Generalized geometry for three-manifolds

Roberto Rubio

Universitat Autònoma de Barcelona

Poisson conference Madrid, 27 July 2022

Complex *m*-manifold: choose coordinates (z_i)

Complex *m*-manifold: choose coordinates (z_i)

 $\rho = dz_1 \wedge \dots \wedge dz_m$ $\rho \wedge \overline{\rho} \sim \text{volume}$ $d\rho = 0$

Complex *m*-manifold: choose coordinates (z_i)

 $\rho = dz_1 \wedge ... \wedge dz_m$ $\rho \wedge \overline{\rho} \sim \text{volume}$ $d\rho = 0$

Recover $T_{0,1} = \operatorname{Ann} \rho$ (for action $\iota_X \rho$). It determines J, the complex structure

Complex *m*-manifold: choose coordinates (z_i)

 $ho = dz_1 \wedge ... \wedge dz_m$ $ho \wedge \overline{
ho} \sim \mathsf{volume}$ d
ho = 0

Recover $T_{0,1} = \operatorname{Ann} \rho$ (for action $\iota_X \rho$). It determines J, the complex structure On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

> $ho \in \Omega^m_{\mathbb{C}} ext{ (dec.)}$ $ho \wedge \overline{
> ho} \sim ext{ volume}$ d
> ho = 0

> > $\begin{array}{c} {\sf Ann}\,\rho\\ {\sf determines}\\ {\sf a \ complex}\\ {\sf structure} \end{array}$

```
On a real 2m-manifold:
consider locally
(pointwise up to \mathbb{C}^*)
```

 $ho \in \Omega^m_{\mathbb{C}} ext{ (dec.)}$ $ho \wedge \overline{
ho} \sim ext{ volume}$ d
ho = 0

```
\begin{array}{c} {\sf Ann}\,\rho\\ {\sf determines}\\ {\sf a \ complex}\\ {\sf structure} \end{array}
```

On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

> $ho \in \Omega^m_{\mathbb{C}} ext{ (dec.)}$ $ho \wedge \overline{
> ho} \sim ext{ volume}$ d
> ho = 0

> > Ann ρ determines a complex structure

On $S^2 = \mathbb{C} \cup \{\infty\}$,

dz on \mathbb{C} and d(1/z) on $\mathbb{C}^* \cup \{\infty\}$ differ pointwise by \mathbb{C}^* $d(1/z) = -dz/z^2$

```
On a real 2m-manifold:
consider locally
(pointwise up to \mathbb{C}^*)
```

 $ho \in \Omega^m_{\mathbb{C}} ext{ (dec.)}$ $ho \wedge \overline{
ho} \sim ext{ volume}$ d
ho = 0

```
Ann \rho
determines
a complex
structure
```

On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

 $egin{aligned} &
ho \in \Omega^m_{\mathbb{C}} \ (ext{dec.}) \ &
ho \wedge \overline{
ho} \sim ext{volume} \ & d
ho = 0 \end{aligned}$

Symplectic structure on a 2*m*-manifold *M*: globally

> $\omega \in \Omega^2$ $\omega^m \sim \text{volume}$ $d\omega = 0$

Ann ρ determines a complex structure

On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

> $ho \in \Omega^m_{\mathbb{C}} ext{ (dec.)}$ $ho \wedge \overline{
> ho} \sim ext{ volume}$ d
> ho = 0

> > $\begin{array}{c} {\sf Ann}\,\rho\\ {\sf determines}\\ {\sf a \ complex}\\ {\sf structure} \end{array}$

Symplectic structure on a 2*m*-manifold *M*: globally

 $\begin{array}{l} \rho = e^{i\omega} \in \Omega^{\bullet}_{\mathbb{C}} \\ \omega^m \sim \text{volume} \\ d\omega = 0 \end{array}$

 $e^{i\omega} = 1 + i\omega - \omega^2/2 + \dots$

On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

> $ho \in \Omega^m_{\mathbb{C}} ext{ (dec.)}$ $ho \wedge \overline{
> ho} \sim ext{ volume}$ d
> ho = 0

> > Ann ρ determines a complex structure

 $e^{i\omega} = 1 + i\omega - \omega^2/2 + \dots$ $(\alpha \wedge \beta \wedge \gamma)^T = \gamma \wedge \beta \wedge \alpha$ Symplectic structure on a 2*m*-manifold *M*: globally

$$\begin{split} \rho &= e^{i\omega} \in \Omega^{\bullet}_{\mathbb{C}} \\ (\rho^{T} \wedge \overline{\rho})_{top} \sim \text{volume} \\ d\omega &= 0 \end{split}$$

On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

 $\begin{aligned} \rho \in \Omega^m_{\mathbb{C}} \text{ (dec.)} \\ (\rho^T \wedge \overline{\rho})_{top} \sim \text{volume} \\ d\rho = 0 \end{aligned}$

Ann ρ determines a complex structure

 $e^{i\omega} = 1 + i\omega - \omega^2/2 + \dots$ $(\alpha \wedge \beta \wedge \gamma)^T = \gamma \wedge \beta \wedge \alpha$ Symplectic structure on a 2*m*-manifold *M*: globally

 $\begin{array}{l} \rho = e^{i\omega} \in \Omega^{\bullet}_{\mathbb{C}} \\ (\rho^{T} \wedge \overline{\rho})_{top} \sim \text{volume} \\ d\omega = 0 \end{array}$

On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

 $\begin{aligned} \rho \in \Omega^m_{\mathbb{C}} \text{ (dec.)} \\ (\rho^T \wedge \overline{\rho})_{top} \sim \text{volume} \\ d\rho = 0 \end{aligned}$

 $\begin{array}{c} \mathsf{Ann}\,\rho\\ \mathsf{determines}\\ \mathsf{a} \,\,\mathsf{complex}\\ \mathsf{structure} \end{array}$

 $e^{i\omega} = 1 + i\omega - \omega^2/2 + \dots$ $(\alpha \wedge \beta \wedge \gamma)^T = \gamma \wedge \beta \wedge \alpha$ Symplectic structure on a 2*m*-manifold *M*: globally

$$\begin{split} \rho &= e^{i\omega} \in \Omega^{\bullet}_{\mathbb{C}} \\ (\rho^T \wedge \overline{\rho})_{top} \sim \text{volume} \\ d\rho &= 0 \end{split}$$

On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

 $\begin{array}{l} \rho \in \Omega^m_{\mathbb{C}} \text{ (dec.)} \\ \left(\rho^T \wedge \overline{\rho}\right)_{top} \sim \text{volume} \\ d\rho = 0 \end{array}$

Ann ρ determines a complex structure Symplectic structure on a 2*m*-manifold *M*: globally

$$\begin{split} \rho &= e^{i\omega} \in \Omega^{\bullet}_{\mathbb{C}} \\ (\rho^{T} \wedge \overline{\rho})_{top} \sim \text{volume} \\ & d\rho = 0 \end{split}$$

Ann $e^{i\omega} = \{0\}$ unsatisfactory

 $e^{i\omega} = 1 + i\omega - \omega^2/2 + \dots$ $(\alpha \wedge \beta \wedge \gamma)^T = \gamma \wedge \beta \wedge \alpha$

On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

 $\begin{aligned} \rho \in \Omega^m_{\mathbb{C}} \text{ (dec.)} \\ (\rho^T \wedge \overline{\rho})_{top} &\sim \text{volume} \\ d\rho &= 0 \end{aligned}$

Ann ρ determines a complex structure Symplectic structure on a 2*m*-manifold *M*: globally

 $\begin{array}{l} \rho = e^{i\omega} \in \Omega^{\bullet}_{\mathbb{C}} \\ (\rho^{T} \wedge \overline{\rho})_{top} \sim \text{volume} \\ d\rho = 0 \end{array}$

Ann $e^{i\omega} = gr(-i\omega)$ in $(TM \oplus T^*M)_{\mathbb{C}}$ for action $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$

