Joint work with Mario Garcia-Fernandez and Carl Tipler.

arxiv:1503.07562

An $\mathrm{SU}(3)$ -structure is given by

An $\mathrm{SU}(3)$ -structure is given by

▶ real 2-form ω ,

An $\mathrm{SU}(3)$ -structure is given by

- real 2-form ω,
- complex 3-form Ω inducing an almost complex structure J_{Ω} ,

An $\mathrm{SU}(3)$ -structure is given by

- real 2-form ω,
- complex 3-form Ω inducing an almost complex structure J_{Ω} , such that $g = \omega(\cdot, J_{\Omega} \cdot)$ is a metric.

An $\mathrm{SU}(3)$ -structure is given by

real 2-form ω,

• complex 3-form Ω inducing an almost complex structure J_{Ω} , such that $g = \omega(\cdot, J_{\Omega} \cdot)$ is a metric.

The metric g has SU(3)-holonomy

 ${
m SU}(3)$ -holonomy metrics give, in particular, ${
m SU}(3)$ -structures.

An SU(3)-structure is given by

real 2-form ω,

• complex 3-form Ω inducing an almost complex structure J_{Ω} , such that $g = \omega(\cdot, J_{\Omega} \cdot)$ is a metric.

The metric g has SU(3)-holonomy when Ω is parallel w.r.t. the Levi-Civita connection of g.

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega^{3,0}_{hol}(X)$
- ► G compact semi-simple Lie group
- $P_s \rightarrow X$ principal *G*-bundle

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega^{3,0}_{hol}(X)$
- G compact semi-simple Lie group
- $P_s \rightarrow X$ principal *G*-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega = g(J \cdot, \cdot)$),
- ► A connection on P_s,
- ∇ unitary connection on (TX, g).

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega^{3,0}_{hol}(X)$
- G compact semi-simple Lie group
- $P_s \rightarrow X$ principal *G*-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega = g(J \cdot, \cdot)$),
- ► A connection on P_s,
- ∇ unitary connection on (TX, g).

Strominger system

$$F \wedge \omega^{2} = 0, \qquad F^{0,2} = 0,$$

$$R \wedge \omega^{2} = 0, \qquad R^{0,2} = 0,$$

$$d(\|\Omega\|_{\omega}\omega^{2}) = 0,$$

$$dd^{c}\omega - (\operatorname{tr} R \wedge R - \operatorname{tr} F \wedge F) = 0$$

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega^{3,0}_{hol}(X)$
- G compact semi-simple Lie group
- $P_s \rightarrow X$ principal *G*-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega = g(J \cdot, \cdot)$),
- ► A connection on P_s,
- ∇ unitary connection on (TX, g).

The literary Strominger system

$$F \wedge \omega^{2} = 0, \qquad F^{0,2} = 0,$$

$$R \wedge \omega^{2} = 0, \qquad R^{0,2} = 0,$$

$$d(\|\Omega\|_{\omega}\omega^{2}) = 0,$$

$$dd^{c}\omega - (\operatorname{tr} R \wedge R - \operatorname{tr} F \wedge F) = 0$$

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega^{3,0}_{hol}(X)$
- G compact semi-simple Lie group
- $P_s \rightarrow X$ principal *G*-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega = g(J \cdot, \cdot)$),
- ► A connection on P_s,
- ∇ unitary connection on (TX, g).

The literary Strominger system

Hermite-Yang Mills for F, $R \wedge \omega^2 = 0$, $R^{0,2} = 0$, $d(\|\Omega\|_{\omega}\omega^2) = 0$, $dd^c\omega - (\operatorname{tr} R \wedge R - \operatorname{tr} F \wedge F) = 0$

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega^{3,0}_{hol}(X)$
- G compact semi-simple Lie group
- $P_s \rightarrow X$ principal *G*-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega = g(J \cdot, \cdot)$),
- ► A connection on P_s,
- ∇ unitary connection on (TX, g).

The literary Strominger system

Hermite-Yang Mills for F, Hermite-Yang Mills for R, $d(\|\Omega\|_{\omega}\omega^2) = 0$, $dd^c\omega - (\operatorname{tr} R \wedge R - \operatorname{tr} F \wedge F) = 0$

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega^{3,0}_{hol}(X)$
- G compact semi-simple Lie group
- $P_s \rightarrow X$ principal *G*-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega = g(J \cdot, \cdot)$),
- ► A connection on P_s,
- ∇ unitary connection on (TX, g).

The literary Strominger system

Hermite-Yang Mills for F, Hermite-Yang Mills for R, $\Rightarrow g$ is conformally balanced,

 $dd^{c}\omega - (\operatorname{tr} R \wedge R - \operatorname{tr} F \wedge F) = 0$

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega^{3,0}_{hol}(X)$
- G compact semi-simple Lie group
- $P_s \rightarrow X$ principal *G*-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega = g(J \cdot, \cdot)$),
- ► A connection on P_s,
- ∇ unitary connection on (TX, g).

