UIIVERSLDAD AUTONOMA
SOLICITUD DE AUTORIZACIONTOR DE DEFENSA DE LA TESIS DOCTORAL
D. Do ${ }^{\text {Nombre }}$ Roberto

Apellidos Rubio Nuñez
siendo su Directorla de Gesis: Prada aría and Hermitian sym
Dr.IDra. Óscar andes andad
 Título de la sometida a procesos de sondio de publicaciones: No SOLCITA que a la vista de la adjunta Tesis Doctoral.
autorizacion a defens

$$
x
$$

compact orientable surface of genus g

simple
Lie group
8

$$
\pi_{1} X=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}: \prod_{j=1}^{g}\left[a_{j}, b_{j}\right]=1\right\rangle
$$

$$
\begin{gathered}
\pi_{1} X=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}: \prod_{j=1}^{g}\left[a_{j}, b_{j}\right]=1\right\rangle \\
\rho: \pi_{1} X \rightarrow G
\end{gathered}
$$

$$
\begin{gathered}
\pi_{1} X=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}: \prod_{j=1}^{g}\left[a_{j}, b_{j}\right]=1\right\rangle \\
\rho: \pi_{1} X \rightarrow G \\
\text { is given by an element of } G^{2 g}
\end{gathered}
$$

$\operatorname{Hom}\left(\pi_{1} X, G\right)$
$\operatorname{Hom}\left(\pi_{1} X, G\right)$ is a subvariety of $G^{2 g}$
$\operatorname{Hom}\left(\pi_{1} X, G\right)$ is a subvariety of $G^{2 g}$ where G acts by conjugation
$\operatorname{Hom}\left(\pi_{1} X, G\right)$ is a subvariety of $G^{2 g}$ where G acts by conjugation

$\mathcal{R}\left(\pi_{1} X, G\right)$

Moduli space of representations
$\operatorname{Hom}\left(\pi_{1} X, G\right)$ is a subvariety of $G^{2 g}$ where G acts by conjugation

$\mathcal{R}\left(\pi_{1} X, G\right):=\operatorname{Hom}^{+}\left(\pi_{1} X, G\right)$

Moduli space of representations
$\operatorname{Hom}\left(\pi_{1} X, G\right)$ is a subvariety of $G^{2 g}$ where G acts by conjugation

$\mathcal{R}\left(\pi_{1} X, G\right):=\operatorname{Hom}^{+}\left(\pi_{1} X, G\right) / G$

Moduli space of representations
$\mathcal{R}\left(\pi_{1} X, G\right)$

$$
\mathcal{R}\left(\pi_{1} X, G\right) \ggg \substack{\begin{subarray}{c}{\text { Donaldson, Corlette } \\
\\
X \text { Riemann surface }} }} \end{subarray}
$$

$\mathcal{R}\left(\pi_{1} X, G\right)$

Donaldson, Corlette X Riemann surface

Reductive flat G-connections

$\mathcal{R}\left(\pi_{1} X, G\right)$

Donaldson, Corlette X Riemann surface

Reductive flat G-connections

$\mathcal{R}\left(\pi_{1} X, G\right)$

Donaldson, Corlette X Riemann surface

Reductive flat G-connections

Solutions to Hitchin equations
$\mathcal{R}\left(\pi_{1} X, G\right)$

Donaldson, Corlette X Riemann surface

Solutions to Hitchin equations Bradlow, García-Prada, Gothen, Mundet i Riera

Reductive flat G-connections

Hitchin, Simpson,

$\mathcal{R}\left(\pi_{1} X, G\right)$

Polystable G-Higgs bundles on X

Donaldson, Corlette
X Riemann surface

Hitchin, Simpson, Bradlow, García-Prada, Gothen, Mundet i Riera

Reductive flat G-connections

Solutions to Hitchin equations

$\mathcal{R}\left(\pi_{1} X, G\right)$

Donaldson, Corlette X Riemann surface

Polystable G-Higgs bundles on X

Hitchin, Simpson, Bradlow, García-Prada, Gothen, Mundet i Riera

Reductive flat G-connections

Solutions to Hitchin equations

G-Higgs bundle

G-Higgs bundle
 for G real, non-compact, simple Lie group

G-Higgs bundle
 for G real, non-compact, simple Lie group

$$
H \subset G, \text { maximal compact subgroup }
$$

G-Higgs bundle for G real, non-compact, simple Lie group

$$
\begin{aligned}
& H \subset G, \text { maximal compact subgroup } \\
& \mathfrak{g}=\mathfrak{h}+\mathfrak{m},
\end{aligned}
$$

G-Higgs bundle for G real, non-compact, simple Lie group

$$
\begin{gathered}
H \subset G, \text { maximal compact subgroup } \\
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}, \operatorname{Ad}: H^{\mathbb{C}} \rightarrow \operatorname{Aut}\left(\mathfrak{m}^{\mathbb{C}}\right)
\end{gathered}
$$

G-Higgs bundle for G real, non-compact, simple Lie group

$$
\begin{gathered}
H \subset G, \text { maximal compact subgroup } \\
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}, \operatorname{Ad}: H^{\mathbb{C}} \rightarrow \operatorname{Aut}\left(\mathfrak{m}^{\mathbb{C}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& E, \text { principal } H^{\mathbb{C}} \text {-bundle } \\
& \varphi \in H^{0}\left(E\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right)
\end{aligned}
$$

G-Higgs bundle for G real, non-compact, simple Lie group

$$
\begin{gathered}
H \subset G, \text { maximal compact subgroup } \\
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}, \operatorname{Ad}: H^{\mathbb{C}} \rightarrow \operatorname{Aut}\left(\mathfrak{m}^{\mathbb{C}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& E, \text { principal } H^{\mathbb{C}} \text {-bundle } \\
& \varphi \in H^{0}\left(E\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right)
\end{aligned}
$$

$\operatorname{Sp}(2 n, \mathbb{R})$-Higgs bundle

$\operatorname{Sp}(2 n, \mathbb{R})$-Higgs bundle

$$
H=U(n), \text { maximal compact subgroup }
$$

$\operatorname{Sp}(2 n, \mathbb{R})$-Higgs bundle

$$
\begin{gathered}
H=U(n), \text { maximal compact subgroup } \\
\text { Ad }: \operatorname{GL}(n, \mathbb{C}) \rightarrow \operatorname{Sym}^{2} \mathbb{C}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)^{*}
\end{gathered}
$$

$\operatorname{Sp}(2 n, \mathbb{R})$-Higgs bundle

$$
\begin{aligned}
& H=U(n), \text { maximal compact subgroup } \\
& \text { Ad }: \operatorname{GL}(n, \mathbb{C}) \rightarrow \operatorname{Sym}^{2} \mathbb{C}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)^{*}
\end{aligned}
$$

E, principal GL(n, \mathbb{C})-bundle

$\operatorname{Sp}(2 n, \mathbb{R})$-Higgs bundle

$$
\begin{aligned}
& H=U(n), \text { maximal compact subgroup } \\
& \text { Ad }: \operatorname{GL}(n, \mathbb{C}) \rightarrow \operatorname{Sym}^{2} \mathbb{C}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)^{*}
\end{aligned}
$$

E, principal GL(n, \mathbb{C})-bundle $\varphi \in H^{0}\left(E\left(\right.\right.$ Sym $\left.\left.^{2} \mathbb{C}^{n}\right) \otimes K\right)$
$\operatorname{Sp}(2 n, \mathbb{R})$-Higgs bundle

$$
\begin{aligned}
& H=U(n) \text {, maximal compact subgroup } \\
& \text { Ad }: \operatorname{GL}(n, \mathbb{C}) \rightarrow \operatorname{Sym}^{2} \mathbb{C}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)^{*}
\end{aligned}
$$

E, principal GL(n, \mathbb{C})-bundle
$\varphi \in H^{0}\left(E\left(\right.\right.$ Sym $\left.\left.^{2} \mathbb{C}^{n}\right) \otimes K\right)$
$\oplus H^{0}\left(E\left(\right.\right.$ Sym $\left.\left.^{2}\left(\mathbb{C}^{n}\right)^{*}\right) \otimes K\right)$
$\operatorname{Sp}(2 n, \mathbb{R})$-Higgs bundle

$$
\begin{gathered}
H=U(n), \text { maximal compact subgroup } \\
\text { Ad }: \operatorname{GL}(n, \mathbb{C}) \rightarrow \operatorname{Sym}^{2} \mathbb{C}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)^{*}
\end{gathered}
$$

