $\left(T+T^{*}\right)_{\mathbb{C}}$, i.e.,

Equivalently, one could define \mathcal{J} by giving:

- the analogue to $(1,0)$-vectors, $\operatorname{span}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right)$, i.e., the $+i$-eigenspace of \mathcal{J} in $\left(T+T^{*}\right)_{\mathbb{C}}$, i.e., a maximal isotropic subbundle $L \subset\left(T+T^{*}\right)_{\mathbb{C}}$ such that $L \cap \bar{L}=0$.

Equivalently, one could define \mathcal{J} by giving:

- the analogue to $(1,0)$-vectors, $\operatorname{span}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right)$, i.e., the $+i$-eigenspace of \mathcal{J} in $\left(T+T^{*}\right)_{\mathbb{C}}$, i.e., a maximal isotropic subbundle $L \subset\left(T+T^{*}\right)_{\mathbb{C}}$ such that $L \cap \bar{L}=0$.
- the analogue to the (local) form $d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{m}$,

Equivalently, one could define \mathcal{J} by giving:

- the analogue to $(1,0)$-vectors, $\operatorname{span}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right)$, i.e., the $+i$-eigenspace of \mathcal{J} in $\left(T+T^{*}\right)_{\mathbb{C}}$, i.e., a maximal isotropic subbundle $L \subset\left(T+T^{*}\right)_{\mathbb{C}}$ such that $L \cap \bar{L}=0$.
- the analogue to the (local) form $d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{m}$, which is a form $\varphi \in \Omega^{\bullet}(M)_{\mathbb{C}}$ such that $(\varphi, \bar{\varphi}) \neq 0$ for $(\alpha, \beta)=\left[\alpha^{T} \wedge \beta\right]_{\text {top }}$.

Equivalently, one could define \mathcal{J} by giving:

- the analogue to $(1,0)$-vectors, $\operatorname{span}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right)$, i.e., the $+i$-eigenspace of \mathcal{J} in $\left(T+T^{*}\right)_{\mathbb{C}}$, i.e., a maximal isotropic subbundle $L \subset\left(T+T^{*}\right)_{\mathbb{C}}$ such that $L \cap \bar{L}=0$.
- the analogue to the (local) form $d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{m}$, which is a form $\varphi \in \Omega^{\bullet}(M)_{\mathbb{C}}$ such that $(\varphi, \bar{\varphi}) \neq 0$ for $(\alpha, \beta)=\left[\alpha^{T} \wedge \beta\right]_{\text {top }}$.

For the action $(X+\xi) \cdot \varphi=i_{X \varphi}+\xi \wedge \varphi$, we want $\operatorname{Ann}(\varphi)=L$, the maximal isotropic subbundle.

Equivalently, one could define \mathcal{J} by giving:

- the analogue to $(1,0)$-vectors, $\operatorname{span}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right)$, i.e., the $+i$-eigenspace of \mathcal{J} in $\left(T+T^{*}\right)_{\mathbb{C}}$, i.e., a maximal isotropic subbundle $L \subset\left(T+T^{*}\right)_{\mathbb{C}}$ such that $L \cap \bar{L}=0$.
- the analogue to the (local) form $d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{m}$, which is a form $\varphi \in \Omega^{\bullet}(M)_{\mathbb{C}}$ such that $(\varphi, \bar{\varphi}) \neq 0$ for $(\alpha, \beta)=\left[\alpha^{T} \wedge \beta\right]_{\text {top }}$.

For the action $(X+\xi) \cdot \varphi=i_{X} \varphi+\xi \wedge \varphi$, we want $\operatorname{Ann}(\varphi)=L$, the maximal isotropic subbundle.

$$
\text { As }(X+\xi)^{2} \cdot \varphi=i_{X} \xi \varphi=\langle X+\xi, X+\xi\rangle \varphi
$$

Equivalently, one could define \mathcal{J} by giving:

- the analogue to $(1,0)$-vectors, $\operatorname{span}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{m}}\right)$, i.e., the $+i$-eigenspace of \mathcal{J} in $\left(T+T^{*}\right)_{\mathbb{C}}$, i.e., a maximal isotropic subbundle $L \subset\left(T+T^{*}\right)_{\mathbb{C}}$ such that $L \cap \bar{L}=0$.
- the analogue to the (local) form $d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{m}$, which is a form $\varphi \in \Omega^{\bullet}(M)_{\mathbb{C}}$ such that $(\varphi, \bar{\varphi}) \neq 0$ for $(\alpha, \beta)=\left[\alpha^{T} \wedge \beta\right]_{\text {top }}$.

