New approaches to geometric structures: generalized and complex Dirac geometry

Roberto Rubio
UAB
Universitat Autònoma
de Barcelona

BMS-BGSMath Junior meeting
Barcelona, 5 September 2022
∇

\mathbb{R}^{2}
\mathbb{R}^{n}

How to do
 geometry/analysis beyond \mathbb{R}^{n}.

On a set M :

On a set M :

M gets a topology
(usually required to be Hausdorff + countable basis)
M is called a (smooth) manifold:

M is called a (smooth) manifold: We say $f: M \rightarrow \mathbb{R}$ is smooth...

M is called a (smooth) manifold: We say $f: M \rightarrow \mathbb{R}$ is smooth...

M is called a (smooth) manifold: We say $f: M \rightarrow \mathbb{R}$ is smooth...

> A geometric structure is an enrichment of the local model and changes of chart of M.

Charts are complicated...

Charts are complicated...

Charts are complicated...

Charts are complicated...

Charts are complicated...

...vector spaces are easier to handle.

Charts are complicated...

...vector spaces are easier to handle.

Charts are complicated...

We bring the geometric structure to the tangent bundle:

We bring the geometric structure to the tangent bundle:

We bring the geometric structure to the tangent bundle:

We bring the geometric structure to the tangent bundle:

We bring the geometric structure to the tangent bundle:

We bring the geometric structure to the tangent bundle:

We bring the geometric structure to the tangent bundle:

...but we loose information.

Starting with J (almost complex manifold):

Starting with J (almost complex manifold):

Starting with J (almost complex manifold):

High school Physics revisited:

$$
F=m \cdot a
$$

High school Physics revisited:

Position $x \in \mathbb{R}^{n}$

$$
F=m \cdot a
$$

$$
F=-\nabla_{x} \varphi
$$

High school Physics revisited:

Position $x \in \mathbb{R}^{n}$

$$
F=m \cdot a
$$

$F=-\nabla_{x} \varphi$

$$
-\nabla_{x} \varphi=m \frac{d^{2} x}{d t}
$$

High school Physics revisited:

Position $x \in \mathbb{R}^{n}$
$F=-\nabla_{x} \varphi$

$$
-\nabla_{x} \varphi=m \frac{d^{2} x}{d t}
$$

Linear momentum $p=m \frac{d x}{d t}$

$$
\begin{aligned}
\nabla_{x} \varphi & =-\frac{d p}{d t} \\
\nabla_{p}\left(p^{2} / 2 m\right) & =\frac{d x}{d t}
\end{aligned}
$$

High school Physics revisited:

Position $x \in \mathbb{R}^{n}$
$F=-\nabla_{x} \varphi$

$$
-\nabla_{x} \varphi=m \frac{d^{2} x}{d t}
$$

Linear momentum $p=m \frac{d x}{d t}$

$$
\begin{aligned}
\nabla_{x} \varphi & =-\frac{d p}{d t} \\
\nabla_{p}\left(p^{2} / 2 m\right) & =\frac{d x}{d t}
\end{aligned}
$$

Define $H=\varphi+p^{2} / 2 m$. Notation $d H=\nabla_{x} H \cdot d x+\nabla_{p} H \cdot d p$.

High school Physics revisited:

Position $x \in \mathbb{R}^{n}$

$$
F=m \cdot a
$$

$F=-\nabla_{x} \varphi$

$$
-\nabla_{x} \varphi=m \frac{d^{2} x}{d t}
$$

Linear momentum $p=m \frac{d x}{d t}$

$$
\begin{aligned}
\nabla_{x} \varphi & =-\frac{d p}{d t} \\
\nabla_{p}\left(p^{2} / 2 m\right) & =\frac{d x}{d t}
\end{aligned}
$$

Define $H=\varphi+p^{2} / 2 m$. Notation $d H=\nabla_{x} H \cdot d x+\nabla_{p} H \cdot d p$. A solution/trajectory $(\mathbf{x}, \mathbf{p}) \in \mathbb{R}^{2 n}$ (phase space) satisfies

$$
d H=\left(\sum_{j} d x_{j} \wedge d p_{j}\right)\left(\frac{d(\mathbf{x}, \mathbf{p})}{d t}\right)
$$

High school Physics revisited:

Position $x \in \mathbb{R}^{n}$

$$
F=m \cdot a
$$

$F=-\nabla_{x} \varphi$

$$
-\nabla_{x} \varphi=m \frac{d^{2} x}{d t}
$$

Linear momentum $p=m \frac{d x}{d t}$

$$
\begin{aligned}
\nabla_{\times} \varphi & =-\frac{d p}{d t} \\
\nabla_{p}\left(p^{2} / 2 m\right) & =\frac{d x}{d t}
\end{aligned}
$$

Define $H=\varphi+p^{2} / 2 m$. Notation $d H=\nabla_{x} H \cdot d x+\nabla_{p} H \cdot d p$. A solution/trajectory $(\mathbf{x}, \mathbf{p}) \in \mathbb{R}^{2 n}$ (phase space) satisfies

$$
d H=\left(\sum_{j} d x_{j} \wedge d p_{j}\right)\left(\frac{d(\mathbf{x}, \mathbf{p})}{d t}\right)
$$

$\omega_{0}:=\sum_{j} d x_{j} \wedge d p_{j}$ gives a correspondence between vectors and 1-forms

Again, charts are complicated...

Again, charts are complicated...

Before we built $T M$, we considered $T_{\mathbb{C}} M, L \subset T_{\mathbb{C}} M \ldots$

Again, charts are complicated...

Before we built $T M$, we considered $T_{\mathbb{C}} M, L \subset T_{\mathbb{C}} M \ldots$
We can also consider $T^{*} M$.

Again, charts are complicated...

