Generalized geometry for three-manifolds

Roberto Rubio
UAB
Universitat Autònoma de Barcelona

Poisson conference
Madrid, 27 July 2022

Recalling generalized complex geometry via forms

Recalling generalized complex geometry via forms

Complex m-manifold: choose coordinates (z_{i})

Recalling generalized complex geometry via forms

Complex m-manifold:
choose coordinates (z_{i})

$$
\begin{gathered}
\rho=d z_{1} \wedge \ldots \wedge d z_{m} \\
\rho \wedge \bar{\rho} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Recalling generalized complex geometry via forms

Complex m-manifold: choose coordinates (z_{i})

$$
\begin{gathered}
\rho=d z_{1} \wedge \ldots \wedge d z_{m} \\
\rho \wedge \bar{\rho} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Recover $T_{0,1}=\operatorname{Ann} \rho$ (for action $\iota \times \rho$).
It determines J,
the complex structure

Recalling generalized complex geometry via forms

Complex m-manifold: choose coordinates $\left(z_{i}\right)$

On a real $2 m$-manifold: consider locally (pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho=d z_{1} \wedge \ldots \wedge d z_{m} \\
\rho \wedge \bar{\rho} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Recover $T_{0,1}=\operatorname{Ann} \rho$ (for action $\iota \times \rho$).
It determines J,
the complex structure
$\rho \in \Omega_{\mathbb{C}}^{m}$ (dec.)
$\rho \wedge \bar{\rho} \sim$ volume $d \rho=0$

Ann ρ
determines
a complex
structure

Recalling generalized complex geometry via forms

On a real $2 m$-manifold:
consider locally
(pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m} \text { (dec.) } \\
\rho \wedge \bar{\rho} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Ann ρ
determines
a complex
structure

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally (pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m} \text { (dec.) } \\
\rho \wedge \bar{\rho} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

$$
\text { On } S^{2}=\mathbb{C} \cup\{\infty\}
$$

Ann ρ
determines
a complex
structure

$$
\begin{gathered}
d z \text { on } \mathbb{C} \text { and } \\
d(1 / z) \text { on } \mathbb{C}^{*} \cup\{\infty\} \\
\text { differ pointwise by } \mathbb{C}^{*} \\
d(1 / z)=-d z / z^{2}
\end{gathered}
$$

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally
(pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m} \text { (dec.) } \\
\rho \wedge \bar{\rho} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Ann ρ
determines
a complex
structure

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally
(pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m} \text { (dec.) } \\
\rho \wedge \bar{\rho} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Symplectic structure on a $2 m$-manifold M : globally

$$
\begin{gathered}
\omega \in \Omega^{2} \\
\omega^{m} \sim \text { volume } \\
d \omega=0
\end{gathered}
$$

Ann ρ
determines
a complex
structure

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally
(pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m} \text { (dec.) } \\
\rho \wedge \bar{\rho} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Symplectic structure on a $2 m$-manifold M : globally

$$
\begin{gathered}
\rho=e^{i \omega} \in \Omega_{\mathbb{C}}^{\bullet} \\
\omega^{m} \sim \text { volume } \\
d \omega=0
\end{gathered}
$$

Ann ρ
determines
a complex
structure
$e^{i \omega}=1+i \omega-\omega^{2} / 2+\ldots$

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally
(pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m} \text { (dec.) } \\
\rho \wedge \bar{\rho} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Symplectic structure on a $2 m$-manifold M : globally

$$
\begin{gathered}
\rho=e^{i \omega} \in \Omega_{\mathbb{C}}^{\bullet} \\
\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim \text { volume } \\
d \omega=0
\end{gathered}
$$

Ann ρ
determines
a complex
structure

$$
\begin{aligned}
& e^{i \omega}=1+i \omega-\omega^{2} / 2+\ldots \\
& (\alpha \wedge \beta \wedge \gamma)^{T}=\gamma \wedge \beta \wedge \alpha
\end{aligned}
$$

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally
(pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m}(\text { dec. }) \\
\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Symplectic structure on a $2 m$-manifold M : globally

$$
\begin{gathered}
\rho=e^{i \omega} \in \Omega_{\mathbb{C}}^{\bullet} \\
\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim \text { volume } \\
d \omega=0
\end{gathered}
$$

Ann ρ
determines
a complex
structure

$$
\begin{aligned}
& e^{i \omega}=1+i \omega-\omega^{2} / 2+\ldots \\
& (\alpha \wedge \beta \wedge \gamma)^{T}=\gamma \wedge \beta \wedge \alpha
\end{aligned}
$$

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally
(pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m}(\text { dec. }) \\
\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }}^{\sim} \text { volume } \\
d \rho=0
\end{gathered}
$$

Symplectic structure on a $2 m$-manifold M : globally
$\begin{aligned} \rho=e^{i \omega} & \in \Omega_{\mathbb{C}}^{\bullet} \\ \left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} & \sim \text { volume }\end{aligned}$ $d \rho=0$

Ann ρ
determines
a complex
structure

$$
\begin{aligned}
& e^{i \omega}=1+i \omega-\omega^{2} / 2+\ldots \\
& (\alpha \wedge \beta \wedge \gamma)^{T}=\gamma \wedge \beta \wedge \alpha
\end{aligned}
$$

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally
(pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m}(\text { dec. }) \\
\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Ann ρ
determines
a complex
structure

$$
\begin{aligned}
& e^{i \omega}=1+i \omega-\omega^{2} / 2+\ldots \\
& (\alpha \wedge \beta \wedge \gamma)^{T}=\gamma \wedge \beta \wedge \alpha
\end{aligned}
$$

Symplectic structure on a $2 m$-manifold M : globally
$\begin{aligned} \rho=e^{i \omega} & \in \Omega_{\mathbb{C}}^{\bullet} \\ \left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} & \sim \text { volume }\end{aligned}$ $d \rho=0$

Ann $e^{i \omega}=\{0\}$ unsatisfactory

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally (pointwise up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{m}(\text { dec. }) \\
\left(\rho^{\top} \wedge \bar{\rho}\right)_{\text {top }} \sim \text { volume } \\
d \rho=0
\end{gathered}
$$

Ann ρ
determines
a complex structure

Symplectic structure on a $2 m$-manifold M : globally
$\rho=e^{i \omega} \in \Omega_{\mathbb{C}}^{\bullet}$
$\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim$ volume $d \rho=0$

Ann $e^{i \omega}=g r(-i \omega)$ in $\left(T M \oplus T^{*} M\right)_{\mathbb{C}}$ for action
$(X+\alpha) \cdot \rho=\iota_{X} \rho+\alpha \wedge \rho$

$$
\begin{aligned}
& e^{i \omega}=1+i \omega-\omega^{2} / 2+\ldots \\
& (\alpha \wedge \beta \wedge \gamma)^{T}=\gamma \wedge \beta \wedge \alpha
\end{aligned}
$$

Recalling generalized complex geometry via forms

On a real $2 m$-manifold: consider locally (pointwise up to \mathbb{C}^{*})
$\rho \in \Omega_{\mathbb{C}}^{m}(\mathrm{dec}$.
$\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim$ volume
$d \rho=0$
Ann $\rho=T_{0,1} \oplus T_{1,0}^{*}$ (with $\rho=d z_{1} \wedge \ldots \wedge d z_{m}$)
for the same action

Symplectic structure on a $2 m$-manifold M : globally
$\rho=e^{i \omega} \in \Omega_{\mathbb{C}}^{\bullet}$
$\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim$ volume $d \rho=0$

Ann $e^{i \omega}=g r(-i \omega)$ in $\left(T M \oplus T^{*} M\right)_{\mathbb{C}}$ for action
$(X+\alpha) \cdot \rho=\iota_{\chi} \rho+\alpha \wedge \rho$

$$
\begin{aligned}
& e^{i \omega}=1+i \omega-\omega^{2} / 2+\ldots \\
& (\alpha \wedge \beta \wedge \gamma)^{T}=\gamma \wedge \beta \wedge \alpha
\end{aligned}
$$

Recalling generalized complex geometry via forms

generalized complex structure
Defn: locally (up to \mathbb{C}^{*})

$$
\rho \in \Omega_{\mathbb{C}}^{\bullet}
$$

Recalling generalized complex geometry via forms

generalized complex structure
Def ${ }^{n}$: locally (up to \mathbb{C}^{*})

$$
\rho \in \Omega_{\mathbb{C}}^{\bullet}
$$

Ann $\rho \subset\left(T M \oplus T^{*} M\right)_{\mathbb{C}}$
$(X+\alpha) \cdot \rho=\iota \times \rho+\alpha \wedge \rho$

