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A geometric structure is
an enrichment of the local
model and changes of chart of M.
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(tangent bundle)

/ [( TM)=vector fields

X : M — TM with X, € T,M

...vector spaces are easier to handle.
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J € End(T,M)
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= On TM= |J T,M,
peM
J € End(TM)
2 =—1d

...but we loose information.
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Starting with J (almost complex manifold):

J € End(TM)
J=—1d

c" /
| J ~» +i-eigenbundle L C Tc M

<= L “involutive”, that is,

[F(L), (L)) < (L),
for the Lie bracket [, |
(Newlander-Nierenberg Thm.)




High school Physics revisited:

F=m-a



High school Physics revisited:

F=m-a
Position x €¢ R”

F=-Vyp



High school Physics revisited:

Position x €¢ R”
F = —VXQD d2x



High school Physics revisited:

o F=m-a
Position x € R”"
F = —VXQD 2
—Vxp = m%
. _d
Linear momentum p = m;
Vx@ - ——
VP(P2/2””') =



High school Physics revisited:

Position x € R” F=ma
F=-Vp Vo= m%
Linear momentum p = m%
d
Vxp = —(7';
V(e /2m) = &

Define H = ¢ + p?/2m. Notation dH = V,H - dx + V,H -

dp.



High school Physics revisited:

Position x € R” F=ma
F=-Vp Vo= m%
Linear momentum p = mi’,’;
d,
Vxp = —(75
V(e /2m) = &

Define H = ¢ + p?/2m. Notation dH = V,H - dx + V,H - dp.
A solution /trajectory (x,p) € R?" (phase space) satisfies

= (3, dxj A dp;)(22R))



High school Physics revisited:

Position x € R” F=ma
F=-Vyp Vo m%
Linear momentum p = m%
d
Vxp = —(7';
Vol /2m) = &

Define H = ¢ + p?/2m. Notation dH = V,H - dx + V,H - dp.
A solution /trajectory (x,p) € R?" (phase space) satisfies

dH = (3 dx; A dp;) (2%))

wp 1= Ej dx; A\ dpj gives a correspondence between vectors and 1-forms
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Again, charts are complicated...
Before we built TM, we considered TcM, L C TcM...

We can also consider T*M.

Then, Zj dx; A dp; brought to TM is

w:TM— T*M
e skew-symmetric:  w(X)(X) =0 (Hamiltonian is preserved)
(such an w is called a 2-form and denoted by w € (A2 T*M) or w € Q?(M))
e non-degenerate: w: TM = T*M (trajectories are unique)

When does w come from local charts (R?", > dx A dpj)?

e closed: dw =0 (time-independent)
(Darboux Thm.)

Such an w is called a symplectic form.
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A: +i-eigenbundle L
involutive, that is,

[F(L),T(L)] < (L),
for the Lie bracket

J € End(TM+T*M)
J?% = —1Id and 7 skew

Examples:
7, = —J 0
77 \o »
0 —w!
jw - (W 0 >

Here, L C TcM + TAM,
involutive...
but do we even have
a bracket on '(L)?
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An equivalent formulation

J=LCTcM,LOL=TcM J=LCTcM+TiM, LaL=..7
J complex <+ L involutive J gen. complex (ﬁ L involutive
€

J skew means (J(X +a), Y + ) = —(X+a, T(Y + B)).
On L, this means 2/(X + «, Y + ) = 0.

So L is isotropic (or null) of maximal dimension W lagrangian.
er.

A generalized complex structure 7 is equivalent to a

lagrangian and involutive L C TcM + TEM such that LN L = {0}
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symp. cplx.
gen.cplx.