 $e^{i\omega} = 1 + i\omega - \omega^2/2 + \dots$ $(\alpha \wedge \beta \wedge \gamma)^T = \gamma \wedge \beta \wedge \alpha$

On a real 2*m*-manifold: consider locally (pointwise up to \mathbb{C}^*)

 $\begin{aligned} \rho \in \Omega^m_{\mathbb{C}} \text{ (dec.)} \\ (\rho^T \wedge \overline{\rho})_{top} \sim \text{volume} \\ d\rho = 0 \end{aligned}$

Ann $\rho = T_{0,1} \oplus T^*_{1,0}$ (with $\rho = dz_1 \land ... \land dz_m$) for the same action Symplectic structure on a 2*m*-manifold *M*: globally

 $\begin{array}{l} \rho = e^{i\omega} \in \Omega^{\bullet}_{\mathbb{C}} \\ (\rho^{T} \wedge \overline{\rho})_{top} \sim \text{volume} \\ d\rho = 0 \end{array}$

Ann $e^{i\omega} = gr(-i\omega)$ in $(TM \oplus T^*M)_{\mathbb{C}}$ for action $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$

 $e^{i\omega} = 1 + i\omega - \omega^2/2 + \dots$ $(\alpha \wedge \beta \wedge \gamma)^T = \gamma \wedge \beta \wedge \alpha$

generalized complex structure Def^n : locally (up to \mathbb{C}^*)

 $\rho\in\Omega^\bullet_{\mathbb C}$

generalized complex structure Def^n : locally (up to \mathbb{C}^*)

 $\rho\in\Omega^{\bullet}_{\mathbb{C}}$

Ann $\rho \subset (TM \oplus T^*M)_{\mathbb{C}}$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$

generalized complex structure Def^n : locally (up to \mathbb{C}^*)

 $\rho\in\Omega^\bullet_{\mathbb C}$

Ann $\rho \subset (TM \oplus T^*M)_{\mathbb{C}}$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$ $T_{0,1} \oplus T^*_{1,0} \rightsquigarrow \operatorname{Ann} \rho \rightsquigarrow gr(i\omega)$ maximally isotropic for $\langle X + \alpha, X + \alpha \rangle = \alpha(X)$

generalized complex structure Def^n : locally (up to \mathbb{C}^*)

 $\rho\in\Omega^\bullet_{\mathbb C}$

Ann $\rho \subset (TM \oplus T^*M)_{\mathbb{C}}$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$ $T_{0,1} \oplus T^*_{1,0} \rightsquigarrow \operatorname{Ann} \rho \rightsquigarrow gr(i\omega)$ maximally isotropic for $\langle X + \alpha, X + \alpha \rangle = \alpha(X)$ (pure pointwise) $\rho = e^{B + i\omega} \land \theta_1 \land \ldots \land \theta_r$ for $B, \omega \in \Omega^2, \ \theta_j \in \Omega^1_{\mathbb{C}}$

generalized complex structure Def^n : locally (up to \mathbb{C}^*)

 $\rho\in\Omega^\bullet_{\mathbb C}$

Ann $\rho \subset (TM \oplus T^*M)_{\mathbb{C}}$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$ $T_{0,1} \oplus T^*_{1,0} \rightsquigarrow \operatorname{Ann} \rho \rightsquigarrow gr(i\omega)$ maximally isotropic for $\langle X + \alpha, X + \alpha \rangle = \alpha(X)$ (pure pointwise) $\rho = e^{B + i\omega} \land \theta_1 \land \ldots \land \theta_r$ for $B, \omega \in \Omega^2, \ \theta_j \in \Omega^1_{\mathbb{C}}$

 $(\rho^{T} \land \overline{\rho})_{top} \sim \text{volume}$ $\uparrow \text{ (real index zero)}$ $\text{Ann } \rho \cap \overline{\text{Ann } \rho} = \{0\}$

generalized complex structure Def^n : locally (up to \mathbb{C}^*)

 $\rho\in\Omega^\bullet_{\mathbb C}$

Ann $\rho \subset (TM \oplus T^*M)_{\mathbb{C}}$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$ $T_{0,1} \oplus T^*_{1,0} \rightsquigarrow \operatorname{Ann} \rho \rightsquigarrow gr(i\omega)$ maximally isotropic for $\langle X + \alpha, X + \alpha \rangle = \alpha(X)$ (pure pointwise) $\rho = e^{B + i\omega} \land \theta_1 \land \ldots \land \theta_r$ for $B, \omega \in \Omega^2, \ \theta_j \in \Omega^1_{\mathbb{C}}$

 $(\rho^{T} \land \overline{\rho})_{top} \sim \text{volume}$ $\stackrel{\uparrow}{\longrightarrow} (\text{real index zero})$ Ann $\rho \cap \overline{\text{Ann } \rho} = \{0\}$ $(\rho, \overline{\rho}) := (\rho^{T} \land \overline{\rho})_{top}$ $\boxed{(\rho, \overline{\rho}) \sim \text{volume}}$

generalized complex structure Def^n : locally (up to \mathbb{C}^*)

 $\rho\in\Omega^\bullet_{\mathbb C}$

Ann $\rho \subset (TM \oplus T^*M)_{\mathbb{C}}$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$
$$\begin{split} \mathcal{T}_{0,1} \oplus \mathcal{T}^*_{1,0} & \to \operatorname{Ann} \rho \nleftrightarrow \operatorname{gr}(i\omega) \\ \text{maximally isotropic for} \\ \langle X + \alpha, X + \alpha \rangle &= \alpha(X) \\ & \updownarrow \text{ (pure pointwise)} \\ \hline \\ \rho &= e^{B + i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r \\ \text{for } B, \omega \in \Omega^2, \ \theta_j \in \Omega^1_{\mathbb{C}} \end{split}$$

 $(\rho^{T} \wedge \overline{\rho})_{top} \sim \text{volume}$ $\stackrel{\uparrow}{\longrightarrow} (\text{real index zero})$ $Ann \rho \cap \overline{Ann \rho} = \{0\}$ $(\rho, \overline{\rho}) := (\rho^{T} \wedge \overline{\rho})_{top}$ $\boxed{(\rho, \overline{\rho}) \sim \text{volume}}$

 $d\rho = 0$ \downarrow Ann ρ involutive for Dorfman $[X + \alpha, Y + \beta] = [X, Y] + L_X \beta - \iota_Y d\alpha$

generalized complex structure Def^n : locally (up to \mathbb{C}^*)

 $\rho\in\Omega^\bullet_{\mathbb C}$

Ann $\rho \subset (TM \oplus T^*M)_{\mathbb{C}}$ $(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$ $T_{0,1} \oplus T^*_{1,0} \rightsquigarrow \operatorname{Ann} \rho \rightsquigarrow gr(i\omega)$ maximally isotropic for $\langle X + \alpha, X + \alpha \rangle = \alpha(X)$ (pure pointwise) $\rho = e^{B + i\omega} \land \theta_1 \land \ldots \land \theta_r$ for $B, \omega \in \Omega^2, \ \theta_j \in \Omega^1_{\mathbb{C}}$

 $(\rho^{T} \land \overline{\rho})_{top} \sim \text{volume}$ $\stackrel{\uparrow}{\longrightarrow} (\text{real index zero})$ Ann $\rho \cap \overline{\text{Ann } \rho} = \{0\}$ $(\rho, \overline{\rho}) := (\rho^{T} \land \overline{\rho})_{top}$ $\boxed{(\rho, \overline{\rho}) \sim \text{volume}}$

 $d\rho = 0$ \downarrow Ann ρ involutive for Dorfman $[X + \alpha, Y + \beta] = [X, Y] + L_X \beta - \iota_Y d\alpha$ $\uparrow \text{ (integrable)}$ $d\rho = v \cdot \rho \text{ for } v = X + \alpha$