Recalling generalized complex geometry via forms

generalized complex structure
Def ${ }^{n}$: locally (up to \mathbb{C}^{*})

$$
\rho \in \Omega_{\mathbb{C}}^{\bullet}
$$

Ann $\rho \subset\left(T M \oplus T^{*} M\right)_{\mathbb{C}}$
$(X+\alpha) \cdot \rho=\iota \times \rho+\alpha \wedge \rho$
$T_{0,1} \oplus T_{1,0}^{*} \rightsquigarrow$ Ann $\rho « \sim \operatorname{gr}(i \omega)$ maximally isotropic for

$$
\langle X+\alpha, X+\alpha\rangle=\alpha(X)
$$

Recalling generalized complex geometry via forms

generalized complex structure
Def ${ }^{n}$: locally (up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \\
\text { Ann } \rho \subset\left(T M \oplus T^{*} M\right)_{\mathbb{C}} \\
(X+\alpha) \cdot \rho=\iota_{\times \rho} \rho+\alpha \wedge \rho
\end{gathered}
$$

$T_{0,1} \oplus T_{1,0}^{*} \rightsquigarrow$ Ann ρ «~ $\operatorname{gr}(i \omega)$ maximally isotropic for

$$
\begin{gathered}
\langle X+\alpha, X+\alpha\rangle=\alpha(X) \\
\downarrow \text { (pure pointwise) } \\
\begin{array}{l}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
\text { for } B, \omega \in \Omega^{2}, \theta_{j} \in \Omega_{\mathbb{C}}^{1}
\end{array}
\end{gathered}
$$

Recalling generalized complex geometry via forms

generalized complex structure
Def ${ }^{n}$: locally (up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \\
\text { Ann } \rho \subset\left(T M \oplus T^{*} M\right)_{\mathbb{C}} \\
(X+\alpha) \cdot \rho=\iota_{\times \rho} \rho+\alpha \wedge \rho
\end{gathered}
$$

$$
T_{0,1} \oplus T_{1,0}^{*} \rightsquigarrow \operatorname{Ann} \rho « \operatorname{gr}(i \omega)
$$ maximally isotropic for

$$
\begin{gathered}
\langle X+\alpha, X+\alpha\rangle=\alpha(X) \\
\downarrow \text { (pure pointwise) } \\
\begin{array}{l}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
\text { for } B, \omega \in \Omega^{2}, \theta_{j} \in \Omega_{\mathbb{C}}^{1}
\end{array}
\end{gathered}
$$

$\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim$ volume
Ann $\rho \cap \frac{\downarrow(\text { real index z }}{\text { Ann } \rho}=\{0\}$

Recalling generalized complex geometry via forms

generalized complex structure
Def ${ }^{n}$: locally (up to \mathbb{C}^{*})

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \\
\text { Ann } \rho \subset\left(T M \oplus T^{*} M\right)_{\mathbb{C}} \\
(X+\alpha) \cdot \rho=\iota_{\chi \rho}+\alpha \wedge \rho
\end{gathered}
$$

$$
\begin{gathered}
T_{0,1} \oplus T_{1,0}^{*} \rightsquigarrow \text { Ann } \rho \rightsquigarrow \operatorname{gr}(i \omega) \\
\text { maximally isotropic for } \\
\langle X+\alpha, X+\alpha\rangle=\alpha(X) \\
\downarrow \text { (pure pointwise) } \\
\begin{array}{c}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
\text { for } B, \omega \in \Omega^{2}, \theta_{j} \in \Omega_{\mathbb{C}}^{1}
\end{array}
\end{gathered}
$$

$\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim$ volume
\downarrow (real index zero)
Ann $\rho \cap \overline{\operatorname{Ann} \rho}=\{0\}$

$$
(\rho, \bar{\rho}):=\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }}
$$

$$
(\rho, \bar{\rho}) \sim \text { volume }
$$

Recalling generalized complex geometry via forms

generalized complex structure
Def ${ }^{n}$: locally (up to \mathbb{C}^{*})

$$
\rho \in \Omega_{\mathbb{C}}^{\bullet}
$$

Ann $\rho \subset\left(T M \oplus T^{*} M\right)_{\mathbb{C}}$
$(X+\alpha) \cdot \rho=\iota \times \rho+\alpha \wedge \rho$

$$
\begin{gathered}
T_{0,1} \oplus T_{1,0}^{*} \rightsquigarrow \text { Ann } \rho \rightsquigarrow \operatorname{gr}(i \omega) \\
\text { maximally isotropic for } \\
\langle X+\alpha, X+\alpha\rangle=\alpha(X) \\
\downarrow \text { (pure pointwise) } \\
\begin{array}{c}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
\text { for } B, \omega \in \Omega^{2}, \theta_{j} \in \Omega_{\mathbb{C}}^{1}
\end{array}
\end{gathered}
$$

$\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim$ volume

$$
\text { Ann } \rho \cap \frac{\mathfrak{i} \text { (real index z }}{\operatorname{Ann} \rho}=\{0\}
$$

$$
(\rho, \bar{\rho}):=\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }}
$$

$$
(\rho, \bar{\rho}) \sim \text { volume }
$$

Recalling generalized complex geometry via forms

generalized complex structure
Def ${ }^{n}$: locally (up to \mathbb{C}^{*})

$$
\rho \in \Omega_{\mathbb{C}}^{\bullet}
$$

Ann $\rho \subset\left(T M \oplus T^{*} M\right)_{\mathbb{C}}$
$(X+\alpha) \cdot \rho=\iota \times \rho+\alpha \wedge \rho$

$$
\begin{gathered}
T_{0,1} \oplus T_{1,0}^{*} \rightsquigarrow \text { Ann } \rho \rightsquigarrow \operatorname{gr}(i \omega) \\
\text { maximally isotropic for } \\
\langle X+\alpha, X+\alpha\rangle=\alpha(X) \\
\downarrow \text { (pure pointwise) } \\
\begin{array}{c}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
\text { for } B, \omega \in \Omega^{2}, \theta_{j} \in \Omega_{\mathbb{C}}^{1}
\end{array}
\end{gathered}
$$

$\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }} \sim$ volume

$$
\text { Ann } \rho \cap \frac{\mathfrak{i} \text { (real index z }}{\operatorname{Ann} \rho}=\{0\}
$$

$$
(\rho, \bar{\rho}):=\left(\rho^{T} \wedge \bar{\rho}\right)_{\text {top }}
$$

$$
(\rho, \bar{\rho}) \sim \text { volume }
$$

$$
\begin{gathered}
d \rho=0 \\
\downarrow
\end{gathered}
$$

Ann ρ involutive for Dorfman

$$
[X+\alpha, Y+\beta]=[X, Y]+L_{X} \beta-\iota_{Y} d \alpha
$$

\uparrow (integrable)
$d \rho=v \cdot \rho$ for $v=X+\alpha$

Behind the scenes

$$
K=\langle\rho\rangle \subset \wedge^{\bullet} T_{\mathbb{C}}^{*} M \text { line bundle }
$$

Behind the scenes

$$
K=\langle\rho\rangle \subset \wedge^{\bullet} T_{\mathbb{C}}^{*} M \text { line bundle }
$$

$$
\begin{gathered}
(X+\alpha) \cdot \rho=\iota_{X} \rho+\alpha \wedge \rho \\
(X+\alpha)^{2} \cdot \rho=\alpha(X) \rho
\end{gathered}
$$

$\wedge^{\bullet} T_{\mathbb{C}}^{*} M$ is a $\mathrm{Cl}_{\mathbb{C}}\left(T M \oplus T^{*} M\right)$-module
\approx spinor representation, ($\rho, \bar{\rho}) \approx$ pairing on spinors

Behind the scenes

$$
K=\langle\rho\rangle \subset \wedge^{\bullet} T_{\mathbb{C}}^{*} M \text { line bundle }
$$

$$
\begin{gathered}
(X+\alpha) \cdot \rho=\iota_{X} \rho+\alpha \wedge \rho \\
(X+\alpha)^{2} \cdot \rho=\alpha(X) \rho
\end{gathered}
$$

$\wedge^{\bullet} T_{\mathbb{C}}^{*} M$ is a $\mathrm{Cl}_{\mathbb{C}}\left(T M \oplus T^{*} M\right)$-module
\approx spinor representation, $(\rho, \bar{\rho}) \approx$ pairing on spinors

$$
\begin{gathered}
L:=\text { Ann } \rho \\
\text { complex Dirac structure } \\
\left(\text { Courant algebroid }\left(T M \oplus T^{*} M\right)_{\mathbb{C}}\right) \\
\text { such that } L \cap \bar{L}=\{0\}
\end{gathered}
$$

References: Hitchin'03, Gualtieri'04/11, Alekseev-Bursztyn-Meinrenken'09

The type and a third example

$$
\begin{gathered}
\text { Definition of type: } r . \\
\rho=d z_{1} \wedge \ldots \wedge d z_{m}(\text { type } m) \\
\rho=e^{i \omega}=1+i \omega+\ldots(\text { type } 0)
\end{gathered}
$$

$$
\begin{aligned}
\rho=e^{B+i \omega} & \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho & =v \cdot \rho \\
(\rho, \bar{\rho}) & \sim \text { volume }
\end{aligned}
$$

