Generalized Geometry, an introduction Assignment 1

Universitat Autònoma de Barcelona
Summer course, 8-19 July 2019

Problem 1. Consider the vector space \mathbb{R}^{4} with the symplectic form

$$
\omega\left(\left(x_{1}, y_{1}, x_{2}, y_{2}\right),\left(x_{1}^{\prime}, y_{1}^{\prime}, x_{2}^{\prime}, y_{2}^{\prime}\right)\right)=\sum_{i=1}^{2}\left(x_{i} y_{i}^{\prime}-y_{i} x_{i}^{\prime}\right)
$$

- Find a subspace U such that $U=U^{\omega}$.
- Find a plane U, i.e., a subspace isomorphic to \mathbb{R}^{2}, such that $U+U^{\omega}=\mathbb{R}^{4}$.

Problem 2. A subspace U of a symplectic vector space (V, ω) such that $U^{\omega} \subseteq U$ is called a coisotropic subspace. Prove that the quotient U / U^{ω} naturally inherits a symplectic structure. This is called the coisotropic reduction.

Problem 3. Given a symplectic form, we have an isomorphism $V \rightarrow V^{*}$. We invert this isomorphism to get a map $V^{*} \rightarrow V$, which we can see as a map

$$
\pi: V^{*} \times V^{*} \rightarrow k
$$

Prove that the map π is bilinear, non-degenerate and skew-symmetric.

Problem 4. Consider a real vector space with a linear complex structure (V, J) and its complexification $V_{\mathbb{C}}$. Prove that $i J=J i$. When does the map

$$
a i+b J
$$

for $a, b \in \mathbb{R}$, define a linear complex structure on $V_{\mathbb{C}}$, seen as a real vector space?

Problem 5. Consider a real vector space with a linear complex structure (V, J). Prove that the map

$$
J^{*}: V^{*} \rightarrow V^{*},
$$

given by

$$
J^{*} \alpha(v)=\alpha(J v)
$$

for $\alpha \in V^{*}$ and $v \in V$, defines a linear complex structure on V^{*}. Given a basis $\left(v_{i}\right)$ with dual basis $\left(v^{i}\right)$, prove that

$$
J^{*} v^{i}=-\left(J v_{i}\right)^{*}
$$

Problem 6. The invertible linear transformations of \mathbb{R}^{n} are called the general linear group and denoted by $\mathrm{GL}(n, \mathbb{R})$. If they moreover preserve the euclidean metric, we have the orthogonal group $\mathrm{O}(n, \mathbb{R})$. For a vector space V, we write $\mathrm{GL}(V)$ and $\mathrm{O}(V, g)$ when V comes with a linear riemannian metric g.

- Show that a basis $\left\{v_{i}\right\}$ determines a linear riemannian metric by $g\left(v_{i}, v_{j}\right)=$ $\delta_{i j}$, and hence any vector space admits a linear riemannian metric.
- * Can two different bases determine the same riemannian metric? If so, describe the space of bases determining the same riemannian metric.
- * Conversely, given a linear riemannian metric, how can you describe the space of all metrics?

Problem 7. * Describe the space of linear complex structures on a given even-dimensional real vector space.