Behind the scenes

$$K = \langle \rho \rangle \subset \wedge^{\bullet} T^*_{\mathbb{C}} M$$
 line bundle

Behind the scenes

 $K = \langle \rho \rangle \subset \wedge^{\bullet} T^*_{\mathbb{C}} M$ line bundle

$$(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$$
$$(X + \alpha)^2 \cdot \rho = \alpha(X)\rho$$
$$\wedge^{\bullet} T^*_{\mathbb{C}} M \text{ is a } Cl_{\mathbb{C}}(TM \oplus T^*M) \text{-module}$$
$$\approx \text{ spinor representation,}$$
$$(\rho, \overline{\rho}) \approx \text{ pairing on spinors}$$

Behind the scenes

 $K = \langle \rho \rangle \subset \wedge^{\bullet} T^*_{\mathbb{C}} M$ line bundle

$$(X + \alpha) \cdot \rho = \iota_X \rho + \alpha \wedge \rho$$

$$(X + \alpha)^2 \cdot \rho = \alpha(X)\rho$$

$$\wedge^{\bullet} T^*_{\mathbb{C}} M \text{ is a } Cl_{\mathbb{C}}(TM \oplus T^*M) \text{-module}$$

$$\approx \text{ spinor representation,}$$

$$(\rho, \overline{\rho}) \approx \text{ pairing on spinors}$$

$L := \operatorname{Ann} \rho$ complex Dirac structure (Courant algebroid $(TM \oplus T^*M)_{\mathbb{C}})$ such that $L \cap \overline{L} = \{0\}$

References: Hitchin'03, Gualtieri'04/11, Alekseev-Bursztyn-Meinrenken'09

Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0)

$$\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$d\rho = v \cdot \rho$$
$$(\rho, \overline{\rho}) \sim \text{volume}$$

Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0)

$$\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$d\rho = v \cdot \rho$$
$$(\rho, \overline{\rho}) \sim \text{volume}$$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

 $\rho = z + dz \wedge dw$

Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0)

$$\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$d\rho = v \cdot \rho$$
$$(\rho, \overline{\rho}) \sim \text{volume}$$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

 $\rho = z + dz \wedge dw$

 $(\rho,\overline{\rho}) = [(z + dz \wedge dw)^T \wedge (\overline{z} + d\overline{z} \wedge d\overline{w})]_{top}$ $= dw \wedge dz \wedge d\overline{z} \wedge d\overline{w} \sim \text{volume}$

Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0)

$$\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$d\rho = \mathbf{v} \cdot \rho$$
$$(\rho, \overline{\rho}) \sim \text{volume}$$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

 $\rho = z + dz \wedge dw$

 $(\rho,\overline{\rho}) = [(z + dz \wedge dw)^T \wedge (\overline{z} + d\overline{z} \wedge d\overline{w})]_{top}$ $= dw \wedge dz \wedge d\overline{z} \wedge d\overline{w} \sim \text{volume}$

 $d\rho = dz = \left(-\frac{\partial}{\partial w} + 0\right) \cdot \rho$

Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0)

$$\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$d\rho = v \cdot \rho$$
$$(\rho, \overline{\rho}) \sim \text{volume}$$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

 $\rho = z + dz \wedge dw$

$$(\rho,\overline{\rho}) = [(z + dz \wedge dw)^T \wedge (\overline{z} + d\overline{z} \wedge d\overline{w})]_{top} = dw \wedge dz \wedge d\overline{z} \wedge d\overline{w} \sim \text{volume}$$

$$d\rho = dz = \left(-\frac{\partial}{\partial w} + 0\right) \cdot \rho$$

Pure: $z \neq 0$, $\rho \sim 1 + \frac{dz \wedge dw}{z} = e^{\frac{dz \wedge dw}{z}}$, pure of type 0

Definition of **type**: *r*. $\rho = dz_1 \land \ldots \land dz_m$ (type *m*) $\rho = e^{i\omega} = 1 + i\omega + \ldots$ (type 0)

$$\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$$
$$d\rho = \mathbf{v} \cdot \rho$$
$$(\rho, \overline{\rho}) \sim \text{volume}$$

On $\mathbb{R}^4 \cong \mathbb{C}^2$, with complex coordinates (z, w),

 $\rho = z + dz \wedge dw$

$$(\rho, \overline{\rho}) = [(z + dz \wedge dw)^T \wedge (\overline{z} + d\overline{z} \wedge d\overline{w})]_{top} = dw \wedge dz \wedge d\overline{z} \wedge d\overline{w} \sim \text{volume}$$

$$d\rho = dz = \left(-\frac{\partial}{\partial w} + 0\right) \cdot \rho$$

Pure: $z \neq 0$, $\rho \sim 1 + \frac{dz \wedge dw}{z} = e^{\frac{dz \wedge dw}{z}}$, pure of type 0 z = 0, $\rho = dz \wedge dw$, pure of type 2

Some considerations

 $\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ $d\rho = v \cdot \rho$ $(\rho, \overline{\rho}) \sim \text{volume}$

Some considerations

- $\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_r$ $d\rho = v \cdot \rho$ $(\rho, \overline{\rho}) \sim \text{volume}$
- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (Courant algebroid automorphisms)

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (Courant algebroid automorphisms)
- \bullet Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho = \rho_1 + \rho_3 + \dots$

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho = \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho = \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.
- Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). E.g., $e^{B+i\omega} \cong e^{i\omega}$ GDiff $(M) = \text{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho = \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.
- Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

Why are you telling us all this in a talk about 3-manifolds?

Why are you telling us all this in a talk about 3-manifolds?

Another generalized geometry is possible.

"extended" generalized geometry on Mⁿ

• $T \oplus 1 \oplus T^*$

• SO(n+1,n)-structure – type B_n

A B_n -generalized complex structure is a complex Dirac structure of (the Courant algebroid) $TM \oplus 1 \oplus T^*M$, with $1 = M \times \mathbb{R}$.

A B_n -generalized complex structure is a complex Dirac structure of (the Courant algebroid) $TM \oplus 1 \oplus T^*M$, with $1 = M \times \mathbb{R}$.

As a differential form, the same:

 $ho \in \Omega^{ullet}_{\mathbb{C}}$ pure $d
ho = v \cdot
ho$ $(
ho, \overline{
ho}) \sim$ volume.

A B_n -generalized complex structure is a complex Dirac structure of (the Courant algebroid) $TM \oplus 1 \oplus T^*M$, with $1 = M \times \mathbb{R}$.

As a differential form, the same:

 $ho \in \Omega^{ullet}_{\mathbb{C}}$ pure $d
ho = v \cdot
ho$ $(
ho, \overline{
ho}) \sim$ volume.

Pure means:

$$\rho = e^{B+i\omega} \wedge \theta_1 \wedge \ldots \wedge \theta_i \\ B, \omega \in \Omega^2, \qquad , \theta_j \in \Omega^1_{\mathbb{C}}$$

A B_n -generalized complex structure is a complex Dirac structure of (the Courant algebroid) $TM \oplus 1 \oplus T^*M$, with $1 = M \times \mathbb{R}$.

As a differential form, the same:

 $ho \in \Omega^{ullet}_{\mathbb{C}}$ pure $d
ho = v \cdot
ho$ $(
ho, \overline{
ho}) \sim$ volume.

Pure now means:

$$\begin{split} \rho &= e^{(A+i\sigma)\tau\wedge}e^{B+i\omega}\wedge\theta_1\wedge\ldots\wedge\theta_r\\ B,\omega\in\Omega^2, A,\sigma\in\Omega^1, \theta_j\in\Omega^1_{\mathbb{C}}\\ \text{with } \tau(\varphi) &= (-1)^{\deg(\varphi)}\varphi \end{split}$$

A B_n -generalized complex structure is a complex Dirac structure of (the Courant algebroid) $TM \oplus 1 \oplus T^*M$, with $1 = M \times \mathbb{R}$.