The type and a third example

$$
\begin{gathered}
\text { Definition of type: } r . \\
\rho=d z_{1} \wedge \ldots \wedge d z_{m}(\text { type } m) \\
\rho=e^{i \omega}=1+i \omega+\ldots(\text { type } 0)
\end{gathered}
$$

$$
\begin{aligned}
\rho=e^{B+i \omega} & \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho & =v \cdot \rho \\
(\rho, \bar{\rho}) & \sim \text { volume }
\end{aligned}
$$

On $\mathbb{R}^{4} \cong \mathbb{C}^{2}$, with complex coordinates (z, w),

$$
\rho=z+d z \wedge d w
$$

The type and a third example

Definition of type: r.

$$
\begin{gathered}
\rho=d z_{1} \wedge \ldots \wedge d z_{m}(\text { type } m) \\
\rho=e^{i \omega}=1+i \omega+\ldots(\text { type } 0)
\end{gathered}
$$

$$
\begin{aligned}
\rho=e^{B+i \omega} & \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho & =v \cdot \rho \\
(\rho, \bar{\rho}) & \sim \text { volume }
\end{aligned}
$$

On $\mathbb{R}^{4} \cong \mathbb{C}^{2}$, with complex coordinates (z, w),

$$
\begin{gathered}
\rho=z+d z \wedge d w \\
(\rho, \bar{\rho})=\left[(z+d z \wedge d w)^{T} \wedge(\bar{z}+d \bar{z} \wedge d \bar{w})\right]_{\text {top }} \\
=d w \wedge d z \wedge d \bar{z} \wedge d \bar{w} \sim \text { volume }
\end{gathered}
$$

The type and a third example

Definition of type: r.

$$
\begin{gathered}
\rho=d z_{1} \wedge \ldots \wedge d z_{m}(\text { type } m) \\
\rho=e^{i \omega}=1+i \omega+\ldots(\text { type } 0)
\end{gathered}
$$

$$
\begin{aligned}
\rho=e^{B+i \omega} & \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho & =v \cdot \rho \\
(\rho, \bar{\rho}) & \sim \text { volume }
\end{aligned}
$$

On $\mathbb{R}^{4} \cong \mathbb{C}^{2}$, with complex coordinates (z, w),

$$
\begin{gathered}
\rho=z+d z \wedge d w \\
(\rho, \bar{\rho})=\left[(z+d z \wedge d w)^{T} \wedge(\bar{z}+d \bar{z} \wedge d \bar{w})\right]_{\text {top }} \\
=d w \wedge d z \wedge d \bar{z} \wedge d \bar{w} \sim \text { volume } \\
d \rho=d z=\left(-\frac{\partial}{\partial w}+0\right) \cdot \rho
\end{gathered}
$$

The type and a third example

Definition of type: r.

$$
\begin{gathered}
\rho=d z_{1} \wedge \ldots \wedge d z_{m}(\text { type } m) \\
\rho=e^{i \omega}=1+i \omega+\ldots(\text { type } 0)
\end{gathered}
$$

$$
\begin{aligned}
\rho=e^{B+i \omega} & \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho & =v \cdot \rho \\
(\rho, \bar{\rho}) & \sim \text { volume }
\end{aligned}
$$

On $\mathbb{R}^{4} \cong \mathbb{C}^{2}$, with complex coordinates (z, w),

$$
\left.\begin{array}{c}
\rho=z+d z \wedge d w \\
\begin{array}{rl}
(\rho, \bar{\rho})=\left[(z+d z \wedge d w)^{T} \wedge(\bar{z}+d \bar{z} \wedge d \bar{w})\right]_{\text {top }} \\
=d w \wedge d z \wedge d \bar{z} \wedge d \bar{w} \sim \text { volume }
\end{array} \\
d \rho=d z=\left(-\frac{\partial}{\partial w}+0\right) \cdot \rho
\end{array}\right\}
$$

The type and a third example

Definition of type: r.

$$
\begin{gathered}
\rho=d z_{1} \wedge \ldots \wedge d z_{m}(\text { type } m) \\
\rho=e^{i \omega}=1+i \omega+\ldots(\text { type } 0)
\end{gathered}
$$

$$
\begin{aligned}
\rho=e^{B+i \omega} & \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho & =v \cdot \rho \\
(\rho, \bar{\rho}) & \sim \text { volume }
\end{aligned}
$$

On $\mathbb{R}^{4} \cong \mathbb{C}^{2}$, with complex coordinates (z, w),

$$
\begin{gathered}
\rho=z+d z \wedge d w \\
\begin{aligned}
&(\rho, \bar{\rho})=\left[(z+d z \wedge d w)^{T} \wedge(\bar{z}+d \bar{z} \wedge d \bar{w})\right]_{\text {top }} \\
&=d w \wedge d z \wedge d \bar{z} \wedge d \bar{w} \sim \text { volume }
\end{aligned} \\
d \rho=d z=\left(-\frac{\partial}{\partial w}+0\right) \cdot \rho \\
\text { Pure: } \\
\\
\\
z \neq 0, \rho \sim 1+\frac{d z \wedge d w}{z}=e^{\frac{d z \wedge d w}{z}}, \text { pure of type } 0 \\
z=0, \rho=d z \wedge d w, \text { pure of type } 2
\end{gathered}
$$

Some considerations

$$
\begin{aligned}
\rho=e^{B+i \omega} & \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho & =v \cdot \rho \\
(\rho, \bar{\rho}) & \sim \text { volume }
\end{aligned}
$$

Some considerations

$$
\begin{gathered}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ is a symmetry for B closed (a B-field). E.g., $e^{B+i \omega} \cong e^{i \omega}$ $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)$ (Courant algebroid automorphisms)

Some considerations

$$
\begin{gathered}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ is a symmetry for B closed (a B-field). E.g., $e^{B+i \omega} \cong e^{i \omega}$ $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions

Some considerations

$$
\begin{gathered}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ is a symmetry for B closed (a B-field). E.g., $e^{B+i \omega} \cong e^{i \omega}$ $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions
- ρ has a parity, $\quad \rho=\rho_{0}+\rho_{2}+\ldots \quad$ or $\quad \rho=\rho_{1}+\rho_{3}+\ldots$

Some considerations

$$
\begin{gathered}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ is a symmetry for B closed (a B-field). E.g., $e^{B+i \omega} \cong e^{i \omega}$ $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions
- ρ has a parity, $\quad \rho=\rho_{0}+\rho_{2}+\ldots \quad$ or $\quad \rho=\rho_{1}+\rho_{3}+\ldots$
- Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0$ \& when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.

Some considerations

$$
\begin{gathered}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ is a symmetry for B closed (a B-field). E.g., $e^{B+i \omega} \cong e^{i \omega}$ $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions
- ρ has a parity, $\quad \rho=\rho_{0}+\rho_{2}+\ldots \quad$ or $\quad \rho=\rho_{1}+\rho_{3}+\ldots$
- Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0$ \& when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
- Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.

Some considerations

$$
\begin{gathered}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ is a symmetry for B closed (a B-field). E.g., $e^{B+i \omega} \cong e^{i \omega}$ $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions
- ρ has a parity, $\quad \rho=\rho_{0}+\rho_{2}+\ldots \quad$ or $\quad \rho=\rho_{1}+\rho_{3}+\ldots$
- Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0$ \& when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
- Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.
- Type-change only possible for $\operatorname{dim} M \geq 4$.

Why are you telling us all this in a talk about 3-manifolds?

Why are you telling us all this in a talk about 3-manifolds?

Another generalized geometry is possible.

Nigel Hitchin - Generalized geometry of type B_n

- "extended" generalized geometry on M^{n}
- $T \oplus 1 \oplus T^{*}$
- inner product $(X+\lambda+\xi, X+\lambda+\xi)=i_{X} \xi+\lambda^{2}$
- $S O(n+1, n)$-structure - type B_{n}

B_{n}-generalized complex geometry

A B_{n}-generalized complex structure is a complex Dirac structure of (the Courant algebroid) $T M \oplus 1 \oplus T^{*} M$, with $1=M \times \mathbb{R}$.

B_{n}-generalized complex geometry

A B_{n}-generalized complex structure is a complex Dirac structure of (the Courant algebroid) $T M \oplus 1 \oplus T^{*} M$, with $1=M \times \mathbb{R}$.

As a differential form, the same:

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \text { pure } \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

B_{n}-generalized complex geometry

A B_{n}-generalized complex structure is a complex Dirac structure of (the Courant algebroid) $T M \oplus 1 \oplus T^{*} M$, with $1=M \times \mathbb{R}$.

As a differential form, the same:

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \text { pure } \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

Pure means:

$$
\begin{gathered}
\rho=\quad e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
, \theta_{j} \in \Omega_{\mathbb{C}}^{1}
\end{gathered}
$$

B_{n}-generalized complex geometry

A B_{n}-generalized complex structure is a complex Dirac structure of (the Courant algebroid) $T M \oplus 1 \oplus T^{*} M$, with $1=M \times \mathbb{R}$.

