Canonical metrics on holomorphic Courant algebroids

Roberto Rubio

Universitat Autònoma de Barcelona

Encuentro REAG 2019

Murcia, 10th April 2019

Joint work with Garcia-Fernandez, Shahbazi, and Tipler, arXiv:1803.01873.

For an almost complex structure J on a smooth manifold X, we have the induced decomposition of complex differential forms $\Omega^{p,q}(X) \subset \Omega^{\bullet}_{\mathbb{C}}(X)$.

For an almost complex structure J on a smooth manifold X, we have the induced decomposition of complex differential forms $\Omega^{p,q}(X) \subset \Omega^{\bullet}_{\mathbb{C}}(X)$.

For (X, J) an almost complex manifold, a hermitian metric g is a riemannian metric for which J is orthogonal, which is equivalently given by

 $\omega = g(J \cdot, \cdot) \in \Omega^{1,1}(X).$

An $\omega \in \Omega^{1,1}(X)$ with $g = \omega(\cdot, J \cdot)$ riemannian is called positive.

For an almost complex structure J on a smooth manifold X, we have the induced decomposition of complex differential forms $\Omega^{p,q}(X) \subset \Omega^{\bullet}_{\mathbb{C}}(X)$.

For (X, J) an almost complex manifold, a hermitian metric g is a riemannian metric for which J is orthogonal, which is equivalently given by

 $\omega = g(J \cdot, \cdot) \in \Omega^{1,1}(X).$

An $\omega \in \Omega^{1,1}(X)$ with $g = \omega(\cdot, J \cdot)$ riemannian is called positive.

We say that (X, J) is Kähler if J is integrable and there exists a hermitian metric $\omega \in \Omega^{1,1}$ that is closed, $d\omega = 0$. Kähler class: $[\omega] \in H^2(M, \mathbb{R})$. Alternatively, J integrable and $hol(\omega) \subset U(n)$, where $n = \dim_{\mathbb{C}} X$.

For an almost complex structure J on a smooth manifold X, we have the induced decomposition of complex differential forms $\Omega^{p,q}(X) \subset \Omega^{\bullet}_{\mathbb{C}}(X)$.

For (X, J) an almost complex manifold, a hermitian metric g is a riemannian metric for which J is orthogonal, which is equivalently given by

 $\omega = g(J \cdot, \cdot) \in \Omega^{1,1}(X).$

An $\omega \in \Omega^{1,1}(X)$ with $g = \omega(\cdot, J \cdot)$ riemannian is called positive.

We say that (X, J) is Kähler if J is integrable and there exists a hermitian metric $\omega \in \Omega^{1,1}$ that is closed, $d\omega = 0$. Kähler class: $[\omega] \in H^2(M, \mathbb{R})$. Alternatively, J integrable and $hol(\omega) \subset U(n)$, where $n = \dim_{\mathbb{C}} X$.

For integrable J, we have $d = \partial + \overline{\partial}$.

Calabi's conjecture (1954/1957)

THE SPACE OF KÄHLER METRICS

. Eugenio Calabi

Theorem 1. Given in M^n any real, closed, infinitely differentiable exterior form Σ of type (1, 1) and cohomologous to $2\pi C^{(1)}$, there exists exactly one Kähler metric in Ω whose Ricci form equals Σ .

Calabi's conjecture (1954/1957)

THE SPACE OF KÄHLER METRICS

EUGENIO CALABI

Theorem 1. Given in M^n any real, closed, infinitely differentiable exterior form Σ of type (1, 1) and cohomologous to $2\pi C^{(1)}$, there exists exactly one Kähler metric in Ω whose Ricci form equals Σ .

On Kähler Manifolds

with Vanishing Canonical Class Eugenio Calabi

PROPOSITION 1. Let M_n be a compact, complex manifold admitting an infinitely differentiable Kähler metric with principal form ω and Ricci form Σ . If Σ' is any closed, real-valued, infinitely differentiable form of type (1, 1) and cohomologous to Σ , then there exists a unique Kähler metric with principal form ω' cohomologous to ω and Ricci form equal to Σ' . This metric is always infinitely differentiable; it is real analytic, if Σ' is ånalytic.

