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SU(3)-holonomy...

SU(3)-holonomy metrics give, in particular, SU(3)-structures.

An SU(3)-structure is given by

I real 2-form ω,

I complex 3-form Ω inducing an almost complex structure JΩ,

such that g = ω(·, JΩ·) is a metric.

The metric g has SU(3)-holonomy when Ω is parallel w.r.t. the
Levi-Civita connection of g .
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SU(3)-holonomy, Strominger...

I (X ,Ω) Calabi-Yau 3-fold: X complex with Ω ∈ Ω3,0
hol(X )

I G compact semi-simple Lie group

I Ps → X principal G -bundle

Unknowns:

I hermitian metric g given by ω (where ω = g(J·, ·)),

I A connection on Ps ,

I ∇ unitary connection on (TX , g).

Strominger system

F ∧ ω2 = 0, F 0,2 = 0,

R ∧ ω2 = 0, R0,2 = 0,

d(‖Ω‖ωω2) = 0,

ddcω − (trR ∧ R − tr F ∧ F ) = 0

(Interest in Physics: equivalent to EM + SUSY + Bianchi in a Strominger

compactification of the Heterotic String in the presence of NS fluxes.)
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We know (T + T ∗, 〈, 〉, [, ], πT )

〈X + ξ,Y + η〉 =
1

2
(iX η + iY ξ), [X + ξ,Y + η] = [X ,Y ] + LX η − iY dξ

It is the Courant algebroid where we have done Dirac geometry
and generalized geometry. It has structure group O(n, n), and the
group of symmetries includes closed 2-forms, called B-fields.

X + ξ 7→ X + ξ + iXB.

Consider the twisted version: an exact Courant algebroid

0→ T ∗ → E → T → 0.

It is isomorphic, by choosing a (non-canonical!) splitting,to

(T + T ∗, 〈, 〉, [, ]H , πT ),

for some H ∈ Ω3
cl(M) (whose class [H] ∈ H3(M) parameterizes E ).
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We reduce TP → Ê → T ∗P

Given a principal G -bundle P, TP → Ê → T ∗P exact over P,
a (non-isotropic) lifted action ψ : g→ C∞(Ê ) gives rise,
by generalized reduction, to a (non-exact) transitive Courant
algebroid E :

T ∗ → E → T → 0.

As a vector bundle, E ∼= T + adP + T ∗, but not canonically.

Choosing a splitting T → E , we have an isomorphism of E with

(T + adP + T ∗, 〈, 〉, [, ]θ,H , πT ),

where θ is a connection on P (with curvature F ∈ Ω2
cl(adP)),

and H ∈ Ω3(M)such that

dH + 〈F ∧ F 〉 = 0.
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by generalized reduction, to a (non-exact) transitive Courant
algebroid E :

T ∗ → E → T → 0.

As a vector bundle,

E ∼= T + adP + T ∗, but not canonically.

Choosing a splitting T → E , we have an isomorphism of E with

(T + adP + T ∗, 〈, 〉, [, ]θ,H , πT ),

where θ is a connection on P (with curvature F ∈ Ω2
cl(adP)),

and H ∈ Ω3(M)such that

dH + 〈F ∧ F 〉 = 0.



We reduce TP → Ê → T ∗P
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a (non-isotropic) lifted action ψ : g→ C∞(Ê ) gives rise,
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a (non-isotropic) lifted action ψ : g→ C∞(Ê ) gives rise,
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by generalized reduction, to a (non-exact) transitive Courant
algebroid E :

T ∗ → E → T → 0.

As a vector bundle, E ∼= T + adP + T ∗, but not canonically.

Choosing a splitting T → E , we have an isomorphism of E with

(T + adP + T ∗, 〈, 〉, [, ]θ,H , πT ),

where θ is a connection on P (with curvature F ∈ Ω2
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We generalize the notion of metric for E exact:

A metric is a reduction of the frame bundle from GL(n) to O(n).

A generalized metric is a reduction from O(n, n) to O(n)×O(n).
This means choosing a rank n positive-definite subbundle V+ ⊂ E .

Since T ∗ is isotropic, π : V+ → T is an isomorphism, so
T inherits a positive-definite pairing, i.e., we get a usual metric g .

On the other hand, we define an isotropic splitting T → E by

X 7→ π−1
|V+
− 1

2
π∗g(X ).

A generalized metric on an exact Courant algebroid is actually
equivalent to a usual metric g together with an isotropic splitting.
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And we generalize the notion of metric for E transitive:

For E transitive,

the signature of the pairing may not be split, so
the structure group is O(t, s), and a generalized metric is a
reduction to O(p, q)×O(t − p, s − q).

