An introduction to orbifolds

Joan Porti UAB

Subdivide and Tile:

Triangulating spaces for understanding the world

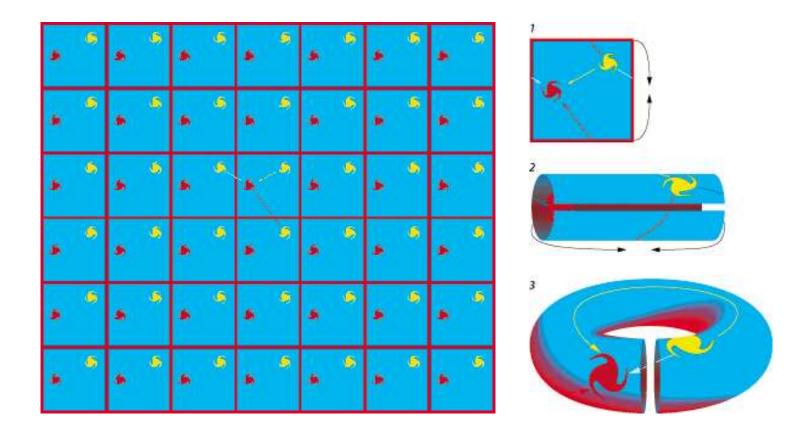
Lorentz Center

November 2009

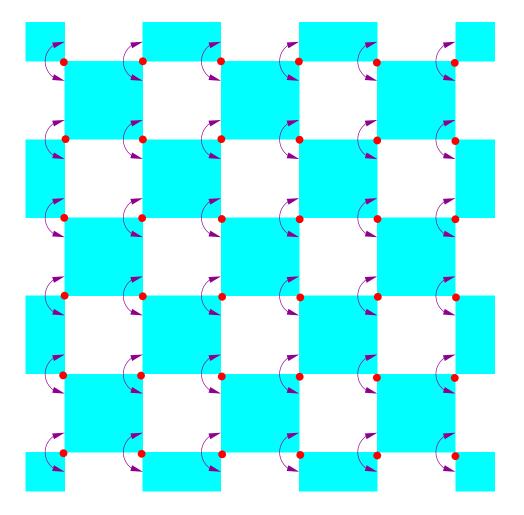
- Γ < Isom(Rⁿ) or Hⁿ discrete and acts properly discontinuously (e.g. a group of symmetries of a tessellation).
 - If Γ has no fixed points $\Rightarrow \Gamma \setminus \mathbb{R}^n$ is a manifold.
 - If Γ has fixed points $\Rightarrow \Gamma \setminus \mathbb{R}^n$ is an orbifold.

- Γ < Isom(Rⁿ) or Hⁿ discrete and acts properly discontinuously (e.g. a group of symmetries of a tessellation).
 - If Γ has no fixed points $\Rightarrow \Gamma \setminus \mathbb{R}^n$ is a manifold.
 - If Γ has fixed points $\Rightarrow \Gamma \setminus \mathbb{R}^n$ is an orbifold.
 - ... (there are other notions of orbifold in algebraic geometry, string theory or using grupoids)

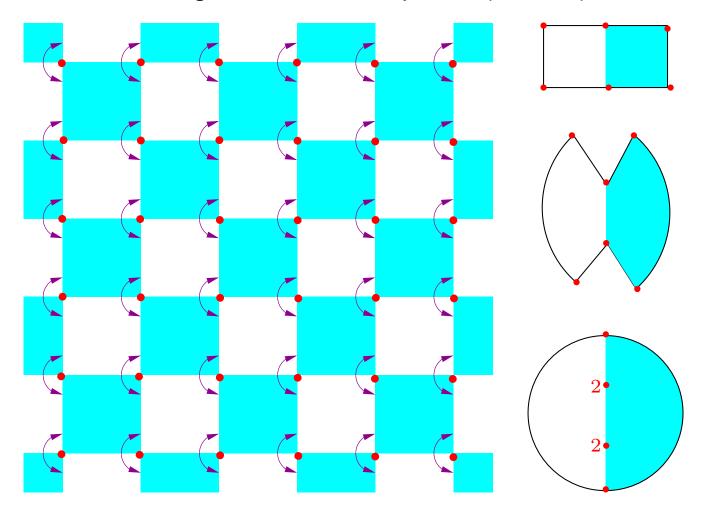
$$\begin{split} \Gamma &= \langle (x,y) \to (x+1,y), (x,y) \to (x,y+1) \rangle \cong \mathbf{Z}^2 \\ & \Gamma \backslash \mathbf{R}^2 \cong T^2 = S^1 \times S^1 \end{split}$$



