Joint work with
Mario Garcia-Fernandez and Carl Tipler. arxiv:1503.07562

SU(3)-holonomy...

$\mathrm{SU}(3)$-holonomy metrics give, in particular, $\mathrm{SU}(3)$-structures.

SU(3)-holonomy...

$\mathrm{SU}(3)$-holonomy metrics give, in particular, $\mathrm{SU}(3)$-structures.
An $\mathrm{SU}(3)$-structure is given by

SU(3)-holonomy...

$\mathrm{SU}(3)$-holonomy metrics give, in particular, $\mathrm{SU}(3)$-structures.
An $\mathrm{SU}(3)$-structure is given by

- real 2 -form ω,

SU(3)-holonomy...

$\mathrm{SU}(3)$-holonomy metrics give, in particular, $\mathrm{SU}(3)$-structures.
An $\mathrm{SU}(3)$-structure is given by

- real 2-form ω,
- complex 3 -form Ω inducing an almost complex structure J_{Ω},

SU(3)-holonomy...

$\mathrm{SU}(3)$-holonomy metrics give, in particular, $\mathrm{SU}(3)$-structures.
An $\mathrm{SU}(3)$-structure is given by

- real 2 -form ω,
- complex 3 -form Ω inducing an almost complex structure J_{Ω}, such that $g=\omega\left(\cdot, J_{\Omega}\right)$ is a metric.

SU(3)-holonomy...

$\mathrm{SU}(3)$-holonomy metrics give, in particular, $\mathrm{SU}(3)$-structures.
An $\mathrm{SU}(3)$-structure is given by

- real 2 -form ω,
- complex 3 -form Ω inducing an almost complex structure J_{Ω}, such that $g=\omega\left(\cdot, J_{\Omega}\right)$ is a metric.

The metric g has $\mathrm{SU}(3)$-holonomy

SU(3)-holonomy...

$\mathrm{SU}(3)$-holonomy metrics give, in particular, $\mathrm{SU}(3)$-structures.
An $\mathrm{SU}(3)$-structure is given by

- real 2 -form ω,
- complex 3 -form Ω inducing an almost complex structure J_{Ω}, such that $g=\omega\left(\cdot, J_{\Omega}\right)$ is a metric.

The metric g has $\mathrm{SU}(3)$-holonomy when Ω is parallel w.r.t. the Levi-Civita connection of g.

SU(3)-holonomy, Strominger...

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega_{h o l}^{3,0}(X)$
- G compact semi-simple Lie group
- $P_{s} \rightarrow X$ principal G-bundle

SU(3)-holonomy, Strominger...

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega_{h o l}^{3,0}(X)$
- G compact semi-simple Lie group
- $P_{s} \rightarrow X$ principal G-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega=g(J \cdot, \cdot)$),
- A connection on P_{s},
- ∇ unitary connection on ($T X, g$).

SU(3)-holonomy, Strominger...

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega_{h o l}^{3,0}(X)$
- G compact semi-simple Lie group
- $P_{s} \rightarrow X$ principal G-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega=g(J \cdot, \cdot)$),
- A connection on P_{s},
- ∇ unitary connection on ($T X, g$).

Strominger system

$$
\begin{aligned}
& F \wedge \omega^{2}=0, \quad F^{0,2}=0 \\
& R \wedge \omega^{2}=0, \quad R^{0,2}=0 \\
& d\left(\|\Omega\|_{\omega} \omega^{2}\right)=0, \\
& d d^{c} \omega-(\operatorname{tr} R \wedge R-\operatorname{tr} F \wedge F)=0
\end{aligned}
$$

SU(3)-holonomy, Strominger...

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega_{h o l}^{3,0}(X)$
- G compact semi-simple Lie group
- $P_{s} \rightarrow X$ principal G-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega=g(J \cdot, \cdot)$),
- A connection on P_{s},
- ∇ unitary connection on ($T X, g$).

The literary Strominger system

$$
\begin{aligned}
& F \wedge \omega^{2}=0, \quad F^{0,2}=0 \\
& R \wedge \omega^{2}=0, \quad R^{0,2}=0 \\
& d\left(\|\Omega\|_{\omega} \omega^{2}\right)=0, \\
& d d^{c} \omega-(\operatorname{tr} R \wedge R-\operatorname{tr} F \wedge F)=0
\end{aligned}
$$

SU(3)-holonomy, Strominger...

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega_{h o l}^{3,0}(X)$
- G compact semi-simple Lie group
- $P_{s} \rightarrow X$ principal G-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega=g(J \cdot, \cdot)$),
- A connection on P_{s},
- ∇ unitary connection on ($T X, g$).

The literary Strominger system

$$
\begin{aligned}
& \text { Hermite-Yang Mills for } F, \\
& R \wedge \omega^{2}=0, \quad R^{0,2}=0 \\
& d\left(\|\Omega\|_{\omega} \omega^{2}\right)=0, \\
& d d^{c} \omega-(\operatorname{tr} R \wedge R-\operatorname{tr} F \wedge F)=0
\end{aligned}
$$

SU(3)-holonomy, Strominger...

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega_{h o l}^{3,0}(X)$
- G compact semi-simple Lie group
- $P_{s} \rightarrow X$ principal G-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega=g(J \cdot, \cdot)$),
- A connection on P_{s},
- ∇ unitary connection on ($T X, g$).

The literary Strominger system

Hermite-Yang Mills for F,
Hermite-Yang Mills for R,

$$
\begin{aligned}
& d\left(\|\Omega\|_{\omega} \omega^{2}\right)=0 \\
& d d^{c} \omega-(\operatorname{tr} R \wedge R-\operatorname{tr} F \wedge F)=0
\end{aligned}
$$

SU(3)-holonomy, Strominger...

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega_{h o l}^{3,0}(X)$
- G compact semi-simple Lie group
- $P_{s} \rightarrow X$ principal G-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega=g(J \cdot, \cdot)$),
- A connection on P_{s},
- ∇ unitary connection on ($T X, g$).