We will focus on admissible metrics ([MGF]):
such that V+ ∩ T ∗ = {0} and rk(V+) = rk(E )− dimM,
so that a generalized admissible metric is equivalent to a usual
metric g and an isotropic splitting of E , E ∼= T + adP + T ∗.

Recall: the splitting determines H ∈ Ω3(M) and a connection θ on
P (of curvature F ∈ Ω2

cl(adP)) such that dH = 〈F ∧ F 〉.

We have V− := (V+)⊥ ∼= T and V+
∼= E/T ∗(∼= T + adP).
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We generalize the notion of connection

A connnection on E is a differential operator

D : Ω0(E )→ Ω0(T ∗ ⊗ E ),

satisfying the Leibniz rule (De fe′ = π(e)(f )e′ + fDee)
and compatible with the metric (π(e)〈e′, e′′〉 = 〈Dee′, e′′〉+ 〈e′,Dee′′〉).

The space of connections is affine, modelled on Ω0(E ∗ ⊗ o(E )).

Generalized curvature is defined, but it is not a tensor!
However, generalized torsion is!
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An example: the Gualtieri-Bismut connection

Let V+ be an admissible generalized metric.

Recall that V+
∼= T + adP, let C+

∼= (adP)⊥ ⊂ T + adP.
Define, by projecting, a map C , C (V+) = V−, C (V−) = C+.

Define

DB
e e
′ := [e−, e

′
+]+ + [e+, e

′
−]− + [Ce−, e

′
−]− + [Ce+, e

′
+]+,

The connection DB preserves V± and has totally skew torsion TDB
.

Given a metric V+, there is not a unique torsion-free
connection compatible with V+. But thanks to DB , we can
define a canonical Levi-Citiva connection

DLC = DB − TDB
.

But actually, we don’t want only this one...
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define a canonical Levi-Citiva connection

DLC = DB − TDB
.

But actually, we don’t want only this one...
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The many Levi-Civita connections

Given ϕ ∈ Ω0(E ∗), we have

χϕe e
′ = ϕ(e ′)e − 〈e, e ′〉〈, 〉−1ϕ

∈ Ω0(E ∗ ⊗ o(E )).

By choosing wisely some terms in

Ω0(E ∗ ⊗ (o(V+)⊕ o(V−)),

we get another torsion free connection Dϕ.

Actually, it will be enough to do it for φ ∈ C∞(M), which defines

ϕ = π∗(dφ) ∈ Ω0(E ∗),

so that we get a torsion-free connection Dφ.
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In an even-dim spin manifold...

If M is spin,

by V− ∼= T , we can talk about the spinor bundle
S±(V−), so that the restriction of the connection Dφ

Dφ
± : V− → V− ⊗ (V±)∗,

extends to a differential operator on spinors

Dφ
± : S+(V−)→ S+(V−)⊗ (V±)∗,

with associated Dirac operator

/D
φ
− : S+(V−)→ S−(V−).
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Finally, generalized Killing spinor equations

Given a generalized metric V+, as before, and φ ∈ C∞(M), the
Killing spinor equations for a spinor η ∈ S+(V−) are given by

Dφ
+η = 0,

/D
φ
−η = 0.



On a six-dimensinal spin-manifold

Theorem (Garcia-Fernandez, ,Tipler)

Assume that E is exact. Then (V+, φ, η) is a solution to the
Killing spinor equations with η 6= 0 if and only if H = 0, φ is
constant and g is a metric with holonomy contained in SU(3).

Theorem (Garcia-Fernandez, ,Tipler)

Assume that E is transitive. The Strominger system is equivalent
to the Killing spinor equations.



On a six-dimensinal spin-manifold

Theorem (Garcia-Fernandez, ,Tipler)

Assume that E is exact. Then (V+, φ, η) is a solution to the
Killing spinor equations with η 6= 0 if and only if H = 0, φ is
constant and g is a metric with holonomy contained in SU(3).

Theorem (Garcia-Fernandez, ,Tipler)

Assume that E is transitive. The Strominger system is equivalent
to the Killing spinor equations.



A couple of ideas from the proofs

Dφ
+η = 0,

/D
φ
−η = 0.

for (V+, φ, η)

are equivalent to

F · η = 0

∇−η = 0,

(H − 2dφ) · η = 0,

dH − 〈F ∧ F 〉 = 0,

for ((g ,H, θ), φ, η), where, by V− ∼= (T , g), η ∈ S+(T ) ∼= S+(V−)
(and ∇− is the Bismut connection with skew-torsion −H).
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H = 0), or the Calabi-Yau structure.

For the converse in Strominger, given (ω,A,∇), one defines
θ = A×∇, H = dcω and φ. Note that the Bianchi identity

ddcω − (trR ∧ R − tr FA ∧ FA) = 0

corresponds to
dH − 〈Fθ ∧ Fθ〉 = 0.
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