For the action $(X+\xi) \cdot \varphi=i_{X \varphi}+\xi \wedge \varphi$, we want $\operatorname{Ann}(\varphi)=L$, the maximal isotropic subbundle.

$$
\text { As }(X+\xi)^{2} \cdot \varphi=i_{X} \xi \varphi=\langle X+\xi, X+\xi\rangle \varphi
$$

$\Omega^{\bullet}(M)_{\mathbb{C}}$ are (up to scaling) spinors, and φ must be pure.

Pure spinors are either even or odd (the spin representation splits).

Pure spinors are either even or odd (the spin representation splits).
E.g.,

$$
\varphi=\varphi_{0}+\varphi_{2}+\varphi_{4}+\ldots
$$

Pure spinors are either even or odd (the spin representation splits).
E.g.,

$$
\varphi=\varphi_{0}+\varphi_{2}+\varphi_{4}+\ldots
$$

The type at a point p is the least index j for which $\varphi_{j}(p) \neq 0$.

Pure spinors are either even or odd (the spin representation splits).
E.g.,

$$
\varphi=\varphi_{0}+\varphi_{2}+\varphi_{4}+\ldots
$$

The type at a point p is the least index j for which $\varphi_{j}(p) \neq 0$. Cplx. str. are of type m; symplectic ones are of type $0\left(\varphi=e^{i \omega}\right)$.

Pure spinors are either even or odd (the spin representation splits). E.g.,

$$
\varphi=\varphi_{0}+\varphi_{2}+\varphi_{4}+\ldots
$$

The type at a point p is the least index j for which $\varphi_{j}(p) \neq 0$. Cplx. str. are of type m; symplectic ones are of type $0\left(\varphi=e^{i \omega}\right)$.

In a 4-manifold we can have $\varphi_{0}+\varphi_{2}+\varphi_{4}$, with φ_{0} vanishing at a codimension 2 submanifold.

Pure spinors are either even or odd (the spin representation splits). E.g.,

$$
\varphi=\varphi_{0}+\varphi_{2}+\varphi_{4}+\ldots
$$

The type at a point p is the least index j for which $\varphi_{j}(p) \neq 0$. Cplx. str. are of type m; symplectic ones are of type $0\left(\varphi=e^{i \omega}\right)$.

In a 4-manifold we can have $\varphi_{0}+\varphi_{2}+\varphi_{4}$, with φ_{0} vanishing at a codimension 2 submanifold. For example, in $\mathbb{R}^{4} \cong \mathbb{C}^{2}$,

$$
\varphi=z_{1}+d z_{1} \wedge d z_{2}
$$

Pure spinors are either even or odd (the spin representation splits). E.g.,

$$
\varphi=\varphi_{0}+\varphi_{2}+\varphi_{4}+\ldots
$$

The type at a point p is the least index j for which $\varphi_{j}(p) \neq 0$. Cplx. str. are of type m; symplectic ones are of type $0\left(\varphi=e^{i \omega}\right)$.

In a 4-manifold we can have $\varphi_{0}+\varphi_{2}+\varphi_{4}$, with φ_{0} vanishing at a codimension 2 submanifold. For example, in $\mathbb{R}^{4} \cong \mathbb{C}^{2}$,

$$
\varphi=z_{1}+d z_{1} \wedge d z_{2}
$$

When looking at integrable structures (L involutive w.r.t. $[\cdot, \cdot]$):

Pure spinors are either even or odd (the spin representation splits). E.g.,

$$
\varphi=\varphi_{0}+\varphi_{2}+\varphi_{4}+\ldots
$$

The type at a point p is the least index j for which $\varphi_{j}(p) \neq 0$. Cplx. str. are of type m; symplectic ones are of type $0\left(\varphi=e^{i \omega}\right)$.