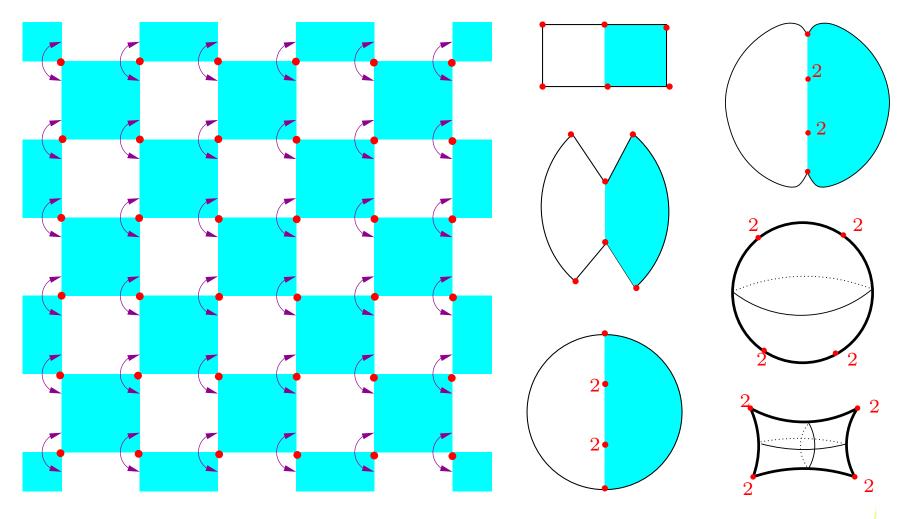
Rotations of angle π around red points (order 2)



Rotations of angle π around red points (order 2)



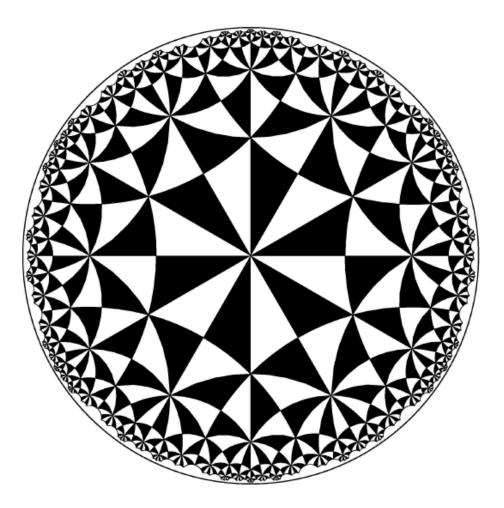
Rotations of angle π around red points (order 2)



An introduction to orbifolds – p.3/20

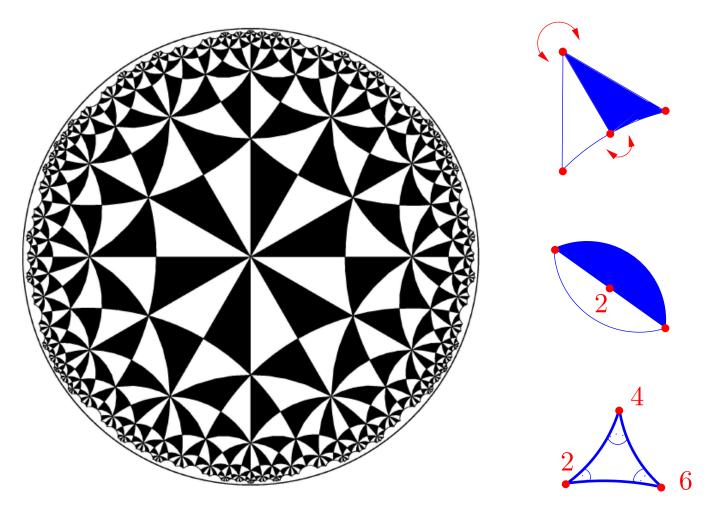
Example: tessellations of hyperbolic plane