The literary Strominger system

Hermite-Yang Mills for F, Hermite-Yang Mills for R, $\Rightarrow g$ is conformally balanced, Bianchi identity,

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega^{3,0}_{hol}(X)$
- G compact semi-simple Lie group
- $P_s \rightarrow X$ principal *G*-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega = g(J \cdot, \cdot)$),
- A connection on P_s ,
- ∇ unitary connection on (TX, g).

The literary Strominger system

Hermite-Yang Mills for F,

Hermite-Yang Mills for ${\cal R},$

 $\Rightarrow g$ is conformally balanced,

Bianchi identity,

(Interest in Physics: equivalent to $\rm EM + SUSY + Bianchi in a Strominger compactification of the Heterotic String in the presence of NS fluxes.)$

SU(3)-holonomy, Strominger, and generalized Killing spinors SU(3)-holonomy, Strominger, and generalized Killing spinors

This will take more than one slide...

$$\langle X+\xi,Y+\eta\rangle=rac{1}{2}(i_X\eta+i_Y\xi),\qquad [X+\xi,Y+\eta]=[X,Y]+\mathcal{L}_X\eta-i_Yd\xi$$

$$\langle X+\xi,Y+\eta\rangle=\frac{1}{2}(i_X\eta+i_Y\xi),\qquad [X+\xi,Y+\eta]=[X,Y]+\mathcal{L}_X\eta-i_Yd\xi$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry.

$$\langle X+\xi,Y+\eta\rangle=\frac{1}{2}(i_X\eta+i_Y\xi),\qquad [X+\xi,Y+\eta]=[X,Y]+\mathcal{L}_X\eta-i_Yd\xi$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group O(n, n),

$$\langle X+\xi, Y+\eta\rangle = \frac{1}{2}(i_X\eta+i_Y\xi), \qquad [X+\xi, Y+\eta] = [X,Y] + \mathcal{L}_X\eta - i_Yd\xi$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group O(n, n), and the group of symmetries includes closed 2-forms, called *B*-fields.

 $X + \xi \mapsto X + \xi + i_X B.$

$$\langle X+\xi, Y+\eta \rangle = \frac{1}{2}(i_X\eta + i_Y\xi), \qquad [X+\xi, Y+\eta] = [X, Y] + \mathcal{L}_X\eta - i_Yd\xi$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group O(n, n), and the group of symmetries includes closed 2-forms, called *B*-fields.

$$X + \xi \mapsto X + \xi + i_X B.$$

Consider the twisted version: an exact Courant algebroid

$$0 \to T^* \to E \to T \to 0.$$

$$\langle X+\xi, Y+\eta \rangle = \frac{1}{2}(i_X\eta + i_Y\xi), \qquad [X+\xi, Y+\eta] = [X, Y] + \mathcal{L}_X\eta - i_Yd\xi$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group O(n, n), and the group of symmetries includes closed 2-forms, called *B*-fields.

$$X + \xi \mapsto X + \xi + i_X B.$$

Consider the twisted version: an exact Courant algebroid

$$0 \rightarrow T^* \rightarrow E \rightarrow T \rightarrow 0.$$

It is isomorphic, by choosing a (non-canonical!) splitting,

$$\langle X+\xi, Y+\eta \rangle = \frac{1}{2}(i_X\eta + i_Y\xi), \qquad [X+\xi, Y+\eta] = [X, Y] + \mathcal{L}_X\eta - i_Yd\xi$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group O(n, n), and the group of symmetries includes closed 2-forms, called *B*-fields.

$$X + \xi \mapsto X + \xi + i_X B.$$

Consider the twisted version: an exact Courant algebroid

$$0 \rightarrow T^* \rightarrow E \rightarrow T \rightarrow 0.$$

It is isomorphic, by choosing a (non-canonical!) splitting, to

$$(T + T^*, \langle, \rangle, [,]_H , \pi_T),$$

$$\langle X+\xi, Y+\eta \rangle = \frac{1}{2}(i_X\eta + i_Y\xi), \qquad [X+\xi, Y+\eta] = [X, Y] + \mathcal{L}_X\eta - i_Yd\xi$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group O(n, n), and the group of symmetries includes closed 2-forms, called *B*-fields.

$$X + \xi \mapsto X + \xi + i_X B.$$

Consider the twisted version: an exact Courant algebroid

$$0 \rightarrow T^* \rightarrow E \rightarrow T \rightarrow 0.$$

It is isomorphic, by choosing a (non-canonical!) splitting, to

$$(T + T^*, \langle, \rangle, [,]_H := [,] + i_X i_Y H, \pi_T),$$

for some $H \in \Omega^3_{cl}(M)$

$$\langle X+\xi, Y+\eta \rangle = \frac{1}{2}(i_X\eta + i_Y\xi), \qquad [X+\xi, Y+\eta] = [X, Y] + \mathcal{L}_X\eta - i_Yd\xi$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group O(n, n), and the group of symmetries includes closed 2-forms, called *B*-fields.