The literary Strominger system

Hermite-Yang Mills for F,
Hermite-Yang Mills for R,
$\Rightarrow g$ is conformally balanced,

$$
d d^{c} \omega-(\operatorname{tr} R \wedge R-\operatorname{tr} F \wedge F)=0
$$

SU(3)-holonomy, Strominger...

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega_{h o l}^{3,0}(X)$
- G compact semi-simple Lie group
- $P_{s} \rightarrow X$ principal G-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega=g(J \cdot, \cdot)$),
- A connection on P_{s},
- ∇ unitary connection on (TX,g).

The literary Strominger system
Hermite-Yang Mills for F,
Hermite-Yang Mills for R,
$\Rightarrow g$ is conformally balanced,
Bianchi identity,

SU(3)-holonomy, Strominger...

- (X, Ω) Calabi-Yau 3-fold: X complex with $\Omega \in \Omega_{h o l}^{3,0}(X)$
- G compact semi-simple Lie group
- $P_{s} \rightarrow X$ principal G-bundle

Unknowns:

- hermitian metric g given by ω (where $\omega=g(J \cdot, \cdot)$),
- A connection on P_{s},
- ∇ unitary connection on (TX,g).

The literary Strominger system
Hermite-Yang Mills for F,
Hermite-Yang Mills for R,
$\Rightarrow g$ is conformally balanced,
Bianchi identity,
(Interest in Physics: equivalent to EM + SUSY + Bianchi in a Strominger compactification of the Heterotic String in the presence of NS fluxes.)

SU(3)-holonomy, Strominger, and generalized Killing spinors

SU(3)-holonomy, Strominger, and generalized Killing spinors

This will take more than one slide...

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry.

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group $\mathrm{O}(n, n)$,

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group $\mathrm{O}(n, n)$, and the group of symmetries includes closed 2 -forms, called B-fields.

$$
X+\xi \mapsto X+\xi+i_{X} B
$$

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group $\mathrm{O}(n, n)$, and the group of symmetries includes closed 2 -forms, called B-fields.

$$
X+\xi \mapsto X+\xi+i_{X} B
$$

Consider the twisted version: an exact Courant algebroid

$$
0 \rightarrow T^{*} \rightarrow E \rightarrow T \rightarrow 0
$$

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group $\mathrm{O}(n, n)$, and the group of symmetries includes closed 2-forms, called B-fields.

$$
X+\xi \mapsto X+\xi+i_{X} B
$$

Consider the twisted version: an exact Courant algebroid

$$
0 \rightarrow T^{*} \rightarrow E \rightarrow T \rightarrow 0
$$

It is isomorphic, by choosing a (non-canonical!) splitting,

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group $\mathrm{O}(n, n)$, and the group of symmetries includes closed 2-forms, called B-fields.

$$
X+\xi \mapsto X+\xi+i_{X} B
$$

Consider the twisted version: an exact Courant algebroid

$$
0 \rightarrow T^{*} \rightarrow E \rightarrow T \rightarrow 0
$$

It is isomorphic, by choosing a (non-canonical!) splitting,to

$$
\left(T+T^{*},\langle,\rangle,[,]_{H} \quad, \pi_{T}\right)
$$

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group $\mathrm{O}(n, n)$, and the group of symmetries includes closed 2 -forms, called B-fields.

$$
X+\xi \mapsto X+\xi+i_{X} B
$$

Consider the twisted version: an exact Courant algebroid

$$
0 \rightarrow T^{*} \rightarrow E \rightarrow T \rightarrow 0
$$

It is isomorphic, by choosing a (non-canonical!) splitting,to

$$
\left(T+T^{*},\langle,\rangle,[,]_{H}:=[,]+i_{X} i_{Y} H, \pi_{T}\right),
$$

for some $H \in \Omega_{c l}^{3}(M)$

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group $\mathrm{O}(n, n)$, and the group of symmetries includes closed 2 -forms, called B-fields.

$$
X+\xi \mapsto X+\xi+i_{X} B
$$

Consider the twisted version: an exact Courant algebroid

$$
0 \rightarrow T^{*} \rightarrow E \rightarrow T \rightarrow 0
$$

It is isomorphic, by choosing a (non-canonical!) splitting,to

$$
\left(T+T^{*},\langle,\rangle,[,]_{H}:=[,]+i_{X} i_{Y} H, \pi_{T}\right),
$$

for some $H \in \Omega_{c l}^{3}(M)$

We know $\left(T+T^{*},\langle\rangle,,[],, \pi_{T}\right)$

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right), \quad[X+\xi, Y+\eta]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi
$$

It is the Courant algebroid where we have done Dirac geometry and generalized geometry. It has structure group $\mathrm{O}(n, n)$, and the group of symmetries includes closed 2-forms, called B-fields.

$$
X+\xi \mapsto X+\xi+i_{X} B
$$

Consider the twisted version: an exact Courant algebroid

$$
0 \rightarrow T^{*} \rightarrow E \rightarrow T \rightarrow 0
$$

It is isomorphic, by choosing a (non-canonical!) splitting,to

$$
\left(T+T^{*},\langle,\rangle,[,]_{H}:=[,]+i_{X} i_{Y} H, \pi_{T}\right),
$$

for some $H \in \Omega_{c l}^{3}(M)$ (whose class $[H] \in H^{3}(M)$ parameterizes E).

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P,

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise,

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E :

$$
T^{*} \rightarrow E \rightarrow T \rightarrow 0 .
$$

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E :

$$
T^{*} \rightarrow E \rightarrow T \rightarrow 0 .
$$

As a vector bundle,

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E :

$$
T^{*} \rightarrow E \rightarrow T \rightarrow 0 .
$$

As a vector bundle, $E \cong T+\operatorname{ad} P+T^{*}$, but not canonically.