Before we built $T M$, we considered $T_{\mathbb{C}} M, L \subset T_{\mathbb{C}} M \ldots$
We can also consider $T^{*} M$.

Then, $\sum_{j} d x_{j} \wedge d p_{j}$ brought to $T M$ is

$$
\omega: T M \rightarrow T^{*} M
$$

Again, charts are complicated...

Before we built $T M$, we considered $T_{\mathbb{C}} M, L \subset T_{\mathbb{C}} M \ldots$
We can also consider $T^{*} M$.

Then, $\sum_{j} d x_{j} \wedge d p_{j}$ brought to $T M$ is

$$
\omega: T M \rightarrow T^{*} M
$$

- skew-symmetric: $\omega(X)(X)=0$
(Hamiltonian is preserved) (such an ω is called a 2-form and denoted by $\omega \in \Gamma\left(\wedge^{2} T^{*} M\right)$ or $\omega \in \Omega^{2}(M)$)

Again, charts are complicated...

Before we built $T M$, we considered $T_{\mathbb{C}} M, L \subset T_{\mathbb{C}} M \ldots$
We can also consider $T^{*} M$.

Then, $\sum_{j} d x_{j} \wedge d p_{j}$ brought to $T M$ is

$$
\omega: T M \rightarrow T^{*} M
$$

- skew-symmetric: $\omega(X)(X)=0$
(Hamiltonian is preserved) (such an ω is called a 2-form and denoted by $\omega \in \Gamma\left(\wedge^{2} T^{*} M\right)$ or $\omega \in \Omega^{2}(M)$)
- non-degenerate: $\omega: T M \xrightarrow{\sim} T^{*} M \quad$ (trajectories are unique)

Again, charts are complicated...

Before we built $T M$, we considered $T_{\mathbb{C}} M, L \subset T_{\mathbb{C}} M \ldots$
We can also consider $T^{*} M$.
Then, $\sum_{j} d x_{j} \wedge d p_{j}$ brought to $T M$ is

$$
\omega: T M \rightarrow T^{*} M
$$

- skew-symmetric: $\omega(X)(X)=0$
(Hamiltonian is preserved) (such an ω is called a 2-form and denoted by $\omega \in \Gamma\left(\wedge^{2} T^{*} M\right)$ or $\omega \in \Omega^{2}(M)$)
- non-degenerate: $\omega: T M \xrightarrow{\sim} T^{*} M \quad$ (trajectories are unique)

When does ω come from local charts $\left(\mathbb{R}^{2 n}, \sum_{j} d x_{j} \wedge d p_{j}\right)$?

Starting with ω (non-degenerate 2-form):

Starting with ω (non-degenerate 2-form):

Starting with ω (non-degenerate 2-form):

Again, charts are complicated...

Before we built $T M$, we considered $T_{\mathbb{C}} M, L \subset T_{\mathbb{C}} M \ldots$
We can also consider $T^{*} M$.

Then, $\sum_{j} d x_{j} \wedge d p_{j}$ brought to $T M$ is

$$
\omega: T M \rightarrow T^{*} M
$$

- skew-symmetric: $\omega(X)(X)=0 \quad$ (Hamiltonian is preserved) (such an ω is called a 2-form and denoted by $\omega \in \Gamma\left(\wedge^{2} T^{*} M\right)$ or $\omega \in \Omega^{2}(M)$)
- non-degenerate: $\omega: T M \xrightarrow{\sim} T^{*} M \quad$ (trajectories are unique)

When does ω come from local charts $\left(\mathbb{R}^{2 n}, \sum_{j} d x_{j} \wedge d p_{j}\right)$?

Again, charts are complicated...

Before we built $T M$, we considered $T_{\mathbb{C}} M, L \subset T_{\mathbb{C}} M \ldots$
We can also consider $T^{*} M$.

Then, $\sum_{j} d x_{j} \wedge d p_{j}$ brought to $T M$ is

$$
\omega: T M \rightarrow T^{*} M
$$

- skew-symmetric: $\omega(X)(X)=0 \quad$ (Hamiltonian is preserved) (such an ω is called a 2-form and denoted by $\omega \in \Gamma\left(\wedge^{2} T^{*} M\right)$ or $\omega \in \Omega^{2}(M)$)
- non-degenerate: $\omega: T M \xrightarrow{\sim} T^{*} M \quad$ (trajectories are unique)

When does ω come from local charts $\left(\mathbb{R}^{2 n}, \sum_{j} d x_{j} \wedge d p_{j}\right)$?

- closed:

$$
\mathrm{d} \omega=0
$$

(time-independent)
(Darboux Thm.)

Again, charts are complicated...

Before we built $T M$, we considered $T_{\mathbb{C}} M, L \subset T_{\mathbb{C}} M \ldots$
We can also consider $T^{*} M$.

Then, $\sum_{j} d x_{j} \wedge d p_{j}$ brought to $T M$ is

$$
\omega: T M \rightarrow T^{*} M
$$

- skew-symmetric: $\omega(X)(X)=0 \quad$ (Hamiltonian is preserved) (such an ω is called a 2-form and denoted by $\omega \in \Gamma\left(\wedge^{2} T^{*} M\right)$ or $\omega \in \Omega^{2}(M)$)
- non-degenerate: $\omega: T M \xrightarrow{\sim} T^{*} M \quad$ (trajectories are unique)

When does ω come from local charts $\left(\mathbb{R}^{2 n}, \sum_{j} d x_{j} \wedge d p_{j}\right)$?