E, principal GL(n, \mathbb{C})-bundle
V, vector bundle, rk $V=n$ $\varphi \in H^{0}\left(E\left(\right.\right.$ Sym $\left.\left.^{2} \mathbb{C}^{n}\right) \otimes K\right)$
$\oplus H^{0}\left(E\left(\operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)^{*}\right) \otimes K\right)$
$\operatorname{Sp}(2 n, \mathbb{R})$－Higgs bundle

$$
\begin{gathered}
H=U(n) \text {, maximal compact subgroup } \\
\text { Ad }: \operatorname{GL}(n, \mathbb{C}) \rightarrow \operatorname{Sym}^{2} \mathbb{C}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)^{*}
\end{gathered}
$$

E ，principal GL（ n, \mathbb{C} ）－bundle $\varphi \in H^{0}\left(E\left(\right.\right.$ Sym $\left.\left.^{2} \mathbb{C}^{n}\right) \otimes K\right)$ $\oplus H^{0}\left(E\left(\right.\right.$ Sym $\left.\left.^{2}\left(\mathbb{C}^{n}\right)^{*}\right) \otimes K\right)$
V ，vector bundle，rk $V=n$
$\beta: V^{*} \rightarrow V \otimes K$ symmetric
$\operatorname{Sp}(2 n, \mathbb{R})$-Higgs bundle

$$
\begin{gathered}
H=U(n) \text {, maximal compact subgroup } \\
\text { Ad }: \operatorname{GL}(n, \mathbb{C}) \rightarrow \operatorname{Sym}^{2} \mathbb{C}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)^{*}
\end{gathered}
$$

E, principal GL(n, \mathbb{C})-bundle $\varphi \in H^{0}\left(E\left(\right.\right.$ Sym $\left.\left.^{2} \mathbb{C}^{n}\right) \otimes K\right)$
$\oplus H^{0}\left(E\left(\operatorname{Sym}^{2}\left(\mathbb{C}^{n}\right)^{*}\right) \otimes K\right)$
V, vector bundle, rk $V=n$
$\beta: V^{*} \rightarrow V \otimes K$ symmetric
$\gamma: V \rightarrow V^{*} \otimes K$ symmetric

$$
\gamma: V \quad \longrightarrow \quad V^{*} \otimes K \quad \text { isom }+(\text { sym })
$$

$$
\begin{aligned}
& \gamma: V \quad \longrightarrow \quad V^{*} \otimes K \quad \text { isom }+(\mathrm{sym}) \\
& \gamma: V \otimes K^{-1 / 2} \longrightarrow V^{*} \otimes K^{1 / 2} \text { isom }+(\mathrm{sym})
\end{aligned}
$$

$$
\begin{array}{llll}
\gamma: V & \longrightarrow V^{*} \otimes K & \text { isom }+(\mathrm{sym}) \\
\gamma: V \otimes K^{-1 / 2} & \longrightarrow V^{*} \otimes K^{1 / 2} & \text { isom }+(\mathrm{sym}) \\
& & \\
& =V^{*} \otimes K^{1 / 2} &
\end{array}
$$

$$
\begin{array}{llll}
\gamma: & V & \longrightarrow V^{*} \otimes K & \text { isom }+(\operatorname{sym}) \\
\gamma: & V \otimes K^{-1 / 2} & \longrightarrow V^{*} \otimes K^{1 / 2} & \text { isom }+(\operatorname{sym}) \\
& & W=V^{*} \otimes K^{1 / 2} & \\
\gamma: & W^{*} & \longrightarrow W & \text { isom }+(\operatorname{sym})
\end{array}
$$

$$
\begin{array}{llll}
\gamma: & V & \longrightarrow & V^{*} \otimes K \\
\gamma: & V \otimes K^{-1 / 2} & \longrightarrow V^{*} \otimes K^{1 / 2} & \text { isom }+(\mathrm{sym}) \\
& & W=V^{*} \otimes K^{1 / 2} \\
\gamma: & W^{*} & \longrightarrow W & \text { isom }) \\
& (W, \gamma) \text { is a principal } O(n, \mathbb{C}) \text {-bundle }
\end{array}
$$

$$
\begin{array}{rlll}
\gamma: V & \longrightarrow V^{*} \otimes K & \text { isom }+(\operatorname{sym}) \\
\gamma: V \otimes K^{-1 / 2} & \longrightarrow V^{*} \otimes K^{1 / 2} & \text { isom }+(\operatorname{sym}) \\
& & W=V^{*} \otimes K^{1 / 2} \\
\gamma: & W^{*} & \longrightarrow & \\
& (W, \gamma) \text { is a principal } O(n, \mathbb{C}) \text {-bundle } \\
& & \\
\beta: & V^{*} \quad & \longrightarrow V \otimes K
\end{array}
$$

$$
\begin{array}{llll}
\gamma: & V & \longrightarrow & V^{*} \otimes K \\
\gamma: & V \otimes K^{-1 / 2} & \longrightarrow & \text { isom }+(\mathrm{sym}) \\
\gamma & & V^{*} \otimes K^{1 / 2} & \text { isom }+(\mathrm{sym}) \\
& & W=V^{*} \otimes K^{1 / 2} \\
\gamma: & W^{*} & \longrightarrow W & \text { isom }+(\mathrm{sym}) \\
& (W, \gamma) \text { is a principal } \mathrm{O}(n, \mathbb{C}) \text {-bundle }
\end{array}
$$

$$
\begin{array}{llll}
\beta: & V^{*} & \longrightarrow V \otimes K \\
\beta: & V^{*} \otimes K^{1 / 2} & \longrightarrow & \longrightarrow \otimes K^{3 / 2}
\end{array}
$$

$$
\begin{array}{llll}
\gamma: V & \longrightarrow V^{*} \otimes K & \text { isom }+(\mathrm{sym}) \\
\gamma: & V \otimes K^{-1 / 2} & \longrightarrow V^{*} \otimes K^{1 / 2} & \text { isom }+(\mathrm{sym}) \\
& & W=V^{*} \otimes K^{1 / 2} & \\
\gamma: & W^{*} & \longrightarrow W & \text { isom }+(\mathrm{sym})
\end{array}
$$

(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$-bundle

$$
\begin{array}{lllll}
\beta: & V^{*} & \longrightarrow V \otimes K \\
\beta: & V^{*} \otimes K^{1 / 2} & \longrightarrow & \longrightarrow K^{3 / 2} & \xrightarrow{\gamma} \\
V^{*} \otimes K^{5 / 2}
\end{array}
$$

$$
\begin{array}{llll}
\gamma: & V & \longrightarrow V^{*} \otimes K & \text { isom }+(\text { sym }) \\
\gamma: V \otimes K^{-1 / 2} & \longrightarrow V^{*} \otimes K^{1 / 2} & \text { isom }+(\text { sym }) \\
& & W=V^{*} \otimes K^{1 / 2} &
\end{array}
$$

$$
\gamma: W^{*} \quad \longrightarrow W \quad \text { isom }+(\mathrm{sym})
$$

(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$-bundle
$\beta: V^{*} \quad \longrightarrow V \otimes K$
$\beta: V^{*} \otimes K^{1 / 2} \longrightarrow V \otimes K^{3 / 2} \xrightarrow{\gamma} V^{*} \otimes K^{5 / 2}$
$\beta: W$

$$
\begin{array}{llll}
\gamma: V & \longrightarrow V^{*} \otimes K & \text { isom }+(\mathrm{sym}) \\
\gamma: & V \otimes K^{-1 / 2} & \longrightarrow V^{*} \otimes K^{1 / 2} & \text { isom }+(\mathrm{sym}) \\
& & W=V^{*} \otimes K^{1 / 2} & \\
\gamma: & W^{*} & \longrightarrow W & \text { isom }+(\mathrm{sym})
\end{array}
$$

(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$-bundle
$\beta: V^{*} \quad \longrightarrow V \otimes K$
$\beta: V^{*} \otimes K^{1 / 2} \longrightarrow V \otimes K^{3 / 2} \xrightarrow{\gamma} V^{*} \otimes K^{5 / 2}$
$\beta: W \quad \longrightarrow W^{*} \otimes K^{2} \xrightarrow{\gamma} W \otimes K^{2}$

$$
\begin{array}{llll}
\gamma: & V & \longrightarrow V^{*} \otimes K & \text { isom }+(\mathrm{sym}) \\
\gamma: & V \otimes K^{-1 / 2} & \longrightarrow V^{*} \otimes K^{1 / 2} & \text { isom }+(\mathrm{sym}) \\
& & W=V^{*} \otimes K^{1 / 2} & \\
\gamma: & W^{*} & \longrightarrow W & \text { isom }+(\mathrm{sym})
\end{array}
$$