$$X + \xi \mapsto X + \xi + i_X B.$$

Consider the twisted version: an exact Courant algebroid

$$0 \rightarrow T^* \rightarrow E \rightarrow T \rightarrow 0.$$

It is isomorphic, by choosing a (non-canonical!) splitting, to

$$(T + T^*, \langle, \rangle, [,]_H := [,] + i_X i_Y H, \pi_T),$$

for some $H \in \Omega^3_{cl}(M)$

$$\langle X+\xi, Y+\eta \rangle = \frac{1}{2}(i_X\eta + i_Y\xi), \qquad [X+\xi, Y+\eta] = [X,Y] + \mathcal{L}_X\eta - i_Yd\xi$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group O(n, n), and the group of symmetries includes closed 2-forms, called *B*-fields.

$$X + \xi \mapsto X + \xi + i_X B.$$

Consider the twisted version: an exact Courant algebroid

$$0 \rightarrow T^* \rightarrow E \rightarrow T \rightarrow 0.$$

It is isomorphic, by choosing a (non-canonical!) splitting, to

$$(T + T^*, \langle, \rangle, [,]_H := [,] + i_X i_Y H, \pi_T),$$

for some $H \in \Omega^3_{cl}(M)$ (whose class $[H] \in H^3(M)$ parameterizes E).

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P,

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise,

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E:

$$T^* \to E \to T \to 0.$$

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E:

$$T^* \to E \to T \to 0.$$

As a vector bundle,

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E:

$$T^* \to E \to T \to 0.$$

As a vector bundle, $E \cong T + \operatorname{ad} P + T^*$, but not canonically.

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E:

$$T^* \to E \to T \to 0.$$

As a vector bundle, $E \cong T + \operatorname{ad} P + T^*$, but not canonically.

Choosing a splitting $T \rightarrow E$,

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E:

$$T^* \to E \to T \to 0.$$

As a vector bundle, $E \cong T + \operatorname{ad} P + T^*$, but not canonically.

Choosing a splitting $T \rightarrow E$, we have an isomorphism of E with

$$(T + \operatorname{ad} P + T^*, \langle, \rangle, [,]_{\theta,H}, \pi_T),$$

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E:

$$T^* \to E \to T \to 0.$$

As a vector bundle, $E \cong T + \operatorname{ad} P + T^*$, but not canonically.

Choosing a splitting $T \rightarrow E$, we have an isomorphism of E with

$$(T + \operatorname{ad} P + T^*, \langle, \rangle, [,]_{\theta,H}, \pi_T),$$

where θ is a connection on P (with curvature $F \in \Omega^2_{cl}(\text{ad } P)$),

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E:

$$T^* \to E \to T \to 0.$$

As a vector bundle, $E \cong T + \operatorname{ad} P + T^*$, but not canonically.

Choosing a splitting $T \rightarrow E$, we have an isomorphism of E with

$$(T + \operatorname{ad} P + T^*, \langle, \rangle, [,]_{\theta,H}, \pi_T),$$

where θ is a connection on P (with curvature $F \in \Omega^2_{cl}(ad P)$), and $H \in \Omega^3(M)$

Given a principal G-bundle P, $TP \rightarrow \hat{E} \rightarrow T^*P$ exact over P, a (non-isotropic) lifted action $\psi : \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E:

$$T^* \to E \to T \to 0.$$

As a vector bundle, $E \cong T + \operatorname{ad} P + T^*$, but not canonically.

Choosing a splitting $T \rightarrow E$, we have an isomorphism of E with

$$(T + \operatorname{ad} P + T^*, \langle, \rangle, [,]_{\theta,H}, \pi_T),$$

where θ is a connection on P (with curvature $F \in \Omega^2_{cl}(\text{ad } P)$), and $H \in \Omega^3(M)$ such that

$$dH + \langle F \wedge F \rangle = 0.$$

This slide may hurt your sensibilities

This slide may hurt your sensibilities

$$[X + r + \xi, Y + t + \eta]_{\theta,H} =$$

$$[X, Y] + L_X \eta - i_Y d\xi + i_Y i_X H$$

$$-F(X, Y) + i_X dt - i_Y dr$$

$$+ 2c(tdr) + 2c(i_X Ft) - 2c(i_Y Fr).$$

A metric is a reduction of the frame bundle from GL(n) to O(n).

A metric is a reduction of the frame bundle from GL(n) to O(n). A generalized metric is a reduction from O(n, n) to

A metric is a reduction of the frame bundle from GL(n) to O(n). A generalized metric is a reduction from O(n, n) to $O(n) \times O(n)$.

A metric is a reduction of the frame bundle from GL(n) to O(n). A generalized metric is a reduction from O(n, n) to $O(n) \times O(n)$. This means choosing a rank *n* positive-definite subbundle $V_+ \subset E$.

A metric is a reduction of the frame bundle from GL(n) to O(n). A generalized metric is a reduction from O(n, n) to $O(n) \times O(n)$. This means choosing a rank *n* positive-definite subbundle $V_+ \subset E$.

Since T^* is isotropic, $\pi: V_+ \to T$ is an isomorphism,

A metric is a reduction of the frame bundle from GL(n) to O(n). A generalized metric is a reduction from O(n, n) to $O(n) \times O(n)$. This means choosing a rank *n* positive-definite subbundle $V_+ \subset E$.