Calabi's conjecture (1954/1957)

THE SPACE OF KÄHLER METRICS

EUGENIO CALABI

Theorem 1. Given in M^n any real, closed, infinitely differentiable exterior form Σ of type (1, 1) and cohomologous to $2\pi C^{(1)}$, there exists exactly one Kähler metric in Ω whose Ricci form equals Σ .

On Kähler Manifolds

with Vanishing Canonical Class Eugenio Calabi

PROPOSITION 1. Let M_n be a compact, complex manifold admitting an infinitely differentiable Kähler metric with principal form ω and Ricci form Σ . If Σ' is any closed, real-valued, infinitely differentiable form of type (1, 1) and cohomologous to Σ , then there exists a unique Kähler metric with principal form ω' cohomologous to ω and Ricci form equal to Σ' . This metric is always infinitely differentiable; it is real analytic, if Σ' is analytic.

[†] There seems to be some question as to whether the interval in t for which one can solve for $\omega(t)$ is unbounded. This essential gap in the proof of Proposition 1 makes the results of this paper depend on the conjecture that a compact Kähler manifold admits a Kähler metric with any assigned, positive, differentiable volume element.

20 years later

Yau's solution

For X compact Kähler with volume μ , is there ω Kähler with $\omega^n = n!\mu$?

Yau's solution

For X compact Kähler with volume μ , is there ω Kähler with $\omega^n = n!\mu$? For metrics on a fixed Kähler class $[\omega_0] \in H^2(M, \mathbb{R})$, the *Calabi Problem* with smooth volume form μ reduces to solve the Complex Monge-Ampère equation

$$(\omega_0 + 2i\partial\bar{\partial}\varphi)^n = n!\mu$$

for a smooth function φ on X.

Yau's solution

For X compact Kähler with volume μ , is there ω Kähler with $\omega^n = n!\mu$? For metrics on a fixed Kähler class $[\omega_0] \in H^2(M, \mathbb{R})$, the *Calabi Problem* with smooth volume form μ reduces to solve the Complex Monge-Ampère equation

$$(\omega_0 + 2i\partial\bar\partial arphi)^n = n!\mu$$

for a smooth function φ on X.

Calabi's conjecture and some new results in algebraic geometry

(Kähler manifold/Chern class/Ricci tensor/complex structure)

SHING-TUNG YAU

Theorem (Yau '77)

Let X be a compact Kähler manifold with smooth volume μ . Then there exists a unique Kähler metric with $\omega^n = n!\mu$ in any Kähler class.

Calabi-Yau metrics

For X admitting a holomorphic volume form Ω (Calabi-Yau manifold),

 $K_X := \Lambda^n T^* X \cong_{\Omega} \mathcal{O}_X,$

we can use a multiple of $\Omega \wedge \overline{\Omega}$ as μ , say,

$$\omega^n = (-1)^{\frac{n(n-1)}{2}} i^n \Omega \wedge \overline{\Omega},$$

and the holonomy of the metric is further reduced to SU(n) (Calabi-Yau metric). In particular, it is Kähler and Ricci flat.

Calabi-Yau metrics

For X admitting a holomorphic volume form Ω (Calabi-Yau manifold),

 $K_X := \Lambda^n T^* X \cong_{\Omega} \mathcal{O}_X,$

we can use a multiple of $\Omega \wedge \overline{\Omega}$ as μ , say,

$$\omega^n = (-1)^{\frac{n(n-1)}{2}} i^n \Omega \wedge \overline{\Omega},$$

and the holonomy of the metric is further reduced to SU(n) (Calabi-Yau metric). In particular, it is Kähler and Ricci flat.

Theorem (Yau '77)

Let (X, Ω) be a Calabi-Yau manifold. In each Kähler class there exists a unique Kähler metric with holonomy SU(n).