(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$－bundle
$\beta: V^{*} \quad \longrightarrow V \otimes K$
$\beta: V^{*} \otimes K^{1 / 2} \longrightarrow V \otimes K^{3 / 2} \xrightarrow{\gamma} V^{*} \otimes K^{5 / 2}$
$\beta: W \quad \longrightarrow W^{*} \otimes K^{2} \xrightarrow{\gamma} W \otimes K^{2}$
$\gamma \circ \beta$ is a K^{2}－twisted field

(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$-bundle $\gamma \circ \beta$ is a K^{2}-twisted field,

(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$-bundle

 $\gamma \circ \beta$ is a K^{2}-twisted field, is a real $G L(n, \mathbb{R})$-Higgs pair(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$-bundle $\gamma \circ \beta$ is a K^{2}-twisted field, is a real $G L(n, \mathbb{R})$-Higgs pair

Relation between $\operatorname{Sp}(2 n, \mathbb{R})$ and $\mathrm{GL}(n, \mathbb{R})$?

(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$-bundle

 $\gamma \circ \beta$ is a K^{2}-twisted field, is a real $G L(n, \mathbb{R})$-Higgs pairRelation between $\operatorname{Sp}(2 n, \mathbb{R})$ and $\operatorname{GL}(n, \mathbb{R})$? The Hermitian symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$.

(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$－bundle

 $\gamma \circ \beta$ is a K^{2}－twisted field， is a real $G L(n, \mathbb{R})$－Higgs pairRelation between $\operatorname{Sp}(2 n, \mathbb{R})$ and $\mathrm{GL}(n, \mathbb{R})$ ？ The Hermitian symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$ ．
$\mathrm{GL}(n, \mathbb{R})$ is the non－compact dual of $\mathrm{U}(n)$ （the isometry group of its Shilov boundary）

(W, γ) is a principal $\mathrm{O}(n, \mathbb{C})$－bundle

 $\gamma \circ \beta$ is a K^{2}－twisted field， is a real $G L(n, \mathbb{R})$－Higgs pairRelation between $\operatorname{Sp}(2 n, \mathbb{R})$ and $\mathrm{GL}(n, \mathbb{R})$ ？ The Hermitian symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$ ．
$\mathrm{GL}(n, \mathbb{R})$ is the non－compact dual of $\mathrm{U}(n)$ （the isometry group of its Shilov boundary）

$$
\text { HSS } \Rightarrow \text { correspondence }
$$

©liggs bundles and

Oermitian symmetric spaces

How many groups of Hermitian type?

How many groups of Hermitian type？
Using Cartan＇s classification，there are four classical families：
－ $\operatorname{SU}(p, q)$

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$
- $\operatorname{Sp}(2 n, \mathbb{R})$

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$
- $\operatorname{Sp}(2 n, \mathbb{R})$
- $\mathrm{SO}_{0}(2, n)$

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$
- $\operatorname{Sp}(2 n, \mathbb{R})$
- $\mathrm{SO}_{0}(2, n)$
- $\mathrm{SO}^{*}(2 n)$

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$
- $\operatorname{Sp}(2 n, \mathbb{R})$
- $\mathrm{SO}_{0}(2, n)$
- $\mathrm{SO}^{*}(2 n)$

And two exceptional cases:

- E_{6}^{-14}

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$
- $\operatorname{Sp}(2 n, \mathbb{R})$
- $\mathrm{SO}_{0}(2, n)$
- $\mathrm{SO}^{*}(2 n)$

And two exceptional cases:

- E_{6}^{-14}
- E_{7}^{-25}

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$
- $\operatorname{Sp}(2 n, \mathbb{R})$
- $\mathrm{SO}_{0}(2, n)$
- $\mathrm{SO}^{*}(2 n)$

And two exceptional cases:

- E_{6}^{-14}
- E_{7}^{-25}

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$:

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$:
$\operatorname{Sp}(2 n, \mathbb{R})$

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$:
$\operatorname{Sp}(2 n, \mathbb{R})$

$$
\operatorname{Sp}(2 n, \mathbb{R}) /\{ \pm 1\}
$$

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$:
$\operatorname{Mp}(2 n, \mathbb{R})$
$\operatorname{Sp}(2 n, \mathbb{R})$

$$
\operatorname{Sp}(2 n, \mathbb{R}) /\{ \pm 1\}
$$

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$: $\operatorname{Sp}(2 n, \mathbb{R})$
$\operatorname{Mp}(2 n, \mathbb{R})$
$\operatorname{Sp}(2 n, \mathbb{R})$

$$
\operatorname{Sp}(2 n, \mathbb{R}) /\{ \pm 1\}
$$

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$: $\operatorname{Sp}(2 n, \mathbb{R})$
$\operatorname{Mp}(2 n, \mathbb{R})$
$\operatorname{Sp}(2 n, \mathbb{R})$

$$
\operatorname{Sp}(2 n, \mathbb{R}) /\{ \pm 1\}
$$

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$: $\operatorname{Sp}(2 n, \mathbb{R})$

```
Mp(2n,\mathbb{R})
Sp(2n,\mathbb{R})
Sp(2n,\mathbb{R})/{\pm1}
```

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$: $\operatorname{Sp}(2 n, \mathbb{R})$

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$: $\operatorname{Sp}(2 n, \mathbb{R})$

$$
\operatorname{Sp}(2 n, \mathbb{R}) /\{ \pm 1\}
$$

finite coverings

Groups giving the symmetric space $\operatorname{Sp}(2 n, \mathbb{R}) / \mathrm{U}(n)$: $\operatorname{Sp}(2 n, \mathbb{R})$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

G/H cplx

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$G / H \mathrm{cplx} \Rightarrow\left(\mathfrak{m}=T_{e} G / H, J\right) \mathrm{cplx}$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$$
\begin{aligned}
G / H \mathrm{cplx} & \Rightarrow\left(\mathfrak{m}=T_{e} G / H, J\right) \mathrm{cplx} \\
\mathfrak{m}^{\mathbb{C}} & =\mathfrak{m}^{+}+\mathfrak{m}^{-}
\end{aligned}
$$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$$
\begin{aligned}
G / H \mathrm{cplx} & \Rightarrow\left(\mathfrak{m}=T_{e} G / H, J\right) \mathrm{cplx} \\
\mathfrak{m}^{\mathbb{C}} & =\mathfrak{m}^{+}+\mathfrak{m}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& E \text {, principal } H^{\mathbb{C}} \text {-bundle } \\
& \varphi \in H^{0}\left(E\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right)
\end{aligned}
$$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$$
\begin{aligned}
G / H \mathrm{cplx} & \Rightarrow\left(\mathfrak{m}=T_{e} G / H, J\right) \mathrm{cplx} \\
\mathfrak{m}^{\mathbb{C}} & =\mathfrak{m}^{+}+\mathfrak{m}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& E, \text { principal } H^{\mathbb{C}} \text {-bundle } \\
& \varphi \in H^{0}\left(E\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
& \varphi=(\beta, \gamma)
\end{aligned}
$$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$$
\begin{aligned}
G / H \mathrm{cplx} & \Rightarrow\left(\mathfrak{m}=T_{e} G / H, J\right) \mathrm{cplx} \\
\mathfrak{m}^{\mathbb{C}} & =\mathfrak{m}^{+}+\mathfrak{m}^{-}
\end{aligned}
$$

$$
\begin{gathered}
E, \text { principal } H^{\mathbb{C}} \text {-bundle } \\
\varphi \in H^{0}\left(E\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
\varphi=(\beta, \gamma) \\
\in H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) \oplus H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right)
\end{gathered}
$$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

root α

$$
\begin{array}{ll}
& \mathfrak{g}=\mathfrak{h}+\mathfrak{m} \\
\operatorname{root} \alpha & \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{h}^{\mathbb{C}}
\end{array}
$$