As a differential form, the same:

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \text { pure } \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume. }
\end{gathered}
$$

Pure now means:

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau \wedge} e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
B, \omega \in \Omega^{2}, A, \sigma \in \Omega^{1}, \theta_{j} \in \Omega_{\mathbb{C}}^{1} \\
\text { with } \tau(\varphi)=(-1)^{\operatorname{deg}(\varphi)} \varphi
\end{gathered}
$$

B_{n}-generalized complex geometry

A B_{n}-generalized complex structure is a complex Dirac structure of (the Courant algebroid) $T M \oplus 1 \oplus T^{*} M$, with $1=M \times \mathbb{R}$.

As a differential form, the same:

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \text { pure } \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume. }
\end{gathered}
$$

Pure now means:

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau \wedge} e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
B, \omega \in \Omega^{2}, A, \sigma \in \Omega^{1}, \theta_{j} \in \Omega_{\mathbb{C}}^{1} \\
\text { with } \tau(\varphi)=(-1)^{\operatorname{deg}(\varphi)} \varphi
\end{gathered}
$$

and $v=X+f+\alpha$ acting by $\iota X \rho+f \tau \rho+\alpha \wedge \rho$.

B_{n}-generalized complex geometry

A B_{n}-generalized complex structure is a complex Dirac structure of (the Courant algebroid) $T M \oplus 1 \oplus T^{*} M$, with $1=M \times \mathbb{R}$.

As a differential form, the same:

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \text { pure } \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume. }
\end{gathered}
$$

Pure now means:

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau \wedge} e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
B, \omega \in \Omega^{2}, A, \sigma \in \Omega^{1}, \theta_{j} \in \Omega_{\mathbb{C}}^{1} \\
\text { with } \tau(\varphi)=(-1)^{\operatorname{deg}(\varphi)} \varphi
\end{gathered}
$$

and $v=X+f+\alpha$ acting by $\iota X \rho+f \tau \rho+\alpha \wedge \rho$.

B_{n}-generalized complex geometry

A B_{n}-generalized complex structure is a complex Dirac structure of (the Courant algebroid) $T M \oplus 1 \oplus T^{*} M$, with $1=M \times \mathbb{R}$.

As a differential form, the same:

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \text { pure } \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume. }
\end{gathered}
$$

Pure now means:

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau \wedge} e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
B, \omega \in \Omega^{2}, A, \sigma \in \Omega^{1}, \theta_{j} \in \Omega_{\mathbb{C}}^{1} \\
\text { with } \tau(\varphi)=(-1)^{\operatorname{deg}(\varphi)} \varphi
\end{gathered}
$$

and $v=X+f+\alpha$ acting by $\iota X \rho+f \tau \rho+\alpha \wedge \rho$.
Example: any usual generalized complex is B_{n}-generalized.

Some considerations

$$
\begin{gathered}
\rho=e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ is a symmetry for B closed (a B-field). $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions
- ρ has a parity, $\quad \rho=\rho_{0}+\rho_{2}+\ldots \quad$ or $\quad \rho_{=} \rho_{1}+\rho_{3}+\ldots$
- Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0 \&$ when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
- Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.
- Type-change only possible for $\operatorname{dim} M \geq 4$.

Some B_{n}-considerations

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau} \wedge e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ is a symmetry for B closed (a B-field). $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions
- ρ has a parity, $\quad \rho=\rho_{0}+\rho_{2}+\ldots \quad$ or $\quad \rho_{=} \rho_{1}+\rho_{3}+\ldots$
- Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0 \&$ when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
- Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.
- Type-change only possible for $\operatorname{dim} M \geq 4$.

Some B_{n}-considerations

$$
\begin{aligned}
& \rho=e^{(A+i \sigma) \tau} \wedge e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
& d \rho=v \cdot \rho \\
& (\rho, \bar{\rho}) \sim \text { volume }
\end{aligned}
$$

- $e^{B} \wedge$ and $e^{A \tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2+1}(M)$ (Courant algebroid automorphisms)
- Constraint: generalized complex \rightarrow almost complex \rightarrow even dimensions
- ρ has a parity, $\quad \rho=\rho_{0}+\rho_{2}+\ldots \quad$ or $\quad \rho_{=} \rho_{1}+\rho_{3}+\ldots$
- Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0 \&$ when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
- Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.
- Type-change only possible for $\operatorname{dim} M \geq 4$.

Some B_{n}-considerations

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau} \wedge e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ and $e^{A \tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_{n}-generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has a parity, $\quad \rho=\rho_{0}+\rho_{2}+\ldots \quad$ or $\quad \rho_{=} \rho_{1}+\rho_{3}+\ldots$
- Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0 \&$ when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
- Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.
- Type-change only possible for $\operatorname{dim} M \geq 4$.

Some B_{n}-considerations

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau} \wedge e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ and $e^{A \tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_{n}-generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\quad \rho=\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3}+\ldots$
- Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0 \&$ when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
- Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.
- Type-change only possible for $\operatorname{dim} M \geq 4$.

Some B_{n}-considerations

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau} \wedge e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ and $e^{A \tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_{n}-generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\quad \rho=\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3}+\ldots$
\checkmark Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0 \&$ when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
- Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.
- Type-change only possible for $\operatorname{dim} M \geq 4$.

Some B_{n}-considerations

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau} \wedge e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ and $e^{A \tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_{n}-generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\quad \rho=\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3}+\ldots$
\checkmark Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0 \&$ when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
\checkmark Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.
- Type-change only possible for $\operatorname{dim} M \geq 4$.

Some B_{n}-considerations

$$
\begin{gathered}
\rho=e^{(A+i \sigma) \tau} \wedge e^{B+i \omega} \wedge \theta_{1} \wedge \ldots \wedge \theta_{r} \\
d \rho=v \cdot \rho \\
(\rho, \bar{\rho}) \sim \text { volume }
\end{gathered}
$$

- $e^{B} \wedge$ and $e^{A \tau} \wedge$ are symmetries for B and A closed (B and A fields). $\operatorname{GDiff}(M)=\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2+1}(M)$ (Courant algebroid automorphisms)
- B_{n}-generalized complex \rightarrow almost complex/contact \rightarrow any dimension
- ρ has NO parity, $\quad \rho=\rho_{0}+\rho_{1}+\rho_{2}+\rho_{3}+\ldots$
\checkmark Type may change! We focus on stable structures (include log-Poisson): generically $\rho_{0} \neq 0 \&$ when $\rho_{0}(p)=0, d \rho_{0}(p) \neq 0$.
\checkmark Type-change locus $\left\{p \in M: \rho_{0}(p)=0\right\}$ codimension-2 submanifold.
- Type change already possible for $\operatorname{dim} M=2,3 \ldots$.

Examples in odd dimensions

- Cosymplectic structure: $\omega \in \Omega_{c l}^{2}, \gamma \in \Omega_{c l}^{1}$ such that $\gamma \wedge \omega^{m} \sim$ volume

$$
\rho=e^{i \gamma+i \omega}=1+i \gamma+i \omega-\gamma \wedge \omega \ldots
$$

Examples in odd dimensions

- Cosymplectic structure: $\omega \in \Omega_{c l}^{2}, \gamma \in \Omega_{c l}^{1}$ such that $\gamma \wedge \omega^{m} \sim$ volume

$$
\rho=e^{i \gamma+i \omega}=1+i \gamma+i \omega-\gamma \wedge \omega \ldots
$$

- Almost contact structure: vector field $Y, \eta \in \Omega^{1}, J \in \operatorname{End}(T)$ satisfying

$$
\iota_{Y} \eta=1, \quad J^{2}=-I d+Y \otimes \eta
$$

Examples in odd dimensions

- Cosymplectic structure: $\omega \in \Omega_{c l}^{2}, \gamma \in \Omega_{c l}^{1}$ such that $\gamma \wedge \omega^{m} \sim$ volume

$$
\rho=e^{i \gamma+i \omega}=1+i \gamma+i \omega-\gamma \wedge \omega \ldots
$$

- Almost contact structure: vector field $Y, \eta \in \Omega^{1}, J \in \operatorname{End}(T)$ satisfying

$$
\iota_{Y} \eta=1, \quad J^{2}=-I d+Y \otimes \eta
$$

Normal (nacs) when the almost complex structure on $M \times \mathbb{R}$ is integrable.

$$
\left.\rho=e^{i \eta} \wedge \Omega=\Omega+(-1)^{m} i \eta \wedge \Omega \quad \text { (with } \Omega \approx(m, 0) \text {-form }\right)
$$

Examples in odd dimensions

- Cosymplectic structure: $\omega \in \Omega_{c l}^{2}, \gamma \in \Omega_{c l}^{1}$ such that $\gamma \wedge \omega^{m} \sim$ volume

$$
\rho=e^{i \gamma+i \omega}=1+i \gamma+i \omega-\gamma \wedge \omega \ldots
$$

- Almost contact structure: vector field $Y, \eta \in \Omega^{1}, J \in \operatorname{End}(T)$ satisfying

$$
\iota_{Y} \eta=1, \quad J^{2}=-I d+Y \otimes \eta
$$

Normal (nacs) when the almost complex structure on $M \times \mathbb{R}$ is integrable.