Can we extend Yau's Theorem to complex non-Kähler manifolds?

We say that a hermitian metric given by a form ω is:

- Kähler if $d\omega = 0$,
- pluriclosed or strong Kähler with torsion if $\partial \bar{\partial} \omega = 0$,
- balanced if $d\omega^{n-1} = 0$,
- Gauduchon if $\partial \bar{\partial}(\omega^{n-1}) = 0$.

We say that a hermitian metric given by a form ω is:

- Kähler if $d\omega = 0$,
- pluriclosed or strong Kähler with torsion if $\partial \bar{\partial} \omega = 0$,
- balanced if $d\omega^{n-1} = 0$,
- Gauduchon if $\partial \bar{\partial}(\omega^{n-1}) = 0$.

Theorem (Gauduchon '77):

A compact complex manifold X admits a Gauduchon metric on each hermitian conformal class, unique up to scaling when n > 1.

We say that a hermitian metric given by a form ω is:

- Kähler if $d\omega = 0$,
- pluriclosed or strong Kähler with torsion if $\partial \bar{\partial} \omega = 0$,
- balanced if $d\omega^{n-1} = 0$,
- Gauduchon if $\partial \bar{\partial}(\omega^{n-1}) = 0$.

Theorem (Gauduchon '77):

A compact complex manifold X admits a Gauduchon metric on each hermitian conformal class, unique up to scaling when n > 1.

But this does not relate to any cohomological quantity.

Definition: An SU(n)-structure on X is a pair (Ψ, ω) such that

- $\omega \in \Omega^{1,1}(X)$ that is positive (i.e., g is riemannian),
- Ψ is a non-vanishing complex (n, 0)-form on X, normalized such that $\|\Psi\|_{\omega} = 1$ (that is, $\omega^n = (-1)^{\frac{n(n-1)}{2}} i^n \Psi \wedge \overline{\Psi}$)

Definition: An SU(n)-structure on X is a pair (Ψ, ω) such that

- $\omega \in \Omega^{1,1}(X)$ that is positive (i.e., g is riemannian),
- Ψ is a non-vanishing complex (n, 0)-form on X, normalized such that $\|\Psi\|_{\omega} = 1$ (that is, $\omega^n = (-1)^{\frac{n(n-1)}{2}} i^n \Psi \wedge \overline{\Psi}$)

Lee form: only $\theta_{\omega} \in \Omega^1(X)$ such that $d\omega^{n-1} = \theta_{\omega} \wedge \omega^{n-1}$ (or $\theta_{\omega} = Jd^*\omega$).

Definition: An SU(n)-structure on X is a pair (Ψ, ω) such that

- $\omega \in \Omega^{1,1}(X)$ that is positive (i.e., g is riemannian),
- Ψ is a non-vanishing complex (n, 0)-form on X, normalized such that $\|\Psi\|_{\omega} = 1$ (that is, $\omega^n = (-1)^{\frac{n(n-1)}{2}} i^n \Psi \wedge \overline{\Psi}$)

Lee form: only $\theta_{\omega} \in \Omega^1(X)$ such that $d\omega^{n-1} = \theta_{\omega} \wedge \omega^{n-1}$ (or $\theta_{\omega} = Jd^*\omega$).

Definition: An SU(n)-structure (Ψ, ω) is a solution to the twisted Calabi-Yau system on X if:

(1) $d\Psi - \theta_{\omega} \wedge \Psi = 0$, (2) $d\theta_{\omega} = 0$, (3) $\partial \bar{\partial} \omega = 0$.

(1)
$$d\Psi - \theta_{\omega} \wedge \Psi = 0$$
, (2) $d\theta_{\omega} = 0$, (3) $\partial \partial \omega = 0$,

(1) $d\Psi - \theta_{\omega} \wedge \Psi = 0,$ (2) $d\theta_{\omega} = 0,$ (3) $\partial \bar{\partial} \omega = 0,$

- (1) + (2) ⇒ the Bismut connection ∇⁺ = ∇^g d^cω/2 satisfies hol(∇⁺) ⊂ SU(n) (Calabi-Yau with torsion, recall d^c = −J ∘ d ∘ J).
- (3) $\Rightarrow \omega$ strong Kähler with torsion, or pluriclosed.