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{h}+\mathfrak{m} \\
\operatorname{root} \alpha & \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{h}^{\mathbb{C}} \quad \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}}
\end{aligned}
$$

$$
\quad \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}}
$$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$$
\begin{array}{llc}
\text { root } \alpha & \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{h}^{\mathbb{C}} & \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}} \\
& \text { compact } & \text { non-compact }
\end{array}
$$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$$
\begin{array}{lll}
\text { root } \alpha & \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{h}^{\mathbb{C}} & \begin{array}{c}
\mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}} \\
\text { compact }
\end{array} \\
\text { non-compact }
\end{array}
$$

$$
\Delta\left(\mathfrak{g}^{\mathbb{C}}\right)=
$$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$$
\begin{array}{llc}
\text { root } \alpha & \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{h}^{\mathbb{C}} & \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}} \\
\text { compact } & \text { non-compact }
\end{array}
$$

$$
\Delta\left(\mathfrak{g}^{\mathbb{C}}\right)=\Delta_{C}
$$

$$
\mathfrak{g}=\mathfrak{h}+\mathfrak{m}
$$

$$
\begin{array}{lll}
\text { root } \alpha & \mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{h}^{\mathbb{C}} & \begin{array}{c}
\mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}} \\
\text { compact }
\end{array} \\
\text { non-compact }
\end{array}
$$

$$
\Delta\left(\mathfrak{g}^{\mathbb{C}}\right)=\quad \Delta_{C} \quad \cup \quad \Delta_{Q}
$$

\[

\]

$\Gamma \subset \Delta_{Q}$ system of positive strongly orthogonal roots

$$
\begin{array}{lccc}
& \mathfrak{g}=\mathfrak{h}+\mathfrak{m} \\
\text { root } \alpha & \begin{array}{c}
\mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{h}^{\mathbb{C}} \\
\text { compact }
\end{array} & \begin{array}{c}
\mathfrak{g}_{\alpha} \mathbb{C} \subset \mathfrak{m}^{\mathbb{C}} \\
\text { non-compact }
\end{array} \\
\Delta\left(\mathfrak{g}^{\mathbb{C}}\right)= & \Delta_{C} & \cup & \Delta_{Q}
\end{array}
$$

$\Gamma \subset \Delta_{Q}$ system of positive strongly orthogonal roots determines

\[

\]

$\Gamma \subset \Delta_{Q}$ system of positive strongly orthogonal roots determines

$$
e_{\Gamma} \in \mathfrak{m}^{+}
$$

$$
\begin{array}{lccc}
& \mathfrak{g}=\mathfrak{h}+\mathfrak{m} \\
\text { root } \alpha & \begin{array}{c}
\mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{h}^{\mathbb{C}} \\
\text { compact }
\end{array} & \begin{array}{c}
\mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}} \\
\text { non-compact }
\end{array} \\
\Delta\left(\mathfrak{g}^{\mathbb{C}}\right)= & \Delta_{C} & \cup & \Delta_{Q}
\end{array}
$$

$\Gamma \subset \Delta_{Q}$ system of positive strongly orthogonal roots determines

$$
e_{\Gamma} \in \mathfrak{m}^{+}
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$
Cayley transform

$$
\begin{array}{lccc}
& \mathfrak{g}=\mathfrak{h}+\mathfrak{m} \\
\text { root } \alpha & \begin{array}{c}
\mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{h}^{\mathbb{C}} \\
\text { compact }
\end{array} & \begin{array}{c}
\mathfrak{g}_{\alpha}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}} \\
\text { non-compact }
\end{array} \\
\Delta\left(\mathfrak{g}^{\mathbb{C}}\right)= & \Delta_{C} & \cup & \Delta_{Q}
\end{array}
$$

$\Gamma \subset \Delta_{Q}$ system of positive strongly orthogonal roots determines

$$
e_{\Gamma} \in \mathfrak{m}^{+}
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$
Cayley transform

C

acting via the Harish-Chandra embedding in \mathfrak{m}^{+}
acting via the Harish－Chandra embedding in \mathfrak{m}^{+}

C

acting via the Harish-Chandra embedding in \mathfrak{m}^{+}

gives the Cayley transform
acting via the Harish－Chandra embedding in \mathfrak{m}^{+}

Realization of Hermitian Symmetric Spaces as Generalized Half－planes
 By ADAM KORÁNYI＊and JOSEPH A．WOLF＊＊

gives the Cayley transform
$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$$
\operatorname{Ad}(c)^{8}=\mathrm{Id}
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$
$\operatorname{Ad}(c)^{8}=\operatorname{Id}=\operatorname{Ad}\left(c^{4}\right)^{2}$

$$
\begin{gathered}
\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right) \\
\operatorname{Ad}(c)^{8}=\mathrm{Id}=\operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2}
\end{gathered}
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$$
\begin{gathered}
\operatorname{Ad}(c)^{8}=\operatorname{Id}=\operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2} \\
\mathfrak{h}=\widetilde{\mathfrak{h}}_{T}+\mathfrak{h}_{2}
\end{gathered}
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$$
\begin{gathered}
\operatorname{Ad}(c)^{8}=\operatorname{Id}=\operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2} \\
\mathfrak{h}=\widetilde{\mathfrak{h}}_{T}+\mathfrak{h}_{2}
\end{gathered}
$$

$$
\mathfrak{m}=\mathfrak{m}_{T}+\mathfrak{m}_{2}
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$$
\begin{aligned}
\operatorname{Ad}(c)^{8}=\operatorname{ld}= & \operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2} \\
\mathfrak{h} & =\tilde{\mathfrak{h}}_{T}+\mathfrak{h}_{2} \\
\mathfrak{m} & =\mathfrak{m}_{T}+\mathfrak{m}_{2} \\
\mathfrak{h}_{T} & =\left[\mathfrak{m}_{T}, \mathfrak{m}_{T}\right]
\end{aligned}
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$$
\begin{gathered}
\operatorname{Ad}(c)^{8}=\operatorname{ld}=\operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2} \\
\mathfrak{h}=\widetilde{\mathfrak{h}}_{T}+\mathfrak{h}_{2}
\end{gathered}
$$

$$
\mathfrak{m}=\mathfrak{m}_{T}+\mathfrak{m}_{2}
$$

$$
\mathfrak{h}_{T}=\left[\mathfrak{m}_{T}, \mathfrak{m}_{T}\right]
$$

$$
\tilde{\mathfrak{h}}_{T}=\mathfrak{n}_{\mathfrak{h}} \mathfrak{c}\left(\mathfrak{h}_{T}^{\mathbb{C}}\right)
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$$
\operatorname{Ad}(c)^{8}=\mathrm{Id}
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$$
\operatorname{Ad}(c)^{8}=\operatorname{Id}=\operatorname{Ad}\left(c^{4}\right)^{2}
$$

$\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)$

$$
\operatorname{Ad}(c)^{8}=\operatorname{Id}=\operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2}
$$

$$
\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)
$$

$$
\begin{aligned}
\operatorname{Ad}(c)^{8} & =\operatorname{Id}=\operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2} \\
\text { If } \operatorname{Ad}(c)^{4} & =\operatorname{ld}
\end{aligned}
$$

$$
\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)
$$

$$
\operatorname{Ad}(c)^{8}=\operatorname{Id}=\operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2}
$$

If $\operatorname{Ad}(c)^{4}=$ Id, the half-plane is a tube domain!

$$
\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)
$$

$$
\operatorname{Ad}(c)^{8}=\operatorname{Id}=\operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2}
$$

If $\operatorname{Ad}(c)^{4}=$ Id, the half-plane is a tube domain!

$$
\text { (} \left.T_{\Omega}=V+i \Omega \subset V^{\mathbb{C}} \text { for } \Omega \text { a cone }\right)
$$

$$
\operatorname{Ad}(c) \in \operatorname{Aut}\left(\mathfrak{g}^{\mathbb{C}}\right)
$$

$$
\operatorname{Ad}(c)^{8}=\operatorname{Id}=\operatorname{Ad}\left(c^{4}\right)^{2} \text { gives } \mathfrak{g}=\mathfrak{g}_{T}+\mathfrak{g}_{2}
$$

If $\operatorname{Ad}(c)^{4}=$ Id，the half－plane is a tube domain！

$$
\left(T_{\Omega}=V+i \Omega \subset V^{\mathbb{C}} \text { for } \Omega \text { a cone }\right)
$$

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$
- $\operatorname{Sp}(2 n, \mathbb{R})$
- $\mathrm{SO}_{0}(2, n)$
- $\mathrm{SO}^{*}(2 n)$

And two exceptional cases:

- E_{6}^{-14}
- E_{7}^{-25}

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$ (tube when $p=q$)
- $\operatorname{Sp}(2 n, \mathbb{R})$
- $\mathrm{SO}_{0}(2, n)$
- $\mathrm{SO}^{*}(2 n)$

