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Recalling generalized complex geometry via forms

Complex m-manifold:
choose coordinates (zi )

ρ = dz1 ∧ ... ∧ dzm
ρ ∧ ρ ∼ volume

dρ = 0

Recover T0,1 = Ann ρ
(for action ιXρ).
It determines J,

the complex structure

On a real 2m-manifold:
consider locally

(pointwise up to C∗)

ρ ∈ Ωm
C (dec.)

ρ ∧ ρ ∼ volume
dρ = 0

Ann ρ
determines
a complex
structure
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dz on C and
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differ pointwise by C∗

d(1/z) = −dz/z2
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Recalling generalized complex geometry via forms

generalized complex structure
Defn: locally (up to C∗)

ρ ∈ Ω•
C

Ann ρ ⊂ (TM ⊕ T ∗M)C
(X + α) · ρ = ιXρ+ α ∧ ρ

T0,1 ⊕T ∗
1,0 ⇝ Ann ρ ⇝gr(iω)

maximally isotropic for
⟨X + α,X + α⟩ = α(X )

↕ (pure pointwise)

ρ = eB+iω ∧ θ1 ∧ . . .∧ θr
for B, ω ∈ Ω2, θj ∈ Ω1

C

(ρT ∧ ρ)top ∼volume
↕ (real index zero)

Ann ρ ∩ Ann ρ = {0}

(ρ, ρ) := (ρT ∧ ρ)top

(ρ, ρ) ∼ volume

dρ = 0
↓

Ann ρ involutive for Dorfman
[X + α,Y + β] = [X ,Y ] + LXβ − ιY dα

↕ (integrable)

dρ = v · ρ for v = X + α
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Behind the scenes

K = ⟨ρ⟩ ⊂ ∧•T ∗
CM line bundle

(X + α) · ρ = ιXρ+ α ∧ ρ
(X + α)2 · ρ = α(X )ρ

∧•T ∗
CM is a ClC(TM ⊕ T ∗M)-module

≈ spinor representation,
(ρ, ρ) ≈ pairing on spinors

L := Ann ρ
complex Dirac structure

(Courant algebroid (TM ⊕ T ∗M)C)
such that L ∩ L = {0}

References: Hitchin’03, Gualtieri’04/11, Alekseev-Bursztyn-Meinrenken’09
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The type and a third example

Definition of type: r .
ρ = dz1 ∧ . . . ∧ dzm (type m)
ρ = e iω = 1 + iω + . . . (type 0)

ρ = eB+iω ∧ θ1 ∧ . . . ∧ θr
dρ = v · ρ

(ρ, ρ) ∼ volume

On R4 ∼= C2, with complex coordinates (z ,w),

ρ = z + dz ∧ dw

(ρ, ρ) = [(z + dz ∧ dw)T ∧ (z + dz ∧ dw)]top
= dw ∧ dz ∧ dz ∧ dw ∼ volume

dρ = dz = (− ∂
∂w + 0) · ρ

Pure: z ̸= 0, ρ ∼ 1 + dz∧dw
z = e

dz∧dw
z , pure of type 0

z = 0, ρ = dz ∧ dw , pure of type 2
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Some considerations ρ = eB+iω ∧ θ1 ∧ . . . ∧ θr
dρ = v · ρ

(ρ, ρ) ∼ volume

• eB∧ is a symmetry for B closed (a B-field). E.g., eB+iω ∼= e iω

GDiff(M) = Diff(M)⋉ Ω2
cl(M) (Courant algebroid automorphisms)

• Constraint: generalized complex → almost complex → even dimensions

• ρ has a parity, ρ = ρ0 + ρ2 + . . . or ρ = ρ1 + ρ3 + . . .

• Type may change! We focus on stable structures (include log-Poisson):
generically ρ0 ̸= 0 & when ρ0(p) = 0, dρ0(p) ̸= 0.

• Type-change locus {p ∈ M : ρ0(p) = 0} codimension-2 submanifold.

• Type-change only possible for dimM ≥ 4.
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Bn-generalized complex geometry

A Bn-generalized complex structure is a complex Dirac structure of (the
Courant algebroid) TM ⊕ 1⊕ T ∗M, with 1 = M × R.

As a differential form, the same:

ρ ∈ Ω•
C pure

dρ = v · ρ
(ρ, ρ) ∼ volume.