Theorem (Gualtieri)
e The type determines (up to equivalence) the structure at each point.
e At each point there are some symplectic directions and some
transversal complex directions.

e But the type may vary within a manifold! Preserving the parity
and upper continuously. No unique local model.
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1. Complex and symplectic become the same structure

e Interaction of complex and symplectic in mirror symmetry

e Extended deformation space of Barannikov and Kontsevich
(complex structures are deformed into symplectic ones)

e Other, like coisotropic A-branes...
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A step back to Dirac structures (Courant'90, Weinstein)

symplectic ( l\/l
Wi TM S T*Mor = w™ T*M—>T/\/l

/\y w

presymplectic Poisson
wy: TN — T*N m: T*"(M/G) — T(M/G)
gr(w) € TN + T*N gr(n) c TIM/G)+ T*(M/G)

N -

Def.: Dirac structure
LCTX+T*X
lagrangian
involutive



Dirac structures geometrically speaking



Dirac structures geometrically speaking

symplectic (M,w)
w:TM = T*M, dw =0



Dirac structures geometrically speaking

symplectic (M, w)
w:TM = T*M, dw =0

presymplectic
w: M —= T*M
dw = 0



Dirac structures geometrically speaking

symplectic (M, w)
w:TM S T*M, dw =0

presymplectic Poisson
w: M — T*M 7. T"M —= TM, [r,7] =0
dv = 0 symplectic foliation



Dirac structures geometrically speaking

symplectlc (M,w)
w:TM = T*M, dw =0

N

presymplectic Poisson
w: M — T*M m: T"M — TM, [r,7] =0
dv = 0 symplectic foliation

AN e

Dirac structure
LCTM+ T*M
presymplectic
foliation
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Analogue of type for lagrangian, involutive L C TM+ T*M

Before, type = dim¢ T"M N J T*M. No J now...
Define E := prryL and
‘type’ = codim E,

codimension of the presymplectic leaves.

‘type’ dim M T*M

Dirac

‘type’ 0 presymp.
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Local description for generalized complex structures

Theorem (Bailey)

Locally a generalized complex structure is a symplectic foliation with a
transverse holomorphic Poisson structure.

Recall the two examples of generalized complex:

0 —w? —J 0
jw - <w 0 ) jJ - < 0 J*>

The symplectic foliation, a Poisson structure!, was always there:

- 2)

thatis, 7: T"M — TM.
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Submanifolds of symplectic ~» presymplectic ~~ Dirac

Symplectic and complex ~~ generalized complex

What about submanifolds of generalized complex?
J = lagrangian and involutive L C TcM + T:M such that LN L = {0}

Jin = lagrangian and involutive L C TcM + T¢M

Complex Dirac

What invariant or invariants describe them?

Agliero'20, Bursztyn, R.

(Agiiero, R.: Complex Dirac structures: invariants

and local structure, to appear in Comm. Math. Phys.)
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Complex Dirac = lagrangian and involutive L C TcM + TAM.

Consider E := pr.mL. We redefine the type to be codim ¢ E.

LN L+#{0} — we call dim LN L # {0} the real index.
Call codim E + E the order.

Theorem (Agtiero, R.)

Complex Dirac structures are determined at each point by:
e the (normalized) type, e the real index, e the order.

At each point: presymplectic directions + transverse CR directions.

These invariants may vary (satisfying constraints like parity, upper
semi-continuity, but also order < real-index, ).

For constant order, a complex Dirac has associated a real Dirac.
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symp. cplx.
gen.cplx.
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order real-index :
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type
Diracc
Poisson = : - CR
; ! ﬁ
H 1 :
Dirac presymp.c trans.CR
presymp. .. trans.hol.
symp. - cplx

gen.cplx.
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https://www.geogebra.org/calculator/hbjxtgbr
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Why complex Dirac structures?

e They go beyond generalized complex (symplectic+complex),
bringing together presymplectic + CR and allowing variation.

e Potential to be applied in the future.

e Open questions: what is the local model?, what happens with the
associated Dirac structure when the order is not constant?, how are
the type/real-index/order-changing structures?, are there constraints
on the existence of structure for given invariants?

e Challenging and beautiful.



TeM

ordeﬁé real-index
type Diracc
Poi?son CER
Dili'ac ’p‘resymp.ic\ tranis.CR
’Pres)i’mpf- ’/ \\\\fransi.hol;\
symp. : - cplx

gen.cplx.



Thank you very much!
Danke shon!

Moltes gracies!