- closed:

$$
\mathrm{d} \omega=0
$$

(time-independent)
(Darboux Thm.)
Such an ω is called a symplectic form.

almost complex

$$
3 \mathbb{C} P^{2}
$$

almost complex

$$
\begin{gathered}
3 \mathbb{C} P^{2} \\
\text { and } S^{6} ? ? ?
\end{gathered}
$$

TM

TM
 $J \in \operatorname{End}(T M)$
 $$
J^{2}=-\mathrm{Id}
$$
 $\omega: T M \xrightarrow{\sim} T^{*} M$ skew-symmetric

Generalized complex geometry (Hitchin-Gualtieri'03)

$$
\begin{aligned}
& \\
& J \in \operatorname{End}(T M) \\
& J^{2}=-\mathrm{Id} \\
& \begin{array}{l}
\omega: T M \xrightarrow{\sim} T^{*} M \\
\text { skew-symmetric }
\end{array}
\end{aligned}
$$

Generalized complex geometry (Hitchin-Gualtieri'03)

$$
\begin{aligned}
& \text { Pairing }\langle X+\alpha, X+\alpha\rangle=\alpha(X) \\
& J \in \operatorname{End}(T M) \\
& J^{2}=-\operatorname{Id} \\
& \omega: T M \xrightarrow{\sim} T^{*} M \\
& \text { skew-symmetric }
\end{aligned}
$$

Generalized complex geometry (Hitchin-Gualtieri'03)

$$
\begin{gathered}
\substack{\mathcal{J} \in \operatorname{End}(T M) \\
J^{2}=-\mathrm{Id} \\
\omega: T M \xrightarrow{\sim} T^{*} M} \\
\begin{array}{l}
\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right) \\
\mathcal{J}^{2}=-\operatorname{Id} \text { and } \mathcal{J} \text { skew }
\end{array}
\end{gathered}
$$

Generalized complex geometry (Hitchin-Gualtieri'03)
TM

$$
\text { Pairing }\langle X+\alpha, X+\alpha\rangle=\alpha(X)
$$

$$
\begin{gathered}
\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right) \\
\mathcal{J}^{2}=-\mathrm{Id} \text { and } \mathcal{J} \text { skew }
\end{gathered}
$$

Examples:

$$
\mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

Generalized complex geometry (Hitchin-Gualtieri'03)
TM $+$

$$
\text { Pairing }\langle X+\alpha, X+\alpha\rangle=\alpha(X)
$$

$$
\begin{gathered}
\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right) \\
\mathcal{J}^{2}=-\operatorname{Id} \text { and } \mathcal{J} \text { skew }
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \\
& \mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
\end{aligned}
$$

Generalized complex geometry (Hitchin-Gualtieri'03)

$$
\text { Pairing }\langle X+\alpha, X+\alpha\rangle=\alpha(X)
$$

$$
\begin{gathered}
\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right) \\
\mathcal{J}^{2}=-\operatorname{Id} \text { and } \mathcal{J} \text { skew }
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \\
& \mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
\end{aligned}
$$

$\left.\begin{array}{c}J \in \operatorname{End}(T M) \\ J^{2}=-\operatorname{Id} \\ \omega: T M \xrightarrow[\rightarrow]{\sim} T^{*} M \\ \text { skew-symmetric }\end{array}\right\}$

Q: What about J integrable or $d \omega=0$?

$$
\begin{gathered}
\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right) \\
\mathcal{J}^{2}=-\mathrm{Id} \text { and } \mathcal{J} \text { skew }
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \\
& \mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
\end{aligned}
$$

$\left.\begin{array}{c}J \in \operatorname{End}(T M) \\ J^{2}=-\mathrm{Id} \\ \omega: T M \xrightarrow[\rightarrow]{\sim} T^{*} M \\ \text { skew-symmetric }\end{array}\right\}$

Q: What about J integrable or $d \omega=0$?

A: $+i$-eigenbundle L involutive, that is, $[\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$, for the Lie bracket

$$
\begin{gathered}
\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right) \\
\mathcal{J}^{2}=-\mathrm{Id} \text { and } \mathcal{J} \text { skew }
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \\
& \mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
J \in \operatorname{End}(T M) \\
J^{2}=-I d \\
\omega: T M \xrightarrow{\sim} T^{*} M \\
\text { skew-symmetric }
\end{gathered}
$$

Q: What about J integrable or $d \omega=0$?

A: $+i$-eigenbundle L involutive, that is, $[\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$, for the Lie bracket

$$
\begin{gathered}
\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right) \\
\mathcal{J}^{2}=-\mathrm{Id} \text { and } \mathcal{J} \text { skew }
\end{gathered}
$$

Examples:

$$
\begin{aligned}
& \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right) \\
& \mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
\end{aligned}
$$

Here, $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$, involutive...
but do we even have a bracket on $\Gamma(L)$?

The Dorfman bracket

$$
[X+\alpha, Y+\beta]=[X, Y]+\mathcal{L}_{X} \beta-\imath Y d \alpha
$$

The Dorfman bracket??

$$
[X+\alpha, Y+\beta]=[X, Y]+\mathcal{L}_{X} \beta-\imath Y d \alpha
$$

$$
\begin{aligned}
{[X+\alpha, X+\alpha] } & =[X, X]+\mathcal{L}_{X} \alpha-\imath_{X} d \alpha \\
& =d \imath_{X} \alpha=d\langle X+\alpha, X+\alpha\rangle
\end{aligned}
$$

The Dorfman bracket

$$
[X+\alpha, Y+\beta]=[X, Y]+\mathcal{L}_{X} \beta-\imath Y d \alpha
$$

$$
\begin{aligned}
{[X+\alpha, X+\alpha] } & =[X, X]+\mathcal{L}_{X} \alpha-\imath_{X} d \alpha \\
& =d \imath_{X} \alpha=d\langle X+\alpha, X+\alpha\rangle
\end{aligned}
$$

The Dorfman bracket

$$
\begin{aligned}
{[X+\alpha, Y+\beta] } & =[X, Y]+\mathcal{L}_{X} \beta-\imath Y d \alpha \\
{[X+\alpha, X+\alpha] } & =[X, X]+\mathcal{L}_{X} \alpha-\imath_{X} d \alpha \\
& =d \imath_{X} \alpha=d\langle X+\alpha, X+\alpha\rangle
\end{aligned}
$$

