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Generalized almost complex structures (Hitchin,Gualtieri)

J : T + T ∗ → T + T ∗ such that J 2 = − Id
orthogonal w.r.t. the pairing 〈J v ,Jw〉 = 〈v ,w〉

Examples:(
−J 0
0 J∗

)
for J almost cplx. str.

(
0 −ω−1

ω 0

)
for ω presymplectic.

Constraint: M must admit almost cplx. str. → n = 2m even.

Almost cplx. str.: reduction from GL(2m,R) to GL(m,C).
Generalized ones: reduction from O(2m, 2m) to U(m,m).
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Equivalently, one could define J by giving:

• the analogue to (1, 0)-vectors, span
(

∂
∂z1
, . . . , ∂

∂zm

)
, i.e.,

the +i-eigenspace of J in (T + T ∗)C, i.e.,
a maximal isotropic subbundle L ⊂ (T +T ∗)C such that L∩ L = 0.

• the analogue to the (local) form dz̄1 ∧ . . . ∧ dz̄m, which is
a form ϕ ∈ Ω•(M)C such that (ϕ,ϕ) 6= 0 for (α, β) = [αT ∧ β]top.

For the action (X + ξ) · ϕ = iXϕ+ ξ ∧ ϕ, we want
Ann(ϕ) = L, the maximal isotropic subbundle.

As (X + ξ)2 · ϕ = iX ξϕ = 〈X + ξ,X + ξ〉ϕ,
Ω•(M)C are (up to scaling) spinors, and ϕ must be pure.
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Pure spinors are either even or odd (the spin representation splits).

E.g.,
ϕ = ϕ0 + ϕ2 + ϕ4 + . . .

The type at a point p is the least index j for which ϕj(p) 6= 0.
Cplx. str. are of type m; symplectic ones are of type 0 (ϕ = e iω).

In a 4-manifold we can have ϕ0 + ϕ2 + ϕ4, with ϕ0 vanishing at a
codimension 2 submanifold. For example, in R4 ∼= C2,

ϕ = z1 + dz1 ∧ dz2

When looking at integrable structures (L involutive w.r.t. [·, ·]):
there are compact generalized complex manifolds that do not
admit neither complex nor symplectic structures (3CP2#19CP2 by
Gualtieri/Cavalcanti, and more by Rafael Torres, Wed 18:40).
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Bn-generalized geometry

Suggested by Baraglia. Denote 1 = M × R and consider

T + 1 + T ∗
pairing 〈X + λ+ ξ,X + λ+ ξ〉 = iX ξ + λ2

the generalized frame bundle is a
principal O(n + 1, n)-bundle

As O(n + 1, n) is a real form of O(2n + 1,C), of Lie type Bn:

Geometric structures in Bn-geometry. Roberto Rubio (IMPA)
First joint meeting SBM-SBMAC-RSME, Fortaleza, 7th December 2015.



Bn-generalized geometry

Suggested by Baraglia. Denote 1 = M × R and consider

T + 1 + T ∗
pairing 〈X + λ+ ξ,X + λ+ ξ〉 = iX ξ + λ2

the generalized frame bundle is a
principal O(n + 1, n)-bundle

As O(n + 1, n) is a real form of O(2n + 1,C), of Lie type Bn:

Geometric structures in Bn-geometry. Roberto Rubio (IMPA)
First joint meeting SBM-SBMAC-RSME, Fortaleza, 7th December 2015.



Bn-generalized geometry

Suggested by Baraglia. Denote 1 = M × R and consider

T + 1 + T ∗

pairing 〈X + λ+ ξ,X + λ+ ξ〉 = iX ξ + λ2

the generalized frame bundle is a
principal O(n + 1, n)-bundle

As O(n + 1, n) is a real form of O(2n + 1,C), of Lie type Bn:

Geometric structures in Bn-geometry. Roberto Rubio (IMPA)
First joint meeting SBM-SBMAC-RSME, Fortaleza, 7th December 2015.



Bn-generalized geometry

Suggested by Baraglia. Denote 1 = M × R and consider

T + 1 + T ∗
pairing 〈X + λ+ ξ,X + λ+ ξ〉 = iX ξ + λ2

the generalized frame bundle is a
principal O(n + 1, n)-bundle

As O(n + 1, n) is a real form of O(2n + 1,C), of Lie type Bn:

Geometric structures in Bn-geometry. Roberto Rubio (IMPA)
First joint meeting SBM-SBMAC-RSME, Fortaleza, 7th December 2015.



Bn-generalized geometry

Suggested by Baraglia. Denote 1 = M × R and consider

T + 1 + T ∗
pairing 〈X + λ+ ξ,X + λ+ ξ〉 = iX ξ + λ2

the generalized frame bundle is a
principal O(n + 1, n)-bundle

As O(n + 1, n) is a real form of O(2n + 1,C), of Lie type Bn:

Geometric structures in Bn-geometry. Roberto Rubio (IMPA)
First joint meeting SBM-SBMAC-RSME, Fortaleza, 7th December 2015.