$$
\rho=e^{i \eta} \wedge \Omega=\Omega+(-1)^{m} i \eta \wedge \Omega \quad \text { (with } \Omega \approx(m, 0) \text {-form) }
$$

- On $\mathbb{C} \times \mathbb{R}$ with coordinates (z, t),

$$
\rho=z+d z+i d z \wedge d t
$$

Even dimensions

Even dimensions

Odd dimensions

almost complex

Odd dimensions

almost complex

Odd dimensions

Odd dimensions

Odd dimensions

Odd dimensions

Let us try first on 3-manifolds (compact from now on)

Let us try first on 3-manifolds (compact from now on) Idea: how to obtain $3 \mathbb{C} P^{2} \# 19 \overline{\mathbb{C}} P^{2}$ [Cavalcanti, Gualtieri'07,09]:

Let us try first on 3-manifolds (compact from now on)

Idea: how to obtain $3 \mathbb{C} P^{2} \# 19 \overline{\mathbb{C} P^{2}}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho=z+d z \wedge d w$ on \mathbb{C}^{2}, invariant by translation on w, define it on

$$
D^{2} \times T^{2} \subset \mathbb{C} \times T^{2}=\mathbb{C} \times \mathbb{C} / \mathbb{Z}^{2} .
$$

Let us try first on 3-manifolds (compact from now on)

Idea: how to obtain $3 \mathbb{C} P^{2} \# 19 \overline{\mathbb{C} P^{2}}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho=z+d z \wedge d w$ on \mathbb{C}^{2}, invariant by translation on w, define it on

$$
D^{2} \times T^{2} \subset \mathbb{C} \times T^{2}=\mathbb{C} \times \mathbb{C} / \mathbb{Z}^{2}
$$

Take certain symplectic 4-manifold, remove a normal neighbourhood of a torus and glue $D^{2} \times T^{2}$ with $z+d z \wedge d w$ along the neck (Annulus $\times T^{2}$):

Let us try first on 3-manifolds (compact from now on)

 Idea: how to obtain $3 \mathbb{C} P^{2} \# 19 \overline{\mathbb{C} P^{2}}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho=z+d z \wedge d w$ on \mathbb{C}^{2}, invariant by translation on w, define it on$$
D^{2} \times T^{2} \subset \mathbb{C} \times T^{2}=\mathbb{C} \times \mathbb{C} / \mathbb{Z}^{2}
$$

Take certain symplectic 4-manifold, remove a normal neighbourhood of a torus and glue $D^{2} \times T^{2}$ with $z+d z \wedge d w$ along the neck (Annulus $\times T^{2}$):

$$
\begin{aligned}
\left(\text { Annulus } \times T^{2}, \omega\right) & \rightarrow\left(\text { Annulus } \times T^{2}, z+d z \wedge d w\right) \\
\quad " \psi\left(r, \theta_{1}, \theta_{2}, \theta_{3}\right) & =\left(\sqrt{\log e r^{2}}, \theta_{3}, \theta_{2},-\theta_{1}\right)^{\prime \prime}
\end{aligned}
$$

Let us try first on 3-manifolds (compact from now on)

 Idea: how to obtain $3 \mathbb{C} P^{2} \# 19 \overline{\mathbb{C} P^{2}}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho=z+d z \wedge d w$ on \mathbb{C}^{2}, invariant by translation on w, define it on$$
D^{2} \times T^{2} \subset \mathbb{C} \times T^{2}=\mathbb{C} \times \mathbb{C} / \mathbb{Z}^{2}
$$

Take certain symplectic 4-manifold, remove a normal neighbourhood of a torus and glue $D^{2} \times T^{2}$ with $z+d z \wedge d w$ along the neck (Annulus $\times T^{2}$):

$$
\begin{aligned}
\left(\text { Annulus } \times T^{2}, \omega\right) & \rightarrow\left(\text { Annulus } \times T^{2}, z+d z \wedge d w\right) \\
\quad " \psi\left(r, \theta_{1}, \theta_{2}, \theta_{3}\right) & =\left(\sqrt{\log e r^{2}}, \theta_{3}, \theta_{2},-\theta_{1}\right)^{\prime \prime}
\end{aligned}
$$

The variable θ_{2} is a dummy variable,

Let us try first on 3-manifolds (compact from now on)

 Idea: how to obtain $3 \mathbb{C} P^{2} \# 19 \overline{\mathbb{C} P^{2}}$ [Cavalcanti, Gualtieri'07,09]: Take $\rho=z+d z \wedge d w$ on \mathbb{C}^{2}, invariant by translation on w, define it on$$
D^{2} \times T^{2} \subset \mathbb{C} \times T^{2}=\mathbb{C} \times \mathbb{C} / \mathbb{Z}^{2}
$$

Take certain symplectic 4-manifold, remove a normal neighbourhood of a torus and glue $D^{2} \times T^{2}$ with $z+d z \wedge d w$ along the neck (Annulus $\times T^{2}$):

$$
\begin{aligned}
& \left(\text { Annulus } \times T^{2}, \omega\right) \rightarrow\left(\text { Annulus } \times T^{2}, z+d z \wedge d w\right) \\
& \quad " \psi\left(r, \theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\sqrt{\log e r^{2}}, \theta_{3}, \theta_{2},-\theta_{1}\right)^{\prime \prime}
\end{aligned}
$$

The variable θ_{2} is a dummy variable, We can do the same for 3 -manifolds and $D^{2} \times S^{1}$!

Surgery on $D^{2} \times S^{1}\left(\right.$ after $\mathcal{C}_{\log }^{\infty}$-transform and [CG'07,09] $)$

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Surgery on $D^{2} \times S^{1}\left(\right.$ after $\mathcal{C}_{\log }^{\infty}$-transform and [CG'07,09] $)$

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos \varphi, \psi=s \sin \varphi$.

$$
1+i d t+i s d s \wedge d \varphi-\ldots
$$

Surgery on $D^{2} \times S^{1}\left(\right.$ after $\mathcal{C}_{\log }^{\infty}$-transform and [CG'07,09] $)$

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos \varphi, \psi=s \sin \varphi$.

$$
1+i d t+i s d s \wedge d \varphi-\ldots
$$

$\mathcal{C}_{\text {log }}^{\infty}$-transform $r=e^{s^{2} / 2} \rightarrow d \log r=s d s$

$$
1+i d t+i d \log r \wedge d \varphi-\ldots
$$

Surgery on $D^{2} \times S^{1}\left(\right.$ after $\mathcal{C}_{\log }^{\infty}$-transform and [CG'07,09] $)$

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos \varphi, \psi=s \sin \varphi$.

$$
1+i d t+i s d s \wedge d \varphi-\ldots
$$

$\mathcal{C}_{\text {log }}^{\infty}$-transform $r=e^{s^{2} / 2} \rightarrow d \log r=s d s$

$$
1+i d t+i d \log r \wedge d \varphi-\ldots
$$

We act by A-field $d \log r$

$$
1+d \log r+i d t+i d \log r \wedge(d \varphi-d t)-\ldots
$$

Surgery on $D^{2} \times S^{1}\left(\right.$ after $\mathcal{C}_{\log ^{\infty}}^{\infty}$-transform and [CG'07,09] $)$

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos \varphi, \psi=s \sin \varphi$.

$$
1+i d t+i s d s \wedge d \varphi-\ldots
$$

$\mathcal{C}_{\text {log }}^{\infty}$-transform $r=e^{s^{2} / 2} \rightarrow d \log r=s d s$

$$
1+i d t+i d \log r \wedge d \varphi-\ldots
$$

We act by A-field $d \log r$

$$
1+d \log r+i d t+i d \log r \wedge(d \varphi-d t)-\ldots
$$

Act by a B-field $d \varphi \wedge d t$

$$
1+d \log r+i d t+i(d \log r+i d t) \wedge(d \varphi-d t)
$$

Surgery on $D^{2} \times S^{1}\left(\right.$ after $\mathcal{C}_{\log ^{\infty}}^{\infty}$-transform and [CG'07,09] $)$

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos \varphi, \psi=s \sin \varphi$.

$$
1+i d t+i s d s \wedge d \varphi-\ldots
$$

$\mathcal{C}_{\text {log }}^{\infty}$-transform $r=e^{s^{2} / 2} \rightarrow d \log r=s d s$

$$
1+i d t+i d \log r \wedge d \varphi-\ldots
$$

We act by A-field $d \log r$

$$
1+d \log r+i d t+i d \log r \wedge(d \varphi-d t)-\ldots
$$

Act by a B-field $d \varphi \wedge d t$

$$
1+d \log r+i d t+i(d \log r+i d t) \wedge(d \varphi-d t)
$$

Define $z=r e^{i t}, \sigma=\varphi-t$, and multiply by z :

$$
z+d z+i d z \wedge d \sigma
$$

On the other hand...

Theorem (Hitchin,R.)
The type-change locus cannot be a single circle.

On the other hand...