Pure means:

ρ = eB+iω ∧ θ1 ∧ . . . ∧ θr
B, ω ∈ Ω2, , θj ∈ Ω1

C

and v = X+f + α acting by ιXρ+f τρ+ α ∧ ρ.
Example: any usual generalized complex is Bn-generalized.
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dρ = v · ρ
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Examples in odd dimensions

• Cosymplectic structure: ω ∈ Ω2
cl , γ ∈ Ω1

cl such that γ ∧ ωm ∼ volume

ρ = e iγ+iω = 1 + iγ + iω − γ ∧ ω . . .

• Almost contact structure: vector field Y , η ∈ Ω1, J ∈ End(T ) satisfying

ιY η = 1, J2 = − Id+Y ⊗ η

Normal (nacs) when the almost complex structure on M × R is integrable.

ρ = e iη ∧ Ω = Ω+ (−1)miη ∧ Ω (with Ω ≈ (m, 0)-form)

• On C× R with coordinates (z , t),

ρ = z + dz + idz ∧ dt
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Let us try first on 3-manifolds (compact from now on)

Idea: how to obtain 3CP2#19CP2 [Cavalcanti, Gualtieri’07,09]:
Take ρ = z + dz ∧ dw on C2, invariant by translation on w , define it on

D2 × T 2 ⊂ C× T 2 = C× C/Z2.

Take certain symplectic 4-manifold, remove a normal neighbourhood of a
torus and glue D2 × T 2 with z + dz ∧ dw along the neck (Annulus×T 2):

(Annulus× T 2, ω) → (Annulus× T 2, z + dz ∧ dw)

“ψ(r , θ1, θ2, θ3) = (
√
log er2, θ3, θ2,−θ1)

′′

The variable θ2 is a dummy variable,
We can do the same for 3-manifolds and D2 × S1!
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Surgery on D2 × S1 (after C∞
log-transform and [CG’07,09])

1 + idt + idζ ∧ dψ − . . .

Polar coordinates (s, φ) such that ζ = s cosφ, ψ = s sinφ.

1 + idt + isds ∧ dφ− . . .

C∞
log-transform r = es

2/2 → d log r = sds

1 + idt + id log r ∧ dφ− . . .

We act by A-field d log r

1 + d log r + idt + id log r ∧ (dφ− dt)− . . .

Act by a B-field dφ ∧ dt

1 + d log r + idt + i(d log r + idt) ∧ (dφ− dt)

Define z = re it , σ = φ− t, and multiply by z :

z + dz + idz ∧ dσ.
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Example of type-change locus

Example (Hitchin)

Heuristically: zw + dz ∧ dw on C2 \ {0} ∼= S3 × R+ should reduce to a

B3-generalized complex structure on S3

(S3 ⊂ C2 corresponds to |z |2 + |w |2 = 1)

Type change on C2 \ {0} gives type-change locus corresponding to

z = 0 and w = 0: the Hopf link!

z = 0
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Example of type-change locus

Example (Hitchin)

Heuristically: zw + dz ∧ dw on C2 \ {0} ∼= S3 × R+ should reduce to a

B3-generalized complex structure on S3

(S3 ⊂ C2 corresponds to |z |2 + |w |2 = 1)

Type change on C2 \ {0} gives type-change locus corresponding to

z = 0 and w = 0: the Hopf link!

Analogue of Marsden-Weinstein / Bursztyn-Cavalcanti-Gualtieri reduction:

Proposition (R.)

The reduction of an S1 or R+-invariant generalized complex structure on
M × S1 or M × R+ is a Bn-generalized complex structure on M.
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combine B3 with geometrization
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What geometric structures admit B3-structures?

Joint work (in progress)
with Joan Porti

Marie Sk lodowska-Curie
Individual Fellowship

GENERALIZED



Thurston’s geometries

Sol H3

+

Seifert χ > 0 χ = 0 χ < 0

e = 0 S2 × R E 3 H2 × R

e ̸= 0 S3 Nil S̃L2R

Unlike for cosymplectic or normal almost contact...

Observation (Porti, R.)

For each Thurston geometry there is a geometric manifold admitting a
B3-generalized complex structure.
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Thurston’s geometries

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost
contact has to be Sol or hyperbolic (not fibering over the circle), or the
only euclidean manifold not fibering over the circle.

Hantzsche-Wendt

Open-book
decomposition
(general 3-fold)

Complements of
knots in S3

+ surgery
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Open-book decomposition

Defining B3 on an open book:
- type-change disconnected binding,
- ‘symplectic structure’ on open
leaves.

