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Notation

For an almost complex structure J on a smooth manifold X , we have the
induced decomposition of complex differential forms Ωp,q(X ) ⊂ Ω•

C(X ).

For (X , J) an almost complex manifold, a hermitian metric g is a
riemannian metric for which J is orthogonal, which is equivalently given by

ω = g(J·, ·) ∈ Ω1,1(X ).

An ω ∈ Ω1,1(X ) with g = ω(·, J·) riemannian is called positive.

We say that (X , J) is Kähler if J is integrable and there exists a hermitian
metric ω ∈ Ω1,1 that is closed, dω = 0. Kähler class: [ω] ∈ H2(M,R).
Alternatively, J integrable and hol(ω) ⊂ U(n), where n = dimC X .

For integrable J, we have d = ∂ + ∂̄.
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20 years later



Yau’s solution

For X compact Kähler with volume µ, is there ω Kähler with ωn = n!µ?

For metrics on a fixed Kähler class [ω0] ∈ H2(M,R), the Calabi Problem
with smooth volume form µ reduces to solve the Complex Monge-Ampère
equation

(ω0 + 2i∂∂̄ϕ)n = n!µ

for a smooth function ϕ on X .

Theorem (Yau ’77)

Let X be a compact Kähler manifold with smooth volume µ. Then there
exists a unique Kähler metric with ωn = n!µ in any Kähler class.
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Calabi-Yau metrics

For X admitting a holomorphic volume form Ω (Calabi-Yau manifold),

KX := ΛnT ∗X ∼=Ω OX ,

we can use a multiple of Ω ∧ Ω as µ, say,

ωn = (−1)
n(n−1)

2 inΩ ∧ Ω,

and the holonomy of the metric is further reduced to SU(n) (Calabi-Yau
metric). In particular, it is Kähler and Ricci flat.

Theorem (Yau ’77)

Let (X ,Ω) be a Calabi-Yau manifold. In each Kähler class there exists a
unique Kähler metric with holonomy SU(n).
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Can we extend Yau’s Theorem to complex non-Kähler manifolds?

We say that a hermitian metric given by a form ω is:

Kähler if dω = 0,

pluriclosed or strong Kähler with torsion if ∂∂̄ω = 0,

balanced if dωn−1 = 0,

Gauduchon if ∂∂̄(ωn−1) = 0.

Theorem (Gauduchon ’77):

A compact complex manifold X admits a Gauduchon metric on each
hermitian conformal class, unique up to scaling when n > 1.

But this does not relate to any cohomological quantity.
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X compact complex manifold of dimension n, with c1(X ) = 0 ∈ H2(X ,Z).

Definition: An SU(n)-structure on X is a pair (Ψ, ω) such that

ω ∈ Ω1,1(X ) that is positive (i.e., g is riemannian),

Ψ is a non-vanishing complex (n, 0)-form on X , normalized such that

‖Ψ‖ω = 1 (that is, ωn = (−1)
n(n−1)

2 inΨ ∧Ψ)

Lee form: only θω ∈ Ω1(X ) such that dωn−1 = θω ∧ωn−1 (or θω = Jd∗ω).

Definition: An SU(n)-structure (Ψ, ω) is a solution to the twisted
Calabi-Yau system on X if:

(1) dΨ− θω ∧Ψ = 0, (2) dθω = 0, (3) ∂∂̄ω = 0.
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(1) dΨ− θω ∧Ψ = 0, (2) dθω = 0, (3) ∂∂̄ω = 0,

(1) + (2) ⇒ the Bismut connection ∇+ = ∇g − dcω/2 satisfies
hol(∇+) ⊂ SU(n) (Calabi-Yau with torsion, recall dc = −J ◦ d ◦ J).

(3) ⇒ ω strong Kähler with torsion, or pluriclosed.

Moreover,

the class [θω] is an invariant of the solutions: for fixed J, all solutions
ω give the same class.

when [θω] = 0 ∈ H1(X ,R), X admits a holomorphic volume form Ω
and the equations are equivalent to the Calabi-Yau condition:

dω = 0, ωn = (−1)
n(n−1)

2 inΩ ∧ Ω.
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The twisted Calabi-Yau system admits solutions for both Kähler and
non-Kähler surfaces.

Proposition (Garcia-Fernandez–R–Shahbazi–Tipler)

A compact complex surface X admits a solution of the twisted Calabi-Yau
system if and only if

X ∼= K3 or T 4, when [θω] = 0,

X = C2\{0}/Γ is a quaternionic Hopf surface, when [θω] 6= 0.

Observe: if X Hopf surface, then H2(X ,R) = 0. What is the analogue of
Kähler cone in Yau’s Theorem?
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Cohomologies in complex geometry
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∗ (X ) =

⊕
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p,q
∗ (X )

Observe: if X is a compact ∂∂̄-manifold (e.g. Kähler), all isomorphisms.
Gauduchon, balanced and pluriclosed metrics give cohomology classes in,
respectively, Hn−1,n−1

A (X ), Hn−1,n−1
BC (X ) and H1,1

A (X ).
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Theorem (Garcia-Fernandez–R–Shahbazi–Tipler)

If a compact complex surface X admits a solution of the twisted
Calabi-Yau system, then it admits a unique solution on each positive
Aeppli class.

What about higher dimensions?