As a differential form, the same:

 $ho \in \Omega^{ullet}_{\mathbb{C}}$ pure $d
ho = v \cdot
ho$ $(
ho, \overline{
ho}) \sim$ volume.

Pure now means:

$$\begin{split} \rho &= e^{(A+i\sigma)\tau\wedge}e^{B+i\omega}\wedge\theta_1\wedge\ldots\wedge\theta_r\\ B,\omega\in\Omega^2, A,\sigma\in\Omega^1, \theta_j\in\Omega^1_{\mathbb{C}}\\ \text{with }\tau(\varphi) &= (-1)^{\deg(\varphi)}\varphi \end{split}$$

and $v = X + f + \alpha$ acting by $\iota_X \rho + f \tau \rho + \alpha \wedge \rho$.

A B_n -generalized complex structure is a complex Dirac structure of (the Courant algebroid) $TM \oplus 1 \oplus T^*M$, with $1 = M \times \mathbb{R}$.

As a differential form, the same:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure} \\ d\rho = v \cdot \rho \\ (\rho, \overline{\rho}) \sim \text{volume.}$

Pure now means:

$$\begin{split} \rho &= e^{(A+i\sigma)\tau\wedge}e^{B+i\omega}\wedge\theta_1\wedge\ldots\wedge\theta_r\\ B,\omega\in\Omega^2, A,\sigma\in\Omega^1, \theta_j\in\Omega^1_{\mathbb{C}}\\ \text{with }\tau(\varphi) &= (-1)^{\deg(\varphi)}\varphi \end{split}$$

and $v = X + f + \alpha$ acting by $\iota_X \rho + f \tau \rho + \alpha \wedge \rho$.

A B_n -generalized complex structure is a complex Dirac structure of (the Courant algebroid) $TM \oplus 1 \oplus T^*M$, with $1 = M \times \mathbb{R}$.

As a differential form, the same:

 $\rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure} \\ d\rho = v \cdot \rho \\ (\rho, \overline{\rho}) \sim \text{volume.}$

Pure now means:

$$\begin{split} \rho &= e^{(A+i\sigma)\tau\wedge}e^{B+i\omega}\wedge\theta_1\wedge\ldots\wedge\theta_r\\ B,\omega\in\Omega^2, A,\sigma\in\Omega^1, \theta_j\in\Omega^1_{\mathbb{C}}\\ \text{with }\tau(\varphi) &= (-1)^{\deg(\varphi)}\varphi \end{split}$$

and $v = X + f + \alpha$ acting by $\iota_X \rho + f \tau \rho + \alpha \wedge \rho$. Example: **any usual generalized complex is** B_n -generalized.

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho_= \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.
- Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

- $e^B \wedge$ is a symmetry for *B* closed (a *B*-field). $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega^2_{cl}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho_= \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.
- Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

- $e^B \wedge$ and $e^{A\tau} \wedge$ are symmetries for *B* and *A* closed (*B* and *A* fields). GDiff(*M*) = Diff(*M*) $\ltimes \Omega_{cl}^{2+1}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex ightarrow almost complex ightarrow even dimensions
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho_= \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.
- Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

- $e^B \wedge$ and $e^{A\tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_n -generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has a parity, $\rho = \rho_0 + \rho_2 + \dots$ or $\rho_= \rho_1 + \rho_3 + \dots$
- Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.
- Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

- $e^B \wedge$ and $e^{A\tau} \wedge$ are symmetries for *B* and *A* closed (*B* and *A* fields). GDiff(*M*) = Diff(*M*) $\ltimes \Omega_{cl}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_n -generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\rho = \rho_0 + \rho_1 + \rho_2 + \rho_3 + ...$
- Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.
- Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

- $e^B \wedge$ and $e^{A\tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_n -generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\rho = \rho_0 + \rho_1 + \rho_2 + \rho_3 + ...$
- ✓ Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.
- Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.
- Type-change only possible for dim $M \ge 4$.

- $e^B \wedge$ and $e^{A\tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_n -generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\rho = \rho_0 + \rho_1 + \rho_2 + \rho_3 + ...$
- ✓ Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.

✓ Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.

• Type-change only possible for dim $M \ge 4$.

- $e^B \wedge$ and $e^{A\tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M) = \operatorname{Diff}(M) \ltimes \Omega_{cl}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_n -generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\rho = \rho_0 + \rho_1 + \rho_2 + \rho_3 + ...$
- ✓ Type may change! We focus on **stable** structures (include log-Poisson): generically $\rho_0 \neq 0$ & when $\rho_0(p) = 0$, $d\rho_0(p) \neq 0$.
- ✓ Type-change locus $\{p \in M : \rho_0(p) = 0\}$ codimension-2 submanifold.
- Type change already possible for dim M = 2, 3...

• Cosymplectic structure: $\omega \in \Omega^2_{cl}$, $\gamma \in \Omega^1_{cl}$ such that $\gamma \wedge \omega^m \sim$ volume

$$\rho = e^{i\gamma + i\omega} = 1 + i\gamma + i\omega - \gamma \wedge \omega \dots$$

• Cosymplectic structure: $\omega \in \Omega^2_{cl}$, $\gamma \in \Omega^1_{cl}$ such that $\gamma \wedge \omega^m \sim$ volume

$$\rho = e^{i\gamma + i\omega} = 1 + i\gamma + i\omega - \gamma \wedge \omega \dots$$

• Almost contact structure: vector field Y, $\eta \in \Omega^1$, $J \in End(T)$ satisfying

$$\iota_{\mathbf{Y}}\eta = 1, \qquad \qquad J^2 = -\operatorname{Id} + \mathbf{Y}\otimes \eta$$

• Cosymplectic structure: $\omega \in \Omega^2_{cl}$, $\gamma \in \Omega^1_{cl}$ such that $\gamma \wedge \omega^m \sim$ volume

$$\rho = e^{i\gamma + i\omega} = 1 + i\gamma + i\omega - \gamma \wedge \omega \dots$$

• Almost contact structure: vector field Y, $\eta \in \Omega^1$, $J \in \text{End}(T)$ satisfying $\iota_X \eta = 1$, $J^2 = -\operatorname{Id} + Y \otimes \eta$

Normal (nacs) when the almost complex structure on $M \times \mathbb{R}$ is integrable. $\rho = e^{i\eta} \wedge \Omega = \Omega + (-1)^m i\eta \wedge \Omega \qquad \text{(with } \Omega \approx (m, 0)\text{-form)}$

• Cosymplectic structure: $\omega \in \Omega^2_{cl}$, $\gamma \in \Omega^1_{cl}$ such that $\gamma \wedge \omega^m \sim$ volume

$$\rho = e^{i\gamma + i\omega} = 1 + i\gamma + i\omega - \gamma \wedge \omega \dots$$

• Almost contact structure: vector field Y, $\eta \in \Omega^1$, $J \in End(T)$ satisfying $\iota_Y \eta = 1, \qquad \qquad J^2 = -\operatorname{Id} + Y \otimes \eta$

Normal (nacs) when the almost complex structure on $M \times \mathbb{R}$ is integrable. $\rho = e^{i\eta} \wedge \Omega = \Omega + (-1)^m i\eta \wedge \Omega \qquad \text{(with } \Omega \approx (m, 0)\text{-form)}$

• On $\mathbb{C} \times \mathbb{R}$ with coordinates (z, t),

$$\rho = z + dz + idz \wedge dt$$

Even dimensions

Even dimensions

Odd dimensions

Odd dimensions

Let us try first on 3-manifolds (**compact** from now on) Idea: how to obtain $3\mathbb{C}P^2 \# 19\overline{\mathbb{C}P^2}$ [Cavalcanti, Gualtieri'07,09]:

Idea: how to obtain $3\mathbb{C}P^2 \# 19\overline{\mathbb{C}P^2}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho = z + dz \wedge dw$ on \mathbb{C}^2 , invariant by translation on w, define it on

 $D^2 \times T^2 \subset \mathbb{C} \times T^2 = \mathbb{C} \times \mathbb{C}/\mathbb{Z}^2.$