(1) $d\Psi - \theta_{\omega} \wedge \Psi = 0,$ (2) $d\theta_{\omega} = 0,$ (3) $\partial \bar{\partial} \omega = 0,$

 (1) + (2) ⇒ the Bismut connection ∇⁺ = ∇^g - d^cω/2 satisfies hol(∇⁺) ⊂ SU(n) (Calabi-Yau with torsion, recall d^c = −J ∘ d ∘ J).

• (3) $\Rightarrow \omega$ strong Kähler with torsion, or pluriclosed.

Moreover,

- the class $[\theta_{\omega}]$ is an invariant of the solutions: for fixed J, all solutions ω give the same class.
- when [θ_ω] = 0 ∈ H¹(X, ℝ), X admits a holomorphic volume form Ω and the equations are equivalent to the Calabi-Yau condition:

$$d\omega = 0, \qquad \omega^n = (-1)^{rac{n(n-1)}{2}} i^n \Omega \wedge \overline{\Omega}.$$

The twisted Calabi-Yau system admits solutions for both Kähler and non-Kähler surfaces.

The twisted Calabi-Yau system admits solutions for both Kähler and non-Kähler surfaces.

Proposition (Garcia-Fernandez-R-Shahbazi-Tipler)

A compact complex surface X admits a solution of the twisted Calabi-Yau system if and only if

- $X \cong K3$ or T^4 , when $[\theta_{\omega}] = 0$,
- $X = \mathbb{C}^2 \setminus \{0\} / \Gamma$ is a quaternionic Hopf surface, when $[\theta_{\omega}] \neq 0$.

The twisted Calabi-Yau system admits solutions for both Kähler and non-Kähler surfaces.

Proposition (Garcia-Fernandez-R-Shahbazi-Tipler)

A compact complex surface X admits a solution of the twisted Calabi-Yau system if and only if

•
$$X \cong K3$$
 or T^4 , when $[\theta_{\omega}] = 0$,

• $X = \mathbb{C}^2 \setminus \{0\} / \Gamma$ is a quaternionic Hopf surface, when $[\theta_{\omega}] \neq 0$.

Observe: if X Hopf surface, then $H^2(X, \mathbb{R}) = 0$. What is the analogue of Kähler cone in Yau's Theorem?

Cohomologies in complex geometry

Notation: $H^{\bullet,\bullet}_*(X) = \bigoplus_{p+q=k} H^{p,q}_*(X)$

Cohomologies in complex geometry

Notation: $H_*^{\bullet,\bullet}(X) = \bigoplus_{p+q=k} H_*^{p,q}(X)$ **Observe:** if X is a compact $\partial \overline{\partial}$ -manifold (e.g. Kähler), all isomorphisms. Gauduchon, balanced and pluriclosed metrics give cohomology classes in, respectively, $H_A^{n-1,n-1}(X)$, $H_{BC}^{n-1,n-1}(X)$ and $H_A^{1,1}(X)$.

Theorem (Garcia-Fernandez-R-Shahbazi-Tipler)

If a compact complex surface X admits a solution of the twisted Calabi-Yau system, then it admits a unique solution on each positive Aeppli class.

Theorem (Garcia-Fernandez–R–Shahbazi–Tipler)

If a compact complex surface X admits a solution of the twisted Calabi-Yau system, then it admits a unique solution on each positive Aeppli class.

What about higher dimensions?

- There are many examples with no Aeppli classes. For instance, $\sharp_k(S^3 \times S^3)$ for any $k \ge 2$ (Clemens-Friedman). However, they have a large $H^3(X, \mathbb{R})$.
- "This" made us explore exact Courant algebroids.