Rotations of angle π , $\pi/2$ and $\pi/3$ around vertices (order 2, 4, and 6)



Example: tessellations of hyperbolic plane

Rotations of angle π , $\pi/2$ and $\pi/3$ around vertices (order 2, 4, and 6)



Definition

Informal Definition

 An <u>orbifold</u> O is a metrizable topological space equipped with an atlas modelled on Rⁿ/Γ, Γ < O(n) finite, with some compatibility condition.

We keep track of the local action of $\Gamma < O(n)$.

Informal Definition

 An <u>orbifold</u> O is a metrizable topological space equipped with an atlas modelled on Rⁿ/Γ, Γ < O(n) finite, with some compatibility condition.

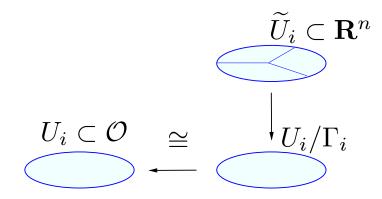
We keep track of the local action of $\Gamma < O(n)$.

- Singular (or branching) locus: Σ = points modelled on $Fix(\Gamma)/\Gamma$.
- Γ_x (the minimal Γ): isotropy group of a point $x \in \mathcal{O}$.
- $|\mathcal{O}|$ underlying topological space (possibly not a manifold).

Definition

Formal Definition

- An <u>orbifold</u> \mathcal{O} is a metrizable top. space with a (maximal) atlas $\{U_i, \widetilde{U}_i, \Gamma_i, \phi_i\}$
 - $\bigcup U_i = \mathcal{O}, \quad \Gamma_i < O(n)$ $\widetilde{U}_i \subset \mathbf{R}^n \text{ is } \Gamma_i \text{-invariant}$
 - $\phi_i: U_i\cong \widetilde{U}_i/\Gamma_i$ homeo



Formal Definition

- An <u>orbifold</u> \mathcal{O} is a metrizable top. space with a (maximal) atlas $\{U_i, \widetilde{U}_i, \Gamma_i, \phi_i\}$
 - $\bigcup U_i = \mathcal{O}, \quad \Gamma_i < O(n)$
 - $\widetilde{U}_i \subset \mathbf{R}^n$ is Γ_i -invariant $\phi_i : U_i \cong \widetilde{U}_i / \Gamma_i$ homeo