The $+i$-eigenbundle $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ is involutive, $[\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$,

The Dorfman bracket

$$
\begin{aligned}
{[X+\alpha, Y+\beta] } & =[X, Y]+\mathcal{L}_{X} \beta-\imath_{Y} d \alpha \\
{[X+\alpha, X+\alpha] } & =[X, X]+\mathcal{L}_{X} \alpha-\imath_{X} d \alpha \\
& =d \imath_{X} \alpha=d\langle X+\alpha, X+\alpha\rangle
\end{aligned}
$$

The $+i$-eigenbundle $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ is involutive, $[\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$,

- for \mathcal{J}_{J} if and only if J is a complex structure.

The Dorfman bracket

$$
\begin{aligned}
{[X+\alpha, Y+\beta] } & =[X, Y]+\mathcal{L}_{X} \beta-\imath_{Y} d \alpha \\
{[X+\alpha, X+\alpha] } & =[X, X]+\mathcal{L}_{X} \alpha-\imath_{X} d \alpha \\
& =d \imath_{X} \alpha=d\langle X+\alpha, X+\alpha\rangle
\end{aligned}
$$

The $+i$-eigenbundle $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ is involutive, $[\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$,

- for \mathcal{J}_{J} if and only if J is a complex structure.
- for \mathcal{J}_{ω} if and only if ω is a symplectic structure.

The Dorfman bracket

$$
\begin{aligned}
{[X+\alpha, Y+\beta] } & =[X, Y]+\mathcal{L}_{X} \beta-\imath Y d \alpha \\
{[X+\alpha, X+\alpha] } & =[X, X]+\mathcal{L}_{X} \alpha-\imath X d \alpha \\
& =d \imath_{X} \alpha=d\langle X+\alpha, X+\alpha\rangle
\end{aligned}
$$

The $+i$-eigenbundle $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ is involutive, $[\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$,

- for \mathcal{J}_{J} if and only if J is a complex structure.
- for \mathcal{J}_{ω} if and only if ω is a symplectic structure.
$J \rightsquigarrow+i$-eigenbundle $L \subset T_{\mathbb{C}} M$
J complex $\leftrightarrow L$ involutive

The Dorfman bracket

$$
\begin{aligned}
{[X+\alpha, Y+\beta] } & =[X, Y]+\mathcal{L}_{X} \beta-\imath Y d \alpha \\
{[X+\alpha, X+\alpha] } & =[X, X]+\mathcal{L}_{X} \alpha-\imath X d \alpha \\
& =d \imath_{X} \alpha=d\langle X+\alpha, X+\alpha\rangle
\end{aligned}
$$

The $+i$-eigenbundle $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ is involutive, $[\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$,

- for \mathcal{J}_{J} if and only if J is a complex structure.
- for \mathcal{J}_{ω} if and only if ω is a symplectic structure.
$J \rightsquigarrow+i$-eigenbundle $L \subset T_{\mathbb{C}} M$

$$
\mathcal{J} \rightsquigarrow L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M
$$

J complex $\leftrightarrow L$ involutive

The Dorfman bracket

$$
\begin{aligned}
{[X+\alpha, Y+\beta] } & =[X, Y]+\mathcal{L}_{X} \beta-\imath_{Y} d \alpha \\
{[X+\alpha, X+\alpha] } & =[X, X]+\mathcal{L}_{X} \alpha-\imath X d \alpha \\
& =d \imath_{X} \alpha=d\langle X+\alpha, X+\alpha\rangle
\end{aligned}
$$

The $+i$-eigenbundle $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ is involutive, $[\Gamma(L), \Gamma(L)] \subseteq \Gamma(L)$,

- for \mathcal{J}_{J} if and only if J is a complex structure.
- for \mathcal{J}_{ω} if and only if ω is a symplectic structure.
$J \rightsquigarrow+i$-eigenbundle $L \subset T_{\mathbb{C}} M$
J complex $\leftrightarrow L$ involutive

$$
\mathcal{J} \rightsquigarrow L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M
$$

Def.: generalized complex structure
$\mathcal{J} \in \operatorname{End}\left(T M+T^{*} M\right)$
$\mathcal{J}^{2}=-I d, \mathcal{J}$ skew, L involutive

An equivalent formulation

$J \rightsquigarrow+i$-eigenbundle $L \subset T_{\mathbb{C}} M$
J complex $\leftrightarrow L$ involutive
$\mathcal{J} \rightsquigarrow L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$
\mathcal{J} gen. complex $\underset{\text { def }}{\longleftrightarrow} L$ involutive

An equivalent formulation

$$
\begin{array}{cc}
J \equiv L \subset T_{\mathbb{C}} M, L \oplus \bar{L}=T_{\mathbb{C}} M & \mathcal{J} \rightsquigarrow L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M \\
J \text { complex } \leftrightarrow L \text { involutive } & \mathcal{J} \text { gen. complex } \underset{\text { def }}{\longleftrightarrow} L \text { involutive }
\end{array}
$$

An equivalent formulation

$$
\begin{array}{cc}
J \equiv L \subset T_{\mathbb{C}} M, L \oplus \bar{L}=T_{\mathbb{C}} M & \mathcal{J} \equiv L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M, L \oplus \bar{L}=\ldots ? \\
J \text { complex } \leftrightarrow L \text { involutive } & \mathcal{J} \text { gen. complex } \underset{\text { def }}{\overleftrightarrow{ }} L \text { involutive }
\end{array}
$$

An equivalent formulation

$$
\begin{array}{cc}
J \equiv L \subset T_{\mathbb{C}} M, L \oplus \bar{L}=T_{\mathbb{C}} M & \mathcal{J} \equiv L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M, L \oplus \bar{L}=\ldots ? \\
J \text { complex } \leftrightarrow L \text { involutive } & \mathcal{J} \text { gen. complex } \underset{\text { def }}{\overleftrightarrow{\longrightarrow}} L \text { involutive }
\end{array}
$$

\mathcal{J} skew means $\langle\mathcal{J}(X+\alpha), Y+\beta\rangle=-\langle X+\alpha, \mathcal{J}(Y+\beta)\rangle$.