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E :

$$
T^{*} \rightarrow E \rightarrow T \rightarrow 0 .
$$

As a vector bundle, $E \cong T+\mathrm{ad} P+T^{*}$, but not canonically.
Choosing a splitting $T \rightarrow E$,

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E :

$$
T^{*} \rightarrow E \rightarrow T \rightarrow 0
$$

As a vector bundle, $E \cong T+\operatorname{ad} P+T^{*}$, but not canonically.
Choosing a splitting $T \rightarrow E$, we have an isomorphism of E with

$$
\left(T+\operatorname{ad} P+T^{*},\langle,\rangle,[,]_{\theta, H}, \pi_{T}\right)
$$

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E :

$$
T^{*} \rightarrow E \rightarrow T \rightarrow 0 .
$$

As a vector bundle, $E \cong T+\operatorname{ad} P+T^{*}$, but not canonically.
Choosing a splitting $T \rightarrow E$, we have an isomorphism of E with

$$
\left(T+\operatorname{ad} P+T^{*},\langle,\rangle,[,]_{\theta, H}, \pi_{T}\right),
$$

where θ is a connection on P (with curvature $F \in \Omega_{c l}^{2}(\operatorname{ad} P)$),

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E :

$$
T^{*} \rightarrow E \rightarrow T \rightarrow 0 .
$$

As a vector bundle, $E \cong T+\operatorname{ad} P+T^{*}$, but not canonically.
Choosing a splitting $T \rightarrow E$, we have an isomorphism of E with

$$
\left(T+\operatorname{ad} P+T^{*},\langle,\rangle,[,]_{\theta, H}, \pi_{T}\right),
$$

where θ is a connection on P (with curvature $F \in \Omega_{c l}^{2}(\operatorname{ad} P)$), and $H \in \Omega^{3}(M)$

We reduce $T P \rightarrow \hat{E} \rightarrow T^{*} P$

Given a principal G-bundle $P, T P \rightarrow \hat{E} \rightarrow T^{*} P$ exact over P, a (non-isotropic) lifted action $\psi: \mathfrak{g} \rightarrow \mathcal{C}^{\infty}(\hat{E})$ gives rise, by generalized reduction, to a (non-exact) transitive Courant algebroid E :

$$
T^{*} \rightarrow E \rightarrow T \rightarrow 0 .
$$

As a vector bundle, $E \cong T+\operatorname{ad} P+T^{*}$, but not canonically.
Choosing a splitting $T \rightarrow E$, we have an isomorphism of E with

$$
\left(T+\operatorname{ad} P+T^{*},\langle,\rangle,[,]_{\theta, H}, \pi_{T}\right),
$$

where θ is a connection on P (with curvature $F \in \Omega_{c l}^{2}(\operatorname{ad} P)$), and $H \in \Omega^{3}(M)$ such that

$$
d H+\langle F \wedge F\rangle=0 .
$$

This slide may hurt your sensibilities

This slide may hurt your sensibilities

$$
\begin{aligned}
{[X+r+\xi,} & Y+t+\eta]_{\theta, H}= \\
& {[X, Y]+L_{X} \eta-i_{Y} d \xi+i_{Y} i_{X} H } \\
& -F(X, Y)+i_{X} d t-i_{Y} d r \\
& +2 c(t d r)+2 c\left(i_{X} F t\right)-2 c\left(i_{Y} F r\right)
\end{aligned}
$$

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$.

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$. A generalized metric is a reduction from $\mathrm{O}(n, n)$ to

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$. A generalized metric is a reduction from $\mathrm{O}(n, n)$ to $\mathrm{O}(n) \times \mathrm{O}(n)$.

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$. A generalized metric is a reduction from $\mathrm{O}(n, n)$ to $\mathrm{O}(n) \times \mathrm{O}(n)$. This means choosing a rank n positive-definite subbundle $V_{+} \subset E$.

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$. A generalized metric is a reduction from $\mathrm{O}(n, n)$ to $\mathrm{O}(n) \times \mathrm{O}(n)$. This means choosing a rank n positive-definite subbundle $V_{+} \subset E$.

Since T^{*} is isotropic, $\pi: V_{+} \rightarrow T$ is an isomorphism,

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$. A generalized metric is a reduction from $\mathrm{O}(n, n)$ to $\mathrm{O}(n) \times \mathrm{O}(n)$. This means choosing a rank n positive-definite subbundle $V_{+} \subset E$.

Since T^{*} is isotropic, $\pi: V_{+} \rightarrow T$ is an isomorphism, so
T inherits a positive-definite pairing,

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$. A generalized metric is a reduction from $\mathrm{O}(n, n)$ to $\mathrm{O}(n) \times \mathrm{O}(n)$. This means choosing a rank n positive-definite subbundle $V_{+} \subset E$.

Since T^{*} is isotropic, $\pi: V_{+} \rightarrow T$ is an isomorphism, so T inherits a positive-definite pairing, i.e., we get a usual metric g.

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$. A generalized metric is a reduction from $\mathrm{O}(n, n)$ to $\mathrm{O}(n) \times \mathrm{O}(n)$. This means choosing a rank n positive-definite subbundle $V_{+} \subset E$.

Since T^{*} is isotropic, $\pi: V_{+} \rightarrow T$ is an isomorphism, so T inherits a positive-definite pairing, i.e., we get a usual metric g.

On the other hand, we define an isotropic splitting $T \rightarrow E$ by

$$
X \mapsto \pi_{\mid V_{+}}^{-1}
$$

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$. A generalized metric is a reduction from $\mathrm{O}(n, n)$ to $\mathrm{O}(n) \times \mathrm{O}(n)$. This means choosing a rank n positive-definite subbundle $V_{+} \subset E$.

Since T^{*} is isotropic, $\pi: V_{+} \rightarrow T$ is an isomorphism, so T inherits a positive-definite pairing, i.e., we get a usual metric g.

On the other hand, we define an isotropic splitting $T \rightarrow E$ by

$$
X \mapsto \pi_{\mid V_{+}}^{-1}-\frac{1}{2} \pi^{*} g(X)
$$

We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from $\mathrm{GL}(n)$ to $\mathrm{O}(n)$. A generalized metric is a reduction from $\mathrm{O}(n, n)$ to $\mathrm{O}(n) \times \mathrm{O}(n)$. This means choosing a rank n positive-definite subbundle $V_{+} \subset E$.

