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pairing (X + &, X + &) = ix§

frame bundle generalized frame bundle
GL(R", T) O(R” + (R")*, T + T*)

is a is a
principal GL(n)-bundle principal O(n, n)-bundle

Lie bracket [, ] Courant bracket [, ]
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Generalized almost complex structures (Hitchin,Gualtieri)

J:T+T*— T+ T* such that 7% = —Id
orthogonal w.r.t. the pairing (Jv,Jw) = (v, w)
Examples:

-J 0 0 —wl
o J w 0
for J almost cplx. str. for w presymplectic.

Constraint: M must admit almost cplx. str. — n =2m even.

Almost cplx. str.: reduction from GL(2m,R) to GL(m, C).
Generalized ones: reduction from O(2m,2m) to U(m, m).
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Equivalently, one could define J by giving:

e the analogue to (1,0)-vectors, span (621 cey %), ie.,

the +i-eigenspace of J in (T + T¥)c, i.e., B
a maximal isotropic subbundle L C (T + T*)¢ such that LN L = 0.

e the analogue to the (local) form dz; A ... A dZzp,, which is

a form ¢ € Q°*(M)c such that (¢, %) # 0 for (o, B) = [aT A Bltop-

For the action (X +&) - ¢ = ixp + £ A, we want
Ann(p) = L, the maximal isotropic subbundle.

As (X +€)? - =ixEp = (X + &6 X + &g,
Q*(M)c are (up to scaling) spinors, and ¢ must be pure.
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Pure spinors are either even or odd (the spin representation splits).
Eg.,
p=wotp2t+pst...

The type at a point p is the least index j for which ¢;(p) # 0.
Cplx. str. are of type m; symplectic ones are of type 0 (¢ = e').

In a 4-manifold we can have g + @2 + 4, with ¢q vanishing at a
codimension 2 submanifold. For example, in R* = C?,

p=2z1+dzy Ndzn

When looking at integrable structures (L involutive w.r.t. [,-]):
there are compact generalized complex manifolds that do not
admit neither complex nor symplectic structures (3CP?#19CP?2 by
Gualtieri/Cavalcanti, and more by Rafael Torres, Wed 18:40).
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Suggested by Baraglia. Denote 1 = M x R and consider

T+1+T*

pairing (X + A+ & X + A+ &) = ixE + A2

the generalized frame bundle is a
principal O(n + 1, n)-bundle

As O(n+1,n) is a real form of O(2n+ 1,C), of Lie type By:

Geometric structures in Bn-geometry. Roberto Rubio (IMPA)
First joint meeting SBM-SBMAC-RSME, Fortaleza, 7th December 2015.
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The spin representation is the same as before, Q*(M)c,
but now it is not reducible, so there is no parity in pure spinors.

e Type-change already for surfaces!
© = o + ©1 + @2 on a compact surface
The quotient ;1 /¢p patches together to a meromorphic 1-form.
Assuming non-degeneracy, the poles (@9 = 0) are simple.
By Stokes' theorem, the type-change locus cannot be just a point.

e In 3-manifolds, the type-change locus consists of circles
(are they knotted? are they linked?)
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The group of generalized diffeomorphisms
Bundle maps of T + T* preserving [-,] and (-, -) consist of:

e Diffeomorphisms (acting by pushforward).

e B-fields, B € le(M), X+E&E— X+E+ixB.

In B,-geometry, T + 1+ T*, some new fields join:

o Afields, A € QL (M), acting by X + A+ ixA+ & — (2) + ixA)A.

GDiff(M) = Diff(M) x Q%FH(M),

where 1 — Q2(M) — Q%H(M) — QL(M) — 1.
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For a 3-manifold M, the “Bj-structure group” is O(4, 3).
The real spin representation is 8-dim, with a (4,4)-pairing,
the non-null elements (non-pure) have stabilizer G C SO(4, 3).

Definition A Gz2—structure on a 3-manifold M is an everywhere
non-null real form p = po + p1 + p2 + p3 € Q*(M) with dp = 0.

From (p, p) = 2(pop3 — p1 A p2) # 0, M must be orientable.
We look at compact orientable 3-manifolds, up to GDiff*(M):

e G2-structures with pg # 0 always exist, are equivalent to pg + p3
and are determined by the non-zero cohomology classes of (po, p3).

° G22—structure with pg = 0 <> M is the mapping torus of an
orientable surface by an orientation-preserving diffeomorphism.
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Main results:

e Moser argument: any sufficiently small perturbation of a
G22—structure within its cohomology class is equivalent to the
original one by GDiffo(M) (diffeomorphisms connected to the
identity + exact (B, A)-fields).

e Cone of G2-structures:

{lp] € H*(M,R) | [po] # 0 and [po][p3] — [p1]lp2] > 0}
J{(e.8) € GG@ HA(M,R) | a U B < 0} & H3(M, R),

where (; is the set of 1-cohomology classes with non-vanishing
representatives (cf. Thurston)
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Bs-Calabi Yau and G structures

A B,-Calabi Yau is a Bp-generalized cplx. str. globally given by a
pure spinor p € Q*(M)c such that dp = 0.

For 3-manifolds, this means dp =0 and (p, p) # 0.

e The real and imaginary parts of a B3-Calabi Yau structure are a
pair of orthogonal G2-structures of the same norm, and any such a
pair determines a Bz-Calabi Yau structure.

This corresponds to the inclusions
SU(2,1) € G5 € SO(4,3),
which is the non-compact version of

SU(3) € Gy C SO(7).



Obrigado!



