
New approaches to geometric structures:
generalized and complex Dirac geometry

Roberto Rubio

BMS-BGSMath Junior meeting
Barcelona, 5 September 2022



R2

Rn



R2

Rn



R2

Rn



R2

Rn



R2

Rn



R2

Rn



How to do
geometry/analysis

beyond Rn.
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A geometric structure is
an enrichment of the local

model and changes of chart of M .
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Then,
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An equivalent formulation

J ⇝ +i-eigenbundle L ⊂ TCM
J complex ↔ L involutive

J ⇝ L ⊂ TCM + T ∗
CM

J gen. complex ←→
def

L involutive

J skew means ⟨J (X + α),Y + β⟩ = −⟨X + α,J (Y + β)⟩.

On L, this means 2i⟨X + α,Y + β⟩ = 0.

So L is isotropic (or null) of maximal dimension ←−→
def .

lagrangian.

A generalized complex structure J is equivalent to a

lagrangian and involutive L ⊂ TCM + T ∗
CM such that L ∩ L = {0}
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Jω =
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)
JJ =

(
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)

type = dimC T ∗M ∩ JT ∗M
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symp. cplx.• •
gen.cplx.
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Theorem (Gualtieri)

• The type determines (up to equivalence) the structure at each point.

• At each point there are some symplectic directions and some
transversal complex directions.

• But the type may vary within a manifold! Preserving the parity
and upper continuously. No unique local model.
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1. Complex and symplectic become the same structure

• Interaction of complex and symplectic in mirror symmetry

• Extended deformation space of Barannikov and Kontsevich
(complex structures are deformed into symplectic ones)

• Other, like coisotropic A-branes...



1. Complex and symplectic become the same structure

• Interaction of complex and symplectic in mirror symmetry

• Extended deformation space of Barannikov and Kontsevich
(complex structures are deformed into symplectic ones)

• Other, like coisotropic A-branes...



2. Provides a new language, more suitable in some cases

Bihermitian geometry’84



2. Provides a new language, more suitable in some cases

Bihermitian geometry’84



2. Provides a new language, more suitable in some cases

Bihermitian geometry’84



2. Provides a new language, more suitable in some cases

Generalized Kähler geometry’04



2. Provides a new language, more suitable in some cases

Generalized Kähler geometry’04



2. Provides a new language, more suitable in some cases

Generalized Kähler geometry’04







3. Genuinely new structures

symplectic
complex

3CP2#19CP2

(Cavalcanti-Gualtieri’07)

generalized complex

almost complex



3. Genuinely new structures

symplectic
complex

3CP2#19CP2

(Cavalcanti-Gualtieri’07)

generalized complex

almost complex



3. Genuinely new structures

symplectic
complex

3CP2#19CP2

(Cavalcanti-Gualtieri’07)

generalized complex

almost complex



A step back to Dirac structures (Courant’90, Weinstein)

symplectic (M, ω)
ω : TM

∼−→ T ∗M or π = ω−1 : T ∗M
∼−→ TM

presymplectic
ω|N : TN → T ∗N
gr(ω) ⊂ TN + T ∗N

N ⊆ M

Poisson
π : T ∗(M/G )→ T (M/G )

gr(π) ⊂ T (M/G ) + T ∗(M/G )

G

⟳

M

Def.: Dirac structure
L ⊂ TX + T ∗X

lagrangian
involutive
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Dirac structures geometrically speaking

symplectic (M, ω)
ω : TM

∼−→ T ∗M, dω = 0

presymplectic
ω : TM → T ∗M

dω = 0

Poisson
π : T ∗M → TM, [π, π] = 0

symplectic foliation

Dirac structure
L ⊂ TM + T ∗M
presymplectic

foliation
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Analogue of type for lagrangian, involutive L ⊂ TM +T ∗M

Before, type = dimC T ∗M ∩ JT ∗M. No J now...

Define E := prTML and

‘type’ = codimE ,

codimension of the presymplectic leaves.

presymp.

Dirac

T ∗M

‘type’ 0

‘type’ dimM
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Local description for generalized complex structures

Theorem (Bailey)

Locally a generalized complex structure is a symplectic foliation with a
transverse holomorphic Poisson structure.

Recall the two examples of generalized complex:

Jω =

(
0 −ω−1

ω 0

)
JJ =

(
−J 0
0 J∗

)

The symplectic foliation, a Poisson structure!, was always there:

J =

(
A π
B C

)
that is, π : T ∗M → TM.
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Submanifolds of symplectic ⇝ presymplectic ⇝ Dirac

Symplectic and complex ⇝ generalized complex

What about submanifolds of generalized complex?

J ≡ lagrangian and involutive L ⊂ TCM + T ∗
CM such that L ∩ L = {0}

J|N ≡ lagrangian and involutive L ⊂ TCM + T ∗
CM

Complex Dirac

What invariant or invariants describe them?

Agüero’20, Bursztyn, R.

(Agüero, R.: Complex Dirac structures: invariants

and local structure, to appear in Comm. Math. Phys.)
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Complex Dirac ≡ lagrangian and involutive L ⊂ TCM + T ∗
CM.

Consider E := prTCML. We redefine the type to be codimE+E E .

L ∩ L ̸= {0} → we call dim L ∩ L ̸= {0} the real index.

Call codimE + E the order.

Theorem (Agüero, R.)

Complex Dirac structures are determined at each point by:
• the (normalized) type, • the real index, • the order.

At each point: presymplectic directions + transverse CR directions.

These invariants may vary (satisfying constraints like parity, upper
semi-continuity, but also order ≤ real-index,).

For constant order, a complex Dirac has associated a real Dirac.
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Why complex Dirac structures?

• They go beyond generalized complex (symplectic+complex),
bringing together presymplectic + CR and allowing variation.

• Potential to be applied in the future.

• Open questions: what is the local model?, what happens with the
associated Dirac structure when the order is not constant?, how are
the type/real-index/order-changing structures?, are there constraints
on the existence of structure for given invariants?

• Challenging and beautiful.
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Thank you very much!

Danke shön!

Moltes gràcies!