Theorem (Hitchin,R.)
The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, t) such that:

$$
\rho=z+\lambda d z+\mu d z \wedge d t+\varepsilon d z \wedge d \bar{z}
$$

with $\lambda \in \mathbb{C}^{*}, \mu \in \mathrm{~S}^{1} / \mathbb{Z}_{2}, \varepsilon \in\{0,1\}$, and C corresponding to $z=0$.

On the other hand...

Theorem (Hitchin,R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, t) such that:

$$
\rho=z+\lambda d z+\mu d z \wedge d t+\varepsilon d z \wedge d \bar{z}
$$

with $\lambda \in \mathbb{C}^{*}, \mu \in \mathrm{~S}^{1} / \mathbb{Z}_{2}, \varepsilon \in\{0,1\}$, and C corresponding to $z=0$.
Proof (theorem): Assume C is the only type-change: ρ_{2} / ρ_{0} is well defined on $M \backslash C$.

On the other hand...

Theorem (Hitchin,R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, t) such that:

$$
\rho=z+\lambda d z+\mu d z \wedge d t+\varepsilon d z \wedge d \bar{z}
$$

with $\lambda \in \mathbb{C}^{*}, \mu \in S^{1} / \mathbb{Z}_{2}, \varepsilon \in\{0,1\}$, and C corresponding to $z=0$.
Proof (theorem): Assume C is the only type-change: ρ_{2} / ρ_{0} is well defined on $M \backslash C$. Tubular neighbourhood $N_{C}, \iota: N_{C} \backslash C \rightarrow M \backslash C$,

$$
\int_{\partial N_{C}} \iota^{*}\left(\rho_{2} / \rho_{0}\right)=\int_{\partial N_{C}} \iota^{*}\left(\mu \frac{d z}{z} \wedge d t\right)=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mu d \theta \wedge d t=4 \pi^{2} \mu \neq 0
$$

On the other hand...

Theorem (Hitchin,R.)

The type-change locus cannot be a single circle.

Lemma (R.)

Around a type-change circle C, we can find coordinates (z, t) such that:

$$
\rho=z+\lambda d z+\mu d z \wedge d t+\varepsilon d z \wedge d \bar{z}
$$

with $\lambda \in \mathbb{C}^{*}, \mu \in S^{1} / \mathbb{Z}_{2}, \varepsilon \in\{0,1\}$, and C corresponding to $z=0$.
Proof (theorem): Assume C is the only type-change: ρ_{2} / ρ_{0} is well defined on $M \backslash C$. Tubular neighbourhood $N_{C}, \iota: N_{C} \backslash C \rightarrow M \backslash C$,

$$
\int_{\partial N_{C}} \iota^{*}\left(\rho_{2} / \rho_{0}\right)=\int_{\partial N_{C}} \iota^{*}\left(\mu \frac{d z}{z} \wedge d t\right)=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \mu d \theta \wedge d t=4 \pi^{2} \mu \neq 0
$$

On the open manifold $M \backslash N_{C}$, Stokes' theorem says

$$
\int_{\partial N_{C}} \iota^{*}\left(\rho_{2} / \rho_{0}\right)=\int_{M \backslash N_{C}} d\left(\rho_{2} / \rho_{0}\right)=\int_{M \backslash N_{C}} 0=0 .
$$

Contradiction. \square

Example of type-change locus

Example (Hitchin)

Heuristically: $z w+d z \wedge d w$ on $\mathbb{C}^{2} \backslash\{0\} \cong S^{3} \times \mathbb{R}^{+}$should reduce to a
B_{3}-generalized complex structure on S^{3}

$$
\left(\mathrm{S}^{3} \subset \mathbb{C}^{2} \text { corresponds to }|z|^{2}+|w|^{2}=1\right)
$$

Example of type-change locus

Example (Hitchin)

Heuristically: $z w+d z \wedge d w$ on $\mathbb{C}^{2} \backslash\{0\} \cong S^{3} \times \mathbb{R}^{+}$should reduce to a B_{3}-generalized complex structure on S^{3}

$$
\left(S^{3} \subset \mathbb{C}^{2} \text { corresponds to }|z|^{2}+|w|^{2}=1\right)
$$

Type change on $\mathbb{C}^{2} \backslash\{0\}$ gives type-change locus corresponding to

$$
z=0 \text { and } w=0: \text { the Hopf link! }
$$

Example of type-change locus

Example (Hitchin)

Heuristically: $z w+d z \wedge d w$ on $\mathbb{C}^{2} \backslash\{0\} \cong S^{3} \times \mathbb{R}^{+}$should reduce to a B_{3}-generalized complex structure on S^{3}

$$
\left(S^{3} \subset \mathbb{C}^{2} \text { corresponds to }|z|^{2}+|w|^{2}=1\right)
$$

Type change on $\mathbb{C}^{2} \backslash\{0\}$ gives type-change locus corresponding to

$$
z=0 \text { and } w=0: \text { the Hopf link! }
$$

Example of type-change locus

Example (Hitchin)

Heuristically: $z w+d z \wedge d w$ on $\mathbb{C}^{2} \backslash\{0\} \cong S^{3} \times \mathbb{R}^{+}$should reduce to a B_{3}-generalized complex structure on S^{3}

$$
\left(\mathrm{S}^{3} \subset \mathbb{C}^{2} \text { corresponds to }|z|^{2}+|w|^{2}=1\right)
$$

Type change on $\mathbb{C}^{2} \backslash\{0\}$ gives type-change locus corresponding to $z=0$ and $w=0$: the Hopf link!

Analogue of Marsden-Weinstein / Bursztyn-Cavalcanti-Gualtieri reduction:

Proposition (R.)

The reduction of an S^{1} or \mathbb{R}^{+}-invariant generalized complex structure on $M \times S^{1}$ or $M \times \mathbb{R}^{+}$is a B_{n}-generalized complex structure on M.

The only type-change example has two circles.

I then realized:

The only type-change example has two circles.

I then realized:

Time to move on:

The only type-change example has two circles.

I then realized:

Time to move on:
combine B_{3} with geometrization

What geometric structures admit B_{3}-structures?

Joint work (in progress) with Joan Porti

Marie Skłodowska-Curie
Individual Fellowship
GENERALIZED

Thurston's geometries

Thurston's geometries

Sol	H^{3}
+	

Seifert	$\chi>0$	$\chi=0$	$\chi<0$
$e=0$	$S^{2} \times \mathbb{R}$	E^{3}	$H^{2} \times \mathbb{R}$
$e \neq 0$	S^{3}	Nil	$\widetilde{\mathrm{SL}_{2} \mathbb{R}}$

Thurston's geometries

Sol	H^{3}		
+			
Seifert	$\chi>0$	$\chi=0$	$\chi<0$
$e=0$	$S^{2} \times \mathbb{R}$	E^{3}	$H^{2} \times \mathbb{R}$
$e \neq 0$	S^{3}	Nil	$\widehat{\mathrm{SL}_{2} \mathbb{R}}$

Unlike for cosymplectic or normal almost contact...

Observation (Porti, R.)

For each Thurston geometry there is a geometric manifold admitting a B_{3}-generalized complex structure.

Thurston's geometries

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be Sol or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Thurston's geometries

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be Sol or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Hantzsche-Wendt

Thurston's geometries

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be Sol or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Hantzsche-Wendt

Open-book decomposition (general 3-fold)

Thurston's geometries

Lemma (Porti, R.)

A geometric manifold that is neither cosymplectic nor normal almost contact has to be Sol or hyperbolic (not fibering over the circle), or the only euclidean manifold not fibering over the circle.

Hantzsche-Wendt

Open-book decomposition (general 3-fold)

Complements of knots in S^{3}

+ surgery

Open-book decomposition

Defining B_{3} on an open book:

- type-change disconnected binding,
- 'symplectic structure' on open
leaves.

Open-book decomposition

Defining B_{3} on an open book:

- type-change disconnected binding,
- 'symplectic structure' on open
leaves.

How to do it?

1) unravel the S^{3} structure:

Open-book decomposition

Defining B_{3} on an open book:

- type-change disconnected binding,
- 'symplectic structure' on open leaves.

How to do it?

1) unravel the S^{3} structure: closed cylinder with Dehn twist,
2) modify the surface,
3) modify the twist

Open-book decomposition

MUSEO NACIONAL DEL PRADO

Open-book decomposition

MUSEO NACIONAL
DEL PRADO

8

But surgery does not work...

But surgery does not work...

I then realized:

But surgery does not work...

I then realized:
Surgery works but changes the integrability of the structure.