An equivalent formulation

$$
\begin{array}{cc}
J \equiv L \subset T_{\mathbb{C}} M, L \oplus \bar{L}=T_{\mathbb{C}} M & \mathcal{J} \equiv L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M, L \oplus \bar{L}=\ldots ? \\
J \text { complex } \leftrightarrow L \text { involutive } & \mathcal{J} \text { gen. complex } \underset{\text { def }}{\overleftrightarrow{\longrightarrow}} L \text { involutive }
\end{array}
$$

\mathcal{J} skew means $\langle\mathcal{J}(X+\alpha), Y+\beta\rangle=-\langle X+\alpha, \mathcal{J}(Y+\beta)\rangle$.
On L, this means $2 i\langle X+\alpha, Y+\beta\rangle=0$.

An equivalent formulation

$$
\begin{array}{cc}
J \equiv L \subset T_{\mathbb{C}} M, L \oplus \bar{L}=T_{\mathbb{C}} M & \mathcal{J} \equiv L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M, L \oplus \bar{L}=\ldots ? \\
J \text { complex } \leftrightarrow L \text { involutive } & \mathcal{J} \text { gen. complex } \underset{\text { def }}{\overleftrightarrow{\longrightarrow}} L \text { involutive }
\end{array}
$$

\mathcal{J} skew means $\langle\mathcal{J}(X+\alpha), Y+\beta\rangle=-\langle X+\alpha, \mathcal{J}(Y+\beta)\rangle$.
On L, this means $2 i\langle X+\alpha, Y+\beta\rangle=0$.
So L is isotropic (or null)

An equivalent formulation

$$
\begin{array}{cc}
J \equiv L \subset T_{\mathbb{C}} M, L \oplus \bar{L}=T_{\mathbb{C}} M & \mathcal{J} \equiv L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M, L \oplus \bar{L}=\ldots ? \\
J \text { complex } \leftrightarrow L \text { involutive } & \mathcal{J} \text { gen. complex } \underset{\text { def }}{\overleftrightarrow{ }} L \text { involutive }
\end{array}
$$

\mathcal{J} skew means $\langle\mathcal{J}(X+\alpha), Y+\beta\rangle=-\langle X+\alpha, \mathcal{J}(Y+\beta)\rangle$.
On L, this means $2 i\langle X+\alpha, Y+\beta\rangle=0$.
So L is isotropic (or null) of maximal dimension

An equivalent formulation

$$
\begin{array}{cc}
J \equiv L \subset T_{\mathbb{C}} M, L \oplus \bar{L}=T_{\mathbb{C}} M & \mathcal{J} \equiv L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M, L \oplus \bar{L}=\ldots ? \\
J \text { complex } \leftrightarrow L \text { involutive } & \mathcal{J} \text { gen. complex } \underset{\text { def }}{\overleftrightarrow{ }} L \text { involutive }
\end{array}
$$

\mathcal{J} skew means $\langle\mathcal{J}(X+\alpha), Y+\beta\rangle=-\langle X+\alpha, \mathcal{J}(Y+\beta)\rangle$.
On L, this means $2 i\langle X+\alpha, Y+\beta\rangle=0$.
So L is isotropic (or null) of maximal dimension $\underset{\text { def }}{\longrightarrow}$ lagrangian.

An equivalent formulation

$$
J \equiv L \subset T_{\mathbb{C}} M, L \oplus \bar{L}=T_{\mathbb{C}} M \quad \mathcal{J} \equiv L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M, L \oplus \bar{L}=\ldots ?
$$

J complex $\leftrightarrow L$ involutive $\quad \mathcal{J}$ gen. complex $\underset{\text { def }}{\longleftrightarrow} L$ involutive
\mathcal{J} skew means $\langle\mathcal{J}(X+\alpha), Y+\beta\rangle=-\langle X+\alpha, \mathcal{J}(Y+\beta)\rangle$.
On L, this means $2 i\langle X+\alpha, Y+\beta\rangle=0$.
So L is isotropic (or null) of maximal dimension $\underset{\text { def. }}{\overleftrightarrow{ }}$ lagrangian.

A generalized complex structure \mathcal{J} is equivalent to a lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ such that $L \cap \bar{L}=\{0\}$

An invariant for \mathcal{J}

An invariant for \mathcal{J}

Two examples:

$$
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

$$
\mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

An invariant for \mathcal{J}

Two examples:

$$
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right) \quad \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

$$
\text { type }=\operatorname{dim}_{\mathbb{C}} T^{*} M \cap \mathcal{J} T^{*} M
$$

An invariant for \mathcal{J}

Two examples:

$$
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right) \quad \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

$$
\text { type }=\operatorname{dim}_{\mathbb{C}} T^{*} M \cap \mathcal{J} T^{*} M
$$

$$
\operatorname{type}\left(\mathcal{J}_{\omega}\right)=0
$$

An invariant for \mathcal{J}

Two examples:

$$
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right) \quad \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

$$
\text { type }=\operatorname{dim}_{\mathbb{C}} T^{*} M \cap \mathcal{J} T^{*} M
$$

$$
\operatorname{type}\left(\mathcal{J}_{\omega}\right)=0 \quad \operatorname{type}\left(\mathcal{J}_{J}\right)=\operatorname{dim} M / 2
$$