Since T^* is isotropic, $\pi: V_+ \to T$ is an isomorphism, so T inherits a positive-definite pairing,

A metric is a reduction of the frame bundle from GL(n) to O(n). A generalized metric is a reduction from O(n, n) to $O(n) \times O(n)$. This means choosing a rank *n* positive-definite subbundle $V_+ \subset E$.

Since T^* is isotropic, $\pi: V_+ \to T$ is an isomorphism, so T inherits a positive-definite pairing, i.e., we get a usual metric g.

A metric is a reduction of the frame bundle from GL(n) to O(n). A generalized metric is a reduction from O(n, n) to $O(n) \times O(n)$. This means choosing a rank *n* positive-definite subbundle $V_+ \subset E$.

Since T^* is isotropic, $\pi: V_+ \to T$ is an isomorphism, so T inherits a positive-definite pairing, i.e., we get a usual metric g.

On the other hand, we define an isotropic splitting $T \rightarrow E$ by

$$X\mapsto \pi_{|V_+}^{-1}$$

A metric is a reduction of the frame bundle from GL(n) to O(n). A generalized metric is a reduction from O(n, n) to $O(n) \times O(n)$. This means choosing a rank *n* positive-definite subbundle $V_+ \subset E$.

Since T^* is isotropic, $\pi: V_+ \to T$ is an isomorphism, so T inherits a positive-definite pairing, i.e., we get a usual metric g.

On the other hand, we define an isotropic splitting $T \rightarrow E$ by

$$X\mapsto \pi_{|V_+}^{-1}-rac{1}{2}\pi^*g(X).$$

A metric is a reduction of the frame bundle from GL(n) to O(n). A generalized metric is a reduction from O(n, n) to $O(n) \times O(n)$. This means choosing a rank *n* positive-definite subbundle $V_+ \subset E$.

Since T^* is isotropic, $\pi: V_+ \to T$ is an isomorphism, so T inherits a positive-definite pairing, i.e., we get a usual metric g.

On the other hand, we define an isotropic splitting $T \rightarrow E$ by

$$X\mapsto \pi_{|V_+}^{-1}-rac{1}{2}\pi^*g(X).$$

A generalized metric on an exact Courant algebroid is actually equivalent to a usual metric g together with an isotropic splitting.

For E transitive,

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s),

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s), and a generalized metric is a reduction to $O(p, q) \times O(t - p, s - q)$.

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s), and a generalized metric is a reduction to $O(p, q) \times O(t - p, s - q)$.

We will focus on admissible metrics ([MGF]):

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s), and a generalized metric is a reduction to $O(p, q) \times O(t - p, s - q)$.

We will focus on admissible metrics ([MGF]): such that $V_+ \cap T^* = \{0\}$ and $rk(V_+) = rk(E) - \dim M$,

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s), and a generalized metric is a reduction to $O(p, q) \times O(t - p, s - q)$.

We will focus on admissible metrics ([MGF]): such that $V_+ \cap T^* = \{0\}$ and $\operatorname{rk}(V_+) = \operatorname{rk}(E) - \dim M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of E, $E \cong T + \operatorname{ad} P + T^*$.

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s), and a generalized metric is a reduction to $O(p, q) \times O(t - p, s - q)$.

We will focus on admissible metrics ([MGF]): such that $V_+ \cap T^* = \{0\}$ and $\operatorname{rk}(V_+) = \operatorname{rk}(E) - \dim M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of E, $E \cong T + \operatorname{ad} P + T^*$. Recall:

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s), and a generalized metric is a reduction to $O(p, q) \times O(t - p, s - q)$.

We will focus on admissible metrics ([MGF]): such that $V_+ \cap T^* = \{0\}$ and $\operatorname{rk}(V_+) = \operatorname{rk}(E) - \dim M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of E, $E \cong T + \operatorname{ad} P + T^*$.

Recall: the splitting determines $H \in \Omega^3(M)$ and a connection θ on P (of curvature $F \in \Omega^2_{cl}(ad P)$)

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s), and a generalized metric is a reduction to $O(p, q) \times O(t - p, s - q)$.

We will focus on admissible metrics ([MGF]): such that $V_+ \cap T^* = \{0\}$ and $\operatorname{rk}(V_+) = \operatorname{rk}(E) - \dim M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of E, $E \cong T + \operatorname{ad} P + T^*$.

Recall: the splitting determines $H \in \Omega^3(M)$ and a connection θ on P (of curvature $F \in \Omega^2_{cl}(\operatorname{ad} P)$) such that $dH = \langle F \wedge F \rangle$.

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s), and a generalized metric is a reduction to $O(p, q) \times O(t - p, s - q)$.

We will focus on admissible metrics ([MGF]): such that $V_+ \cap T^* = \{0\}$ and $\operatorname{rk}(V_+) = \operatorname{rk}(E) - \dim M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of E, $E \cong T + \operatorname{ad} P + T^*$.

Recall: the splitting determines $H \in \Omega^3(M)$ and a connection θ on P (of curvature $F \in \Omega^2_{cl}(\operatorname{ad} P)$) such that $dH = \langle F \wedge F \rangle$.