Example of an exact Courant algebroid

Take $E = TX + T^*X$, with symmetric pairing $\langle X + \alpha, X + \alpha \rangle = i_X \alpha$, and, for some closed 3-form H, the bilinear (but not skew-symmetric) bracket

$$[X + \alpha, Y + \beta] = [X, Y] + L_X\beta - i_Y d\alpha + i_X i_Y H.$$

The bracket $[u, \cdot]$ is a derivation of both bracket and pairing, for $u, v, w \in \Gamma(TX + T^*X)$,

$$[u, [v, w]] = [[u, v], w] + [v, [u, w]],$$

$$\pi_{TX}(u)\langle v,w\rangle = \langle [u,v],w\rangle + \langle v,[u,w]\rangle,$$

and it satisfies

$$[X + \alpha, X + \alpha] = di_X \alpha.$$

This kind of bracket is called a Dorfman bracket.

Biosketch of $TX + T^*X$

The graph of a 2-form ω and a skew bivector π are maximally isotropic subbundles of $TX + T^*X$. They are involutive with respect to the Dorfman bracket if and only if ω is presymplectic and π is Poisson. At the end of the 80's, Dirac structures were introduced as maximally isotropic involutive subbundles of $TX + T^*X$. They describe mechanical systems with symmetries and constraints.

Biosketch of $TX + T^*X$

The graph of a 2-form ω and a skew bivector π are maximally isotropic subbundles of $TX + T^*X$. They are involutive with respect to the Dorfman bracket if and only if ω is presymplectic and π is Poisson. At the end of the 80's, Dirac structures were introduced as maximally isotropic involutive subbundles of $TX + T^*X$. They describe mechanical systems with symmetries and constraints.

In 2003, generalized complex structures were introduced as orthogonal endomorphisms \mathcal{J} of $TX + T^*X$ such that $\mathcal{J}^2 = -\operatorname{Id}$, and whose +i-eigenbundle is involutive. For J complex and ω symplectic structures,

$$\mathcal{J}_J = \left(egin{array}{cc} -J & 0 \\ 0 & J^* \end{array}
ight), \qquad \qquad \mathcal{J}_\omega = \left(egin{array}{cc} 0 & -\omega^{-1} \\ \omega & 0 \end{array}
ight)$$

They interpolate between complex and symplectic structures and they are used in mirror symmetry. Generalized Kähler revived bihermitian geometry.

Definition: an exact Courant algebroid on a smooth manifold X consists ofa vector bundle *E* fitting into the exact sequence

 $0 \rightarrow T^*X \rightarrow E \rightarrow TX \rightarrow 0$

- a non-degenerate pairing $\langle\cdot,\cdot\rangle$ on E,
- a bilinear bracket $[\cdot, \cdot]$ on $\Gamma(E)$,

such that $[e, \cdot]$ is a derivation of both the bracket and the pairing and $[e, e] = \pi^*_{TX} d\langle e, e \rangle.$

Definition: an exact Courant algebroid on a smooth manifold X consists of
a vector bundle *E* fitting into the exact sequence

 $0 \rightarrow T^*X \rightarrow E \rightarrow TX \rightarrow 0$

- a non-degenerate pairing $\langle \cdot, \cdot \rangle$ on \emph{E} ,
- a bilinear bracket $[\cdot, \cdot]$ on $\Gamma(E)$,

such that $[e, \cdot]$ is a derivation of both the bracket and the pairing and $[e, e] = \pi^*_{TX} d\langle e, e \rangle.$

Classification: any exact Courant algebroid *E* is isomorphic to $TX + T^*X$ for some $H \in \Omega^3_{cl}$. Actually $H^3(M, \mathbb{R}) = H^1(\Omega^2_{cl})$ classifies the isomorphism classes of exact Courant algebroids.

Holomorphic Courant algebroids

Definition: A holomorphic Courant algebroid Q is given by:

- a holomorphic sequence $0 \rightarrow T^*X \rightarrow Q \rightarrow TX \rightarrow 0$
- holomorphic metric $\langle \cdot, \cdot
 angle$ on ${\cal Q}$,
- \bullet a Dorfman bracket $[\cdot,\cdot]$ on holomorphic sections.