And two exceptional cases:

- E_{6}^{-14}
- E_{7}^{-25}

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$ (tube when $p=q$)
- $\operatorname{Sp}(2 n, \mathbb{R})$ (tube)
- $\mathrm{SO}_{0}(2, n)$
- $\mathrm{SO}^{*}(2 n)$

And two exceptional cases:

- E_{6}^{-14}
- E_{7}^{-25}

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$ (tube when $p=q$)
- $\operatorname{Sp}(2 n, \mathbb{R})$ (tube)
- $\mathrm{SO}_{0}(2, n)$ (tube)
- $\mathrm{SO}^{*}(2 n)$

And two exceptional cases:

- E_{6}^{-14}
- E_{7}^{-25}

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$ (tube when $p=q$)
- $\operatorname{Sp}(2 n, \mathbb{R})$ (tube)
- $\mathrm{SO}_{0}(2, n)$ (tube)
- $\mathrm{SO}^{*}(2 n)$ (tube for n even)

And two exceptional cases:

- E_{6}^{-14}
- E_{7}^{-25}

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$ (tube when $p=q$)
- $\operatorname{Sp}(2 n, \mathbb{R})$ (tube)
- $\mathrm{SO}_{0}(2, n)$ (tube)
- SO* $^{*}(2 n)$ (tube for n even)

And two exceptional cases:

- E_{6}^{-14} (non-tube)
- E_{7}^{-25}

How many groups of Hermitian type?
Using Cartan's classification, there are four classical families:

- $\operatorname{SU}(p, q)$ (tube when $p=q$)
- $\operatorname{Sp}(2 n, \mathbb{R})$ (tube)
- $\mathrm{SO}_{0}(2, n)$ (tube)
- SO* $^{*}(2 n)$ (tube for n even)

And two exceptional cases:

- E_{6}^{-14} (non-tube)
- E_{7}^{-25} (tube)

Tube-type case

Tube-type case

$$
\operatorname{Ad}(c)^{4}=l d
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=l d=\operatorname{Ad}\left(c^{2}\right)^{2}
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Non-compact dual:

Tube-type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

Tube-type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right)
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

Tube－type case

$\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2}$ gives $\mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}$.
Non－compact dual： $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$ ．

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$ ，

Tube-type case

$\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2}$ gives $\mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}$.
Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$, dual of $\check{S}=H / H^{\prime}$.

Tube-type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$, dual of $\check{S}=H / H^{\prime}$. $\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}$,

Tube－type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Non－compact dual： $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$ ．

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$ ，dual of $\check{S}=H / H^{\prime}$ ．
$\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H_{0}^{\prime}\right)$－equivariant．

Tube－type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Non－compact dual： $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$ ．

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$ ，dual of $\check{S}=H / H^{\prime}$ ． $\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H^{\prime \mathbb{C}}\right)$－equivariant．

Tube-type case

$$
\operatorname{Ad}(c)^{4}=I d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime}
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$, dual of $\check{S}=H / H^{\prime}$. $\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H^{\prime \mathbb{C}}\right)$-equivariant.

Moreover, \mathfrak{m}^{+}is a Jordan algebra (triple)

Tube－type case

$$
\operatorname{Ad}(c)^{4}=l d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime} .
$$

Non－compact dual： $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$ ．

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$ ，dual of $\check{S}=H / H^{\prime}$ ． $\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H^{\prime \mathbb{C}}\right)$－equivariant．

Moreover， \mathfrak{m}^{+}is a Jordan algebra（triple）$\Rightarrow \begin{gathered}\operatorname{det}: \mathfrak{m}^{+} \rightarrow \mathbb{C} \\ \text { rank on } \mathfrak{m}^{+}\end{gathered}$

Tube－type case

$$
\operatorname{Ad}(c)^{4}=l d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime} .
$$

Non－compact dual： $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$ ．

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$ ，dual of $\check{S}=H / H^{\prime}$ ． $\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H^{\prime \mathbb{C}}\right)$－equivariant．

Moreover， \mathfrak{m}^{+}is a Jordan algebra（triple）\Rightarrow $\operatorname{det}: \mathfrak{m}^{+} \rightarrow \mathbb{C}$
rank on \mathfrak{m}^{+}

$$
\operatorname{det}\left(e_{\Gamma}\right)=1
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=l d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime} .
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$, dual of $\check{S}=H / H^{\prime}$. $\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H^{\prime \mathbb{C}}\right)$-equivariant.

Moreover, \mathfrak{m}^{+}is a Jordan algebra (triple) \Rightarrow $\operatorname{det}: \mathfrak{m}^{+} \rightarrow \mathbb{C}$ rank on \mathfrak{m}^{+}

$$
\operatorname{det}\left(e_{\Gamma}\right)=1, \mathfrak{m}_{D \neq 0}^{+} \cong H^{\mathbb{C}} / H^{\mathbb{C}}
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=l d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime} .
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$, dual of $\check{S}=H / H^{\prime}$. $\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H^{\prime \mathbb{C}}\right)$-equivariant.

Moreover, \mathfrak{m}^{+}is a Jordan algebra (triple) \Rightarrow $\operatorname{det}: \mathfrak{m}^{+} \rightarrow \mathbb{C}$ rank on \mathfrak{m}^{+}

$$
\operatorname{det}\left(e_{\Gamma}\right)=1, \mathfrak{m}_{D \neq 0}^{+} \cong H^{\mathbb{C}} / H^{\mathbb{C}}
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=l d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime} .
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$, dual of $\check{S}=H / H^{\prime}$. $\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H^{\prime \mathbb{C}}\right)$-equivariant.

Moreover, \mathfrak{m}^{+}is a Jordan algebra (triple) \Rightarrow det $: \mathfrak{m}^{+} \rightarrow \mathbb{C}$ rank on \mathfrak{m}^{+}

$$
\operatorname{det}\left(e_{\Gamma}\right)=1, \mathfrak{m}_{D \neq 0}^{+} \cong H^{\mathbb{C}} / H^{\mathbb{C}}
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=l d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime} .
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$, dual of $\check{S}=H / H^{\prime}$.
$\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H^{\prime \mathbb{C}}\right)$-equivariant.
Moreover, \mathfrak{m}^{+}is a Jordan algebra (triple) \Rightarrow $\operatorname{det}: \mathfrak{m}^{+} \rightarrow \mathbb{C}$ rank on \mathfrak{m}^{+}

$$
\operatorname{det}\left(e_{\Gamma}\right)=1, \mathfrak{m}_{D \neq 0}^{+} \cong H^{\mathbb{C}} / H^{\mathbb{C}}
$$

Tube-type case

$$
\operatorname{Ad}(c)^{4}=l d=\operatorname{Ad}\left(c^{2}\right)^{2} \text { gives } \mathfrak{h}=\mathfrak{h}^{\prime}+i \mathfrak{m}^{\prime} .
$$

Non-compact dual: $\mathfrak{h}^{*}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$.

$$
H^{*} \subset H^{\mathbb{C}}, H^{\prime}=\operatorname{Stab}\left(e_{\Gamma}\right), \mathfrak{h}^{\prime}=\operatorname{Ann}\left(e_{\Gamma}\right) .
$$

The cone is $\Omega \cong H^{*} / H_{0}^{\prime}$, dual of $\check{S}=H / H^{\prime}$. $\operatorname{ad}\left(e_{\Gamma}\right)$ defines $\mathfrak{m}^{\prime \mathbb{C}} \cong \mathfrak{m}^{+}, \operatorname{Ad}\left(H^{\prime \mathbb{C}}\right)$-equivariant.

