Generalized Geometry, an introduction Assignment 3

Universitat Autònoma de Barcelona
Summer course, 8-19 July 2019

Problem 1. Let T be the reversing operator on $\wedge^{\bullet} V^{*}$: for $\alpha_{j} \in V^{*}$,

$$
\left(\alpha_{1} \wedge \ldots \wedge \alpha_{r}\right)^{T}=\alpha_{r} \wedge \ldots \wedge \alpha_{1} .
$$

We define a pairing (\cdot, \cdot) on $\wedge^{\bullet} V^{*}$ with values on $\operatorname{det} V^{*}=\wedge^{t o p} V^{*}$ by

$$
(\varphi, \psi)=\left(\varphi^{T} \wedge \psi\right)_{t o p}
$$

where $\varphi, \psi \in \wedge^{\bullet} V^{*}$ and top denotes the top degree component.

- For $v \in V+V^{*}$, prove $(v \cdot \varphi, \psi)=(\varphi, v \cdot \psi)$.
- For $x \in \mathrm{Cl}\left(V+V^{*}\right)$, prove $(x \cdot \varphi, \psi)=\left(\varphi, x^{T} \cdot \psi\right)$.
- For $g \in \operatorname{Spin}\left(V+V^{*}\right),(g \cdot \varphi, g \cdot \psi)= \pm(\varphi, \psi)$.

Problem 2. Let $L=\operatorname{Ann}(\varphi)$ a maximally isotropic subspace

- Prove that $L \cap V=\{0\}$ if and only if $\varphi_{\text {top }} \neq 0$.
- Prove that $L \cap L\left(E^{\prime}, 0\right)=\{0\}$ if and only if $\left(\varphi, \operatorname{vol}_{\mathrm{Ann} E^{\prime}}\right) \neq 0$.
- For $L^{\prime}=\operatorname{Ann}(\psi)$ be another maximally isotropic subspace, prove that $L \cap L^{\prime}=\{0\}$ if and only if $(\varphi, \psi) \neq 0$.
- Do we need L and L^{\prime} to be maximally isotropic subspace for the previous statement to be true?

Problem 3. We have defined $\mathrm{GL}(n, \mathbb{C})$ as a subgroup of $\operatorname{GL}(2 n, \mathbb{R})$, but there is another possible, and more intuitive, interpretation, as invertible matrices with complex entries. For instance, the elements of $\mathrm{GL}(1, \mathbb{C})$ are just non-zero complex numbers.

- What is the matrix in $\mathrm{GL}(2, \mathbb{R})$ corresponding to $z=a+i b \in \mathrm{GL}(1, \mathbb{C})$?
- What can you say in general for $\operatorname{GL}(n, \mathbb{C})$?

On the other hand, we saw, in term of matrices, that

$$
\begin{equation*}
\mathrm{O}(2 n) \cap \mathrm{Sp}(2 n)=\mathrm{O}(2 n) \cap \mathrm{GL}(n, \mathbb{C}) \tag{1}
\end{equation*}
$$

We shall show that this is actually the unitary group $\mathrm{U}(n)$, whose definition we recall. First, a hermitian metric on a complex vector space V is a map $h: V \times V \rightarrow \mathbb{C}$ that is \mathbb{C}-linear on the first component and satisfies $h(v, u)=$ $\overline{h(u, v)}$, which implies that is anti-linear on the second component. The usual example is $h(u, v)=u^{T} \bar{v}$. Define

$$
\mathrm{U}(n):=\left\{M \in \mathrm{GL}(n, \mathbb{C}) \mid h(M u, M v)=h(u, v), \text { for } u, v \in \mathbb{C}^{n}\right\}
$$

- Prove that this group equals the intersections in (1).
- Try to make statement (1) valid for any linear riemannian metric, complex stucture, etc., not just the ones given by Id, J, etc.

Problem 4.

A couple of questions about the group $\mathrm{O}\left(V+V^{*}\right)$:

- ** Is the action of $\mathrm{O}\left(V+V^{*}\right)$ on maximally isotropic subspaces transitive?
- ** Describe the Lie algebra of $\mathrm{O}\left(V+V^{*}\right)$.