An invariant for \mathcal{J}

Two examples:

$$
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right) \quad \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

$$
\text { type }=\operatorname{dim}_{\mathbb{C}} T^{*} M \cap \mathcal{J} T^{*} M
$$

$$
\operatorname{type}\left(\mathcal{J}_{\omega}\right)=0 \quad \operatorname{type}\left(\mathcal{J}_{J}\right)=\operatorname{dim} M / 2
$$

type

An invariant for \mathcal{J}

Two examples:

$$
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right) \quad \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

$$
\text { type }=\operatorname{dim}_{\mathbb{C}} T^{*} M \cap \mathcal{J} T^{*} M
$$

$$
\operatorname{type}\left(\mathcal{J}_{\omega}\right)=0 \quad \operatorname{type}\left(\mathcal{J}_{J}\right)=\operatorname{dim} M / 2
$$

$$
\text { symp. } \quad \text { gen.cplx. }
$$

$$
\text { symp. } \text { gen.cplx. }
$$

Theorem (Gualtieri)

- The type determines (up to equivalence) the structure at each point.
symp.
gen.cplx.

Theorem (Gualtieri)

- The type determines (up to equivalence) the structure at each point.
- At each point there are some symplectic directions and some transversal complex directions.
symp.
gen.cplx.

Theorem (Gualtieri)

- The type determines (up to equivalence) the structure at each point.
- At each point there are some symplectic directions and some transversal complex directions.
- But the type may vary within a manifold! Preserving the parity and upper continuously. No unique local model.

Why generalized complex geometry?

1. Complex and symplectic become the same structure

1. Complex and symplectic become the same structure

- Interaction of complex and symplectic in mirror symmetry
- Extended deformation space of Barannikov and Kontsevich (complex structures are deformed into symplectic ones)
- Other, like coisotropic A-branes...

2. Provides a new language, more suitable in some cases

2. Provides a new language, more suitable in some cases

Bihermitian geometry'84

TWISTED MULTIPLETS AND NEW SUPERSYMMETRIC NON-LINEAR σ-MODELS

S.J. GATES, Jr.* and C.M. HULL**
Department of Mathematics, Massachusetts Institute of Technologv, Cambridge, MA 02139, USA
M. ROČEK***
Institute for Theoretical Physics, State University of New York. Stony Brook, NY 11794, USA

Received 4 July 1984

A new $D=2$ supersymmetric representation, the twisted chiral multiplet, is derived. Describing spins zero and one-half, the twisted multiplet is used to formulate supersymmetric nonlinear σ-models with $N=2,4$ extended supersymmetry. In general, the geometries of these new theories fall outside the classification given by Alvarez-Gaumé and Freedman. We give a complete description of the geometry of these new models; the scalar manifolds are not Kähler but are hermitian locally product spaces.

2. Provides a new language, more suitable in some cases

Bihermitian geometry'84
 TWISTED MULTIPLETS AND NEW SUPERSYMMETRIC NON-LINEAR σ-MODELS

S.J. GATES, Jr.* and C.M. HULL**
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
M. ROČEK***
Institute for Theoretical Physics, State University of New York. Stony Brook, NY 11794, USA

Received 4 July 1984

A new $D=2$ supersymmetric representation, the twisted chiral multiplet, is derived. Describing spins zero and one-half, the twisted multiplet is used to formulate supersymmetric nonlinear σ-models with $N=2,4$ extended supersymmetry. In general, the geometries of these new theories fall outside the classification given by Alvarez-Gaumé and Freedman. We give a complete description of the geometry of these new models; the scalar manifolds are not Kähler but are hermitian locally product spaces.

2. Provides a new language, more suitable in some cases

Generalized Kähler geometry'04

2. Provides a new language, more suitable in some cases

Generalized Kähler geometry'04

Generalized Kähler Geometry

Marco Gualtieri
University of Toronto, Toronto, ON, Canada. E-mail: mgualt@ math.toronto.edu

Received: 21 May 2013 / Accepted: 5 August 2013
Published online: 5 March 2014 - © Springer-Verlag Berlin Heidelberg 2014

Abstract

Generalized Kähler geometry is the natural analogue of Kähler geometry, in the context of generalized complex geometry. Just as we may require a complex structure to be compatible with a Riemannian metric in a way which gives rise to a symplectic form, we may require a generalized complex structure to be compatible with a metric so that it defines a second generalized complex structure. We prove that generalized Kähler geometry is equivalent to the bi-Hermitian geometry on the target of a 2-dimensional sigma model with $(2,2)$ supersymmetry. We also prove the existence of natural holomorphic Courant algebroids for each of the underlying complex structures, and that these split into a sum of transverse holomorphic Dirac structures. Finally, we explore the analogy between pre-quantum line bundles and gerbes in the context of generalized Kähler geometry.

2. Provides a new language, more suitable in some cases

Generalized Kähler geometry'04

Generalized Kähler Geometry

Marco Gualtieri
University of Toronto, Toronto, ON, Canada. E-mail: mgualt@math.toronto.edu

Received: 21 May 2013 / Accepted: 5 August 2013
Published online: 5 March 2014 - © Springer-Verlag Berlin Heidelberg 2014

Abstract

Generalized Kähler geometry is the natural analogue of Kähler geometry, in the context of generalized complex geometry. Just as we may require a complex structure to be compatible with a Riemannian metric in a way which gives rise to a symplectic form, we may require a generalized complex structure to be compatible with a metric so that it defines a second generalized complex structure. We prove that generalized Kähler geometry is equivalent to the bi-Hermitian geometry on the target of a 2-dimensional sigma model with $(2,2)$ supersymmetry. We also prove the existence of natural holomorphic Courant algebroids for each of the underlying complex structures, and that these split into a sum of transverse holomorphic Dirac structures. Finally, we explore the analogy between pre-quantum line bundles and gerbes in the context of generalized Kähler geometry.