Since T^{*} is isotropic, $\pi: V_{+} \rightarrow T$ is an isomorphism, so T inherits a positive-definite pairing, i.e., we get a usual metric g.
On the other hand, we define an isotropic splitting $T \rightarrow E$ by

$$
X \mapsto \pi_{\mid V_{+}}^{-1}-\frac{1}{2} \pi^{*} g(X)
$$

A generalized metric on an exact Courant algebroid is actually equivalent to a usual metric g together with an isotropic splitting.

And we generalize the notion of metric for E transitive:

For E transitive,

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$,

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$, and a generalized metric is a reduction to $\mathrm{O}(p, q) \times \mathrm{O}(t-p, s-q)$.

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$, and a generalized metric is a reduction to $\mathrm{O}(p, q) \times \mathrm{O}(t-p, s-q)$.

We will focus on admissible metrics ([MGF]):

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$, and a generalized metric is a reduction to $\mathrm{O}(p, q) \times \mathrm{O}(t-p, s-q)$.

We will focus on admissible metrics ([MGF]):
such that $V_{+} \cap T^{*}=\{0\}$ and $\operatorname{rk}\left(V_{+}\right)=\operatorname{rk}(E)-\operatorname{dim} M$,

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$, and a generalized metric is a reduction to $\mathrm{O}(p, q) \times \mathrm{O}(t-p, s-q)$.

We will focus on admissible metrics ([MGF]):
such that $V_{+} \cap T^{*}=\{0\}$ and $\operatorname{rk}\left(V_{+}\right)=\operatorname{rk}(E)-\operatorname{dim} M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of $E, E \cong T+\operatorname{ad} P+T^{*}$.

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$, and a generalized metric is a reduction to $\mathrm{O}(p, q) \times \mathrm{O}(t-p, s-q)$.

We will focus on admissible metrics ([MGF]):
such that $V_{+} \cap T^{*}=\{0\}$ and $\operatorname{rk}\left(V_{+}\right)=\operatorname{rk}(E)-\operatorname{dim} M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of $E, E \cong T+\operatorname{ad} P+T^{*}$.

Recall:

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$, and a generalized metric is a reduction to $\mathrm{O}(p, q) \times \mathrm{O}(t-p, s-q)$.

We will focus on admissible metrics ([MGF]): such that $V_{+} \cap T^{*}=\{0\}$ and $\operatorname{rk}\left(V_{+}\right)=\operatorname{rk}(E)-\operatorname{dim} M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of $E, E \cong T+\operatorname{ad} P+T^{*}$.

Recall: the splitting determines $H \in \Omega^{3}(M)$ and a connection θ on P (of curvature $F \in \Omega_{c l}^{2}(\operatorname{ad} P)$)

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$, and a generalized metric is a reduction to $\mathrm{O}(p, q) \times \mathrm{O}(t-p, s-q)$.

We will focus on admissible metrics ([MGF]): such that $V_{+} \cap T^{*}=\{0\}$ and $\operatorname{rk}\left(V_{+}\right)=\operatorname{rk}(E)-\operatorname{dim} M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of $E, E \cong T+\operatorname{ad} P+T^{*}$.

Recall: the splitting determines $H \in \Omega^{3}(M)$ and a connection θ on $P\left(\right.$ of curvature $\left.F \in \Omega_{c l}^{2}(\operatorname{ad} P)\right)$ such that $d H=\langle F \wedge F\rangle$.

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$, and a generalized metric is a reduction to $\mathrm{O}(p, q) \times \mathrm{O}(t-p, s-q)$.

We will focus on admissible metrics ([MGF]): such that $V_{+} \cap T^{*}=\{0\}$ and $\operatorname{rk}\left(V_{+}\right)=\operatorname{rk}(E)-\operatorname{dim} M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of $E, E \cong T+\operatorname{ad} P+T^{*}$.

Recall: the splitting determines $H \in \Omega^{3}(M)$ and a connection θ on $P\left(\right.$ of curvature $\left.F \in \Omega_{c l}^{2}(\operatorname{ad} P)\right)$ such that $d H=\langle F \wedge F\rangle$.

We have $V_{-}:=\left(V_{+}\right)^{\perp} \cong T$

And we generalize the notion of metric for E transitive:

For E transitive, the signature of the pairing may not be split, so the structure group is $\mathrm{O}(t, s)$, and a generalized metric is a reduction to $\mathrm{O}(p, q) \times \mathrm{O}(t-p, s-q)$.

We will focus on admissible metrics ([MGF]): such that $V_{+} \cap T^{*}=\{0\}$ and $\operatorname{rk}\left(V_{+}\right)=\operatorname{rk}(E)-\operatorname{dim} M$, so that a generalized admissible metric is equivalent to a usual metric g and an isotropic splitting of $E, E \cong T+\operatorname{ad} P+T^{*}$.

Recall: the splitting determines $H \in \Omega^{3}(M)$ and a connection θ on $P\left(\right.$ of curvature $\left.F \in \Omega_{c l}^{2}(\operatorname{ad} P)\right)$ such that $d H=\langle F \wedge F\rangle$.

We have $V_{-}:=\left(V_{+}\right)^{\perp} \cong T$ and $V_{+} \cong E / T^{*}(\cong T+\operatorname{ad} P)$.

We generalize the notion of connection

We generalize the notion of connection

A
connnection on E is a differential operator

$$
D: \Omega^{0}(E) \rightarrow \Omega^{0}\left(T^{*} \otimes E\right)
$$

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$
D: \Omega^{0}(E) \rightarrow \Omega^{0}\left(E^{*} \otimes E\right)
$$

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$
D: \Omega^{0}(E) \rightarrow \Omega^{0}\left(E^{*} \otimes E\right)
$$

satisfying the Leibniz rule $\left(D_{e} f e^{\prime}=\pi(e)(f) e^{\prime}+f D_{e} e\right)$

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$
D: \Omega^{0}(E) \rightarrow \Omega^{0}\left(E^{*} \otimes E\right)
$$

satisfying the Leibniz rule $\left(D_{e} f e^{\prime}=\pi(e)(f) e^{\prime}+f D_{e} e\right)$ and compatible with the metric $\left(\pi(e)\left\langle e^{\prime}, e^{\prime \prime}\right\rangle=\left\langle D_{e} e^{\prime}, e^{\prime \prime}\right\rangle+\left\langle e^{\prime}, D_{e} e^{\prime \prime}\right\rangle\right)$.