We have $V_{-} := (V_{+})^{\perp} \cong T$

For *E* transitive, the signature of the pairing may not be split, so the structure group is O(t, s), and a generalized metric is a reduction to $O(p, q) \times O(t - p, s - q)$.

We will focus on admissible metrics ([MGF]): such that $V_+ \cap T^* = \{0\}$ and $\operatorname{rk}(V_+) = \operatorname{rk}(E) - \dim M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of E, $E \cong T + \operatorname{ad} P + T^*$.

Recall: the splitting determines $H \in \Omega^3(M)$ and a connection θ on P (of curvature $F \in \Omega^2_{cl}(\operatorname{ad} P)$) such that $dH = \langle F \wedge F \rangle$.

We have $V_{-} := (V_{+})^{\perp} \cong T$ and $V_{+} \cong E/T^{*} (\cong T + \operatorname{ad} P)$.

А

connnection on E is a differential operator

 $D: \Omega^0(E) \to \Omega^0(T^* \otimes E),$

A generalized connnection on E is a differential operator

 $D: \Omega^0(E) \to \Omega^0(E^* \otimes E),$

A generalized connnection on E is a differential operator

$$D: \Omega^0(E) \to \Omega^0(E^* \otimes E),$$

satisfying the Leibniz rule $(D_e fe' = \pi(e)(f)e' + fD_e e)$

A generalized connnection on E is a differential operator

$$D: \Omega^0(E) \to \Omega^0(E^* \otimes E),$$

satisfying the Leibniz rule $(D_e f e' = \pi(e)(f)e' + f D_e e)$ and compatible with the metric $(\pi(e)\langle e', e'' \rangle = \langle D_e e', e'' \rangle + \langle e', D_e e'' \rangle)$.

A generalized connnection on E is a differential operator

$$D: \Omega^0(E) \to \Omega^0(E^* \otimes E),$$

satisfying the Leibniz rule $(D_e f e' = \pi(e)(f)e' + f D_e e)$ and compatible with the metric $(\pi(e)\langle e', e'' \rangle = \langle D_e e', e'' \rangle + \langle e', D_e e'' \rangle)$.

The space of connections is affine,

A generalized connnection on E is a differential operator

$$D: \Omega^0(E) \to \Omega^0(E^* \otimes E),$$

satisfying the Leibniz rule $(D_e f e' = \pi(e)(f)e' + f D_e e)$ and compatible with the metric $(\pi(e)\langle e', e'' \rangle = \langle D_e e', e'' \rangle + \langle e', D_e e'' \rangle)$.

The space of connections is affine, modelled on $\Omega^0(E^* \otimes \mathfrak{o}(E))$.

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$D: \Omega^0(E) \to \Omega^0(E^* \otimes E),$$

satisfying the Leibniz rule $(D_e f e' = \pi(e)(f)e' + f D_e e)$ and compatible with the metric $(\pi(e)\langle e', e'' \rangle = \langle D_e e', e'' \rangle + \langle e', D_e e'' \rangle)$.

The space of connections is affine, modelled on $\Omega^0(E^* \otimes \mathfrak{o}(E))$.

Generalized curvature is defined, but it is not a tensor!

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$D: \Omega^0(E) \to \Omega^0(E^* \otimes E),$$

satisfying the Leibniz rule $(D_e f e' = \pi(e)(f)e' + f D_e e)$ and compatible with the metric $(\pi(e)\langle e', e'' \rangle = \langle D_e e', e'' \rangle + \langle e', D_e e'' \rangle)$.

The space of connections is affine, modelled on $\Omega^0(E^* \otimes \mathfrak{o}(E))$.

Generalized curvature is defined, but it is not a tensor! However, generalized torsion is!

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$D: \Omega^0(E) \to \Omega^0(E^* \otimes E),$$

satisfying the Leibniz rule $(D_e f e' = \pi(e)(f)e' + f D_e e)$ and compatible with the metric $(\pi(e)\langle e', e'' \rangle = \langle D_e e', e'' \rangle + \langle e', D_e e'' \rangle)$.

The space of connections is affine, modelled on $\Omega^0(E^* \otimes \mathfrak{o}(E))$.

Generalized curvature is defined, but it is not a tensor! However, generalized torsion is!

Let V_+ be an admissible generalized metric.

Let V_+ be an admissible generalized metric. Recall that $V_+ \cong T + \operatorname{ad} P$,

Let V_+ be an admissible generalized metric. Recall that $V_+ \cong T + \operatorname{ad} P$, let $C_+ \cong (\operatorname{ad} P)^{\perp} \subset T + \operatorname{ad} P$.

Let V_+ be an admissible generalized metric. Recall that $V_+ \cong T + \operatorname{ad} P$, let $C_+ \cong (\operatorname{ad} P)^{\perp} \subset T + \operatorname{ad} P$. Define, by projecting, a map C, $C(V_+) = V_-$, $C(V_-) = C_+$.