Holomorphic Courant algebroids

Definition: A holomorphic Courant algebroid Q is given by:

- a holomorphic sequence $0 \rightarrow T^*X \rightarrow Q \rightarrow TX \rightarrow 0$
- holomorphic metric $\langle\cdot,\cdot\rangle$ on ${\it Q},$
- \bullet a Dorfman bracket $[\cdot,\cdot]$ on holomorphic sections.

Classification (Gualtieri '10): isomorphism classes correspond to

$$H^{1}(\Omega_{cl}^{2,0}) = \frac{\operatorname{Ker} d \colon \Omega^{3,0} \oplus \Omega^{2,1} \to \Omega^{4,0} \oplus \Omega^{3,1} \oplus \Omega^{2,2}}{\operatorname{Im} d \colon \Omega^{2,0} \to \Omega^{3,0} \oplus \Omega^{2,1}}$$

We have a map, rescaled by 2i,

$$\partial \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}).$$

We can talk about metrics and Aeppli classes compatible with Q:

- metric ω such that $[2i\partial\omega] = [Q]$.
- Aeppli classes Σ_Q , affine space modelled on ker ∂

We have a map, rescaled by 2i,

$$\partial \colon H^{1,1}_A(X) \to H^1(\Omega^{2,0}_{cl}).$$

We can talk about metrics and Aeppli classes compatible with Q:

- metric ω such that $[2i\partial\omega] = [Q]$.
- Aeppli classes Σ_Q , affine space modelled on ker ∂

The map ∂ measures how far X is from being Kähler (the less Kähler, the less null).

- for a ∂∂-manifold (homologically Kähler), the map ∂ is identically zero, the Aeppli classes for any Q are just a copy of H^{1,1}_A(X).
- for a Hopf surface $(\mathbb{C}^2 \setminus \{0\})/\mathbb{Z})$, the map ∂ is injective.

Definition: Let $H \in \Omega^{3,0} \oplus \Omega^{2,1}$ closed, defining an exact holomorphic Courant algebroid Q on X. An SU(n)-structure (Ψ, ω) is a solution of the twisted Calabi-Yau equation on Q if, for some $B \in \Omega^{2,0}$,

(1) $d\Psi - \theta_{\omega} \wedge \Psi = 0$, (2) $d\theta_{\omega} = 0$, (3) $2i\partial \omega = H + dB$.

Definition: Let $H \in \Omega^{3,0} \oplus \Omega^{2,1}$ closed, defining an exact holomorphic Courant algebroid Q on X. An SU(n)-structure (Ψ, ω) is a solution of the twisted Calabi-Yau equation on Q if, for some $B \in \Omega^{2,0}$,

(1) $d\Psi - \theta_{\omega} \wedge \Psi = 0$, (2) $d\theta_{\omega} = 0$, (3) $2i\partial\omega = H + dB$.

Theorem (Garcia-Fernandez–R–Shahbazi–Tipler)

Let X be a compact complex surface endowed with an exact holomorphic Courant algebroid Q. If there exist a solution to the twisted Calabi-Yau system on Q, then there is exactly one solution in each Aeppli class in Σ_Q .

Theorem 1

Let X be a compact complex manifold endowed with an exact holomorphic Courant algebroid Q. If there exist a solution of the twisted Calabi-Yau system on Q, then there is exactly one solution in each Aeppli class in Σ_Q .

Conjecture

Let X be a compact complex manifold endowed with an exact holomorphic Courant algebroid Q. If there exist a solution of the twisted Calabi-Yau system on Q, then there is exactly one solution in each Aeppli class in Σ_Q .

Perhaps someone else will in 20 years...

Conjecture

Let X be a compact complex manifold endowed with an exact holomorphic Courant algebroid Q. If there exist a solution of the twisted Calabi-Yau system on Q, then there is exactly one solution in each Aeppli class in Σ_Q .

Perhaps someone else will in 20 years...

Thank you for your attention!