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$
D: \Omega^{0}(E) \rightarrow \Omega^{0}\left(E^{*} \otimes E\right)
$$

satisfying the Leibniz rule $\left(D_{e} f e^{\prime}=\pi(e)(f) e^{\prime}+f D_{e} e\right)$ and compatible with the metric $\left(\pi(e)\left\langle e^{\prime}, e^{\prime \prime}\right\rangle=\left\langle D_{e} e^{\prime}, e^{\prime \prime}\right\rangle+\left\langle e^{\prime}, D_{e} e^{\prime \prime}\right\rangle\right)$.

The space of connections is affine,

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$
D: \Omega^{0}(E) \rightarrow \Omega^{0}\left(E^{*} \otimes E\right)
$$

satisfying the Leibniz rule $\left(D_{e} f e^{\prime}=\pi(e)(f) e^{\prime}+f D_{e} e\right)$ and compatible with the metric $\left(\pi(e)\left\langle e^{\prime}, e^{\prime \prime}\right\rangle=\left\langle D_{e} e^{\prime}, e^{\prime \prime}\right\rangle+\left\langle e^{\prime}, D_{e} e^{\prime \prime}\right\rangle\right)$.

The space of connections is affine, modelled on $\Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)$.

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$
D: \Omega^{0}(E) \rightarrow \Omega^{0}\left(E^{*} \otimes E\right)
$$

satisfying the Leibniz rule $\left(D_{e} f e^{\prime}=\pi(e)(f) e^{\prime}+f D_{e} e\right)$ and compatible with the metric $\left(\pi(e)\left\langle e^{\prime}, e^{\prime \prime}\right\rangle=\left\langle D_{e} e^{\prime}, e^{\prime \prime}\right\rangle+\left\langle e^{\prime}, D_{e} e^{\prime \prime}\right\rangle\right)$.

The space of connections is affine, modelled on $\Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)$.
Generalized curvature is defined, but it is not a tensor!

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$
D: \Omega^{0}(E) \rightarrow \Omega^{0}\left(E^{*} \otimes E\right)
$$

satisfying the Leibniz rule $\left(D_{e} f e^{\prime}=\pi(e)(f) e^{\prime}+f D_{e} e\right)$ and compatible with the metric $\left(\pi(e)\left\langle e^{\prime}, e^{\prime \prime}\right\rangle=\left\langle D_{e} e^{\prime}, e^{\prime \prime}\right\rangle+\left\langle e^{\prime}, D_{e} e^{\prime \prime}\right\rangle\right)$.

The space of connections is affine, modelled on $\Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)$.
Generalized curvature is defined, but it is not a tensor! However, generalized torsion is!

We generalize the notion of connection

A generalized connnection on E is a differential operator

$$
D: \Omega^{0}(E) \rightarrow \Omega^{0}\left(E^{*} \otimes E\right)
$$

satisfying the Leibniz rule $\left(D_{e} f e^{\prime}=\pi(e)(f) e^{\prime}+f D_{e} e\right)$ and compatible with the metric $\left(\pi(e)\left\langle e^{\prime}, e^{\prime \prime}\right\rangle=\left\langle D_{e} e^{\prime}, e^{\prime \prime}\right\rangle+\left\langle e^{\prime}, D_{e} e^{\prime \prime}\right\rangle\right)$.

The space of connections is affine, modelled on $\Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)$.
Generalized curvature is defined, but it is not a tensor! However, generalized torsion is!

An example: the Gualtieri-Bismut connection

Let V_{+}be an admissible generalized metric.

An example: the Gualtieri-Bismut connection

Let V_{+}be an admissible generalized metric. Recall that $V_{+} \cong T+\operatorname{ad} P$,

An example: the Gualtieri-Bismut connection

Let V_{+}be an admissible generalized metric. Recall that $V_{+} \cong T+\operatorname{ad} P$, let $C_{+} \cong(\operatorname{ad} P)^{\perp} \subset T+\operatorname{ad} P$.

An example: the Gualtieri-Bismut connection

Let V_{+}be an admissible generalized metric. Recall that $V_{+} \cong T+\operatorname{ad} P$, let $C_{+} \cong(\operatorname{ad} P)^{\perp} \subset T+\operatorname{ad} P$. Define, by projecting, a map $C, C\left(V_{+}\right)=V_{-}, C\left(V_{-}\right)=C_{+}$.

An example: the Gualtieri-Bismut connection

Let V_{+}be an admissible generalized metric.
Recall that $V_{+} \cong T+\operatorname{ad} P$, let $C_{+} \cong(\operatorname{ad} P)^{\perp} \subset T+\operatorname{ad} P$. Define, by projecting, a map $C, C\left(V_{+}\right)=V_{-}, C\left(V_{-}\right)=C_{+}$.
Define

$$
D_{e}^{B} e^{\prime}:=\left[e_{-}, e_{+}^{\prime}\right]_{+}+\left[e_{+}, e_{-}^{\prime}\right]_{-}+\left[C e_{-}, e_{-}^{\prime}\right]_{-}+\left[C e_{+}, e_{+}^{\prime}\right]_{+},
$$

An example: the Gualtieri-Bismut connection

Let V_{+}be an admissible generalized metric.
Recall that $V_{+} \cong T+\operatorname{ad} P$, let $C_{+} \cong(\operatorname{ad} P)^{\perp} \subset T+\operatorname{ad} P$.
Define, by projecting, a map $C, C\left(V_{+}\right)=V_{-}, C\left(V_{-}\right)=C_{+}$.
Define

$$
D_{e}^{B} e^{\prime}:=\left[e_{-}, e_{+}^{\prime}\right]_{+}+\left[e_{+}, e_{-}^{\prime}\right]_{-}+\left[C e_{-}, e_{-}^{\prime}\right]_{-}+\left[C e_{+}, e_{+}^{\prime}\right]_{+},
$$

The connection D_{B} preserves $V_{ \pm}$and has totally skew torsion $T_{D_{B}}$.