Twisted generalized complex structures

Classical case:
for $H \in \Omega_{c l}^{3}$,

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \text { pure } \\
(\rho, \bar{\rho}) \sim \text { volume. } \\
(d+H \wedge) \rho=v \cdot \rho
\end{gathered}
$$

Ševera class $[H] \in H^{3}$

Twisted generalized complex structures

> Classical case: for $H \in \Omega_{c l}^{3}$
B_{n}-case:
for $F \in \Omega_{c l}^{2}, H \in \Omega^{3}$
such that $d H+F^{2}=0$

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \text { pure } \\
(\rho, \bar{\rho}) \sim \text { volume. } \\
(d+H \wedge) \rho=v \cdot \rho
\end{gathered}
$$

$$
\begin{gathered}
\rho \in \Omega_{\mathbb{C}}^{\bullet} \text { pure } \\
(\rho, \bar{\rho}) \sim \text { volume. } \\
(d+F \wedge \tau+H \wedge) \rho=v \cdot \rho
\end{gathered}
$$

Ševera class $[H] \in H^{3} \quad$ A class $[(H, F)] \in{ }^{3+2} H_{B}^{3+}$
(They correspond to Dirac structures on twisted Courant algebroids.)

Hinting at how the structure gets twisted
The two structures

$$
\rho=1+i d t+i d \zeta \wedge d \psi-\ldots, \quad \rho^{\prime}=z+d z+i d z \wedge d t
$$

are combined via

$$
\rho=e^{B_{i j}+A_{i j} \tau} \wedge f_{l o g}^{*}\left(\rho^{\prime} / z\right)
$$

Hinting at how the structure gets twisted

The two structures

$$
\rho=1+i d t+i d \zeta \wedge d \psi-\ldots, \quad \rho^{\prime}=z+d z+i d z \wedge d t
$$

are combined via

$$
\rho=e^{B_{i j}+A_{i j} \tau} \wedge f_{l o g}^{*}\left(\rho^{\prime} / z\right)
$$

The integrability $(d \rho \ldots)$ gets twisted by the $d A_{i}$ and $d B_{i}$ terms.
(this involves Çech trivializing $A_{i j}=A_{i}-A_{j}$, etc.)

Hinting at how the structure gets twisted

The two structures

$$
\rho=1+i d t+i d \zeta \wedge d \psi-\ldots, \quad \rho^{\prime}=z+d z+i d z \wedge d t
$$

are combined via

$$
\rho=e^{B_{i j}+A_{i j} \tau} \wedge f_{l o g}^{*}\left(\rho^{\prime} / z\right)
$$

The integrability $(d \rho \ldots)$ gets twisted by the $d A_{i}$ and $d B_{i}$ terms.
(this involves Çech trivializing $A_{i j}=A_{i}-A_{j}$, etc.)
Why did it work for 4-manifolds?

Hinting at how the structure gets twisted

The two structures

$$
\rho=1+i d t+i d \zeta \wedge d \psi-\ldots, \quad \rho^{\prime}=z+d z+i d z \wedge d t
$$

are combined via

$$
\rho=e^{B_{i j}+A_{i j} \tau} \wedge f_{l o g}^{*}\left(\rho^{\prime} / z\right)
$$

The integrability $(d \rho \ldots)$ gets twisted by the $d A_{i}$ and $d B_{i}$ terms.
(this involves Çech trivializing $A_{i j}=A_{i}-A_{j}$, etc.)
Why did it work for 4-manifolds?
Choose M with $H^{3}(M)=\{0\}$.

Hinting at how the structure gets twisted

The two structures

$$
\rho=1+i d t+i d \zeta \wedge d \psi-\ldots, \quad \rho^{\prime}=z+d z+i d z \wedge d t
$$

are combined via

$$
\rho=e^{B_{i j}+A_{i j} \tau} \wedge f_{l o g}^{*}\left(\rho^{\prime} / z\right)
$$

The integrability $(d \rho \ldots)$ gets twisted by the $d A_{i}$ and $d B_{i}$ terms.
(this involves Çech trivializing $A_{i j}=A_{i}-A_{j}$, etc.)
Why did it work for 4-manifolds?
Choose M with $H^{3}(M)=\{0\}$.
Impossible in an orientable 3-manifold!

In fact:

Proposition (Porti, R.)

A generalized surgery around a cosymplectic circle gives a type-changing structure twisted by exact F but the class $[(H, F)]$ is not trivial, that is, the structure is always twisted (\rightarrow at least two circles as type change).

In fact:

Proposition (Porti, R.)

A generalized surgery around a cosymplectic circle gives a type-changing structure twisted by exact F but the class $[(H, F)]$ is not trivial, that is, the structure is always twisted (\rightarrow at least two circles as type change).

To get untwisted structures we would need at least two surgeries.

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\rho=1+i d t+i \omega-d t \wedge \omega
\end{gathered}
$$

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\rho=1+i d t+i \omega-d t \wedge \omega
\end{gathered}
$$

Surgery around $N \times S^{1}$, the B_{3} structure gets twisted.

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\rho=1+i d t+i \omega-d t \wedge \omega
\end{gathered}
$$

Surgery around $N \times S^{1}$, the B_{3} structure gets twisted.

Surgery around $S \times \mathrm{S}^{1}$, it gets doubly twisted.

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\rho=1+i d t+i \omega-d t \wedge \omega
\end{gathered}
$$

Surgery around $N \times S^{1}$, the B_{3} structure gets twisted.

Surgery around $S \times S^{1}$,
it gets doubly twisted.

And we are also changing the manifold!

Another surgery is possible

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos \varphi, \psi=s \sin \varphi$.

$$
1+i d t+i s d s \wedge d \varphi-\ldots
$$

$\mathcal{C}_{\text {log }}^{\infty}$-transform $r=e^{s^{2} / 2} \rightarrow d \log r=s d s$

$$
1+i d t+i d \log r \wedge d \varphi-\ldots
$$

We act by A-field $d \log r$

$$
1+d \log r+i d t+i d \log r \wedge(d \varphi-d t)-\ldots
$$

Act by a B-field $d \varphi \wedge d t$

$$
1+d \log r+i d t+i(d \log r+i d t) \wedge(d \varphi-d t)
$$

Define $z=r e^{i t}, \sigma=\varphi-t$, and multiply by z :

$$
z+d z+i d z \wedge d \sigma
$$

Another surgery is possible

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos (-\varphi), \psi=s \sin (-\varphi)$.

$$
1+i d t+i s d s \wedge d \varphi-\ldots
$$

$\mathcal{C}_{\text {log }}^{\infty}$-transform $r=e^{s^{2} / 2} \rightarrow d \log r=s d s$

$$
1+i d t+i d \log r \wedge d \varphi-\ldots
$$

We act by A-field $d \log r$

$$
1+d \log r+i d t+i d \log r \wedge(d \varphi-d t)-\ldots
$$

Act by a B-field $d \varphi \wedge d t$

$$
1+d \log r+i d t+i(d \log r+i d t) \wedge(d \varphi-d t)
$$

Define $z=r e^{i t}, \sigma=\varphi-t$, and multiply by z :

$$
z+d z+i d z \wedge d \sigma
$$

Another surgery is possible

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos (-\varphi), \psi=s \sin (-\varphi)$.

$$
1+i d t-i s d s \wedge d \varphi+\ldots
$$

$\mathcal{C}_{\text {log }}^{\infty}$-transform $r=e^{s^{2} / 2} \rightarrow d \log r=s d s$

$$
1+i d t-i d \log r \wedge d \varphi+\ldots
$$

We act by A-field $d \log r$

$$
1+d \log r+i d t-i d \log r \wedge(d \varphi+d t)-\ldots
$$

Act by a B-field $d \varphi \wedge d t$

$$
1+d \log r+i d t+i(d \log r+i d t) \wedge(d \varphi-d t)
$$

Define $z=r e^{i t}, \sigma=\varphi-t$, and multiply by z :

$$
z+d z+i d z \wedge d \sigma
$$

Another surgery is possible

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos (-\varphi), \psi=s \sin (-\varphi)$.

$$
1+i d t-i s d s \wedge d \varphi+\ldots
$$

$\mathcal{C}_{\text {log }}^{\infty}$-transform $r=e^{s^{2} / 2} \rightarrow d \log r=s d s$

$$
1+i d t-i d \log r \wedge d \varphi+\ldots
$$

We act by A-field $d \log r$

$$
1+d \log r+i d t-i d \log r \wedge(d \varphi+d t)-\ldots
$$

Act by a B-field $-d \varphi \wedge d t$

$$
1+d \log r+i d t+i(d \log r+i d t) \wedge(d \varphi-d t)
$$

Define $z=r e^{i t}, \sigma=\varphi-t$, and multiply by z :

$$
z+d z+i d z \wedge d \sigma
$$

Another surgery is possible

$$
1+i d t+i d \zeta \wedge d \psi-\ldots
$$

Polar coordinates (s, φ) such that $\zeta=s \cos (-\varphi), \psi=s \sin (-\varphi)$.

$$
1+i d t-i s d s \wedge d \varphi+\ldots
$$

$\mathcal{C}_{\text {log }}^{\infty}$-transform $r=e^{s^{2} / 2} \rightarrow d \log r=s d s$

$$
1+i d t-i d \log r \wedge d \varphi+\ldots
$$

We act by A-field $d \log r$

$$
1+d \log r+i d t-i d \log r \wedge(d \varphi+d t)-\ldots
$$

Act by a B-field $-d \varphi \wedge d t$

$$
1+d \log r+i d t-i(d \log r+i d t) \wedge(d \varphi+d t)
$$

Define $z=r e^{i t}, \sigma=\varphi+t$, and multiply by z :

$$
z+d z-i d z \wedge d \sigma
$$

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\rho=1+i d t+i \omega-d t \wedge \omega
\end{gathered}
$$

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\rho=1+i d t+i \omega-d t \wedge \omega
\end{gathered}
$$

Surgery around $N \times S^{1}$, the B_{3} structure gets twisted.