Moreover, \mathfrak{m}^{+}is a Jordan algebra (triple) $\Rightarrow \begin{gathered}\text { det }: \mathfrak{m}^{+} \rightarrow \mathbb{C} \\ \text { rank on } \mathfrak{m}^{+}\end{gathered}$

$$
\operatorname{det}\left(e_{\Gamma}\right)=1, \mathfrak{m}_{D \neq 0}^{+} \cong H^{\mathbb{C}} / H^{\mathbb{C}}
$$

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number,

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number, genus of the Jordan triple)

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number, genus of the Jordan triple) defines a character on $\mathfrak{h}^{\mathbb{C}}$,

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number, genus of the Jordan triple) defines a character on $\mathfrak{h}^{\mathbb{C}}$,

$$
d=\operatorname{deg}\left(E\left(\chi_{T}\right)\right)
$$

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number, genus of the Jordan triple) defines a character on $\mathfrak{h}^{\mathbb{C}}$,

$$
d=\operatorname{deg}\left(E\left(\chi_{T}\right)\right), \quad \text { the Toledo invariant }
$$

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number, genus of the Jordan triple)

$$
\text { defines a character on } \mathfrak{h}^{\mathbb{C}} \text {, the Toledo character }
$$

$$
d=\operatorname{deg}\left(E\left(\chi_{T}\right)\right), \quad \text { the Toledo invariant }
$$

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number, genus of the Jordan triple)

$$
\text { defines a character on } \mathfrak{h}^{\mathbb{C}}, \quad \text { the Toledo character }
$$

$$
d=\operatorname{deg}\left(E\left(\chi_{T}\right)\right), \quad \text { the Toledo invariant }
$$

In the tube-type case:

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number, genus of the Jordan triple)

$$
\text { defines a character on } \mathfrak{h}^{\mathbb{C}} \text {, the Toledo character }
$$

$$
d=\operatorname{deg}\left(E\left(\chi_{T}\right)\right), \quad \text { the Toledo invariant }
$$

In the tube-type case:

$$
\begin{gathered}
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X) \\
X \in \mathfrak{m}^{+}, h \in H^{\mathbb{C}}
\end{gathered}
$$

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number, genus of the Jordan triple)

$$
\text { defines a character on } \mathfrak{h}^{\mathbb{C}} \text {, the Toledo character }
$$

$$
d=\operatorname{deg}\left(E\left(\chi_{T}\right)\right), \quad \text { the Toledo invariant }
$$

In the tube-type case:

$$
\begin{gathered}
\operatorname{det}^{q}(h \cdot X)=\chi_{T}(h) \operatorname{det}^{q}(X) \\
X \in \mathfrak{m}^{+}, h \in H^{\mathbb{C}}
\end{gathered}
$$

Definition

$$
\chi_{T}=\frac{2}{N} \sum_{\alpha \in \Delta_{Q}^{+}} \alpha
$$

(N dual Coxeter number, genus of the Jordan triple)

$$
\text { defines a character on } \mathfrak{h}^{\mathbb{C}} \text {, the Toledo character }
$$

$$
d=\operatorname{deg}\left(E\left(\chi_{T}\right)\right), \quad \text { the Toledo invariant }
$$

In the tube-type case:

$$
\begin{gathered}
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X) \\
X \in \mathfrak{m}^{+}, h \in H^{\mathbb{C}}
\end{gathered}
$$

Lifting of χ_{T} to the group $H^{\mathbb{C}}$

Lifting of χ_{T} to the group $H^{\mathbb{C}}$ Smallest rational multiple $q_{T} \cdot \chi_{T}$ lifting

Lifting of χ_{T} to the group $H^{\mathbb{C}}$
Smallest rational multiple $q_{T} \cdot \chi_{T}$ lifting

$$
q_{T}=\frac{l \cdot N}{\operatorname{dim} \mathfrak{m} \cdot o\left(e^{2 \pi J}\right)}
$$

Lifting of χ_{T} to the group $H^{\mathbb{C}}$ Smallest rational multiple $q_{T} \cdot \chi_{T}$ lifting

$$
q_{T}=\frac{l \cdot N}{\operatorname{dim} \mathfrak{m} \cdot o\left(e^{2 \pi J}\right)}
$$

where $I:=\left|Z_{0}^{\mathbb{C}} \cap\left[H^{\mathbb{C}}, H^{\mathbb{C}}\right]\right|$

Lifting of χ_{T} to the group $H^{\mathbb{C}}$ Smallest rational multiple $q_{T} \cdot \chi_{T}$ lifting

$$
\begin{aligned}
q_{T} & =\frac{l \cdot N}{\operatorname{dim} \mathfrak{m} \cdot o\left(e^{2 \pi J}\right)} \\
\text { where } I & :=\left|Z_{0}^{\mathbb{C}} \cap\left[H^{\mathbb{C}}, H^{\mathbb{C}}\right]\right|
\end{aligned}
$$

Lifting of χ_{T} to the group $H^{\mathbb{C}}$ Smallest rational multiple $q_{T} \cdot \chi_{T}$ lifting

$$
\begin{gathered}
q_{T}=\frac{I \cdot N}{\operatorname{dim} \mathfrak{m} \cdot o\left(e^{2 \pi J}\right)} \\
\text { where } I:=\left|Z_{0}^{\mathbb{C}} \cap\left[H^{\mathbb{C}}, H^{\mathbb{C}}\right]\right| \\
\text { and } o\left(e^{2 \pi J}\right) \text { depend genuinely on the group, }
\end{gathered}
$$

Lifting of χ_{T} to the group $H^{\mathbb{C}}$ Smallest rational multiple $q_{T} \cdot \chi_{T}$ lifting

$$
\begin{gathered}
\qquad q_{T}=\frac{l \cdot N}{\operatorname{dim} \mathfrak{m} \cdot o\left(e^{2 \pi J}\right)} \\
\text { where } l:=\left|Z_{0}^{\mathbb{C}} \cap\left[H^{\mathbb{C}}, H^{\mathbb{C}}\right]\right| \\
\text { and } o\left(e^{2 \pi J}\right) \text { depend genuinely on the group, } \\
\text { while } N \text { and } \operatorname{dim} \mathfrak{m} \text { depend on the algebra }
\end{gathered}
$$

In any case, for $m \in \mathfrak{m}^{+}$,

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+}, \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+}, \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

defines a parabolic subalgebra,

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+}, \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

defines a parabolic subalgebra, and corresponding subgroup P.

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+} \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

defines a parabolic subalgebra, and corresponding subgroup P.
$\left(\begin{array}{lll|lllll}* & * & * & & & & & \\ & * & * & & & & & \\ & * & * & & & & & \\ & m & & m & * & * & * & * \\ & * & * & * & * & * \\ & & & & & * & * & * \\ & & & & & * & * & * \\ & & & & & * & * & *\end{array}\right)$

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+}, \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

defines a parabolic subalgebra, and corresponding subgroup P.

$$
\text { For } \beta \in H^{0}\left(E^{K}\left(\mathfrak{m}^{+}\right)\right)
$$

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+}, \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

defines a parabolic subalgebra，and corresponding subgroup P ．

$$
\begin{gathered}
\text { For } \beta \in H^{0}\left(E^{K}\left(\mathfrak{m}^{+}\right)\right), \\
\operatorname{Ker}\left(\operatorname{ad} \beta_{\mid E\left(\mathfrak{h}^{\mathbb{C}}\right)}\right) \oplus \operatorname{Im}\left(\operatorname{ad} \beta_{E\left(\mathfrak{m}^{-}\right)}\right) \otimes K^{-1} \subset E\left(\mathfrak{h}^{\mathbb{C}}\right)
\end{gathered}
$$

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+}, \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

defines a parabolic subalgebra, and corresponding subgroup P.

For $\beta \in H^{0}\left(E^{K}\left(\mathfrak{m}^{+}\right)\right)$,

$$
\operatorname{Ker}\left(\operatorname{ad} \beta_{\mid E\left(\mathfrak{h}^{\mathbb{C}}\right)}\right) \oplus \operatorname{Im}\left(\operatorname{ad} \beta_{E\left(\mathfrak{m}^{-}\right)}\right) \otimes K^{-1} \subset E\left(\mathfrak{h}^{\mathbb{C}}\right)
$$

defines a reduction to P,

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+}, \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

defines a parabolic subalgebra，and corresponding subgroup P ．

$$
\text { For } \beta \in H^{0}\left(E^{K}\left(\mathfrak{m}^{+}\right)\right)
$$

$\operatorname{Ker}\left(\operatorname{ad} \beta_{\mid E\left(\mathfrak{h}^{\mathbb{C}}\right)}\right) \oplus \operatorname{Im}\left(\operatorname{ad} \beta_{E\left(\mathfrak{m}^{-}\right)}\right) \otimes K^{-1} \subset E\left(\mathfrak{h}^{\mathbb{C}}\right)$ defines a reduction to P ，thanks to G / P compact．

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+}, \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

defines a parabolic subalgebra, and corresponding subgroup P.