An example: the Gualtieri-Bismut connection

Let V_{+}be an admissible generalized metric.
Recall that $V_{+} \cong T+\operatorname{ad} P$, let $C_{+} \cong(\operatorname{ad} P)^{\perp} \subset T+\operatorname{ad} P$.
Define, by projecting, a map $C, C\left(V_{+}\right)=V_{-}, C\left(V_{-}\right)=C_{+}$.
Define

$$
D_{e}^{B} e^{\prime}:=\left[e_{-}, e_{+}^{\prime}\right]_{+}+\left[e_{+}, e_{-}^{\prime}\right]_{-}+\left[C e_{-}, e_{-}^{\prime}\right]_{-}+\left[C e_{+}, e_{+}^{\prime}\right]_{+},
$$

The connection D_{B} preserves $V_{ \pm}$and has totally skew torsion $T_{D_{B}}$.
Given a metric V_{+}, there is not a unique torsion-free connection compatible with V_{+}.

An example: the Gualtieri-Bismut connection

Let V_{+}be an admissible generalized metric.
Recall that $V_{+} \cong T+\operatorname{ad} P$, let $C_{+} \cong(\operatorname{ad} P)^{\perp} \subset T+\operatorname{ad} P$.
Define, by projecting, a map $C, C\left(V_{+}\right)=V_{-}, C\left(V_{-}\right)=C_{+}$.
Define

$$
D_{e}^{B} e^{\prime}:=\left[e_{-}, e_{+}^{\prime}\right]_{+}+\left[e_{+}, e_{-}^{\prime}\right]_{-}+\left[C e_{-}, e_{-}^{\prime}\right]_{-}+\left[C e_{+}, e_{+}^{\prime}\right]_{+},
$$

The connection D_{B} preserves $V_{ \pm}$and has totally skew torsion $T_{D_{B}}$.
Given a metric V_{+}, there is not a unique torsion-free connection compatible with V_{+}. But thanks to D^{B}, we can define a canonical Levi-Citiva connection

$$
D^{L C}=D_{B}-T_{D_{B}}
$$

An example: the Gualtieri-Bismut connection

Let V_{+}be an admissible generalized metric.
Recall that $V_{+} \cong T+\operatorname{ad} P$, let $C_{+} \cong(\operatorname{ad} P)^{\perp} \subset T+\operatorname{ad} P$.
Define, by projecting, a map $C, C\left(V_{+}\right)=V_{-}, C\left(V_{-}\right)=C_{+}$.
Define

$$
D_{e}^{B} e^{\prime}:=\left[e_{-}, e_{+}^{\prime}\right]_{+}+\left[e_{+}, e_{-}^{\prime}\right]_{-}+\left[C e_{-}, e_{-}^{\prime}\right]_{-}+\left[C e_{+}, e_{+}^{\prime}\right]_{+},
$$

The connection D_{B} preserves $V_{ \pm}$and has totally skew torsion $T_{D_{B}}$.
Given a metric V_{+}, there is not a unique torsion-free connection compatible with V_{+}. But thanks to D^{B}, we can define a canonical Levi-Citiva connection

$$
D^{L C}=D_{B}-T_{D_{B}}
$$

But actually, we don't want only this one...

The many Levi-Civita connections

Given $\varphi \in \Omega^{0}\left(E^{*}\right)$, we have

$$
\chi_{e}^{\varphi} e^{\prime}=\varphi\left(e^{\prime}\right) e-\left\langle e, e^{\prime}\right\rangle\langle,\rangle^{-1} \varphi
$$

The many Levi-Civita connections

Given $\varphi \in \Omega^{0}\left(E^{*}\right)$, we have

$$
\chi_{e}^{\varphi} e^{\prime}=\varphi\left(e^{\prime}\right) e-\left\langle e, e^{\prime}\right\rangle\langle,\rangle^{-1} \varphi \in \Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right) .
$$

The many Levi-Civita connections

Given $\varphi \in \Omega^{0}\left(E^{*}\right)$, we have

$$
\chi_{e}^{\varphi} e^{\prime}=\varphi\left(e^{\prime}\right) e-\left\langle e, e^{\prime}\right\rangle\langle,\rangle^{-1} \varphi \in \Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)
$$

By choosing wisely some terms in

The many Levi-Civita connections

Given $\varphi \in \Omega^{0}\left(E^{*}\right)$, we have

$$
\chi_{e}^{\varphi} e^{\prime}=\varphi\left(e^{\prime}\right) e-\left\langle e, e^{\prime}\right\rangle\langle,\rangle^{-1} \varphi \in \Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)
$$

By choosing wisely some terms in

$$
\Omega^{0}\left(E^{*} \otimes\left(\mathfrak{o}\left(V_{+}\right) \oplus \mathfrak{o}\left(V_{-}\right)\right)\right.
$$

The many Levi-Civita connections

Given $\varphi \in \Omega^{0}\left(E^{*}\right)$, we have

$$
\chi_{e}^{\varphi} e^{\prime}=\varphi\left(e^{\prime}\right) e-\left\langle e, e^{\prime}\right\rangle\langle,\rangle^{-1} \varphi \in \Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)
$$

By choosing wisely some terms in

$$
\Omega^{0}\left(E^{*} \otimes\left(\mathfrak{o}\left(V_{+}\right) \oplus \mathfrak{o}\left(V_{-}\right)\right)\right.
$$

we get another torsion free connection D^{φ}.