Idea: how to obtain $3\mathbb{C}P^2 \# 19\overline{\mathbb{C}P^2}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho = z + dz \wedge dw$ on \mathbb{C}^2 , invariant by translation on w, define it on

$$D^2 \times T^2 \subset \mathbb{C} \times T^2 = \mathbb{C} \times \mathbb{C}/\mathbb{Z}^2.$$

Take certain symplectic 4-manifold, remove a normal neighbourhood of a torus and glue $D^2 \times T^2$ with $z + dz \wedge dw$ along the neck (Annulus× T^2):

Idea: how to obtain $3\mathbb{C}P^2 \# 19\overline{\mathbb{C}P^2}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho = z + dz \wedge dw$ on \mathbb{C}^2 , invariant by translation on w, define it on

$$D^2 \times T^2 \subset \mathbb{C} \times T^2 = \mathbb{C} \times \mathbb{C}/\mathbb{Z}^2.$$

Take certain symplectic 4-manifold, remove a normal neighbourhood of a torus and glue $D^2 \times T^2$ with $z + dz \wedge dw$ along the neck (Annulus× T^2):

$$(\text{Annulus} \times T^2, \omega) \to (\text{Annulus} \times T^2, z + dz \wedge dw)$$

" $\psi(r, \theta_1, \theta_2, \theta_3) = (\sqrt{\log er^2}, \theta_3, \theta_2, -\theta_1)''$

Idea: how to obtain $3\mathbb{C}P^2 \# 19\overline{\mathbb{C}P^2}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho = z + dz \wedge dw$ on \mathbb{C}^2 , invariant by translation on w, define it on

$$D^2 \times T^2 \subset \mathbb{C} \times T^2 = \mathbb{C} \times \mathbb{C}/\mathbb{Z}^2.$$

Take certain symplectic 4-manifold, remove a normal neighbourhood of a torus and glue $D^2 \times T^2$ with $z + dz \wedge dw$ along the neck (Annulus× T^2):

$$\begin{aligned} (\text{Annulus} \times T^2, \omega) &\to (\text{Annulus} \times T^2, z + dz \wedge dw) \\ ``\psi(r, \theta_1, \theta_2, \theta_3) &= (\sqrt{\log er^2}, \theta_3, \theta_2, -\theta_1)'' \end{aligned}$$

The variable θ_2 is a dummy variable,

Idea: how to obtain $3\mathbb{C}P^2 \# 19\overline{\mathbb{C}P^2}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho = z + dz \wedge dw$ on \mathbb{C}^2 , invariant by translation on w, define it on

$$D^2 \times T^2 \subset \mathbb{C} \times T^2 = \mathbb{C} \times \mathbb{C}/\mathbb{Z}^2.$$

Take certain symplectic 4-manifold, remove a normal neighbourhood of a torus and glue $D^2 \times T^2$ with $z + dz \wedge dw$ along the neck (Annulus× T^2):

$$(\text{Annulus} \times T^2, \omega) \to (\text{Annulus} \times T^2, z + dz \wedge dw)$$
$$``\psi(r, \theta_1, \theta_2, \theta_3) = (\sqrt{\log er^2}, \theta_3, \theta_2, -\theta_1)''$$

The variable θ_2 is a dummy variable, We can do the same for 3-manifolds and $D^2 \times S^1$!

Surgery on $D^2 imes \mathrm{S}^1$ (after $\mathcal{C}^\infty_{\mathsf{log}}$ -transform and [CG'07,09])

 $1 + idt + id\zeta \wedge d\psi - \dots$

 $1 + idt + id\zeta \wedge d\psi - \dots$

Polar coordinates (s, φ) such that $\zeta = s \cos \varphi$, $\psi = s \sin \varphi$.

 $1 + idt + isds \wedge d\varphi - \dots$

 $1 + idt + id\zeta \wedge d\psi - \dots$

Polar coordinates (s, φ) such that $\zeta = s \cos \varphi$, $\psi = s \sin \varphi$.

 $1 + idt + isds \wedge d\varphi - \dots$

 $\mathcal{C}^{\infty}_{\mathsf{log}}$ -transform $r = e^{s^2/2} \to d \log r = sds$

 $1 + idt + id\log r \wedge d\varphi - \dots$

 $1 + idt + id\zeta \wedge d\psi - \dots$

Polar coordinates (s, φ) such that $\zeta = s \cos \varphi$, $\psi = s \sin \varphi$.

 $1 + idt + isds \wedge d\varphi - \dots$

 $\mathcal{C}^{\infty}_{\log}$ -transform $r = e^{s^2/2} \rightarrow d \log r = sds$

 $1 + idt + id\log r \wedge d\varphi - \dots$

We act by A-field $d \log r$

 $1 + d \log r + idt + id \log r \wedge (d\varphi - dt) - \dots$

 $1 + idt + id\zeta \wedge d\psi - \dots$

Polar coordinates (s, φ) such that $\zeta = s \cos \varphi$, $\psi = s \sin \varphi$.

 $1 + idt + isds \wedge d\varphi - \dots$

 $\mathcal{C}^{\infty}_{\log}$ -transform $r = e^{s^2/2} \rightarrow d \log r = sds$

 $1 + idt + id\log r \wedge d\varphi - \dots$

We act by A-field $d \log r$

 $1 + d \log r + i dt + i d \log r \wedge (d\varphi - dt) - \dots$

Act by a *B*-field $d\varphi \wedge dt$

 $1 + d \log r + idt + i(d \log r + idt) \wedge (d\varphi - dt)$

 $1 + idt + id\zeta \wedge d\psi - \dots$

Polar coordinates (s, φ) such that $\zeta = s \cos \varphi$, $\psi = s \sin \varphi$.

 $1 + idt + isds \wedge d\varphi - \dots$

 $\mathcal{C}^{\infty}_{\log}$ -transform $r = e^{s^2/2} \rightarrow d \log r = sds$

 $1 + idt + id\log r \wedge d\varphi - \dots$

We act by A-field $d \log r$

 $1 + d \log r + idt + id \log r \wedge (d\varphi - dt) - \dots$

Act by a *B*-field $d\varphi \wedge dt$

 $1 + d \log r + idt + i(d \log r + idt) \wedge (d\varphi - dt)$

Define $z = re^{it}$, $\sigma = \varphi - t$, and multiply by z:

 $z + dz + idz \wedge d\sigma$.

Theorem (Hitchin,R.)

The type-change locus cannot be a single circle.

Theorem (Hitchin, R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, t) such that:

 $\rho = z + \lambda dz + \mu dz \wedge dt + \varepsilon dz \wedge d\bar{z},$

with $\lambda \in \mathbb{C}^*$, $\mu \in S^1/\mathbb{Z}_2$, $\varepsilon \in \{0,1\}$, and C corresponding to z = 0.

Theorem (Hitchin, R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, t) such that:

 $\rho = z + \lambda dz + \mu dz \wedge dt + \varepsilon dz \wedge d\bar{z},$

with $\lambda \in \mathbb{C}^*$, $\mu \in S^1/\mathbb{Z}_2$, $\varepsilon \in \{0,1\}$, and C corresponding to z = 0.

Proof (theorem): Assume *C* is the only type-change: ρ_2/ρ_0 is well defined on $M \setminus C$.

Theorem (Hitchin, R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, t) such that:

 $\rho = z + \lambda dz + \mu dz \wedge dt + \varepsilon dz \wedge d\bar{z},$

with $\lambda \in \mathbb{C}^*$, $\mu \in S^1/\mathbb{Z}_2$, $\varepsilon \in \{0,1\}$, and C corresponding to z = 0.