In a 4-manifold we can have $\varphi_{0}+\varphi_{2}+\varphi_{4}$, with φ_{0} vanishing at a codimension 2 submanifold. For example, in $\mathbb{R}^{4} \cong \mathbb{C}^{2}$,

$$
\varphi=z_{1}+d z_{1} \wedge d z_{2}
$$

When looking at integrable structures (L involutive w.r.t. $[\cdot, \cdot]$): there are compact generalized complex manifolds that do not admit neither complex nor symplectic structures $\left(3 \mathbb{C} P^{2} \# 19 \overline{\mathbb{C}} P^{2}\right.$ by Gualtieri/Cavalcanti, and more by Rafael Torres, Wed 18:40).
B_{n}-generalized geometry

B_{n}-generalized geometry

Suggested by Baraglia. Denote $1=M \times R$ and consider

B_{n}-generalized geometry

Suggested by Baraglia. Denote $1=M \times R$ and consider

$$
T+1+T^{*}
$$

B_{n}-generalized geometry

Suggested by Baraglia. Denote $1=M \times R$ and consider

pairing $\langle X+\lambda+\xi, X+\lambda+\xi\rangle=i_{X} \xi+\lambda^{2}$
the generalized frame bundle is a principal $\mathrm{O}(n+1, n)$-bundle

B_{n}-generalized geometry

Suggested by Baraglia. Denote $1=M \times R$ and consider

pairing $\langle X+\lambda+\xi, X+\lambda+\xi\rangle=i_{X} \xi+\lambda^{2}$

> the generalized frame bundle is a principal $\mathrm{O}(n+1, n)$-bundle

As $\mathrm{O}(n+1, n)$ is a real form of $\mathrm{O}(2 n+1, \mathbb{C})$, of Lie type B_{n} :

B_{n}-generalized geometry

Suggested by Baraglia. Denote $1=M \times R$ and consider

$$
\text { pairing }\langle X+\lambda+\xi, X+\lambda+\xi\rangle=i_{X} \xi+\lambda^{2}
$$

$$
\begin{aligned}
& \text { the generalized frame bundle is a } \\
& \text { principal } \mathrm{O}(n+1, n) \text {-bundle }
\end{aligned}
$$

As $\mathrm{O}(n+1, n)$ is a real form of $\mathrm{O}(2 n+1, \mathbb{C})$, of Lie type B_{n} :

Geometric structures in Bn-geometry. Roberto Rubio (IMPA) First joint meeting SBM-SBMAC-RSME, Fortaleza, 7th December 2015.

Definition: A B_{n}-generalized almost cplx. str. is a maximal isotropic subbundle

$$
L \subset\left(T+1+T^{*}\right)_{\mathbb{C}}
$$

such that $L \cap \bar{L}=0$.

Definition: A B_{n}-generalized almost cplx. str. is a maximal isotropic subbundle

$$
L \subset\left(T+1+T^{*}\right)_{\mathbb{C}}
$$

such that $L \cap \bar{L}=0$.

No constraint on the dimension of M :

Definition: A B_{n}-generalized almost cplx. str. is a maximal isotropic subbundle

$$
L \subset\left(T+1+T^{*}\right)_{\mathbb{C}}
$$

such that $L \cap \bar{L}=0$.

No constraint on the dimension of M :

- for $n=2 m$, reduction from $\mathrm{O}(2 m+1,2 m)$ to $\mathrm{U}(m, m)$.

Definition: A B_{n}-generalized almost cplx. str. is a maximal isotropic subbundle

$$
L \subset\left(T+1+T^{*}\right)_{\mathbb{C}}
$$

such that $L \cap \bar{L}=0$.

No constraint on the dimension of M :

- for $n=2 m$, reduction from $\mathrm{O}(2 m+1,2 m)$ to $\mathrm{U}(m, m)$.
- but for $n=2 m+1$, from $\mathrm{O}(2 m+2,2 m+1)$ to $\mathrm{U}(m+1, m)$.

Definition: A B_{n}-generalized almost cplx. str. is a maximal isotropic subbundle

$$
L \subset\left(T+1+T^{*}\right)_{\mathbb{C}}
$$

such that $L \cap \bar{L}=0$.