The many Levi-Civita connections

Given $\varphi \in \Omega^{0}\left(E^{*}\right)$, we have

$$
\chi_{e}^{\varphi} e^{\prime}=\varphi\left(e^{\prime}\right) e-\left\langle e, e^{\prime}\right\rangle\langle,\rangle^{-1} \varphi \in \Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)
$$

By choosing wisely some terms in

$$
\Omega^{0}\left(E^{*} \otimes\left(\mathfrak{o}\left(V_{+}\right) \oplus \mathfrak{o}\left(V_{-}\right)\right)\right.
$$

we get another torsion free connection D^{φ}.
Actually, it will be enough to do it for $\phi \in \mathcal{C}^{\infty}(M)$,

The many Levi-Civita connections

Given $\varphi \in \Omega^{0}\left(E^{*}\right)$, we have

$$
\chi_{e}^{\varphi} e^{\prime}=\varphi\left(e^{\prime}\right) e-\left\langle e, e^{\prime}\right\rangle\langle,\rangle^{-1} \varphi \in \Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)
$$

By choosing wisely some terms in

$$
\Omega^{0}\left(E^{*} \otimes\left(\mathfrak{o}\left(V_{+}\right) \oplus \mathfrak{o}\left(V_{-}\right)\right)\right.
$$

we get another torsion free connection D^{φ}.
Actually, it will be enough to do it for $\phi \in \mathcal{C}^{\infty}(M)$, which defines

$$
\varphi=\pi^{*}(d \phi) \in \Omega^{0}\left(E^{*}\right),
$$

The many Levi-Civita connections

Given $\varphi \in \Omega^{0}\left(E^{*}\right)$, we have

$$
\chi_{e}^{\varphi} e^{\prime}=\varphi\left(e^{\prime}\right) e-\left\langle e, e^{\prime}\right\rangle\langle,\rangle^{-1} \varphi \in \Omega^{0}\left(E^{*} \otimes \mathfrak{o}(E)\right)
$$

By choosing wisely some terms in

$$
\Omega^{0}\left(E^{*} \otimes\left(\mathfrak{o}\left(V_{+}\right) \oplus \mathfrak{o}\left(V_{-}\right)\right)\right.
$$

we get another torsion free connection D^{φ}.
Actually, it will be enough to do it for $\phi \in \mathcal{C}^{\infty}(M)$, which defines

$$
\varphi=\pi^{*}(d \phi) \in \Omega^{0}\left(E^{*}\right)
$$

so that we get a torsion-free connection D^{ϕ}.

In an even-dim spin manifold...

If M is spin,

In an even-dim spin manifold...

If M is spin, by $V_{-} \cong T$, we can talk about the spinor bundle $S_{ \pm}\left(V_{-}\right)$,

In an even-dim spin manifold...

If M is spin, by $V_{-} \cong T$, we can talk about the spinor bundle $S_{ \pm}\left(V_{-}\right)$, so that the restriction of the connection D^{ϕ}

$$
D_{ \pm}^{\phi}: V_{-} \rightarrow V_{-} \otimes\left(V_{ \pm}\right)^{*}
$$

In an even-dim spin manifold...

If M is spin, by $V_{-} \cong T$, we can talk about the spinor bundle $S_{ \pm}\left(V_{-}\right)$, so that the restriction of the connection D^{ϕ}

$$
D_{ \pm}^{\phi}: V_{-} \rightarrow V_{-} \otimes\left(V_{ \pm}\right)^{*}
$$

extends to a differential operator on spinors

$$
D_{ \pm}^{\phi}: S_{+}\left(V_{-}\right) \rightarrow S_{+}\left(V_{-}\right) \otimes\left(V_{ \pm}\right)^{*}
$$

In an even-dim spin manifold...

If M is spin, by $V_{-} \cong T$, we can talk about the spinor bundle $S_{ \pm}\left(V_{-}\right)$, so that the restriction of the connection D^{ϕ}

$$
D_{ \pm}^{\phi}: V_{-} \rightarrow V_{-} \otimes\left(V_{ \pm}\right)^{*}
$$

extends to a differential operator on spinors

$$
D_{ \pm}^{\phi}: S_{+}\left(V_{-}\right) \rightarrow S_{+}\left(V_{-}\right) \otimes\left(V_{ \pm}\right)^{*}
$$

with associated Dirac operator

$$
\not D_{-}^{\phi}: S_{+}\left(V_{-}\right) \rightarrow S_{-}\left(V_{-}\right)
$$

Finally, generalized Killing spinor equations

Given a generalized metric V_{+}, as before, and $\phi \in C^{\infty}(M)$, the Killing spinor equations for a spinor $\eta \in S_{+}\left(V_{-}\right)$are given by

$$
\begin{aligned}
& D_{+}^{\phi} \eta=0 \\
& D_{-}^{\phi} \eta=0
\end{aligned}
$$

On a six-dimensinal spin-manifold

Theorem (Garcia-Fernandez, \qquad ,Tipler)

Assume that E is exact. Then $\left(V_{+}, \phi, \eta\right)$ is a solution to the Killing spinor equations with $\eta \neq 0$ if and only if $H=0, \phi$ is constant and g is a metric with holonomy contained in $S U(3)$.

On a six-dimensinal spin-manifold

Theorem (Garcia-Fernandez, \qquad ,Tipler)

Assume that E is exact. Then $\left(V_{+}, \phi, \eta\right)$ is a solution to the Killing spinor equations with $\eta \neq 0$ if and only if $H=0, \phi$ is constant and g is a metric with holonomy contained in $S U(3)$.
Theorem (Garcia-Fernandez, \qquad ,Tipler)

Assume that E is transitive. The Strominger system is equivalent to the Killing spinor equations.

A couple of ideas from the proofs

$$
\begin{aligned}
& D_{+}^{\phi} \eta=0 \\
& D_{-}^{\phi} \eta=0
\end{aligned}
$$

for $\left(V_{+}, \phi, \eta\right)$

A couple of ideas from the proofs

$$
\begin{aligned}
D_{+}^{\phi} \eta & =0, \\
D_{-}^{\phi} \eta & =0 .
\end{aligned}
$$

for $\left(V_{+}, \phi, \eta\right)$ are equivalent to

$$
\begin{aligned}
& F \cdot \eta=0 \\
& \nabla^{-} \eta=0, \\
&(H-2 d \phi) \cdot \eta=0, \\
& d H-\langle F \wedge F\rangle=0,
\end{aligned}
$$

for (($g, H, \theta), \phi, \eta)$,

A couple of ideas from the proofs

$$
\begin{aligned}
& D_{+}^{\phi} \eta=0, \\
& \phi_{-}^{\phi} \eta=0 .
\end{aligned}
$$

for $\left(V_{+}, \phi, \eta\right)$ are equivalent to

$$
\begin{aligned}
& F \cdot \eta=0 \\
& \nabla^{-} \eta=0, \\
&(H-2 d \phi) \cdot \eta=0, \\
& d H-\langle F \wedge F\rangle=0,
\end{aligned}
$$

for $((g, H, \theta), \phi, \eta)$, where, by $V_{-} \cong(T, g), \eta \in S_{+}(T) \cong S_{+}\left(V_{-}\right)$