There are many examples with no Aeppli classes. For instance,
]k(S3 × S3) for any k > 2 (Clemens-Friedman). However, they have
a large H3(X ,R).

“This” made us explore exact Courant algebroids.
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Example of an exact Courant algebroid

Take E = TX + T ∗X , with symmetric pairing 〈X + α,X + α〉 = iXα, and,
for some closed 3-form H, the bilinear (but not skew-symmetric) bracket

[X + α,Y + β] = [X ,Y ] + LXβ − iY dα + iX iYH.

The bracket [u, ·] is a derivation of both bracket and pairing, for
u, v ,w ∈ Γ(TX + T ∗X ),

[u, [v ,w ]] = [[u, v ],w ] + [v , [u,w ]],

πTX (u)〈v ,w〉 = 〈[u, v ],w〉+ 〈v , [u,w ]〉,

and it satisfies
[X + α,X + α] = diXα.

This kind of bracket is called a Dorfman bracket.



Biosketch of TX + T ∗X

The graph of a 2-form ω and a skew bivector π are maximally isotropic
subbundles of TX + T ∗X . They are involutive with respect to the
Dorfman bracket if and only if ω is presymplectic and π is Poisson. At the
end of the 80’s, Dirac structures were introduced as maximally isotropic
involutive subbundles of TX + T ∗X . They describe mechanical systems
with symmetries and constraints.

In 2003, generalized complex structures were introduced as orthogonal
endomorphisms J of TX + T ∗X such that J 2 = − Id, and whose
+i-eigenbundle is involutive. For J complex and ω symplectic structures,

JJ =

(
−J 0
0 J∗

)
, Jω =

(
0 −ω−1

ω 0

)
They interpolate between complex and symplectic structures and they are
used in mirror symmetry. Generalized Kähler revived bihermitian geometry.
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Definition: an exact Courant algebroid on a smooth manifold X consists of

a vector bundle E fitting into the exact sequence

0→ T ∗X → E → TX → 0

a non-degenerate pairing 〈·, ·〉 on E ,

a bilinear bracket [·, ·] on Γ(E ),

such that [e, ·] is a derivation of both the bracket and the pairing and

[e, e] = π∗TXd〈e, e〉.

Classification: any exact Courant algebroid E is isomorphic to
TX + T ∗X for some H ∈ Ω3

cl . Actually H3(M,R) = H1(Ω2
cl) classifies the

isomorphism classes of exact Courant algebroids.
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Holomorphic Courant algebroids

Definition: A holomorphic Courant algebroid Q is given by:

a holomorphic sequence 0→ T ∗X → Q → TX → 0

holomorphic metric 〈·, ·〉 on Q,

a Dorfman bracket [·, ·] on holomorphic sections.

Classification (Gualtieri ’10): isomorphism classes correspond to

H1(Ω2,0
cl ) =

Ker d : Ω3,0 ⊕ Ω2,1 → Ω4,0 ⊕ Ω3,1 ⊕ Ω2,2

Im d : Ω2,0 → Ω3,0 ⊕ Ω2,1
.
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We have a map, rescaled by 2i ,

∂ : H1,1
A (X )→ H1(Ω2,0

cl ).

We can talk about metrics and Aeppli classes compatible with Q:

metric ω such that [2i∂ω] = [Q].

Aeppli classes ΣQ , affine space modelled on ker ∂

The map ∂ measures how far X is from being Kähler (the less Kähler, the
less null).

for a ∂∂̄-manifold (homologically Kähler), the map ∂ is identically
zero, the Aeppli classes for any Q are just a copy of H1,1

A (X ).

for a Hopf surface (C2 \ {0})/Z), the map ∂ is injective.
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Definition: Let H ∈ Ω3,0 ⊕ Ω2,1 closed, defining an exact holomorphic
Courant algebroid Q on X . An SU(n)-structure (Ψ, ω) is a solution of the
twisted Calabi-Yau equation on Q if, for some B ∈ Ω2,0,

(1) dΨ− θω ∧Ψ = 0, (2) dθω = 0, (3) 2i∂ω = H + dB.

Theorem (Garcia-Fernandez–R–Shahbazi–Tipler)

Let X be a compact complex surface endowed with an exact holomorphic
Courant algebroid Q. If there exist a solution to the twisted Calabi-Yau
system on Q, then there is exactly one solution in each Aeppli class in ΣQ .



Definition: Let H ∈ Ω3,0 ⊕ Ω2,1 closed, defining an exact holomorphic
Courant algebroid Q on X . An SU(n)-structure (Ψ, ω) is a solution of the
twisted Calabi-Yau equation on Q if, for some B ∈ Ω2,0,

(1) dΨ− θω ∧Ψ = 0, (2) dθω = 0, (3) 2i∂ω = H + dB.

Theorem (Garcia-Fernandez–R–Shahbazi–Tipler)

Let X be a compact complex surface endowed with an exact holomorphic
Courant algebroid Q. If there exist a solution to the twisted Calabi-Yau
system on Q, then there is exactly one solution in each Aeppli class in ΣQ .



We would like to prove

Conjecture

Let X be a compact complex manifold endowed with an exact holomorphic
Courant algebroid Q. If there exist a solution of the twisted Calabi-Yau
system on Q, then there is exactly one solution in each Aeppli class in ΣQ .

Perhaps someone else will in 20 years...

Thank you for your attention!
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