No constraint on the dimension of M :

- for $n=2 m$, reduction from $\mathrm{O}(2 m+1,2 m)$ to $\mathrm{U}(m, m)$.
- but for $n=2 m+1$, from $\mathrm{O}(2 m+2,2 m+1)$ to $\mathrm{U}(m+1, m)$.

In odd dimensions, e.g., normal almost contact and cosymplectic.

Definition: A B_{n}-generalized almost cplx. str. is a maximal isotropic subbundle

$$
L \subset\left(T+1+T^{*}\right)_{\mathbb{C}}
$$

such that $L \cap \bar{L}=0$.

No constraint on the dimension of M :

- for $n=2 m$, reduction from $\mathrm{O}(2 m+1,2 m)$ to $\mathrm{U}(m, m)$.
- but for $n=2 m+1$, from $\mathrm{O}(2 m+2,2 m+1)$ to $\mathrm{U}(m+1, m)$.

In odd dimensions, e.g., normal almost contact and cosymplectic.

The spin representation is the same as before, $\Omega^{\bullet}(M)_{\mathbb{C}}$, but now it is not reducible, so there is no parity in pure spinors.

The spin representation is the same as before, $\Omega^{\bullet}(M)_{\mathbb{C}}$, but now it is not reducible, so there is no parity in pure spinors.

- Type-change already for surfaces!

The spin representation is the same as before, $\Omega^{\bullet}(M)_{\mathbb{C}}$, but now it is not reducible, so there is no parity in pure spinors.

- Type-change already for surfaces!

$$
\varphi=\varphi_{0}+\varphi_{1}+\varphi_{2} \text { on a compact surface }
$$

The spin representation is the same as before, $\Omega^{\bullet}(M)_{\mathbb{C}}$, but now it is not reducible, so there is no parity in pure spinors.

- Type-change already for surfaces!

$$
\varphi=\varphi_{0}+\varphi_{1}+\varphi_{2} \text { on a compact surface }
$$

The quotient $\varphi_{1} / \varphi_{0}$ patches together to a meromorphic 1-form.

The spin representation is the same as before, $\Omega^{\bullet}(M)_{\mathbb{C}}$, but now it is not reducible, so there is no parity in pure spinors.

- Type-change already for surfaces!

$$
\varphi=\varphi_{0}+\varphi_{1}+\varphi_{2} \text { on a compact surface }
$$

The quotient $\varphi_{1} / \varphi_{0}$ patches together to a meromorphic 1-form. Assuming non-degeneracy, the poles $\left(\varphi_{0}=0\right)$ are simple.

The spin representation is the same as before, $\Omega^{\bullet}(M)_{\mathbb{C}}$, but now it is not reducible, so there is no parity in pure spinors.

- Type-change already for surfaces!

$$
\varphi=\varphi_{0}+\varphi_{1}+\varphi_{2} \text { on a compact surface }
$$

The quotient $\varphi_{1} / \varphi_{0}$ patches together to a meromorphic 1-form. Assuming non-degeneracy, the poles ($\varphi_{0}=0$) are simple. By Stokes' theorem, the type-change locus cannot be just a point.

The spin representation is the same as before, $\Omega^{\bullet}(M)_{\mathbb{C}}$, but now it is not reducible, so there is no parity in pure spinors.

- Type-change already for surfaces!

$$
\varphi=\varphi_{0}+\varphi_{1}+\varphi_{2} \text { on a compact surface }
$$

The quotient $\varphi_{1} / \varphi_{0}$ patches together to a meromorphic 1-form. Assuming non-degeneracy, the poles ($\varphi_{0}=0$) are simple. By Stokes' theorem, the type-change locus cannot be just a point.

- In 3-manifolds, the type-change locus consists of circles

The spin representation is the same as before, $\Omega^{\bullet}(M)_{\mathbb{C}}$, but now it is not reducible, so there is no parity in pure spinors.

- Type-change already for surfaces!

$$
\varphi=\varphi_{0}+\varphi_{1}+\varphi_{2} \text { on a compact surface }
$$

The quotient $\varphi_{1} / \varphi_{0}$ patches together to a meromorphic 1-form. Assuming non-degeneracy, the poles ($\varphi_{0}=0$) are simple. By Stokes' theorem, the type-change locus cannot be just a point.