If $y \in U_i \cap U_j$, then there is U_k

s.t.
$$y \in U_k \subset U_i \cap U_j$$
 and

$$U_i \subset \mathbf{R}^n$$

$$U_i \subset \mathcal{O} \cong \bigcup_{U_i/\Gamma_i}$$

 \sim

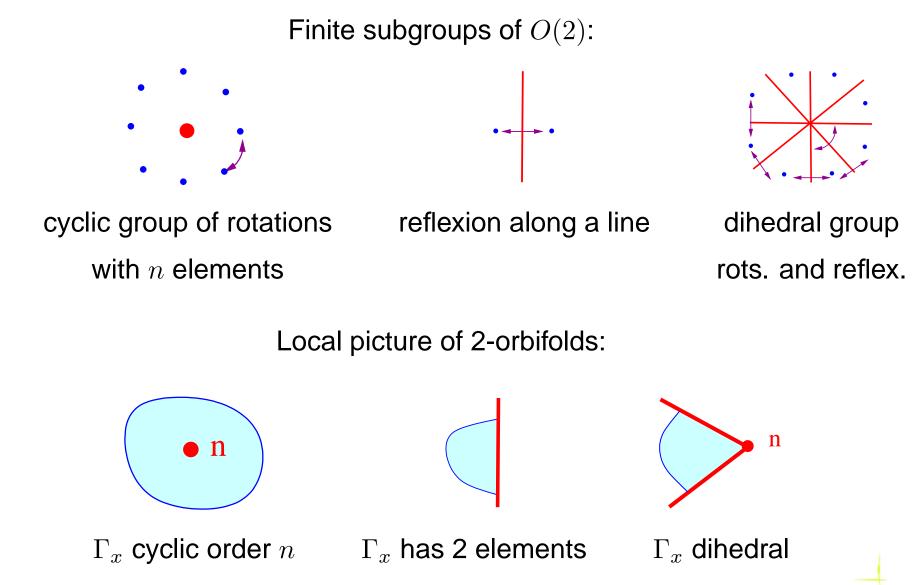
 $\bullet \quad \bullet \quad i_* : \Gamma_k \hookrightarrow \Gamma_i$

• $i: \widetilde{U}_k \hookrightarrow \widetilde{U}_i$, diffeo with the image,

•
$$i(\gamma \cdot x) = i_*(\gamma) \cdot i(x)$$

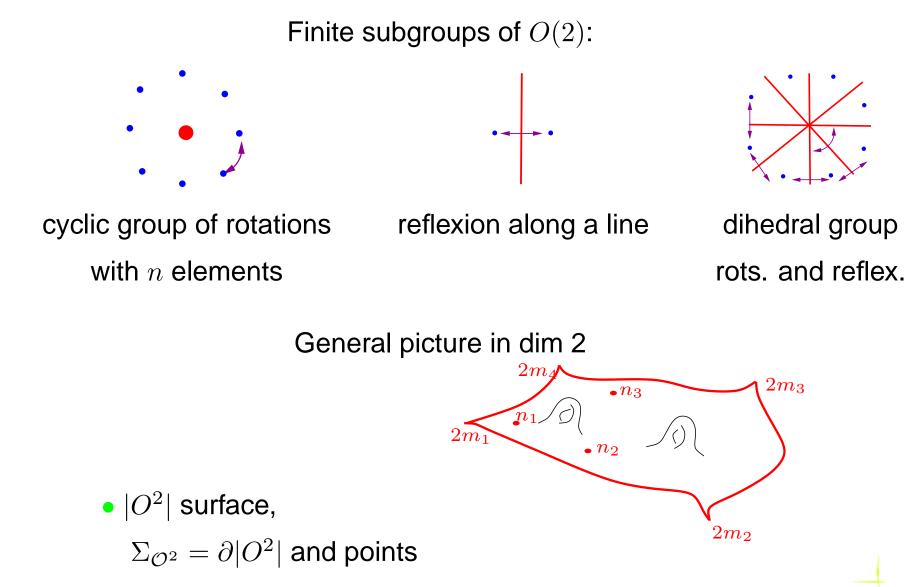
 $\Gamma_x = \bigcap_{x \in U_i} \Gamma_i \text{ isotropy group of a point } \Sigma_{\mathcal{O}} = \{ x \mid \Gamma_x \neq 1 \}$

Dimension 2



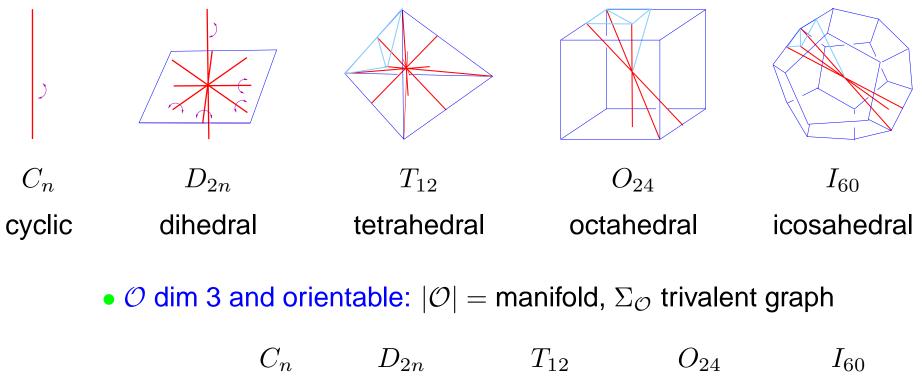
An introduction to orbifolds - p.6/20

Dimension 2



Dimension 3 (loc.orientable)