$$
\text { For } \beta \in H^{0}\left(E^{K}\left(\mathfrak{m}^{+}\right)\right)
$$

$$
\operatorname{Ker}\left(\operatorname{ad} \beta_{\mid E\left(\mathfrak{h}^{\mathbb{C}}\right)}\right) \oplus \operatorname{Im}\left(\operatorname{ad} \beta_{E\left(\mathfrak{m}^{-}\right)}\right) \otimes K^{-1} \subset E\left(\mathfrak{h}^{\mathbb{C}}\right)
$$

defines a reduction to P, thanks to G / P compact.
$\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\begin{gathered}
\text { In any case, for } m \in \mathfrak{m}^{+}, \\
\operatorname{Ker}\left(\operatorname{ad} m_{\mid \mathfrak{h}^{\mathbb{C}}}\right) \oplus \operatorname{Im}\left(\operatorname{ad} m_{\mid \mathfrak{m}^{-}}\right) \subset \mathfrak{h}^{\mathbb{C}}
\end{gathered}
$$

defines a parabolic subalgebra, and corresponding subgroup P.

$$
\text { For } \beta \in H^{0}\left(E^{K}\left(\mathfrak{m}^{+}\right)\right)
$$

$$
\operatorname{Ker}\left(\operatorname{ad} \beta_{\mid E\left(\mathfrak{h}^{\mathbb{C}}\right)}\right) \oplus \operatorname{Im}\left(\operatorname{ad} \beta_{E\left(\mathfrak{m}^{-}\right)}\right) \otimes K^{-1} \subset E\left(\mathfrak{h}^{\mathbb{C}}\right)
$$

defines a reduction to P, thanks to G / P compact.

$$
\chi_{T}-\chi_{T^{\prime}} \text { is an antidominant character of } P
$$

β gives a reduction to P
β gives a reduction to P (same for γ)
β gives a reduction to P（same for γ ）
$\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P
β gives a reduction to P (same for γ)
$\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

β gives a reduction to P（same for γ ）
$\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

α－semistability
β gives a reduction to P (same for γ) $\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

α-semistability
Theorem (α-Milnor-Wood inequality)
Let $\alpha \in i z$ such that $\alpha=i \lambda J$ for $\lambda \in \mathbb{R}$. Let (E, β, γ) be an α-semistable G-Higgs bundle. Then, the Toledo invariant $d=\frac{1}{q_{T}} \operatorname{deg}\left(E\left(\tilde{\chi}_{T}\right)\right)$ satisfies:
β gives a reduction to P (same for γ) $\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

α-semistability
Theorem (α-Milnor-Wood inequality)
Let $\alpha \in i z$ such that $\alpha=i \lambda J$ for $\lambda \in \mathbb{R}$. Let (E, β, γ) be an α-semistable G-Higgs bundle. Then, the Toledo invariant $d=\frac{1}{q_{T}} \operatorname{deg}\left(E\left(\tilde{\chi}_{T}\right)\right)$ satisfies:

$$
\begin{aligned}
& -\operatorname{rk}(\beta)(2 g-2)-\left(\frac{2 \operatorname{dim} \mathfrak{m}}{N}-\operatorname{rk}(\beta)\right) \lambda \leqslant d \\
& d \leqslant \operatorname{rk}(\gamma)(2 g-2)+\left(\frac{2 \operatorname{dim} \mathfrak{m}}{N}-\operatorname{rk}(\gamma)\right) \lambda
\end{aligned}
$$

β gives a reduction to P (same for γ) $\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

α-semistability

$$
-\operatorname{rk}(\beta)(2 g-2) \leqslant d \leqslant \operatorname{rk}(\gamma)(2 g-2)
$$

β gives a reduction to P (same for γ) $\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

α-semistability

MAXIMAL TOLEDO: $|d|=\operatorname{rk}(G / H)(2 g-2)$

β gives a reduction to P (same for γ) $\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

α-semistability

MAXIMAL TOLEDO: $|d|=\operatorname{rk}(G / H)(2 g-2)$

β gives a reduction to P (same for γ) $\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

α-semistability

MAXIMAL TOLEDO: $|d|=\operatorname{rk}(G / H)(2 g-2)$

β gives a reduction to P (same for γ) $\chi_{T}-\chi_{T^{\prime}}$ is an antidominant character of P

$$
\operatorname{det}(h \cdot X)=\chi_{T}(h) \operatorname{det}(X)
$$

α-semistability

MAXIMAL TOLEDO: $|d|=\operatorname{rk}(G / H)(2 g-2)$

G of tube type

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$E \quad H^{\mathbb{C}}$－bundle

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{array}{ll}
E & H^{\mathbb{C}} \text {-bundle } \\
\beta \in & H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right)
\end{array}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{array}{ll}
E & H^{\mathbb{C}} \text {-bundle } \\
\beta \in & H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) \\
\gamma \in & H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right)
\end{array}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{array}{llll}
E & H^{\mathbb{C}} \text {-bundle } & F & H^{\mathbb{C}_{\text {-bundle }}} \\
\beta \in & H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) & & \\
\gamma \in & H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) & &
\end{array}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{array}{llll}
E & H^{\mathbb{C}} \text {-bundle } & F & H^{\mathbb{C}} \text {-bundle } \\
\beta \in & H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) & \varphi \in & H^{0}\left(F\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
\gamma \in & H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) & &
\end{array}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{array}{rlll}
E & H^{\mathbb{C}} \text {-bundle } & F & H^{\prime \mathbb{C}} \text {-bundle } \\
\beta \in & H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) & \varphi \in & H^{0}\left(F\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
\gamma \in & H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) & & \\
\beta \equiv e_{\Gamma}, & &
\end{array}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{array}{rlll}
E & H^{\mathbb{C}} \text {-bundle } & F & H^{\mathbb{C}} \text {-bundle } \\
\beta \in & H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) & \varphi \in & H^{0}\left(F\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
\gamma \in & H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) & & \\
\beta & \equiv e_{\Gamma}, \mathfrak{m}_{D \neq 0}^{+} \cong \frac{H^{\mathbb{C}}}{H^{\mathbb{C}}}, & &
\end{array}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{array}{clcl}
E & H^{\mathbb{C}} \text {-bundle } & F & H^{\mathbb{C}} \text {-bundle } \\
\beta \in & H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) & \varphi \in & H^{0}\left(F\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
\gamma \in & H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) & & \\
\beta \equiv e_{\Gamma}, \mathfrak{m}_{D \neq 0}^{+} \cong \frac{H^{\mathbb{C}}}{H^{\prime \mathbb{C}}}, & \bar{\beta} \in H^{0}\left(E_{\mathbb{C}^{*}}^{K}\left(H^{\mathbb{C}} / H^{\prime \mathbb{C}}\right)\right)
\end{array}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{array}{lll}
E & H^{\mathbb{C}} \text {-bundle } & F
\end{array} H^{\mathbb{C}_{\text {-bundle }}} \begin{aligned}
& \beta \in H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) \\
& \gamma \in H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) \\
& \beta \equiv e_{\Gamma}, \mathfrak{m}_{D \neq 0}^{+} \cong \frac{H^{\mathbb{C}}}{H^{\mathbb{C}}}, \\
& \\
& \mathfrak{m}^{-} \cong\left(F\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
& \cong\left(\mathfrak{m}^{+}\right)^{*}, \\
&
\end{aligned}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{array}{rlrl}
E & H^{\mathbb{C}} \text {-bundle } & F & H^{\prime \mathbb{C}} \text {-bundle } \\
\beta \in & H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) & \varphi \in & H^{0}\left(F\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
\gamma \in & H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) & \\
\beta & \equiv e_{\Gamma}, \mathfrak{m}_{D \neq 0}^{+} \cong \frac{H^{\mathbb{C}}}{H^{\mathbb{C}}}, & \bar{\beta} \in H^{0}\left(E_{/ \mathbb{C}^{*}}^{K}\left(H^{\mathbb{C}} / H^{\mathbb{C}}\right)\right) \\
\mathfrak{m}^{-} \cong\left(\mathfrak{m}^{+}\right)^{*}, \mathfrak{m}^{+} \cong \mathfrak{m}^{\prime \mathbb{C}}, &
\end{array}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{aligned}
& E \quad H^{\mathbb{C}} \text {-bundle } \quad F \quad H^{\prime \mathbb{C}} \text {-bundle } \\
& \beta \in H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) \quad \varphi \in \quad H^{0}\left(F\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
& \gamma \in H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) \\
& \beta \equiv e_{\Gamma}, \mathfrak{m}_{D \neq 0}^{+} \cong \frac{H^{\mathbb{C}}}{H^{\prime \mathbb{C}}}, \quad \bar{\beta} \in H^{0}\left(E_{\mathbb{C}^{*}}^{K}\left(H^{\mathbb{C}} / H^{\mathbb{C}}\right)\right) \\
& \mathfrak{m}^{-} \cong\left(\mathfrak{m}^{+}\right)^{*}, \mathfrak{m}^{+} \cong \mathfrak{m}^{\mathbb{C}}, \quad \gamma \in H^{0}\left(F\left(\mathfrak{m}^{\prime \mathbb{C}}\right) \otimes K^{2}\right)
\end{aligned}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{aligned}
& E \quad H^{\mathbb{C}} \text {-bundle } \quad F \quad H^{\prime \mathbb{C}} \text {-bundle } \\
& \beta \in H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) \quad \varphi \in \quad H^{0}\left(F\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
& \gamma \in H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) \\
& \beta \equiv e_{\Gamma}, \mathfrak{m}_{D \neq 0}^{+} \cong \frac{H^{\mathbb{C}}}{H^{\prime \mathbb{C}}}, \quad \bar{\beta} \in H^{0}\left(E_{\mathbb{C}^{*}}^{K}\left(H^{\mathbb{C}} / H^{\mathbb{C}}\right)\right) \\
& \mathfrak{m}^{-} \cong\left(\mathfrak{m}^{+}\right)^{*}, \mathfrak{m}^{+} \cong \mathfrak{m}^{\mathbb{C}}, \quad \gamma \in H^{0}\left(F\left(\mathfrak{m}^{\prime \mathbb{C}}\right) \otimes K^{2}\right)
\end{aligned}
$$