- In 3-manifolds, the type-change locus consists of circles
(are they knotted? are they linked?)

The group of generalized diffeomorphisms

The group of generalized diffeomorphisms

Bundle maps of $T+T^{*}$ preserving $[\cdot, \cdot]$ and $\langle\cdot, \cdot\rangle$ consist of:

The group of generalized diffeomorphisms

Bundle maps of $T+T^{*}$ preserving $[\cdot, \cdot]$ and $\langle\cdot, \cdot\rangle$ consist of:

- Diffeomorphisms (acting by pushforward).

The group of generalized diffeomorphisms

Bundle maps of $T+T^{*}$ preserving $[\cdot, \cdot]$ and $\langle\cdot, \cdot\rangle$ consist of:

- Diffeomorphisms (acting by pushforward).
- B-fields, $B \in \Omega_{c l}^{2}(M), X+\xi \mapsto X+\xi+i_{X} B$.

The group of generalized diffeomorphisms

Bundle maps of $T+T^{*}$ preserving $[\cdot, \cdot]$ and $\langle\cdot, \cdot\rangle$ consist of:

- Diffeomorphisms (acting by pushforward).
- B-fields, $B \in \Omega_{c l}^{2}(M), X+\xi \mapsto X+\xi+i_{X} B$.

In B_{n}-geometry, $T+1+T^{*}$, some new fields join:

The group of generalized diffeomorphisms

Bundle maps of $T+T^{*}$ preserving $[\cdot, \cdot]$ and $\langle\cdot, \cdot\rangle$ consist of:

- Diffeomorphisms (acting by pushforward).
- B-fields, $B \in \Omega_{c l}^{2}(M), X+\xi \mapsto X+\xi+i_{X} B$.

In B_{n}-geometry, $T+1+T^{*}$, some new fields join:

- A-fields, $A \in \Omega_{c l}^{1}(M)$, acting by $X+\lambda+i_{X} A+\xi-\left(2 \lambda+i_{X} A\right) A$.

The group of generalized diffeomorphisms

Bundle maps of $T+T^{*}$ preserving $[\cdot, \cdot]$ and $\langle\cdot, \cdot\rangle$ consist of:

- Diffeomorphisms (acting by pushforward).
- B-fields, $B \in \Omega_{c l}^{2}(M), X+\xi \mapsto X+\xi+i_{X} B$.

In B_{n}-geometry, $T+1+T^{*}$, some new fields join:

- A-fields, $A \in \Omega_{c l}^{1}(M)$, acting by $X+\lambda+i_{X} A+\xi-\left(2 \lambda+i_{X} A\right) A$.

$$
\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2+1}(M),
$$

The group of generalized diffeomorphisms

Bundle maps of $T+T^{*}$ preserving $[\cdot, \cdot]$ and $\langle\cdot, \cdot\rangle$ consist of:

- Diffeomorphisms (acting by pushforward).
- B-fields, $B \in \Omega_{c l}^{2}(M), X+\xi \mapsto X+\xi+i_{X} B$.

In B_{n}-geometry, $T+1+T^{*}$, some new fields join:

- A-fields, $A \in \Omega_{c l}^{1}(M)$, acting by $X+\lambda+i_{X} A+\xi-\left(2 \lambda+i_{X} A\right) A$.

$$
\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2+1}(M),
$$

where $1 \rightarrow \Omega_{c l}^{2}(M) \rightarrow \Omega_{c l}^{2+1}(M) \rightarrow \Omega_{c l}^{1}(M) \rightarrow 1$.

G_{2}^{2}-structures

G_{2}^{2}-structures

For a 3-manifold M, the " B_{n}-structure group" is $\mathrm{O}(4,3)$. The real spin representation is 8 -dim, with a (4,4)-pairing, the non-null elements (non-pure) have stabilizer $G_{2}^{2} \subset \mathrm{SO}(4,3)$.