Let V_+ be an admissible generalized metric. Recall that $V_+ \cong T + \operatorname{ad} P$, let $C_+ \cong (\operatorname{ad} P)^{\perp} \subset T + \operatorname{ad} P$. Define, by projecting, a map C, $C(V_+) = V_-$, $C(V_-) = C_+$. Define

$$D_e^B e' := [e_-, e'_+]_+ + [e_+, e'_-]_- + [Ce_-, e'_-]_- + [Ce_+, e'_+]_+,$$

Let V_+ be an admissible generalized metric. Recall that $V_+ \cong T + \operatorname{ad} P$, let $C_+ \cong (\operatorname{ad} P)^{\perp} \subset T + \operatorname{ad} P$. Define, by projecting, a map C, $C(V_+) = V_-$, $C(V_-) = C_+$. Define

$$D_e^B e' := [e_-, e'_+]_+ + [e_+, e'_-]_- + [Ce_-, e'_-]_- + [Ce_+, e'_+]_+,$$

The connection D_B preserves V_{\pm} and has totally skew torsion T_{D_B} .

Let V_+ be an admissible generalized metric. Recall that $V_+ \cong T + \operatorname{ad} P$, let $C_+ \cong (\operatorname{ad} P)^{\perp} \subset T + \operatorname{ad} P$. Define, by projecting, a map C, $C(V_+) = V_-$, $C(V_-) = C_+$. Define

$$D_e^B e' := [e_-, e'_+]_+ + [e_+, e'_-]_- + [Ce_-, e'_-]_- + [Ce_+, e'_+]_+,$$

The connection D_B preserves V_{\pm} and has totally skew torsion T_{D_B} . Given a metric V_+ , there is not a unique torsion-free connection compatible with V_+ .

Let V_+ be an admissible generalized metric. Recall that $V_+ \cong T + \operatorname{ad} P$, let $C_+ \cong (\operatorname{ad} P)^{\perp} \subset T + \operatorname{ad} P$. Define, by projecting, a map C, $C(V_+) = V_-$, $C(V_-) = C_+$. Define

$$D_e^B e' := [e_-, e'_+]_+ + [e_+, e'_-]_- + [Ce_-, e'_-]_- + [Ce_+, e'_+]_+,$$

The connection D_B preserves V_{\pm} and has totally skew torsion T_{D_B} . Given a metric V_+ , there is not a unique torsion-free connection compatible with V_+ . But thanks to D^B , we can define a canonical Levi-Citiva connection

$$D^{LC}=D_B-T_{D_B}.$$

Let V_+ be an admissible generalized metric. Recall that $V_+ \cong T + \operatorname{ad} P$, let $C_+ \cong (\operatorname{ad} P)^{\perp} \subset T + \operatorname{ad} P$. Define, by projecting, a map C, $C(V_+) = V_-$, $C(V_-) = C_+$. Define

$$D_e^B e' := [e_-, e'_+]_+ + [e_+, e'_-]_- + [Ce_-, e'_-]_- + [Ce_+, e'_+]_+,$$

The connection D_B preserves V_{\pm} and has totally skew torsion T_{D_B} . Given a metric V_+ , there is not a unique torsion-free connection compatible with V_+ . But thanks to D^B , we can define a canonical Levi-Citiva connection

$$D^{LC}=D_B-T_{D_B}.$$

But actually, we don't want only this one...

Given $arphi \in \Omega^0(E^*)$, we have

$$\chi^{arphi}_{e} e' = arphi(e')e - \langle e, e'
angle \langle ,
angle^{-1} arphi$$

Given $\varphi \in \Omega^0(E^*)$, we have $\chi_e^{\varphi} e' = \varphi(e')e - \langle e, e' \rangle \langle, \rangle^{-1} \varphi \in \Omega^0(E^* \otimes \mathfrak{o}(E)).$

Given $\varphi \in \Omega^0(E^*)$, we have

$$\chi_{\mathsf{e}}^{\varphi}\mathsf{e}' = \varphi(\mathsf{e}')\mathsf{e} - \langle \mathsf{e}, \mathsf{e}' \rangle \langle, \rangle^{-1} \varphi \in \Omega^0(E^* \otimes \mathfrak{o}(E)).$$

By choosing wisely some terms in

Given $\varphi \in \Omega^0(E^*)$, we have $\chi_e^{\varphi} e' = \varphi(e')e - \langle e, e' \rangle \langle, \rangle^{-1} \varphi \in \Omega^0(E^* \otimes \mathfrak{o}(E)).$ By choosing wisely some terms in

$$\Omega^0(E^*\otimes (\mathfrak{o}(V_+)\oplus\mathfrak{o}(V_-)),$$

Given $\varphi \in \Omega^0(E^*)$, we have $\chi_e^{\varphi} e' = \varphi(e')e - \langle e, e' \rangle \langle, \rangle^{-1} \varphi \in \Omega^0(E^* \otimes \mathfrak{o}(E)).$ By choosing wisely some terms in

$$\Omega^0(E^*\otimes (\mathfrak{o}(V_+)\oplus\mathfrak{o}(V_-)),$$

we get another torsion free connection D^{φ} .

Given $\varphi \in \Omega^0(E^*)$, we have $\chi_e^{\varphi} e' = \varphi(e')e - \langle e, e' \rangle \langle, \rangle^{-1} \varphi \in \Omega^0(E^* \otimes \mathfrak{o}(E)).$ By choosing wisely some terms in

$$\Omega^0(E^*\otimes (\mathfrak{o}(V_+)\oplus\mathfrak{o}(V_-)),$$

we get another torsion free connection D^{φ} .