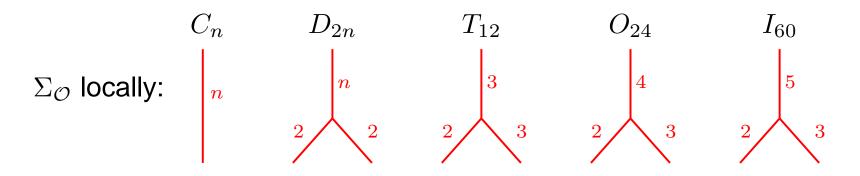
Finite subgroups of SO(3) (all elements are rotations):



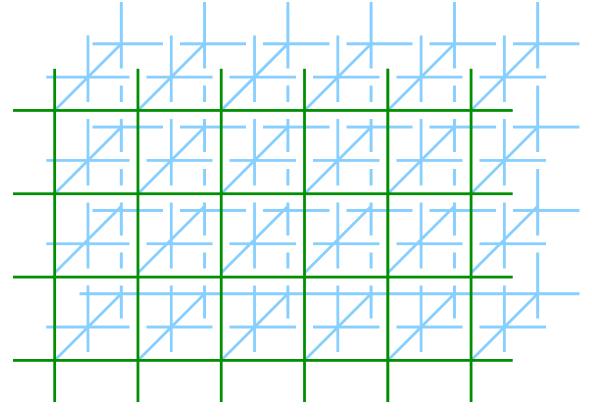
$$\Sigma_{\mathcal{O}} \text{ locally:} \quad \begin{bmatrix} n & & & & T_{12} & & O_{24} & & T_{60} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Dimension 3 (loc.orientable)

• \mathcal{O} dim 3 and orientable: $|\mathcal{O}| = \text{manifold}, \Sigma_{\mathcal{O}}$ trivalent graph



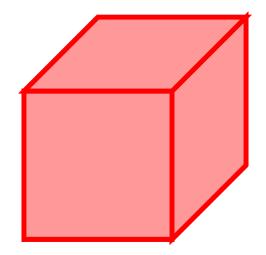
- Non orientable case: combine this with reflections along planes and antipodal map: a(x, y, z) = (-x, -y, -z)
- $\mathbf{R}^3/a =$ cone on \mathbf{RP}^2 , is <u>not a manifold</u>.
- In dim 4 and larger, $\exists O$ orientable and O possibly not a manifold.



• ${f Z}^3$ translation group, ${f R}^3/{f Z}^3=S^1 imes S^1 imes S^1$

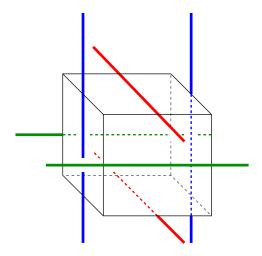
• But we can also consider other groups

• $\mathcal{O} = \mathbf{R}^3 / \langle \text{reflections on the sides of the cube} \rangle$ $|\mathcal{O}|$ is the cube and $\Sigma_{\mathcal{O}}$ boundary of the cube