Bn-generalized geometry

Suggested by Baraglia. Denote 1 = M × R and consider

T + 1 + T ∗
pairing 〈X + λ+ ξ,X + λ+ ξ〉 = iX ξ + λ2

the generalized frame bundle is a
principal O(n + 1, n)-bundle

As O(n + 1, n) is a real form of O(2n + 1,C), of Lie type Bn:

Geometric structures in Bn-geometry. Roberto Rubio (IMPA)
First joint meeting SBM-SBMAC-RSME, Fortaleza, 7th December 2015.



Definition: A Bn-generalized almost cplx. str. is a maximal
isotropic subbundle

L ⊂ (T + 1 + T ∗)C

such that L ∩ L = 0.

No constraint on the dimension of M:
• for n = 2m, reduction from O(2m + 1, 2m) to U(m,m).
• but for n = 2m + 1, from O(2m + 2, 2m + 1) to U(m + 1,m).

In odd dimensions, e.g., normal almost contact and cosymplectic.
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The spin representation is the same as before, Ω•(M)C,
but now it is not reducible, so there is no parity in pure spinors.

• Type-change already for surfaces!
ϕ = ϕ0 + ϕ1 + ϕ2 on a compact surface

The quotient ϕ1/ϕ0 patches together to a meromorphic 1-form.
Assuming non-degeneracy, the poles (ϕ0 = 0) are simple.
By Stokes’ theorem, the type-change locus cannot be just a point.

• In 3-manifolds, the type-change locus consists of circles
(are they knotted? are they linked?)
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The group of generalized diffeomorphisms

Bundle maps of T + T ∗ preserving [·, ·] and 〈·, ·〉 consist of:

• Diffeomorphisms (acting by pushforward).

• B-fields, B ∈ Ω2
cl(M), X + ξ 7→ X + ξ + iXB.

In Bn-geometry, T + 1 + T ∗, some new fields join:

• A-fields, A ∈ Ω1
cl(M), acting by X + λ+ iXA + ξ − (2λ+ iXA)A.

GDiff(M) = Diff(M) n Ω2+1
cl (M),

where 1→ Ω2
cl(M)→ Ω2+1

cl (M)→ Ω1
cl(M)→ 1.
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G 2
2 -structures

For a 3-manifold M, the “Bn-structure group” is O(4, 3).
The real spin representation is 8-dim, with a (4, 4)-pairing,
the non-null elements (non-pure) have stabilizer G 2

2 ⊂ SO(4, 3).

Definition A G 2
2 -structure on a 3-manifold M is an everywhere

non-null real form ρ = ρ0 + ρ1 + ρ2 + ρ3 ∈ Ω•(M) with dρ = 0.

From (ρ, ρ) = 2(ρ0ρ3 − ρ1 ∧ ρ2) 6= 0, M must be orientable.
We look at compact orientable 3-manifolds, up to GDiff+(M):

• G 2
2 -structures with ρ0 6= 0 always exist, are equivalent to ρ0 + ρ3

and are determined by the non-zero cohomology classes of (ρ0, ρ3).

• G 2
2 -structure with ρ0 = 0 ↔ M is the mapping torus of an

orientable surface by an orientation-preserving diffeomorphism.
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Main results:

• Moser argument: any sufficiently small perturbation of a
G 2
2 -structure within its cohomology class is equivalent to the

original one by GDiff0(M) (diffeomorphisms connected to the
identity + exact (B,A)-fields).

• Cone of G 2
2 -structures:

{[ρ] ∈ H•(M,R) | [ρ0] 6= 0 and [ρ0][ρ3]− [ρ1][ρ2] > 0}⋃
{(α, β) ∈ C1 ⊕ H2(M,R) | α ∪ β < 0} ⊕ H3(M,R),

where C1 is the set of 1-cohomology classes with non-vanishing
representatives (cf. Thurston)
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B3-Calabi Yau and G 2
2 structures

A Bn-Calabi Yau is a Bn-generalized cplx. str. globally given by a
pure spinor ρ ∈ Ω•(M)C such that dρ = 0.

For 3-manifolds, this means dρ = 0 and (ρ, ρ̄) 6= 0.

• The real and imaginary parts of a B3-Calabi Yau structure are a
pair of orthogonal G 2

2 -structures of the same norm, and any such a
pair determines a B3-Calabi Yau structure.

This corresponds to the inclusions

SU(2, 1) ⊂ G 2
2 ⊂ SO(4, 3),

which is the non-compact version of

SU(3) ⊂ G2 ⊂ SO(7).
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Obrigado!


