Generalized Geometry, an introduction Assignment 4

Universitat Autònoma de Barcelona
Summer course, 8-19 July 2019

Problem 1. We have defined the Dorfman bracket by

$$
[X+\alpha, Y+\beta]=[X, Y]+L_{X} \beta-i_{Y} d \alpha
$$

We want to find some of its symmetries. Consider a diffeomorphism $f: M \rightarrow M$, that is, a smooth map with smooth inverse. We use the notation $f_{*}: T \rightarrow T$ for the differential and $f_{*}=\left(f^{*}\right)^{-1}$. Consider the orthogonal bundle map

$$
f_{*}:=\left(\begin{array}{cc}
f_{*} & 0 \\
0 & f_{*}
\end{array}\right): T+T^{*} \rightarrow T+T^{*}
$$

- Recall the properties of push-forwards and pull-backs and prove that

$$
\left[f_{*} u, f_{*} v\right]=f_{*}[u, v]
$$

For $B \in \Omega^{2}(M)$, define $e^{B}:=\left(\begin{array}{ll}1 & 0 \\ B & 1\end{array}\right): T+T^{*} \rightarrow T+T^{*}$.

- When do we have $\left[e^{B} u, e^{B} v\right]=e^{B}[u, v]$?

Problem 2. Let $M=\mathbb{R}^{3}$ with coordinates (x, y, z) and consider the coordinate vector fields $\left\{\partial_{x}, \partial_{y}, \partial_{z}\right\}$, which generate T at every point. Consider the 1 -forms $\{d x, d y, d z\}$, which are dual to the coordinate vector fields and generate T^{*} at every point. Define the subbundle

$$
L:=\operatorname{span}\left(\partial_{y}+z d x, \partial_{x}-z d y, d z\right) \subset T+T^{*} .
$$

- Prove that L is a maximally isotropic subbundle.
- Is L involutive with respect to the Dorfman bracket?
- Describe $L \cap T$.

Problem 3. Let \mathcal{J} be an almost generalized complex structure (a bundle map $\mathcal{J} \in \mathrm{O}\left(T+T^{*}\right)$ with $\left.\mathcal{J}^{2}=-1\right)$ and L the $+i$-eigenspace of \mathcal{J} in $\left(T+T^{*}\right)_{\mathbb{C}}$.

- Prove that the following expression defines a tensor (the Nijenhuis tensor), that is, it is $\mathcal{C}^{\infty}(M)$-linear, where $u, v \in \Gamma\left(T+T^{*}\right)$,

$$
N_{\mathcal{J}}(u, v)=[\mathcal{J} u, \mathcal{J} v]-\mathcal{J}[\mathcal{J} u, v]-\mathcal{J}[u, \mathcal{J} v]-[u, v] .
$$

- Prove that \mathcal{J} is a generalized complex structure if and only if $N_{\mathcal{J}}$ vanishes.
- Compare this to the case of usual complex structures.

Problem 4.

Let L be the $+i$-eigenspace of the generalized complex structure \mathcal{J} and $B \in \Omega_{c l}^{2}$. - What is the \mathcal{J}-operator corresponding to $e^{B} L$?

Let \mathcal{J}_{1} and \mathcal{J}_{2} be two anticommuting generalized almost complex structures,

$$
\mathcal{J}_{1} \mathcal{J}_{2}=-\mathcal{J}_{2} \mathcal{J}_{1} .
$$

- Show that, for $t \in\left[0, \frac{\pi}{2}\right], \mathcal{J}_{t}$ is a generalized almost complex structure:

$$
\mathcal{J}_{t}=\sin t \mathcal{J}_{1}+\cos t \mathcal{J}_{2}
$$

A Kähler manifold is a complex manifold (M, J) together with a riemannian metric such that $\omega:=g(J \cdot, \cdot)$ is a closed 2-form (see Section 1.7 of the lecture notes to see the linear version of this). A hyperKähler manifold is a manifold M together with three anticommuting usual complex structures $\{I, J, K\}$ (that is, they satisfy the relations of quaternions, $I J=-J I$, etc.) and a riemannian metric such that the following are closed two forms.

$$
\omega_{I}:=g(I \cdot, \cdot), \quad \omega_{J}:=g(J \cdot, \cdot), \quad \omega_{K}:=g(K \cdot, \cdot)
$$

- Show that, when we regard $\omega_{I}, \omega_{J}, \omega_{K}: T \rightarrow T^{*}$, we have

$$
\omega_{I} I=-I^{*} \omega_{I}, \quad \omega_{J} I=I^{*} \omega_{J}
$$

Consider the generalized complex structures

$$
\mathcal{J}_{I}:=\left(\begin{array}{cc}
-I & 0 \\
0 & I^{*}
\end{array}\right), \quad \mathcal{J}_{\omega_{J}}:=\left(\begin{array}{cc}
0 & -\omega_{J}^{-1} \\
\omega_{J} & 0
\end{array}\right)
$$

- Prove that \mathcal{J}_{I} and $\mathcal{J}_{\omega_{J}}$ anticommute.

Consider \mathcal{J}_{t} as above for $\mathcal{J}_{1}=\mathcal{J}_{I}$ and $\mathcal{J}_{2}=\mathcal{J}_{\omega_{J}}$.

- Prove that \mathcal{J}_{t} is a generalized complex structure. (Hint: use a B-field related to ω_{K} to transform \mathcal{J}_{t} into a generalized complex structure whose integrability is easy.)