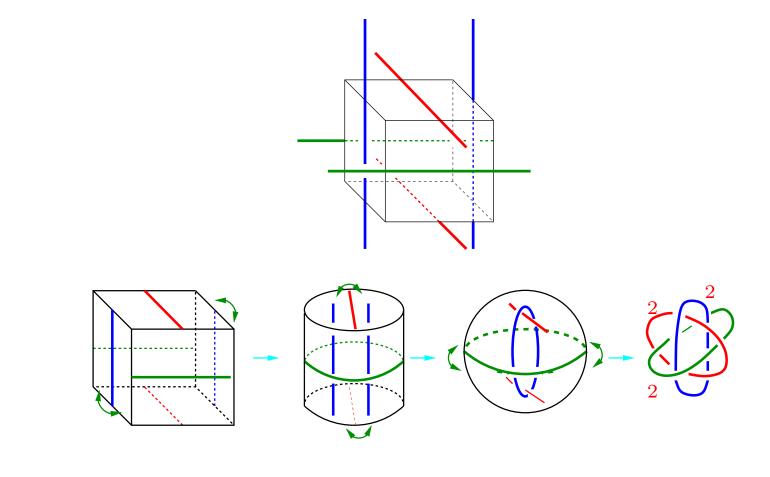


- x in a face $\Rightarrow \Gamma_x = \mathbf{Z}/2\mathbf{Z}$ reflexion
- x in an edge $\Rightarrow \Gamma_x = (\mathbf{Z}/2\mathbf{Z})^2$
- x in a vertex $\Rightarrow \Gamma_x = (\mathbf{Z}/2\mathbf{Z})^3$

Consider the group generated by order 2 rotations around axis as in:



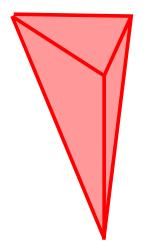
Consider the group generated by order 2 rotations around axis as in:



• $|\mathcal{O}| = S^3$ $\Sigma_{\mathcal{O}} = \text{Borromean rings.}$ $\Gamma_x \cong \mathbb{Z}/2\mathbb{Z}$ acting by rotations.

An introduction to orbifolds – p.8/20

 \mathbf{R}^3 /{ Full isometry group of the tessellation }

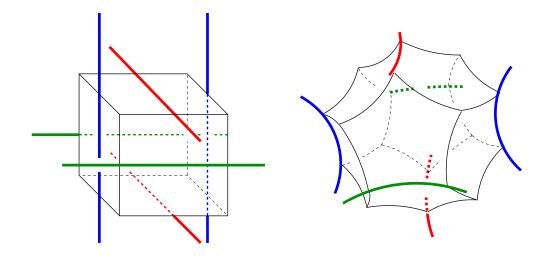


- x in a face $\Rightarrow \Gamma_x = \mathbf{Z}/2\mathbf{Z}$ reflexion
- x in an edge $\Rightarrow \Gamma_x =$ dihedral (extension by reflections of

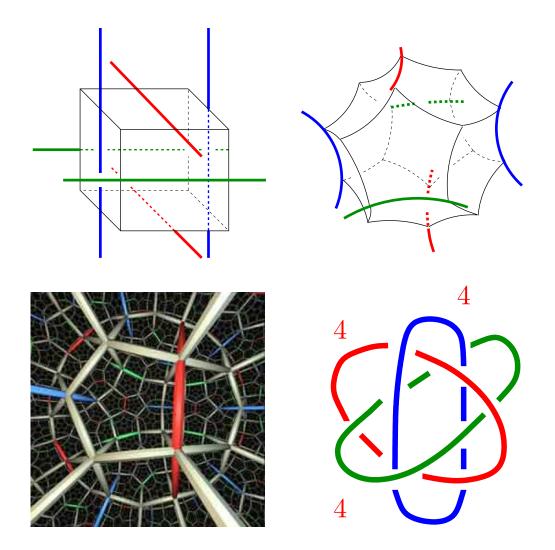
cyclic group of rotations)

• x in a vertex $\Rightarrow \Gamma_x =$ extension by reflections of dihedral, T_{12} or O_{24}