Proof (theorem): Assume *C* is the only type-change: ρ_2/ρ_0 is well defined on $M \setminus C$. Tubular neighbourhood N_C , $\iota : N_C \setminus C \to M \setminus C$,

$$\int_{\partial N_C} \iota^*(\rho_2/\rho_0) = \int_{\partial N_C} \iota^*(\mu \frac{dz}{z} \wedge dt) = \int_0^{2\pi} \int_0^{2\pi} \mu d\theta \wedge dt = 4\pi^2 \mu \neq 0.$$

Theorem (Hitchin, R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, t) such that:

 $\rho = z + \lambda dz + \mu dz \wedge dt + \varepsilon dz \wedge d\bar{z},$

with $\lambda \in \mathbb{C}^*$, $\mu \in S^1/\mathbb{Z}_2$, $\varepsilon \in \{0,1\}$, and C corresponding to z = 0.

Proof (theorem): Assume *C* is the only type-change: ρ_2/ρ_0 is well defined on $M \setminus C$. Tubular neighbourhood N_C , $\iota : N_C \setminus C \to M \setminus C$,

$$\int_{\partial N_{\mathcal{C}}} \iota^*(\rho_2/\rho_0) = \int_{\partial N_{\mathcal{C}}} \iota^*(\mu \frac{dz}{z} \wedge dt) = \int_0^{2\pi} \int_0^{2\pi} \mu d\theta \wedge dt = 4\pi^2 \mu \neq 0.$$

On the open manifold $M \setminus N_C$, Stokes' theorem says

$$\int_{\partial N_C} \iota^*(\rho_2/\rho_0) = \int_{M \setminus N_C} d(\rho_2/\rho_0) = \int_{M \setminus N_C} 0 = 0.$$
 Contradiction. \Box

Example (Hitchin)

Heuristically: $zw + dz \wedge dw$ on $\mathbb{C}^2 \setminus \{0\} \cong S^3 \times \mathbb{R}^+$ should reduce to a

 B_3 -generalized complex structure on S^3 ($S^3 \subset \mathbb{C}^2$ corresponds to $|z|^2 + |w|^2 = 1$)

Example (Hitchin)

Heuristically: $zw + dz \wedge dw$ on $\mathbb{C}^2 \setminus \{0\} \cong S^3 \times \mathbb{R}^+$ should reduce to a

$$B_3$$
-generalized complex structure on S^3
($S^3 \subset \mathbb{C}^2$ corresponds to $|z|^2 + |w|^2 = 1$)

Type change on $\mathbb{C}^2 \setminus \{0\}$ gives type-change locus corresponding to z = 0 and w = 0: the Hopf link!

Example (Hitchin)

Heuristically: $zw + dz \wedge dw$ on $\mathbb{C}^2 \setminus \{0\} \cong S^3 \times \mathbb{R}^+$ should reduce to a

$$B_3$$
-generalized complex structure on S^3
($\mathrm{S}^3 \subset \mathbb{C}^2$ corresponds to $|z|^2 + |w|^2 = 1$)

Type change on $\mathbb{C}^2 \setminus \{0\}$ gives type-change locus corresponding to z = 0 and w = 0: the Hopf link!

Example (Hitchin)

Heuristically: $zw + dz \wedge dw$ on $\mathbb{C}^2 \setminus \{0\} \cong S^3 \times \mathbb{R}^+$ should reduce to a B₃-generalized complex structure on S^3

 $(S^3 \subset \mathbb{C}^2 \text{ corresponds to } |z|^2 + |w|^2 = 1)$

Type change on $\mathbb{C}^2 \setminus \{0\}$ gives type-change locus corresponding to z = 0 and w = 0: the Hopf link!

Analogue of Marsden-Weinstein / Bursztyn-Cavalcanti-Gualtieri reduction:

Proposition (R.)

The reduction of an S¹ or \mathbb{R}^+ -invariant generalized complex structure on $M \times S^1$ or $M \times \mathbb{R}^+$ is a B_n -generalized complex structure on M.

The only type-change example has two circles.

I then realized:

The only type-change example has two circles.

I then realized:

Time to move on:

The only type-change example has two circles.

I then realized:

Time to move on: combine B_3 with geometrization What geometric structures admit B_3 -structures?

Joint work (in progress) with **Joan Porti**

Marie Skłodowska-Curie Individual Fellowship GENERALIZED

Sol		H ³	
+			
Seifert	$\chi > 0$	$\chi = 0$	$\chi < 0$
<i>e</i> = 0	$S^2 imes \mathbb{R}$	E ³	$H^2 imes \mathbb{R}$
$e \neq 0$	<i>S</i> ³	Nil	$\widetilde{\operatorname{SL}_2\mathbb{R}}$

Unlike for cosymplectic or normal almost contact...

Observation (Porti, R.)

For each Thurston geometry there is a geometric manifold admitting a B_3 -generalized complex structure.

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be *Sol* or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be *Sol* or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Hantzsche-Wendt

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be *Sol* or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Hantzsche-Wendt

Open-book decomposition (general 3-fold)

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be *Sol* or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Hantzsche-Wendt

Open-book decomposition (general 3-fold)

 $\begin{array}{l} \text{Complements of} \\ \text{knots in } \mathrm{S}^{3} \\ + \text{surgery} \end{array}$

Open-book decomposition

Defining B_3 on an open book:

- type-change disconnected binding,
- 'symplectic structure' on open leaves.

Defining B_3 on an open book:

- type-change disconnected binding,
- 'symplectic structure' on open leaves.

```
How to do it?
1) unravel the S<sup>3</sup> structure:
```

Defining B_3 on an open book:

- type-change disconnected binding,
- 'symplectic structure' on open leaves.

How to do it? 1) unravel the S³ structure: closed cylinder with Dehn twist, 2) modify the surface, 3) modify the twist

MUSEO NACIONAL DEL **PRADO**

MUSEO NACIONAL DEL **PRADO**

But surgery does not work...

But surgery does not work...

I then realized:

But surgery does not work...

I then realized:

Surgery works but changes the integrability of the structure.

Twisted generalized complex structures

Classical case: for $H \in \Omega^3_{cl}$,

 $\begin{array}{l} \rho \in \Omega^{\bullet}_{\mathbb{C}} \text{ pure} \\ (\rho, \overline{\rho}) \sim \text{volume.} \\ (d + H \wedge)\rho = v \cdot \rho \end{array}$

Ševera class $[H] \in H^3$

Twisted generalized complex structures

Classical case:
for $H \in \Omega^3_{cl}$, B_n -case:
for $F \in \Omega^2_{cl}$, $H \in \Omega^3$
such that $dH + F^2 = 0$ $\rho \in \Omega^{\bullet}_{\mathbb{C}}$ pure
 $(\rho, \overline{\rho}) \sim$ volume.
 $(d + H \land)\rho = v \cdot \rho$ $\rho \in \Omega^{\bullet}_{\mathbb{C}}$ pure
 $(\rho, \overline{\rho}) \sim$ volume.
 $(d + F \land \tau + H \land)\rho = v \cdot \rho$ Ševera class $[H] \in H^3$ A class $[(H, F)] \in H^{3+2}$

(They correspond to Dirac structures on twisted Courant algebroids.)

The two structures

 $ho = 1 + idt + id\zeta \wedge d\psi - \dots, \qquad
ho' = z + dz + idz \wedge dt$

are combined via

 $ho = e^{B_{ij} + A_{ij}\tau} \wedge f^*_{log}(
ho'/z)$

The two structures

 $ho = 1 + idt + id\zeta \wedge d\psi - \dots, \qquad
ho' = z + dz + idz \wedge dt$

are combined via

 $ho = e^{B_{ij} + A_{ij}\tau} \wedge f^*_{log}(
ho'/z)$

The integrability $(d\rho \dots)$ gets twisted by the dA_i and dB_i terms. (this involves Çech trivializing $A_{ij} = A_i - A_j$, etc.)