Hull, C.M., Witten, E.

Supersymmetricsigma models and the heterotic string
(1985) Physics Letters B, 160(6), pp. 398-402

Gates Jr., S.J., Hull, C.M., Roček, M.
Twisted multiplets and new supersymmetric non-linear σ-models
(1984) Nuclear Physics, Section B, 248(1), pp. 157-186

3. Genuinely new structures

almost complex

3. Genuinely new structures

almost complex

3. Genuinely new structures

almost complex

A step back to Dirac structures (Courant'90, Weinstein)

$$
\omega: T M \xrightarrow{\sim} \stackrel{\text { symplectic }(M, \omega)}{ } T^{*} M \text { or } \pi=\omega^{-1}: T^{*} M \xrightarrow{\sim} T M
$$

A step back to Dirac structures (Courant'90, Weinstein)

$$
\begin{aligned}
& \omega: T M \xrightarrow{\sim} \text { symplectic }(M, \omega) \\
& N \subseteq M \text { or } \pi=\omega^{-1}: T^{*} M \xrightarrow{\sim} T M \\
& \text { presymplectic } \\
& \omega_{\mid N}: T N \rightarrow T^{*} N \\
& \operatorname{gr}(\omega) \subset T N+T^{*} N
\end{aligned}
$$

A step back to Dirac structures (Courant'90, Weinstein)

A step back to Dirac structures (Courant'90, Weinstein)

Def.: Dirac structure
$L \subset T X+T^{*} X$
lagrangian
involutive

Dirac structures geometrically speaking

Dirac structures geometrically speaking

$$
\begin{gathered}
\quad \text { symplectic }(M, \omega) \\
\omega: T M \xrightarrow{\sim} T^{*} M, d \omega=0
\end{gathered}
$$

Dirac structures geometrically speaking

Dirac structures geometrically speaking

Dirac structures geometrically speaking

Analogue of type for lagrangian, involutive $L \subset T M+T^{*} M$

Analogue of type for lagrangian, involutive $L \subset T M+T^{*} M$ Before, type $=\operatorname{dim}_{\mathbb{C}} T^{*} M \cap \mathcal{J} T^{*} M$. No \mathcal{J} now...

Analogue of type for lagrangian, involutive $L \subset T M+T^{*} M$ Before, type $=\operatorname{dim}_{\mathbb{C}} T^{*} M \cap \mathcal{J} T^{*} M$. No \mathcal{J} now...
Define $E:=\operatorname{pr}_{T M} L$ and
'type' $=\operatorname{codim} E$,
codimension of the presymplectic leaves.

Analogue of type for lagrangian, involutive $L \subset T M+T^{*} M$

 Before, type $=\operatorname{dim}_{\mathbb{C}} T^{*} M \cap \mathcal{J} T^{*} M$. No \mathcal{J} now...Define $E:=\operatorname{pr}_{T M} L$ and

$$
\text { 'type' }=\operatorname{codim} E,
$$

codimension of the presymplectic leaves.

Local description for generalized complex structures

Theorem (Bailey)

Locally a generalized complex structure is a symplectic foliation with a transverse holomorphic Poisson structure.

Local description for generalized complex structures

Theorem (Bailey)

Locally a generalized complex structure is a symplectic foliation with a transverse holomorphic Poisson structure.

Recall the two examples of generalized complex:

$$
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right) \quad \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

Local description for generalized complex structures

Theorem (Bailey)

Locally a generalized complex structure is a symplectic foliation with a transverse holomorphic Poisson structure.

Recall the two examples of generalized complex:

$$
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right) \quad \mathcal{J}_{J}=\left(\begin{array}{cc}
-J & 0 \\
0 & J^{*}
\end{array}\right)
$$

The symplectic foliation, a Poisson structure!, was always there:

$$
\mathcal{J}=\left(\begin{array}{ll}
A & \pi \\
B & C
\end{array}\right)
$$

that is, $\pi: T^{*} M \rightarrow T M$.

Submanifolds of symplectic \rightsquigarrow presymplectic \rightsquigarrow Dirac

Submanifolds of symplectic \rightsquigarrow presymplectic \rightsquigarrow Dirac
Symplectic and complex \rightsquigarrow generalized complex

Submanifolds of symplectic \rightsquigarrow presymplectic \rightsquigarrow Dirac
Symplectic and complex \rightsquigarrow generalized complex

What about submanifolds of generalized complex?

Submanifolds of symplectic \rightsquigarrow presymplectic \rightsquigarrow Dirac Symplectic and complex \rightsquigarrow generalized complex

What about submanifolds of generalized complex?
$\mathcal{J} \equiv$ lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ such that $L \cap \bar{L}=\{0\}$

Submanifolds of symplectic \rightsquigarrow presymplectic \rightsquigarrow Dirac
Symplectic and complex \rightsquigarrow generalized complex

What about submanifolds of generalized complex?

$$
\begin{aligned}
\mathcal{J} & \equiv \text { lagrangian and involutive } L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M \text { such that } L \cap \bar{L}=\{0\} \\
\mathcal{J}_{\mid N} & \equiv \text { lagrangian and involutive } L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M
\end{aligned}
$$

Submanifolds of symplectic \rightsquigarrow presymplectic \rightsquigarrow Dirac Symplectic and complex \rightsquigarrow generalized complex

What about submanifolds of generalized complex?
$\mathcal{J} \equiv$ lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ such that $L \cap \bar{L}=\{0\}$
$\mathcal{J}_{\mid N} \equiv \underbrace{\text { lagrangian and involutive } L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M}$
Complex Dirac

Submanifolds of symplectic \rightsquigarrow presymplectic \rightsquigarrow Dirac
Symplectic and complex \rightsquigarrow generalized complex

What about submanifolds of generalized complex?
$\mathcal{J} \equiv$ lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$ such that $L \cap \bar{L}=\{0\}$
$\mathcal{J}_{\mid N} \equiv \underbrace{\text { lagrangian and involutive } L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M}_{\text {Complex Dirac }}$

What invariant or invariants describe them?
Agüero'20, Bursztyn, R.
(Agüero, R.: Complex Dirac structures: invariants and local structure, to appear in Comm. Math. Phys.)