Actually, it will be enough to do it for $\phi \in \mathcal{C}^{\infty}(M)$,

Given $\varphi \in \Omega^0(E^*)$, we have $\chi_e^{\varphi} e' = \varphi(e')e - \langle e, e' \rangle \langle, \rangle^{-1} \varphi \in \Omega^0(E^* \otimes \mathfrak{o}(E)).$ By choosing wisely some terms in

$$\Omega^0(E^*\otimes (\mathfrak{o}(V_+)\oplus\mathfrak{o}(V_-)),$$

we get another torsion free connection D^{φ} .

Actually, it will be enough to do it for $\phi \in \mathcal{C}^{\infty}(M)$, which defines

$$\varphi = \pi^*(d\phi) \in \Omega^0(E^*),$$

Given $\varphi \in \Omega^0(E^*)$, we have $\chi_e^{\varphi} e' = \varphi(e')e - \langle e, e' \rangle \langle, \rangle^{-1} \varphi \in \Omega^0(E^* \otimes \mathfrak{o}(E)).$ By choosing wisely some terms in

$$\Omega^0(E^*\otimes (\mathfrak{o}(V_+)\oplus\mathfrak{o}(V_-))),$$

we get another torsion free connection D^{φ} .

Actually, it will be enough to do it for $\phi \in \mathcal{C}^{\infty}(M)$, which defines

$$arphi=\pi^*(d\phi)\in\Omega^0(E^*),$$

so that we get a torsion-free connection D^{ϕ} .

If *M* is spin,

If M is spin, by $V_-\cong T$, we can talk about the spinor bundle $S_\pm(V_-)$,

If M is spin, by $V_- \cong T$, we can talk about the spinor bundle $S_{\pm}(V_-)$, so that the restriction of the connection D^{ϕ}

$$D^{\phi}_{\pm}:V_{-}
ightarrow V_{-}\otimes (V_{\pm})^{*},$$

If M is spin, by $V_- \cong T$, we can talk about the spinor bundle $S_{\pm}(V_-)$, so that the restriction of the connection D^{ϕ}

$$D^{\phi}_{\pm}:V_{-}
ightarrow V_{-}\otimes (V_{\pm})^{*},$$

extends to a differential operator on spinors

$$D^\phi_\pm:S_+(V_-) o S_+(V_-)\otimes (V_\pm)^*,$$

If M is spin, by $V_- \cong T$, we can talk about the spinor bundle $S_{\pm}(V_-)$, so that the restriction of the connection D^{ϕ}

$$D^{\phi}_{\pm}: V_{-} \rightarrow V_{-} \otimes (V_{\pm})^*,$$

extends to a differential operator on spinors

$$D^\phi_\pm:S_+(V_-) o S_+(V_-)\otimes (V_\pm)^*,$$

with associated Dirac operator

$$onumber D^{\phi}_{-}:S_{+}(V_{-}) \rightarrow S_{-}(V_{-}).$$

Finally, generalized Killing spinor equations

Given a generalized metric V_+ , as before, and $\phi \in C^{\infty}(M)$, the *Killing spinor equations* for a spinor $\eta \in S_+(V_-)$ are given by

$$D^{\phi}_+\eta=0,$$

 $ot\!\!/ D^{\phi}_-\eta=0.$

On a six-dimensinal spin-manifold

Theorem (Garcia-Fernandez, ____, Tipler)

Assume that *E* is exact. Then (V_+, ϕ, η) is a solution to the Killing spinor equations with $\eta \neq 0$ if and only if H = 0, ϕ is constant and *g* is a metric with holonomy contained in SU(3).

On a six-dimensinal spin-manifold

Theorem (Garcia-Fernandez, ____, Tipler)

Assume that *E* is exact. Then (V_+, ϕ, η) is a solution to the Killing spinor equations with $\eta \neq 0$ if and only if H = 0, ϕ is constant and *g* is a metric with holonomy contained in SU(3).

Theorem (Garcia-Fernandez, ____, Tipler)

Assume that E is transitive. The Strominger system is equivalent to the Killing spinor equations.

$$egin{aligned} D^{\phi}_+\eta &= 0, \ D^{\phi}_-\eta &= 0. \end{aligned}$$

for (V₊, ϕ , η)

$$D^{\phi}_+\eta = 0,$$

 $ot\!\!/ D^{\phi}_-\eta = 0.$

for (V_+, ϕ, η) are equivalent to

$$egin{aligned} & F \cdot \eta = 0 \ &
abla^- \eta = 0, \ & (H - 2d\phi) \cdot \eta = 0, \ & dH - \langle F \wedge F
angle = 0, \end{aligned}$$

for $((g, H, \theta), \phi, \eta)$,

$$egin{aligned} D^{\phi}_+\eta &= 0, \ D^{\phi}_-\eta &= 0. \end{aligned}$$

for (V_+, ϕ, η) are equivalent to

$$egin{aligned} & F\cdot\eta = 0 \ &
abla^-\eta = 0, \ & (H-2d\phi)\cdot\eta = 0, \ & dH-\langle F\wedge F
angle = 0, \end{aligned}$$