The two structures

 $ho = 1 + idt + id\zeta \wedge d\psi - \dots, \qquad
ho' = z + dz + idz \wedge dt$

are combined via

 $ho = e^{B_{ij} + A_{ij}\tau} \wedge f^*_{log}(
ho'/z)$

The integrability $(d\rho \dots)$ gets twisted by the dA_i and dB_i terms. (this involves Çech trivializing $A_{ij} = A_i - A_j$, etc.)

Why did it work for 4-manifolds?

The two structures

 $ho = 1 + idt + id\zeta \wedge d\psi - \dots, \qquad
ho' = z + dz + idz \wedge dt$

are combined via

 $ho = e^{B_{ij} + A_{ij}\tau} \wedge f^*_{log}(
ho'/z)$

The integrability $(d\rho \dots)$ gets twisted by the dA_i and dB_i terms. (this involves Çech trivializing $A_{ij} = A_i - A_j$, etc.)

> Why did it work for 4-manifolds? Choose *M* with $H^3(M) = \{0\}$.

The two structures

 $ho = 1 + idt + id\zeta \wedge d\psi - \dots, \qquad
ho' = z + dz + idz \wedge dt$

are combined via

 $ho = e^{B_{ij} + A_{ij}\tau} \wedge f^*_{log}(
ho'/z)$

The integrability $(d\rho \dots)$ gets twisted by the dA_i and dB_i terms. (this involves Çech trivializing $A_{ij} = A_i - A_j$, etc.)

> Why did it work for 4-manifolds? Choose *M* with $H^3(M) = \{0\}$.

Impossible in an orientable 3-manifold!

In fact:

Proposition (Porti, R.)

A generalized surgery around a cosymplectic circle gives a type-changing structure twisted by exact F but the class [(H, F)] is not trivial, that is, the structure is always twisted (\rightarrow at least two circles as type change).

In fact:

Proposition (Porti, R.)

A generalized surgery around a cosymplectic circle gives a type-changing structure twisted by exact F but the class [(H, F)] is not trivial, that is, the structure is always twisted (\rightarrow at least two circles as type change).

To get untwisted structures we would need at least two surgeries.

$$\label{eq:sigma} \begin{split} \mathbf{S}^2 \times \mathbf{S}^1 \\ \rho = 1 + \textit{idt} + \textit{i}\omega - \textit{dt} \wedge \omega \end{split}$$

$$\begin{split} \mathrm{S}^2 \times \mathrm{S}^1 \\ \rho &= 1 + i dt + i \omega - dt \wedge \omega \\ \mathrm{Surgery \ around} \ N \times \mathrm{S}^1, \\ \mathrm{the} \ B_3 \ \mathrm{structure \ gets \ twisted}. \end{split}$$

 $\mathrm{S}^2 \times \mathrm{S}^1$ $ho = 1 + idt + i\omega - dt \wedge \omega$ Surgery around $N \times \mathrm{S}^1$, the B_3 structure gets twisted.

Surgery around $S \times S^1$, it gets **doubly twisted**.

 $\mathrm{S}^2 \times \mathrm{S}^1$ $\rho = 1 + idt + i\omega - dt \wedge \omega$ Surgery around $N \times \mathrm{S}^1$, the B_3 structure gets twisted. Surgery around $S \times \mathrm{S}^1$,

it gets **doubly twisted**.

And we are also changing the manifold!

 $1 + idt + id\zeta \wedge d\psi - \dots$ Polar coordinates (s, φ) such that $\zeta = s \cos \varphi, \ \psi = s \sin \varphi$. $1 + idt + isds \wedge d\varphi - \dots$ C_{\log}^{∞} -transform $r = e^{s^2/2} \rightarrow d \log r = sds$ $1 + idt + id \log r \wedge d\varphi - \dots$

We act by A-field $d \log r$

 $1 + d \log r + i dt + i d \log r \wedge (d\varphi - dt) - \dots$

Act by a *B*-field $d\varphi \wedge dt$

 $1 + d \log r + idt + i(d \log r + idt) \wedge (d\varphi - dt)$

Define $z = re^{it}$, $\sigma = \varphi - t$, and multiply by z:

$$\begin{split} 1 + idt + id\zeta \wedge d\psi - \dots \\ \text{Polar coordinates } (s,\varphi) \text{ such that } \quad \zeta = s\cos(-\varphi), \ \psi = s\sin(-\varphi). \\ 1 + idt + isds \wedge d\varphi - \dots \\ \mathcal{C}^{\infty}_{\text{log}}\text{-transform } r = e^{s^2/2} \rightarrow d\log r = sds \\ 1 + idt + id\log r \wedge d\varphi - \dots \\ \text{We act by } A\text{-field } d\log r \end{split}$$

 $1 + d \log r + idt + id \log r \wedge (d\varphi - dt) - \dots$

Act by a *B*-field $d\varphi \wedge dt$

 $1 + d \log r + idt + i(d \log r + idt) \wedge (d\varphi - dt)$

Define $z = re^{it}$, $\sigma = \varphi - t$, and multiply by z:

 $1 + idt + id\zeta \wedge d\psi - \dots$ Polar coordinates (s, φ) such that $\zeta = s \cos(-\varphi), \ \psi = s \sin(-\varphi)$. $1 + idt - isds \wedge d\varphi + \dots$ C_{\log}^{∞} -transform $r = e^{s^2/2} \rightarrow d \log r = sds$ $1 + idt - id \log r \wedge d\varphi + \dots$ We act by A-field $d \log r$

 $1 + d \log r + idt - id \log r \wedge (d\varphi + dt) - \dots$

Act by a *B*-field $d\varphi \wedge dt$

 $1 + d \log r + idt + i(d \log r + idt) \wedge (d\varphi - dt)$

Define $z = re^{it}$, $\sigma = \varphi - t$, and multiply by z:

 $1 + idt + id\zeta \wedge d\psi - \dots$ Polar coordinates (s, φ) such that $\zeta = s \cos(-\varphi), \ \psi = s \sin(-\varphi)$. $1 + idt - isds \wedge d\varphi + \dots$ C^{∞}_{\log} -transform $r = e^{s^2/2} \rightarrow d \log r = sds$ $1 + idt - id \log r \wedge d\varphi + \dots$ We act by A-field $d \log r$

 $1 + d \log r + idt - id \log r \wedge (d\varphi + dt) - \dots$

Act by a *B*-field $-d\varphi \wedge dt$

 $1 + d \log r + idt + i(d \log r + idt) \wedge (d\varphi - dt)$

Define $z = re^{it}$, $\sigma = \varphi - t$, and multiply by *z*:

 $1 + idt + id\zeta \wedge d\psi - \dots$ Polar coordinates (s, φ) such that $\zeta = s \cos(-\varphi), \ \psi = s \sin(-\varphi)$. $1 + idt - isds \wedge d\varphi + \dots$ C^{∞}_{\log} -transform $r = e^{s^2/2} \rightarrow d \log r = sds$ $1 + idt - id \log r \wedge d\varphi + \dots$ We act by A-field $d \log r$

 $1 + d \log r + i dt - i d \log r \wedge (d\varphi + dt) - \dots$

Act by a *B*-field $-d\varphi \wedge dt$

 $1 + d \log r + i dt - i (d \log r + i dt) \wedge (d\varphi + dt)$

Define $z = re^{it}$, $\sigma = \varphi + t$, and multiply by *z*:

$$\mathrm{S}^2 imes \mathrm{S}^1$$
 $ho = 1 + idt + i\omega - dt \wedge \omega$

 $\mathrm{S}^2 \times \mathrm{S}^1$ $ho = 1 + idt + i\omega - dt \wedge \omega$ Surgery around $N \times \mathrm{S}^1$, the B_3 structure gets twisted.

 $S^2 \times S^1$ $\rho = 1 + idt + i\omega - dt \wedge \omega$ Surgery around $N \times S^1$, the B_3 structure gets twisted. **Opposite** surgery on $S \times S^1$, it gets **untwisted**.

 $S^2 \times S^1$ $\rho = 1 + idt + i\omega - dt \wedge \omega$ Surgery around $N \times S^1$, the B_3 structure gets twisted. **Opposite** surgery on $S \times S^1$, it gets **untwisted**.