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\rho=1+i d t+i \omega-d t \wedge \omega
\end{gathered}
$$

Surgery around $N \times S^{1}$, the B_{3} structure gets twisted.

Opposite surgery on $S \times S^{1}$, it gets untwisted.

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\rho=1+i d t+i \omega-d t \wedge \omega
\end{gathered}
$$

Surgery around $N \times S^{1}$, the B_{3} structure gets twisted.

Opposite surgery on $S \times S^{1}$, it gets untwisted.

But what is the manifold?

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\mathrm{~S}^{2}=D^{2} \cup_{\partial} D^{2}
\end{gathered}
$$

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\mathrm{~S}^{2}=D^{2} \cup_{\partial} D^{2} \\
\mathrm{~S}^{2} \times \mathrm{S}^{1}=\left(D^{2} \times \mathrm{S}^{1}\right) \cup_{\partial}\left(D^{2} \times \mathrm{S}^{1}\right)
\end{gathered}
$$

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\mathrm{~S}^{2}=D^{2} \cup_{\partial} D^{2} \\
\mathrm{~S}^{2} \times \mathrm{S}^{1}=\left(D^{2} \times \mathrm{S}^{1}\right) \cup_{\partial}\left(D^{2} \times \mathrm{S}^{1}\right)
\end{gathered}
$$

First surgery:

$$
\left(D^{2} \times S^{1}\right) \cup_{\partial}\left(S^{1} \times D^{2}\right)=S^{3}
$$

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\mathrm{~S}^{2}=D^{2} \cup_{\partial} D^{2} \\
\mathrm{~S}^{2} \times \mathrm{S}^{1}=\left(D^{2} \times \mathrm{S}^{1}\right) \cup_{\partial}\left(D^{2} \times \mathrm{S}^{1}\right)
\end{gathered}
$$

First surgery:

$$
\left(D^{2} \times S^{1}\right) \cup_{\partial}\left(S^{1} \times D^{2}\right)=S^{3}
$$

Second surgery:
$\left(S^{1} \times D^{2}\right) \cup_{\partial}\left(S^{1} \times D^{2}\right)=S^{1} \times S^{2}$.

Same manifold...

Simplest example

$$
\begin{gathered}
\mathrm{S}^{2} \times \mathrm{S}^{1} \\
\mathrm{~S}^{2}=D^{2} \cup_{\partial} D^{2} \\
\mathrm{~S}^{2} \times \mathrm{S}^{1}=\left(D^{2} \times \mathrm{S}^{1}\right) \cup_{\partial}\left(D^{2} \times \mathrm{S}^{1}\right)
\end{gathered}
$$

First surgery:

$$
\left(D^{2} \times S^{1}\right) \cup_{\partial}\left(S^{1} \times D^{2}\right)=S^{3}
$$

Second surgery: $\left(S^{1} \times D^{2}\right) \cup_{\partial}\left(S^{1} \times D^{2}\right)=S^{1} \times S^{2}$.

Same manifold... but what if we change S^{2} ?

$\Sigma_{g} \times S^{1}$

Perform two opposite surgeries around $P \times S^{1}$ and $Q \times S^{1}$: B_{3}-generalized complex structure on...

What manifold do we get after two surgeries?

What manifold do we get after two surgeries?

Theorem (Kneser, ..., Perelman)
The group $\pi_{1} M$ determines the
3-manifold M as a connected
sum, up to parameters of lens
spaces factors.

What manifold do we get after two surgeries?

Theorem (Kneser, Perelman)
 The group $\pi_{1} M$ determines the 3-manifold M as a connected sum, up to parameters of lens spaces factors.

The resulting manifold is

$$
\#^{2 g+1}\left(S^{2} \times S^{1}\right)
$$

What manifold do we get after two surgeries?

Theorem (Kneser,, Perelman)

The group $\pi_{1} M$ determines the 3-manifold M as a connected sum, up to parameters of lens spaces factors.

The resulting manifold is

$$
\#^{2 g+1}\left(S^{2} \times S^{1}\right)
$$

Proposition (folklore+Geiges)

Cosymplectic and nacs manifolds are geometric.

What manifold do we get after two surgeries?

Hence...

Theorem (Kneser, Perelman)

The group $\pi_{1} M$ determines the 3-manifold M as a connected sum, up to parameters of lens spaces factors.

Theorem (Porti, R.)
$\#^{2 g+1}\left(\mathrm{~S}^{2} \times \mathrm{S}^{1}\right)$ is neither cosymplectic nor nacs but B_{3}-generalized complex.

The resulting manifold is

$$
\#^{2 g+1}\left(S^{2} \times S^{1}\right)
$$

Proposition (folklore+Geiges)

Cosymplectic and nacs manifolds are geometric.

What manifold do we get after two surgeries?

Hence...

Theorem (Kneser, Perelman)
 The group $\pi_{1} M$ determines the 3-manifold M as a connected sum, up to parameters of lens spaces factors.

The resulting manifold is

$$
\#^{2 g+1}\left(S^{2} \times S^{1}\right)
$$

Proposition (folklore+Geiges)

Cosymplectic and nacs manifolds are geometric.

Theorem (Porti, R.)
$\#^{2 g+1}\left(\mathrm{~S}^{2} \times \mathrm{S}^{1}\right)$ is neither cosymplectic nor nacs but B_{3}-generalized complex.

By repeating the surgeries (in pairs!)

Theorem (Porti, R.)
$\#^{2(g+s)-1}\left(S^{2} \times S^{1}\right)$ admits a B_{3}-generalized complex structure whose type-change locus consists of $2 s$ circles.

But it all started with surgeries for knots

But it all started with surgeries for knots

Theorem (Porti,R.)

There exist B_{3}-generalized complex structures on $N \#\left(\#^{2 s-1} \mathrm{~S}^{2} \times \mathrm{S}^{1}\right)$, $s \geq 1$, where N is obtained from the mapping torus of a punctured surface by a Dehn filling along the S^{1}-direction.

But it all started with surgeries for knots

Theorem (Porti,R.)

There exist B_{3}-generalized complex structures on $N \#\left(\#^{2 s-1} \mathrm{~S}^{2} \times \mathrm{S}^{1}\right)$, $s \geq 1$, where N is obtained from the mapping torus of a punctured surface by a Dehn filling along the S^{1}-direction.

- The type-change locus consists of $2 s$ circles, $s \geq 1$.

But it all started with surgeries for knots

Theorem (Porti,R.)

There exist B_{3}-generalized complex structures on $N \#\left(\#^{2 s-1} \mathrm{~S}^{2} \times \mathrm{S}^{1}\right)$, $s \geq 1$, where N is obtained from the mapping torus of a punctured surface by a Dehn filling along the S^{1}-direction.

- The type-change locus consists of $2 s$ circles, $s \geq 1$.
- E.g., N any hyperbolic manifold coming from Dehn filling of $S^{3} \backslash K_{8}$.

Ideas of the proof

- Motivating example: $\mathrm{S}^{3} \backslash K_{8} \cong M_{\psi}$, mapping torus of

$$
\psi:=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}), \text { a diffeomorphism of } T^{2} \backslash\{(0,0)\}
$$

Ideas of the proof

- Motivating example: $S^{3} \backslash K_{8} \cong M_{\psi}$, mapping torus of

$$
\psi:=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}), \text { a diffeomorphism of } T^{2} \backslash\{(0,0)\}
$$

- Find isotopic diffeomorphism that is the identity around $(0,0)$.

Ideas of the proof

- Motivating example: $S^{3} \backslash K_{8} \cong M_{\psi}$, mapping torus of

$$
\psi:=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}), \text { a diffeomorphism of } T^{2} \backslash\{(0,0)\}
$$

- Find isotopic diffeomorphism that is the identity around $(0,0)$.
- Perform two or $2 s$ surgeries.

Ideas of the proof

- Motivating example: $\mathrm{S}^{3} \backslash K_{8} \cong M_{\psi}$, mapping torus of

$$
\psi:=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}), \text { a diffeomorphism of } T^{2} \backslash\{(0,0)\}
$$

- Find isotopic diffeomorphism that is the identity around $(0,0)$.
- Perform two or $2 s$ surgeries.
- Generalize to the mapping torus of a punctured surface by a Dehn filling along the S^{1}-direction.

There is an underlying Poisson structure, whose corank is the type.

There is an underlying Poisson structure, whose corank is the type.

I will be in touch before Poisson 2032.

There is an underlying Poisson structure, whose corank is the type.

I will be in touch before Poisson 2032.

Thank you for your attention!