for $((g,H, heta),\phi,\eta)$, where, by $V_-\cong(\mathcal{T},g)$, $\eta\in\mathcal{S}_+(\mathcal{T})\cong\mathcal{S}_+(V_-)$

$$D^{\phi}_{+}\eta = 0,$$
$$\not\!\!\!D^{\phi}_{-}\eta = 0.$$

for (V_+, ϕ, η) are equivalent to

$$egin{aligned} & F \cdot \eta = 0 \ &
abla^- \eta = 0, \ & (H - 2d\phi) \cdot \eta = 0, \ & dH - \langle F \wedge F
angle = 0, \end{aligned}$$

for $((g, H, \theta), \phi, \eta)$, where, by $V_{-} \cong (T, g)$, $\eta \in S_{+}(T) \cong S_{+}(V_{-})$ (and ∇^{-} is the Bismut connection with skew-torsion -H).

$$egin{aligned} & F \cdot \eta = 0 \ &
abla^- \eta = 0, \ & (H - 2d\phi) \cdot \eta = 0, \ & dH - \langle F \wedge F
angle = 0, \end{aligned}$$

$$egin{aligned} & F\cdot\eta = 0 \ &
abla^-\eta = 0, \ & (H-2d\phi)\cdot\eta = 0, \ & dH-\langle F\wedge F
angle = 0, \end{aligned}$$

By Spin(6) \cong SU(4),

$$egin{aligned} F \cdot \eta &= 0 \ &
abla^- \eta &= 0, \ & (H-2d\phi) \cdot \eta &= 0, \ & dH - \langle F \wedge F
angle &= 0, \end{aligned}$$

By Spin(6) \cong SU(4), $\nabla^{-}\eta = 0$ will give the holonomy SU(3) (with H = 0), or the Calabi-Yau structure.

$$egin{aligned} & F \cdot \eta = 0 \ &
abla^- \eta = 0, \ & H - 2 d \phi) \cdot \eta = 0, \ & H - \langle F \wedge F
angle = 0, \end{aligned}$$

By Spin(6) \cong SU(4), $\nabla^{-}\eta = 0$ will give the holonomy SU(3) (with H = 0), or the Calabi-Yau structure.

٢

For the converse in Strominger,

$$egin{aligned} & F \cdot \eta = 0 \ &
abla^- \eta = 0, \ & (H - 2d\phi) \cdot \eta = 0, \ & H - \langle F \wedge F
angle = 0, \end{aligned}$$

By Spin(6) \cong SU(4), $\nabla^{-}\eta = 0$ will give the holonomy SU(3) (with H = 0), or the Calabi-Yau structure.

For the converse in Strominger, given (ω, A, ∇) ,

$$egin{aligned} & F \cdot \eta = 0 \ &
abla^- \eta = 0, \ & H - 2 d \phi) \cdot \eta = 0, \ & H - \langle F \wedge F
angle = 0, \end{aligned}$$

By Spin(6) \cong SU(4), $\nabla^{-}\eta = 0$ will give the holonomy SU(3) (with H = 0), or the Calabi-Yau structure.

For the converse in Strominger, given (ω, A, ∇) , one defines $\theta = A \times \nabla$, $H = d^c \omega$ and ϕ .

$$egin{aligned} & F \cdot \eta = 0 \ &
abla^- \eta = 0, \ & H - 2 d \phi) \cdot \eta = 0, \ & H - \langle F \wedge F
angle = 0, \end{aligned}$$

By Spin(6) \cong SU(4), $\nabla^{-}\eta = 0$ will give the holonomy SU(3) (with H = 0), or the Calabi-Yau structure.

For the converse in Strominger, given (ω, A, ∇) , one defines $\theta = A \times \nabla$, $H = d^c \omega$ and ϕ . Note that the Bianchi identity

$$dd^{c}\omega-({
m tr}\, R\wedge R-{
m tr}\, F_{A}\wedge F_{A})=0$$

$$egin{aligned} & F \cdot \eta = 0 \ &
abla^- \eta = 0, \ & H - 2 d \phi) \cdot \eta = 0, \ & H - \langle F \wedge F
angle = 0, \end{aligned}$$

By Spin(6) \cong SU(4), $\nabla^{-}\eta = 0$ will give the holonomy SU(3) (with H = 0), or the Calabi-Yau structure.

For the converse in Strominger, given (ω, A, ∇) , one defines $\theta = A \times \nabla$, $H = d^c \omega$ and ϕ . Note that the Bianchi identity

$$dd^{c}\omega-({
m tr}\,R\wedge R-{
m tr}\,F_{A}\wedge F_{A})=0$$

corresponds to

$$dH - \langle F_{\theta} \wedge F_{\theta} \rangle = 0.$$

New approach to the Strominger system,

New approach to the Strominger system, which is also a bridge from ${
m SU}(3)$ -holonomy.

New approach to the Strominger system, which is also a bridge from ${
m SU}(3)$ -holonomy.

Obrigado.