G_{2}^{2}-structures

For a 3-manifold M, the " B_{n}-structure group" is $\mathrm{O}(4,3)$. The real spin representation is 8 -dim, with a (4,4)-pairing, the non-null elements (non-pure) have stabilizer $G_{2}^{2} \subset \mathrm{SO}(4,3)$.

Definition $A G_{2}^{2}$-structure on a 3-manifold M is an everywhere non-null real form $\rho=\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3} \in \Omega^{\bullet}(M)$ with $d \rho=0$.

G_{2}^{2}-structures

For a 3-manifold M, the " B_{n}-structure group" is $\mathrm{O}(4,3)$. The real spin representation is 8 -dim, with a (4,4)-pairing, the non-null elements (non-pure) have stabilizer $G_{2}^{2} \subset \mathrm{SO}(4,3)$.

Definition $A G_{2}^{2}$-structure on a 3-manifold M is an everywhere non-null real form $\rho=\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3} \in \Omega^{\bullet}(M)$ with $d \rho=0$.

From $(\rho, \rho)=2\left(\rho_{0} \rho_{3}-\rho_{1} \wedge \rho_{2}\right) \neq 0, M$ must be orientable.

G_{2}^{2}-structures

For a 3-manifold M, the " B_{n}-structure group" is $\mathrm{O}(4,3)$. The real spin representation is 8 -dim, with a (4,4)-pairing, the non-null elements (non-pure) have stabilizer $G_{2}^{2} \subset \mathrm{SO}(4,3)$.

Definition A G_{2}^{2}-structure on a 3-manifold M is an everywhere non-null real form $\rho=\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3} \in \Omega^{\bullet}(M)$ with $d \rho=0$.

From $(\rho, \rho)=2\left(\rho_{0} \rho_{3}-\rho_{1} \wedge \rho_{2}\right) \neq 0, M$ must be orientable. We look at compact orientable 3-manifolds, up to GDiff ${ }^{+}(M)$:

G_{2}^{2}-structures

For a 3-manifold M, the " B_{n}-structure group" is $\mathrm{O}(4,3)$. The real spin representation is 8 -dim, with a (4,4)-pairing, the non-null elements (non-pure) have stabilizer $G_{2}^{2} \subset \mathrm{SO}(4,3)$.

Definition A G_{2}^{2}-structure on a 3-manifold M is an everywhere non-null real form $\rho=\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3} \in \Omega^{\bullet}(M)$ with $d \rho=0$.

From $(\rho, \rho)=2\left(\rho_{0} \rho_{3}-\rho_{1} \wedge \rho_{2}\right) \neq 0, M$ must be orientable. We look at compact orientable 3-manifolds, up to GDiff ${ }^{+}(M)$:

- G_{2}^{2}-structures with $\rho_{0} \neq 0$ always exist, are equivalent to $\rho_{0}+\rho_{3}$ and are determined by the non-zero cohomology classes of (ρ_{0}, ρ_{3}).

G_{2}^{2}-structures

For a 3-manifold M, the " B_{n}-structure group" is $\mathrm{O}(4,3)$. The real spin representation is 8 -dim, with a (4,4)-pairing, the non-null elements (non-pure) have stabilizer $G_{2}^{2} \subset \mathrm{SO}(4,3)$.

Definition A G_{2}^{2}-structure on a 3-manifold M is an everywhere non-null real form $\rho=\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3} \in \Omega^{\bullet}(M)$ with $d \rho=0$.

From $(\rho, \rho)=2\left(\rho_{0} \rho_{3}-\rho_{1} \wedge \rho_{2}\right) \neq 0, M$ must be orientable. We look at compact orientable 3-manifolds, up to GDiff ${ }^{+}(M)$:

- G_{2}^{2}-structures with $\rho_{0} \neq 0$ always exist, are equivalent to $\rho_{0}+\rho_{3}$ and are determined by the non-zero cohomology classes of (ρ_{0}, ρ_{3}).
- G_{2}^{2}-structure with $\rho_{0}=0 \leftrightarrow M$ is the mapping torus of an orientable surface by an orientation-preserving diffeomorphism.

Main results:

Main results:

- Moser argument: any sufficiently small perturbation of a G_{2}^{2}-structure within its cohomology class is equivalent to the original one by $\operatorname{GDiff}_{0}(M)$ (diffeomorphisms connected to the identity + exact (B, A)-fields).