Complex Dirac \equiv lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$.

Complex Dirac \equiv lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$.

Consider $E:=p r_{T_{\mathbb{C}} M} L$. We redefine the type to be $\operatorname{codim}_{E+\bar{E}} E$.

Complex Dirac \equiv lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$.

Consider $E:=p r_{T_{\mathbb{C}} M} L$. We redefine the type to be $\operatorname{codim}_{E+\bar{E}} E$. $L \cap \bar{L} \neq\{0\} \rightarrow$ we call $\operatorname{dim} L \cap \bar{L} \neq\{0\}$ the real index.

Complex Dirac \equiv lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$.

Consider $E:=p r_{T_{\mathbb{C}} M} L$. We redefine the type to be $\operatorname{codim}_{E+E} E$. $L \cap \bar{L} \neq\{0\} \rightarrow$ we call $\operatorname{dim} L \cap \bar{L} \neq\{0\}$ the real index.

Call $\operatorname{codim} E+\bar{E}$ the order.

Complex Dirac \equiv lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$.

Consider $E:=p r_{T_{\mathbb{C}} M} L$. We redefine the type to be $\operatorname{codim}_{E+E} E$.
$L \cap \bar{L} \neq\{0\} \rightarrow$ we call $\operatorname{dim} L \cap \bar{L} \neq\{0\}$ the real index.
Call $\operatorname{codim} E+\bar{E}$ the order.

Theorem (Agüero, R.)
Complex Dirac structures are determined at each point by:

Complex Dirac \equiv lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$.

Consider $E:=p r_{T_{\mathbb{C}} M} L$. We redefine the type to be $\operatorname{codim}_{E+E} E$.
$L \cap \bar{L} \neq\{0\} \rightarrow$ we call $\operatorname{dim} L \cap \bar{L} \neq\{0\}$ the real index.
Call $\operatorname{codim} E+\bar{E}$ the order.

Theorem (Agüero, R.)

Complex Dirac structures are determined at each point by:

- the (normalized) type,
- the real index,
- the order.

Complex Dirac \equiv lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$.

Consider $E:=p r_{T_{\mathbb{C}} M} L$. We redefine the type to be $\operatorname{codim}_{E+E} E$.
$L \cap \bar{L} \neq\{0\} \rightarrow$ we call $\operatorname{dim} L \cap \bar{L} \neq\{0\}$ the real index.
Call $\operatorname{codim} E+\bar{E}$ the order.

Theorem (Agüero, R.)

Complex Dirac structures are determined at each point by:

- the (normalized) type,
- the real index,
- the order.

At each point: presymplectic directions + transverse $C R$ directions.

Complex Dirac \equiv lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$.

Consider $E:=p r_{T_{\mathbb{C}} M} L$. We redefine the type to be $\operatorname{codim}_{E+E} E$.
$L \cap \bar{L} \neq\{0\} \rightarrow$ we call $\operatorname{dim} L \cap \bar{L} \neq\{0\}$ the real index.
Call $\operatorname{codim} E+\bar{E}$ the order.

Theorem (Agüero, R.)

Complex Dirac structures are determined at each point by:

- the (normalized) type,
- the real index,
- the order.

At each point: presymplectic directions + transverse $C R$ directions.
These invariants may vary (satisfying constraints like parity, upper semi-continuity, but also order \leq real-index,).

Complex Dirac \equiv lagrangian and involutive $L \subset T_{\mathbb{C}} M+T_{\mathbb{C}}^{*} M$.

Consider $E:=p r_{T_{\mathbb{C}} M} L$. We redefine the type to be $\operatorname{codim}_{E+E} E$.
$L \cap \bar{L} \neq\{0\} \rightarrow$ we call $\operatorname{dim} L \cap \bar{L} \neq\{0\}$ the real index.
Call $\operatorname{codim} E+\bar{E}$ the order.

Theorem (Agüero, R.)

Complex Dirac structures are determined at each point by:

- the (normalized) type,
- the real index,
- the order.

At each point: presymplectic directions + transverse $C R$ directions.
These invariants may vary (satisfying constraints like parity, upper semi-continuity, but also order \leq real-index,).

For constant order, a complex Dirac has associated a real Dirac.

type

symp.

cplx.
gen.cplx.

Live

Why complex Dirac structures?

- They go beyond generalized complex (symplectic+complex), bringing together presymplectic +CR and allowing variation.

Why complex Dirac structures?

- They go beyond generalized complex (symplectic+complex), bringing together presymplectic +CR and allowing variation.
- Potential to be applied in the future.

Why complex Dirac structures?

- They go beyond generalized complex (symplectic+complex), bringing together presymplectic +CR and allowing variation.
- Potential to be applied in the future.
- Open questions: what is the local model?, what happens with the associated Dirac structure when the order is not constant?, how are the type/real-index/order-changing structures?, are there constraints on the existence of structure for given invariants?

Why complex Dirac structures?

- They go beyond generalized complex (symplectic+complex), bringing together presymplectic +CR and allowing variation.
- Potential to be applied in the future.
- Open questions: what is the local model?, what happens with the associated Dirac structure when the order is not constant?, how are the type/real-index/order-changing structures?, are there constraints on the existence of structure for given invariants?
- Challenging and beautiful.

Thank you very much!

 Danke shön!Moltes gràcies!