$$
\mathcal{M}_{\max }(G) \quad \longrightarrow \quad \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

$$
\begin{aligned}
& E \quad H^{\mathbb{C}} \text {-bundle } \quad F \quad H^{\prime \mathbb{C}} \text {-bundle } \\
& \beta \in H^{0}\left(E\left(\mathfrak{m}^{+}\right) \otimes K\right) \quad \varphi \in \quad H^{0}\left(F\left(\mathfrak{m}^{\mathbb{C}}\right) \otimes K\right) \\
& \gamma \in H^{0}\left(E\left(\mathfrak{m}^{-}\right) \otimes K\right) \\
& \beta \equiv e_{\Gamma}, \mathfrak{m}_{D \neq 0}^{+} \cong \frac{H^{\mathbb{C}}}{H^{\prime \mathbb{C}}}, \quad \bar{\beta} \in H^{0}\left(E_{\mathbb{C}^{*}}^{K}\left(H^{\mathbb{C}} / H^{\mathbb{C}}\right)\right) \\
& \mathfrak{m}^{-} \cong\left(\mathfrak{m}^{+}\right)^{*}, \mathfrak{m}^{+} \cong \mathfrak{m}^{\mathbb{C}}, \quad \gamma \in H^{0}\left(F\left(\mathfrak{m}^{\prime \mathbb{C}}\right) \otimes K^{2}\right)
\end{aligned}
$$

Theorem (Cayley correspondence)

Let G be a simple Hermitian group of tube type and H be a maximal compact subgroup. Let H^{*} be the non-compact dual of H in $H^{\mathbb{C}}$. Let J be the element in the centre of the Lie algebra \mathfrak{g} giving the almost complex structure on \mathfrak{m}. If the order of $e^{2 \pi J} \in H^{\mathbb{C}}$ divides $(2 g-2)$, then there is an injection of complex algebraic varieties

$$
\mathcal{M}_{\max }(G) \rightarrow \mathcal{M}_{K^{2}}\left(H^{*}\right)
$$

Moreover, stable G-Higgs bundles correspond to stable K^{2}-twisted H^{*}-Higgs pairs.

Already known in the classical cases (Bradlow, García-Prada, Gothen, Mundet i Riera),

Already known in the classical cases（Bradlow，García－Prada， Gothen，Mundet i Riera），where it is actually a homeomorphism．

Already known in the classical cases (Bradlow, García-Prada, Gothen, Mundet i Riera), where it is actually a homeomorphism.

Main novelties of our approach:

Already known in the classical cases (Bradlow, García-Prada, Gothen, Mundet i Riera), where it is actually a homeomorphism.

Main novelties of our approach:

- General proof using the Jordan algebra structure of \mathfrak{m}^{+}and the geometry of the Hermitian symmetric space.

Already known in the classical cases（Bradlow，García－Prada， Gothen，Mundet i Riera），where it is actually a homeomorphism．

Main novelties of our approach：
－General proof using the Jordan algebra structure of \mathfrak{m}^{+}and the geometry of the Hermitian symmetric space．
－Extension to exceptional groups，

Already known in the classical cases（Bradlow，García－Prada， Gothen，Mundet i Riera），where it is actually a homeomorphism．

Main novelties of our approach：
－General proof using the Jordan algebra structure of \mathfrak{m}^{+}and the geometry of the Hermitian symmetric space．
－Extension to exceptional groups，quotients and coverings．

Already known in the classical cases (Bradlow, García-Prada, Gothen, Mundet i Riera), where it is actually a homeomorphism.

Main novelties of our approach:

- General proof using the Jordan algebra structure of \mathfrak{m}^{+}and the geometry of the Hermitian symmetric space.
- Extension to exceptional groups, quotients and coverings.
- Role played by invariants of the group

Already known in the classical cases (Bradlow, García-Prada, Gothen, Mundet i Riera), where it is actually a homeomorphism.

Main novelties of our approach:

- General proof using the Jordan algebra structure of \mathfrak{m}^{+}and the geometry of the Hermitian symmetric space.
- Extension to exceptional groups, quotients and coverings.
- Role played by invariants of the group, e.g., o($\left.e^{2 \pi J}\right)$.

G of non－tube type

For maximal polystable objects:

For maximal polystable objects:
Reduction from max. $\beta+$ char. $\chi_{T}-\chi_{T^{\prime}}$

For maximal polystable objects：
Reduction from max．$\beta+$ char．$\chi_{T}-\chi_{T^{\prime}} \Rightarrow$ strictly polystable．

For maximal polystable objects:
Reduction from max. $\beta+$ char. $\chi_{T}-\chi_{T^{\prime}} \Rightarrow$ strictly polystable.

Maximal G-bundle reduces to $N_{G}\left(\mathfrak{g}_{T}\right)_{0}$-bundle.

For maximal polystable objects:
Reduction from max. $\beta+$ char. $\chi_{T}-\chi_{T^{\prime}} \Rightarrow$ strictly polystable.

Maximal G-bundle reduces to $N_{G}\left(\mathfrak{g}_{T}\right)_{0}$-bundle.

Theorem

Let G be a simple Hermitian group of non－tube type and let H be its maximal compact subgroup．Then，there are no stable G－Higgs bundles with maximal Toledo invariant．In fact，every polystable maximal G－Higgs bundle reduces to a stable $N_{G}\left(\mathfrak{g}_{T}\right)_{0}$－Higgs bundle，where $N_{G}\left(\mathfrak{g}_{T}\right)_{0}$ is the identity component of the normalizer of \mathfrak{g}_{T} in G ．

Already known for $\operatorname{SU}(p, q), \mathrm{SO}^{*}(4 m+2)$

Already known for $\operatorname{SU}(p, q), \mathrm{SO}^{*}(4 m+2)$ (Bradlow, García-Prada, Gothen).

Already known for $\operatorname{SU}(p, q), \mathrm{SO}^{*}(4 m+2)$ (Bradlow, García-Prada, Gothen).
where one also has

Already known for $\operatorname{SU}(p, q), \mathrm{SO}^{*}(4 m+2)$ （Bradlow，García－Prada，Gothen）．
where one also has
$\mathcal{M}_{\text {max }}(G)$ fibers over $M_{0}\left(N_{H^{\mathbb{C}}}\left(H_{T}^{\mathbb{C}}\right) / H_{T}^{\mathbb{C}}\right)$ ， with fibre $\cong \mathcal{M}_{\max }\left(G_{T}\right)$

Already known for $\operatorname{SU}(p, q), \mathrm{SO}^{*}(4 m+2)$ （Bradlow，García－Prada，Gothen）．
where one also has
$\mathcal{M}_{\text {max }}(G)$ fibers over $M_{0}\left(N_{H^{\mathbb{C}}}\left(H_{T}^{\mathbb{C}}\right) / H_{T}^{\mathbb{C}}\right)$ ， with fibre $\cong \mathcal{M}_{\max }\left(G_{T}\right)$

©liggs bundles and

Oermitian symmetric spaces