Main results:

- Moser argument: any sufficiently small perturbation of a G_{2}^{2}-structure within its cohomology class is equivalent to the original one by $\operatorname{GDiff}_{0}(M)$ (diffeomorphisms connected to the identity + exact (B, A)-fields).
- Cone of G_{2}^{2}-structures:

$$
\begin{aligned}
& \left\{[\rho] \in H^{\bullet}(M, \mathbb{R}) \mid\left[\rho_{0}\right] \neq 0 \text { and }\left[\rho_{0}\right]\left[\rho_{3}\right]-\left[\rho_{1}\right]\left[\rho_{2}\right]>0\right\} \\
& \bigcup\left\{(\alpha, \beta) \in C_{1} \oplus H^{2}(M, R) \mid \alpha \cup \beta<0\right\} \oplus H^{3}(M, \mathbb{R})
\end{aligned}
$$

where C_{1} is the set of 1-cohomology classes with non-vanishing representatives (cf. Thurston)

B_{3}-Calabi Yau and G_{2}^{2} structures

B_{3}-Calabi Yau and G_{2}^{2} structures

A B_{n}-Calabi Yau is a B_{n}-generalized cplx. str. globally given by a pure spinor $\rho \in \Omega^{\bullet}(M)_{\mathbb{C}}$ such that $d \rho=0$.

B_{3}-Calabi Yau and G_{2}^{2} structures

A B_{n}-Calabi Yau is a B_{n}-generalized cplx. str. globally given by a pure spinor $\rho \in \Omega^{\bullet}(M)_{\mathbb{C}}$ such that $d \rho=0$.

For 3-manifolds, this means $d \rho=0$ and $(\rho, \bar{\rho}) \neq 0$.

B_{3}-Calabi Yau and G_{2}^{2} structures

A B_{n}-Calabi Yau is a B_{n}-generalized cplx. str. globally given by a pure spinor $\rho \in \Omega^{\bullet}(M)_{\mathbb{C}}$ such that $d \rho=0$.

For 3-manifolds, this means $d \rho=0$ and $(\rho, \bar{\rho}) \neq 0$.

- The real and imaginary parts of a B_{3}-Calabi Yau structure are a pair of orthogonal G_{2}^{2}-structures of the same norm, and any such a pair determines a B_{3}-Calabi Yau structure.

B_{3}-Calabi Yau and G_{2}^{2} structures

A B_{n}-Calabi Yau is a B_{n}-generalized cplx. str. globally given by a pure spinor $\rho \in \Omega^{\bullet}(M)_{\mathbb{C}}$ such that $d \rho=0$.

For 3-manifolds, this means $d \rho=0$ and $(\rho, \bar{\rho}) \neq 0$.

- The real and imaginary parts of a B_{3}-Calabi Yau structure are a pair of orthogonal G_{2}^{2}-structures of the same norm, and any such a pair determines a B_{3}-Calabi Yau structure.

This corresponds to the inclusions

$$
\mathrm{SU}(2,1) \subset G_{2}^{2} \subset \mathrm{SO}(4,3)
$$

B_{3}-Calabi Yau and G_{2}^{2} structures

A B_{n}-Calabi Yau is a B_{n}-generalized cplx. str. globally given by a pure spinor $\rho \in \Omega^{\bullet}(M)_{\mathbb{C}}$ such that $d \rho=0$.

For 3-manifolds, this means $d \rho=0$ and $(\rho, \bar{\rho}) \neq 0$.

- The real and imaginary parts of a B_{3}-Calabi Yau structure are a pair of orthogonal G_{2}^{2}-structures of the same norm, and any such a pair determines a B_{3}-Calabi Yau structure.

This corresponds to the inclusions

$$
\mathrm{SU}(2,1) \subset G_{2}^{2} \subset \mathrm{SO}(4,3)
$$

which is the non-compact version of

$$
\mathrm{SU}(3) \subset G_{2} \subset \mathrm{SO}(7)
$$

Obrigado!

[^0]: frame bundle
 $\mathrm{GL}\left(\mathbb{R}^{n}, T\right)$
 is a
 principal GL(n)-bundle