But what is the manifold?

$$\begin{split} \mathrm{S}^2 \times \mathrm{S}^1 \\ \mathrm{S}^2 = D^2 \cup_\partial D^2 \end{split}$$

 $\mathrm{S}^2 imes \mathrm{S}^1$ $\mathrm{S}^2 = D^2 \cup_\partial D^2$ $\mathrm{S}^2 \times \mathrm{S}^1 = (D^2 \times \mathrm{S}^1) \cup_{\partial} (D^2 \times \mathrm{S}^1)$

$$\begin{split} \mathrm{S}^2 \times \mathrm{S}^1 \\ \mathrm{S}^2 &= D^2 \cup_\partial D^2 \\ \mathrm{S}^2 \times \mathrm{S}^1 &= (D^2 \times \mathrm{S}^1) \cup_\partial (D^2 \times \mathrm{S}^1) \\ & \mathsf{First surgery:} \\ (D^2 \times \mathrm{S}^1) \cup_\partial (S^1 \times D^2) &= \mathrm{S}^3 \end{split}$$

$$\begin{split} \mathrm{S}^2 \times \mathrm{S}^1 \\ \mathrm{S}^2 &= D^2 \cup_\partial D^2 \\ \mathrm{S}^2 \times \mathrm{S}^1 &= (D^2 \times \mathrm{S}^1) \cup_\partial (D^2 \times \mathrm{S}^1) \\ & \text{First surgery:} \\ (D^2 \times \mathrm{S}^1) \cup_\partial (S^1 \times D^2) &= \mathrm{S}^3 \\ & \text{Second surgery:} \\ (S^1 \times D^2) \cup_\partial (S^1 \times D^2) &= \mathrm{S}^1 \times \mathrm{S}^2. \end{split}$$

Same manifold...

$$\begin{split} \mathrm{S}^2 \times \mathrm{S}^1 \\ \mathrm{S}^2 &= D^2 \cup_\partial D^2 \\ \mathrm{S}^2 \times \mathrm{S}^1 &= (D^2 \times \mathrm{S}^1) \cup_\partial (D^2 \times \mathrm{S}^1) \\ & \text{First surgery:} \\ (D^2 \times \mathrm{S}^1) \cup_\partial (S^1 \times D^2) &= \mathrm{S}^3 \\ & \text{Second surgery:} \\ (S^1 \times D^2) \cup_\partial (S^1 \times D^2) &= \mathrm{S}^1 \times \mathrm{S}^2. \end{split}$$

Same manifold... but what if we change S^2 ?

 $\Sigma_g imes \mathrm{S}^1$

Perform two opposite surgeries around $P \times S^1$ and $Q \times S^1$: B_3 -generalized complex structure on...

Theorem (Kneser, ..., Perelman)

The group $\pi_1 M$ determines the 3-manifold M as a connected sum, up to parameters of lens spaces factors.

Theorem (Kneser, ..., Perelman)

The group $\pi_1 M$ determines the 3-manifold M as a connected sum, up to parameters of lens spaces factors.

The resulting manifold is

 $\#^{2g+1}(\mathrm{S}^2\times\mathrm{S}^1)$

Theorem (Kneser, ..., Perelman)

The group $\pi_1 M$ determines the 3-manifold M as a connected sum, up to parameters of lens spaces factors.

The resulting manifold is

 $\#^{2g+1}(\mathrm{S}^2\times\mathrm{S}^1)$

Proposition (folklore+Geiges)

Cosymplectic and nacs manifolds are geometric.

Theorem (Kneser, ..., Perelman)

The group $\pi_1 M$ determines the 3-manifold M as a connected sum, up to parameters of lens spaces factors.

The resulting manifold is

 $\#^{2g+1}(\mathrm{S}^2\times\mathrm{S}^1)$

Proposition (folklore+Geiges)

Cosymplectic and nacs manifolds are geometric.

Hence...

Theorem (Porti, R.)

 $#^{2g+1}(S^2 \times S^1)$ is neither cosymplectic nor nacs but B₃-generalized complex.

Theorem (Kneser, ..., Perelman)

The group $\pi_1 M$ determines the 3-manifold M as a connected sum, up to parameters of lens spaces factors.

The resulting manifold is

 $\#^{2g+1}(\mathrm{S}^2\times\mathrm{S}^1)$

Proposition (folklore+Geiges)

Cosymplectic and nacs manifolds are geometric.

Hence...

Theorem (Porti, R.)

 $#^{2g+1}(S^2 \times S^1)$ is neither cosymplectic nor nacs but B₃-generalized complex.

By repeating the surgeries (in pairs!)

Theorem (Porti, R.)

 $#^{2(g+s)-1}(S^2 \times S^1)$ admits a B₃-generalized complex structure whose type-change locus consists of 2s circles.

Theorem (Porti,R.)

There exist B_3 -generalized complex structures on $N#(\#^{2s-1}S^2 \times S^1)$, $s \ge 1$, where N is obtained from the mapping torus of a punctured surface by a Dehn filling along the S^1 -direction.

Theorem (Porti,R.)

There exist B_3 -generalized complex structures on $N#(\#^{2s-1}S^2 \times S^1)$, $s \ge 1$, where N is obtained from the mapping torus of a punctured surface by a Dehn filling along the S^1 -direction.

• The type-change locus consists of 2s circles, $s \ge 1$.

Theorem (Porti,R.)

There exist B_3 -generalized complex structures on $N#(\#^{2s-1}S^2 \times S^1)$, $s \ge 1$, where N is obtained from the mapping torus of a punctured surface by a Dehn filling along the S^1 -direction.

- The type-change locus consists of 2s circles, $s \ge 1$.
- E.g., N any hyperbolic manifold coming from Dehn filling of $\mathrm{S}^3\setminus \mathit{K}_8$.

• Motivating example: $\mathrm{S}^3 \setminus K_8 \cong M_\psi$, mapping torus of

$$\psi:=egin{pmatrix} 2&1\ 1&1 \end{pmatrix}\in \mathrm{SL}(2,\mathbb{Z})$$
, a diffeomorphism of $\mathcal{T}^2\setminus\{(0,0)\}.$

• Motivating example: $\mathrm{S}^3 \setminus K_8 \cong M_\psi$, mapping torus of

$$\psi := \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \in \mathrm{SL}(2,\mathbb{Z})$$
, a diffeomorphism of $\mathcal{T}^2 \setminus \{(0,0)\}.$

• Find isotopic diffeomorphism that is the identity around (0,0).

• Motivating example: $\mathrm{S}^3 \setminus K_8 \cong M_\psi$, mapping torus of

$$\psi := \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \in \mathrm{SL}(2,\mathbb{Z})$$
, a diffeomorphism of $\mathcal{T}^2 \setminus \{(0,0)\}.$

- Find isotopic diffeomorphism that is the identity around (0,0).
- Perform two or 2s surgeries.

• Motivating example: $\mathrm{S}^3 \setminus {\it K}_8 \cong {\it M}_\psi$, mapping torus of

$$\psi := \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \in \mathrm{SL}(2,\mathbb{Z})$$
, a diffeomorphism of $\mathcal{T}^2 \setminus \{(0,0)\}.$

- Find isotopic diffeomorphism that is the identity around (0,0).
- Perform two or 2s surgeries.
- \bullet Generalize to the mapping torus of a punctured surface by a Dehn filling along the ${\rm S}^1\mbox{-direction}.$

There is an underlying Poisson structure, whose corank is the type.

There is an underlying Poisson structure, whose corank is the type.

I will be in touch before Poisson 2032.

There is an underlying Poisson structure, whose corank is the type.

I will be in touch before Poisson 2032.

Thank you for your attention!

Image and tikz credits: Museo Nacional del Prado, E. Giroux, Wikimedia commons, StefanH, Salman Siddiqi and my own