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SU(3)-holonomy metrics give, in particular, SU(3)-structures.

An SU(3)-structure is given by
> real 2-form w,
» complex 3-form Q inducing an almost complex structure Jq,

such that g = w(+, Jg-) is a metric.

The metric g has SU(3)-holonomy when € is parallel w.r.t. the
Levi-Civita connection of g.
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> (X,Q) Calabi-Yau 3-fold: X complex with Q € Q39(X)
» G compact semi-simple Lie group
» P, — X principal G-bundle

Unknowns:
» hermitian metric g given by w (where w = g(J-,+)),
» A connection on P,
» V unitary connection on (TX, g).
The literary Strominger system
Hermite-Yang Mills for F,
Hermite-Yang Mills for R,
= g is conformally balanced,
Bianchi identity,

(Interest in Physics: equivalent to EM + SUSY + Bianchi in a Strominger

compactification of the Heterotic String in the presence of NS fluxes.)
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This will take more than one slide...
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We know (T + T, (,),[,],77)

XHEY +a) = S (xn+ v, XHEY 4] = [X, Y]+ Ly — ivde

It is the Courant algebroid where we have done Dirac geometry

and generalized geometry. It has structure group O(n, n), and the

group of symmetries includes closed 2-forms, called B-fields.
X+& X+ €&+ ixB.

Consider the twisted version: an exact Courant algebroid
0O—-T"—-E—-T=0.
It is isomorphic, by choosing a (non-canonical!) splitting,to
(T+T750) e =11+ ixivH,71),

for some H € Q3,(M) (whose class [H] € H3(M) parameterizes E).
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We reduce TP — E — T*P

Given a principal G-bundle P, TP — E — T*P exact over P,
a (non-isotropic) lifted action ¢ : g — C*°(E) gives rise,
by generalized reduction, to a (non-exact) transitive Courant
algebroid E:

T"—-E—T=0.

As a vector bundle, E = T + ad P+ T*, but not canonically.

Choosing a splitting T — E, we have an isomorphism of E with
(T +adP + T*7 <7 >7 [7]9,H7 7TT),

where 6 is a connection on P (with curvature F € Q2,(ad P)),
and H € Q3(M)such that

dH+ (FAF) =0.
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(X +r+&Y +t+nlon =
[X, Y] + Lxn — iyd& + iyixH
— F(X,Y) + ixdt — iydr
+ 2¢(tdr) + 2c(ix Ft) — 2¢(iy Fr).
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A metric is a reduction of the frame bundle from GL(n) to O(n).
A generalized metric is a reduction from O(n, n) to O(n) x O(n).
This means choosing a rank n positive-definite subbundle V. C E.

Since T* is isotropic, 7 : V,. — T is an isomorphism, so
T inherits a positive-definite pairing, i.e., we get a usual metric g.

On the other hand, we define an isotropic splitting T — E by

_ 1.,
X — 7rW1+ — 57 g(Xx).

A generalized metric on an exact Courant algebroid is actually
equivalent to a usual metric g together with an isotropic splitting.
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For E transitive, the signature of the pairing may not be split, so
the structure group is O(t,s), and a generalized metric is a
reduction to O(p, q) x O(t — p,s — q).

We will focus on admissible metrics ([MGF]):

such that Vi N T* = {0} and rk(V}) = rk(E) —dim M,

so that a generalized admissible metric is equivalent to a usual
metric g and an isotropic splitting of E, E=Z T +ad P + T*.

Recall: the splitting determines H € Q3(M) and a connection # on
P (of curvature F € Q2 (ad P)) such that dH = (F A F).

We have V_ = (V)r = Tand Vy X E/T*(2 T +adP).
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An example: the Gualtieri-Bismut connection

Let V. be an admissible generalized metric.
Recall that V, =2 T +adP, let C, =2 (adP)t C T +adP.
Define, by projecting, a map C, C(V4) = V_, C(V_) = (4.

Define
DeBe, = [e—7 ei}-]'ﬁ‘ + [e+7 e/—]— + [Ce—7 e/—]— + [Ce+7 ei}-]-ﬁ-a

The connection Dg preserves V4 and has totally skew torsion Tp,.

Given a metric V4, there is not a unique torsion-free
connection compatible with V. But thanks to D&, we can
define a canonical Levi-Citiva connection

LC
D¢ = Dg — Tp,.

But actually, we don’t want only this one...
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Given ¢ € Q°(E*), we have
Xge = p(e)e — (e,€)(,) 1 € QUE" @ o(E)).
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The many Levi-Civita connections

Given ¢ € Q°(E*), we have
x¢e' = p(e')e — (e, €)(,) Hp € QUE* @ o(E)).
By choosing wisely some terms in
Q°(E* @ (o( V) @ o(V-)),
we get another torsion free connection D¥.
Actually, it will be enough to do it for ¢ € C>°(M), which defines
p =" (dp) € Q°(EY),

so that we get a torsion-free connection D?.
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In an even-dim spin manifold...

If M is spin, by V_ = T, we can talk about the spinor bundle
S+ (V-), so that the restriction of the connection D¢

DY : V. — V_® (Vi)
extends to a differential operator on spinors
DY :Sy(Vo) = Si(Vo) @ (Va),
with associated Dirac operator

B? S (V_) = S_(V.).



Finally, generalized Killing spinor equations

Given a generalized metric V., as before, and ¢ € C*°(M), the
Killing spinor equations for a spinor n € Sy (V_) are given by

D¢n =0,
lﬁn =0.



On a six-dimensinal spin-manifold

Theorem (Garcia-Fernandez, ,Tipler)

Assume that E is exact. Then (V., ¢, n) is a solution to the
Killing spinor equations with 7 £ 0 if and only if H =0, ¢ is
constant and g is a metric with holonomy contained in SU(3).
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Theorem (Garcia-Fernandez, ,Tipler)

Assume that E is exact. Then (V., ¢, n) is a solution to the
Killing spinor equations with 7 £ 0 if and only if H =0, ¢ is
constant and g is a metric with holonomy contained in SU(3).

Theorem (Garcia-Fernandez, ,Tipler)

Assume that E is transitive. The Strominger system is equivalent
to the Killing spinor equations.
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A couple of ideas from the proofs

D¢n =0,
l?fn =0.
for (V4, ¢,n) are equivalent to
F-n=0
V=0,
dH — (FAF) =0,

for ((ga H, 6)7¢7 77)' where, by Vo= (Tvg)' ne 5+(T) = 5+(V—)
(and V™ is the Bismut connection with skew-torsion —H).
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A couple of ideas from the proofs

F-n=0
V™ n=0,
(H—2d¢)-n=0,
dH - (FAF)=0,

By Spin(6) = SU(4), V™1 = 0 will give the holonomy SU(3) (with
H = 0), or the Calabi-Yau structure.

For the converse in Strominger, given (w, A, V), one defines
0 =AxYV, H=d  and ¢. Note that the Bianchi identity

ddw— (trRAR—trFaAFa)=0

corresponds to
dH — <F9 VAN F9> =0.
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New approach to the Strominger system,
which is also a bridge from SU(3)-holonomy.

Obrigado.



