Generalized Geometry, an introduction Assignment 2

Universitat Autònoma de Barcelona
Summer course, 8-19 July 2019

Problem 1. Let $e^{1}, e^{2} \in V^{*}$ be linearly independent. From $e^{1} \wedge e^{2}=$ $e^{1} \otimes e^{2}-e^{2} \otimes e^{1}$, we see that $e^{1} \wedge e^{2}=-e^{2} \wedge e^{1}$. Is it also true that for $\alpha \in \wedge^{p} V^{*}, \beta \in \wedge^{q} V^{*}$,

$$
\alpha \wedge \beta=-\beta \wedge \alpha ?
$$

Problem 2. Let V be 4 -dimensional with basis $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ and dual basis $\left(e^{1}, e^{2}, e^{3}, e^{4}\right)$. Let

$$
\omega=e^{1} \wedge e^{2}, \quad \omega^{\prime}=e^{1} \wedge e^{2}+e^{2} \wedge e^{3}, \quad \omega^{\prime \prime}=e^{1} \wedge e^{2}+e^{3} \wedge e^{4}
$$

be elements of $\wedge^{2} V^{*}$, that is linear presymplectic structures. Regard them as maps $V \rightarrow V^{*}$ and tell if any of them is a linear symplectic structure.

Problem 3. Let V be an n-dimensional vector space.

- Compute the dimension of the vector spaces $\otimes^{p} V$ and $\wedge^{p} V$.
- Use the notation $\omega^{m}:=\underbrace{\omega \wedge \ldots \wedge \omega}_{m \text { times }}$. Let $n=2 m$. Prove that the 2 -form $\omega \in \wedge^{2} V^{*}$ is non-degenerate if and only if $\omega^{m} \neq 0$.

Problem 4. The contraction by X is the linear map $i_{X}: \otimes^{k} V^{*} \rightarrow \otimes^{k-1} V^{*}$ linearly extending the correspondence

$$
\alpha_{1} \otimes \ldots \otimes \alpha_{k} \mapsto \alpha_{1}(X) \alpha_{2} \otimes \ldots \otimes \alpha_{k}
$$

- Prove that the contraction maps $\wedge^{k} V^{*}$ onto $\wedge^{k-1} V^{*}$ and find a formula for $i_{X}\left(\alpha_{1} \wedge \ldots \wedge \alpha_{k}\right)$.
- Prove that $i_{X} i_{X} \alpha=0$ for $\alpha \in \wedge^{k} V^{*}$. What about $i_{X} i_{X} \varphi$ for $\varphi \in \otimes^{k} V^{*}$?
- Find the relation between $i_{X}(\alpha \wedge \beta), i_{X} \alpha \wedge \beta$ and $\alpha \wedge i_{X} \beta$.

Problem 5. For $X \in V$, we defined the contraction map $i_{X}: \wedge^{k} V^{*} \mapsto$ $\wedge^{k-1} V^{*}$. For $\alpha \in V^{*}$ define now, for $\varphi \in \wedge^{k} V^{*}$,

$$
\begin{aligned}
\alpha \wedge: \wedge^{k} V^{*} & \mapsto \wedge^{k+1} V^{*} \\
\varphi & \mapsto \alpha \wedge \varphi
\end{aligned}
$$

Note that for $\lambda \in k$ we have $i_{X} \lambda=0$ and $\alpha \wedge \lambda=\lambda \alpha$.
In generalized linear algebra, for $X+\alpha \in V+V^{*}$ and $\varphi \in \wedge^{\bullet} V^{*}$, define the action

$$
(X+\alpha) \cdot \varphi:=i_{X} \varphi+\alpha \wedge \varphi
$$

- Prove that $(X+\alpha) \cdot((X+\alpha) \cdot \varphi=\langle X+\alpha, X+\alpha\rangle \varphi$.

Define the annihilator of $\varphi \in \wedge^{\bullet} V^{*}$ by

$$
\operatorname{Ann}(\varphi)=\{X+\alpha \mid(X+\alpha) \cdot \varphi=0\}
$$

We want to use annihilators to describe maximally isotropic subspaces in a similar way as we described a complex structure as

$$
\operatorname{span}\left(\bar{z}_{1}, \ldots, \bar{z}_{m}\right)=\operatorname{Ann}\left(z^{1} \wedge \ldots \wedge z^{m}\right) .
$$

- Prove that $\operatorname{Ann}(\varphi)$ is always an isotropic subspace, for $\varphi \in \wedge^{\bullet} V^{*}$.
- Show that $\operatorname{Ann}(1)=V$ and $\operatorname{Ann}(\varphi)=\operatorname{Ann}(\lambda \varphi)$ for $\lambda \neq 0$.
- Let $v o l_{V}$ be a non-zero element of $\wedge^{\operatorname{dim} V} V^{*}$, show that $\operatorname{Ann}\left(v o l_{V}\right)=V^{*}$.
- What is the relation between $\left\{\alpha \in \wedge^{k} V^{*} \mid i_{X} \alpha=0\right.$ for $\left.X \in E\right\}$ and $\wedge^{k} \operatorname{Ann}(E)$?
- Let $E \subseteq V$ be a subspace. Find φ such that $\operatorname{Ann}(\varphi)=E+\operatorname{Ann}(E)$.
- Let $\omega \in \wedge^{2} V^{*}$, find φ such that $\operatorname{Ann}(\varphi)=g r(\omega)$.

If you feel adventurous, you can try also:

- * Let $\pi \in \wedge^{2} V$, find φ such that $\operatorname{Ann}(\varphi)=g r(\pi)$.
- ** Prove that $\operatorname{Ann}(\varphi)=\operatorname{Ann}(\psi)$ if and only if $\varphi=\lambda \psi$ for $\lambda \in k^{*}$.
- *** When does φ define a maximally isotropic subspace?