A couple of ideas from the proofs

$$
\begin{aligned}
& D_{+}^{\phi} \eta=0, \\
& \phi_{-}^{\phi} \eta=0 .
\end{aligned}
$$

for $\left(V_{+}, \phi, \eta\right)$ are equivalent to

$$
\begin{aligned}
& F \cdot \eta=0 \\
& \nabla^{-} \eta=0, \\
&(H-2 d \phi) \cdot \eta=0, \\
& d H-\langle F \wedge F\rangle=0,
\end{aligned}
$$

for $((g, H, \theta), \phi, \eta)$, where, by $V_{-} \cong(T, g), \eta \in S_{+}(T) \cong S_{+}\left(V_{-}\right)$
(and ∇^{-}is the Bismut connection with skew-torsion $-H$).

A couple of ideas from the proofs

A couple of ideas from the proofs

$$
\begin{array}{r}
F \cdot \eta=0 \\
\nabla^{-} \eta=0, \\
(H-2 d \phi) \cdot \eta=0, \\
d H-\langle F \wedge F\rangle=0,
\end{array}
$$

A couple of ideas from the proofs

$$
\begin{aligned}
F \cdot \eta & =0 \\
\nabla^{-} \eta & =0 \\
(H-2 d \phi) \cdot \eta & =0, \\
d H-\langle F \wedge F\rangle & =0,
\end{aligned}
$$

By $\operatorname{Spin}(6) \cong \operatorname{SU}(4)$,

A couple of ideas from the proofs

$$
\begin{aligned}
F \cdot \eta & =0 \\
\nabla^{-} \eta & =0, \\
(H-2 d \phi) \cdot \eta & =0, \\
d H-\langle F \wedge F\rangle & =0,
\end{aligned}
$$

By $\operatorname{Spin}(6) \cong \mathrm{SU}(4), \nabla^{-} \eta=0$ will give the holonomy $\operatorname{SU}(3)$ (with $H=0$), or the Calabi-Yau structure.

A couple of ideas from the proofs

$$
\begin{aligned}
F \cdot \eta & =0 \\
\nabla^{-} \eta & =0, \\
(H-2 d \phi) \cdot \eta & =0, \\
d H-\langle F \wedge F\rangle & =0,
\end{aligned}
$$

By $\operatorname{Spin}(6) \cong \mathrm{SU}(4), \nabla^{-} \eta=0$ will give the holonomy $\mathrm{SU}(3)$ (with $H=0$), or the Calabi-Yau structure.

For the converse in Strominger,

A couple of ideas from the proofs

$$
\begin{aligned}
F \cdot \eta & =0 \\
\nabla^{-} \eta & =0, \\
(H-2 d \phi) \cdot \eta & =0, \\
d H-\langle F \wedge F\rangle & =0,
\end{aligned}
$$

By $\operatorname{Spin}(6) \cong \mathrm{SU}(4), \nabla^{-} \eta=0$ will give the holonomy $\operatorname{SU}(3)$ (with $H=0$), or the Calabi-Yau structure.

For the converse in Strominger, given (ω, A, ∇),

A couple of ideas from the proofs

$$
\begin{aligned}
F \cdot \eta & =0 \\
\nabla^{-} \eta & =0, \\
(H-2 d \phi) \cdot \eta & =0, \\
d H-\langle F \wedge F\rangle & =0,
\end{aligned}
$$

By $\operatorname{Spin}(6) \cong \mathrm{SU}(4), \nabla^{-} \eta=0$ will give the holonomy $\mathrm{SU}(3)$ (with $H=0$), or the Calabi-Yau structure.

For the converse in Strominger, given (ω, A, ∇), one defines $\theta=A \times \nabla, H=d^{c} \omega$ and ϕ.

A couple of ideas from the proofs

$$
\begin{aligned}
F \cdot \eta & =0 \\
\nabla^{-} \eta & =0, \\
(H-2 d \phi) \cdot \eta & =0, \\
d H-\langle F \wedge F\rangle & =0,
\end{aligned}
$$

By $\operatorname{Spin}(6) \cong \mathrm{SU}(4), \nabla^{-} \eta=0$ will give the holonomy $\operatorname{SU}(3)$ (with $H=0$), or the Calabi-Yau structure.

For the converse in Strominger, given (ω, A, ∇), one defines $\theta=A \times \nabla, H=d^{c} \omega$ and ϕ. Note that the Bianchi identity

$$
d d^{c} \omega-\left(\operatorname{tr} R \wedge R-\operatorname{tr} F_{A} \wedge F_{A}\right)=0
$$

A couple of ideas from the proofs

$$
\begin{aligned}
F \cdot \eta & =0 \\
\nabla^{-} \eta & =0, \\
(H-2 d \phi) \cdot \eta & =0, \\
d H-\langle F \wedge F\rangle & =0,
\end{aligned}
$$

By $\operatorname{Spin}(6) \cong \mathrm{SU}(4), \nabla^{-} \eta=0$ will give the holonomy $\mathrm{SU}(3)$ (with $H=0$), or the Calabi-Yau structure.

For the converse in Strominger, given (ω, A, ∇), one defines $\theta=A \times \nabla, H=d^{c} \omega$ and ϕ. Note that the Bianchi identity

$$
d d^{c} \omega-\left(\operatorname{tr} R \wedge R-\operatorname{tr} F_{A} \wedge F_{A}\right)=0
$$

corresponds to

$$
d H-\left\langle F_{\theta} \wedge F_{\theta}\right\rangle=0
$$

New approach to the Strominger system,

New approach to the Strominger system, which is also a bridge from $\mathrm{SU}(3)$-holonomy.

New approach to the Strominger system, which is also a bridge from $\mathrm{SU}(3)$-holonomy.

Obrigado.