How to do it?
1) unravel the S3 structure:
closed cylinder with Dehn twist,
2) modify the surface,
3) modify the twist
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Twisted generalized complex structures

Classical case:
for H ∈ Ω3

cl ,

ρ ∈ Ω•
C pure

(ρ, ρ) ∼ volume.
(d + H∧)ρ = v · ρ

Ševera class [H] ∈ H3

Bn-case:
for F ∈ Ω2

cl , H ∈ Ω3

such that dH + F 2 = 0

ρ ∈ Ω•
C pure

(ρ, ρ) ∼ volume.
(d + F ∧ τ + H∧)ρ = v · ρ

A class [(H,F )] ∈ “ H3+2
B ”

(They correspond to Dirac structures on twisted Courant algebroids.)
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Hinting at how the structure gets twisted

The two structures

ρ = 1 + idt + idζ ∧ dψ − . . . , ρ′ = z + dz + idz ∧ dt

are combined via

ρ = eBij+Aijτ ∧ f ∗log (ρ
′/z)

The integrability (dρ . . .) gets twisted by the dAi and dBi terms.
(this involves Çech trivializing Aij = Ai − Aj , etc.)

Why did it work for 4-manifolds?
Choose M with H3(M) = {0}.

Impossible in an orientable 3-manifold!
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(this involves Çech trivializing Aij = Ai − Aj , etc.)

Why did it work for 4-manifolds?
Choose M with H3(M) = {0}.

Impossible in an orientable 3-manifold!



Hinting at how the structure gets twisted

The two structures

ρ = 1 + idt + idζ ∧ dψ − . . . , ρ′ = z + dz + idz ∧ dt

are combined via

ρ = eBij+Aijτ ∧ f ∗log (ρ
′/z)

The integrability (dρ . . .) gets twisted by the dAi and dBi terms.
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In fact:

Proposition (Porti, R.)

A generalized surgery around a cosymplectic circle gives a type-changing
structure twisted by exact F but the class [(H,F )] is not trivial, that is,
the structure is always twisted (→ at least two circles as type change).

To get untwisted structures we would need at least two surgeries.
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Simplest example

S2 × S1

ρ = 1 + idt + iω − dt ∧ ω

Surgery around N × S1,
the B3 structure gets twisted.

Surgery around S × S1,
it gets doubly twisted.

And we are also changing the manifold!
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Another surgery is possible

1 + idt + idζ ∧ dψ − . . .

Polar coordinates (s, φ) such that ζ = s cosφ, ψ = s sinφ.

1 + idt + isds ∧ dφ− . . .

C∞
log-transform r = es

2/2 → d log r = sds

1 + idt + id log r ∧ dφ− . . .

We act by A-field d log r

1 + d log r + idt + id log r ∧ (dφ− dt)− . . .

Act by a B-field dφ ∧ dt

1 + d log r + idt + i(d log r + idt) ∧ (dφ− dt)

Define z = re it , σ = φ− t, and multiply by z :

z + dz + idz ∧ dσ.
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Same manifold... but what if we change S2?
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Σg × S1

Perform two opposite surgeries around P × S1 and Q × S1:
B3-generalized complex structure on...



What manifold do we get after two surgeries?

Theorem (Kneser, . . . , Perelman)

The group π1M determines the
3-manifold M as a connected
sum, up to parameters of lens
spaces factors.

The resulting manifold is

#2g+1(S2 × S1)

Proposition (folklore+Geiges)

Cosymplectic and nacs
manifolds are geometric.

Hence...

Theorem (Porti, R.)

#2g+1(S2 × S1) is neither
cosymplectic nor nacs but
B3-generalized complex.

By repeating the surgeries
(in pairs!)

Theorem (Porti, R.)

#2(g+s)−1(S2 × S1) admits a
B3-generalized complex
structure whose type-change
locus consists of 2s circles.
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But it all started with surgeries for knots

Theorem (Porti,R.)

There exist B3-generalized complex structures on N#(#2s−1S2 × S1),
s ≥ 1, where N is obtained from the mapping torus of a punctured surface
by a Dehn filling along the S1-direction.

• The type-change locus consists of 2s circles, s ≥ 1.
• E.g., N any hyperbolic manifold coming from Dehn filling of S3 \ K8 .
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Ideas of the proof

• Motivating example: S3 \ K8
∼= Mψ, mapping torus of

ψ :=

(
2 1
1 1

)
∈ SL(2,Z), a diffeomorphism of T 2 \ {(0, 0)}.

• Find isotopic diffeomorphism that is the identity around (0, 0).

• Perform two or 2s surgeries.

• Generalize to the mapping torus of a punctured surface by a Dehn filling
along the S1-direction.
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There is an underlying Poisson structure,
whose corank is the type.

I will be in touch before Poisson 2032.

Thank you for your attention!

Image and tikz credits: Museo Nacional del Prado, E. Giroux, Wikimedia commons, StefanH, Salman Siddiqi and my own
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