More examples: hyperbolic tessellation

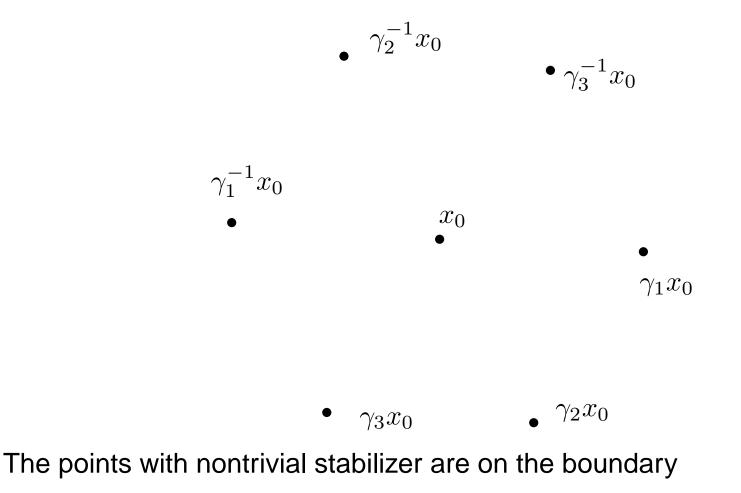


More examples: hyperbolic tessellation



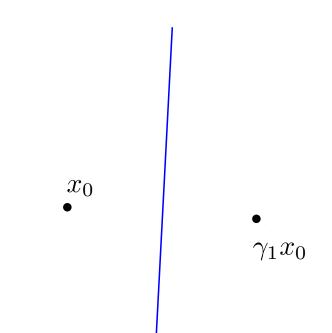
• If Γ acts on ${f R}$ or ${f H}^n$

<u>Dirichlet domain</u>: Voronoi cell of the orbit of a point x_0 with $\Gamma_{x_0} = 1$.



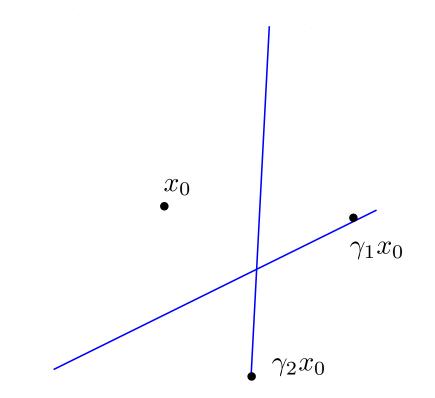
• If Γ acts on ${f R}$ or ${f H}^n$

<u>Dirichlet domain</u>: Voronoi cell of the orbit of a point x_0 with $\Gamma_{x_0} = 1$.



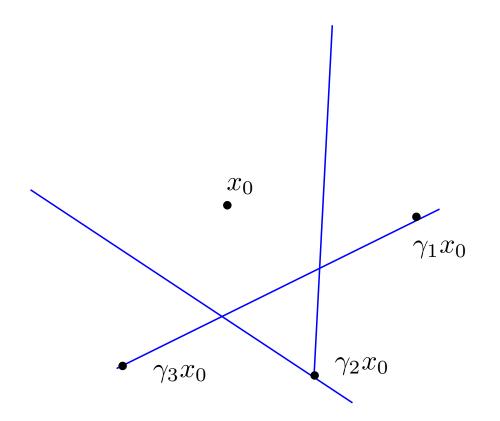
• If Γ acts on ${f R}$ or ${f H}^n$

<u>Dirichlet domain</u>: Voronoi cell of the orbit of a point x_0 with $\Gamma_{x_0} = 1$.



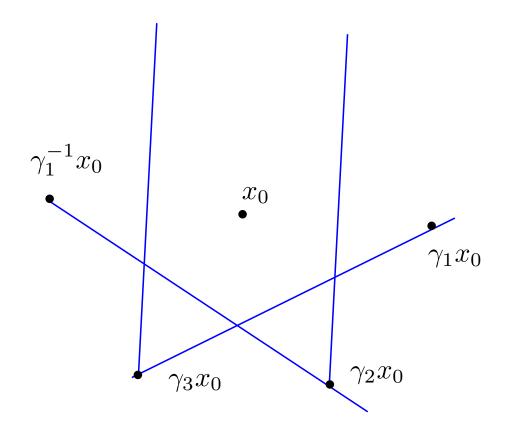
• If Γ acts on ${f R}$ or ${f H}^n$

<u>Dirichlet domain</u>: Voronoi cell of the orbit of a point x_0 with $\Gamma_{x_0} = 1$.



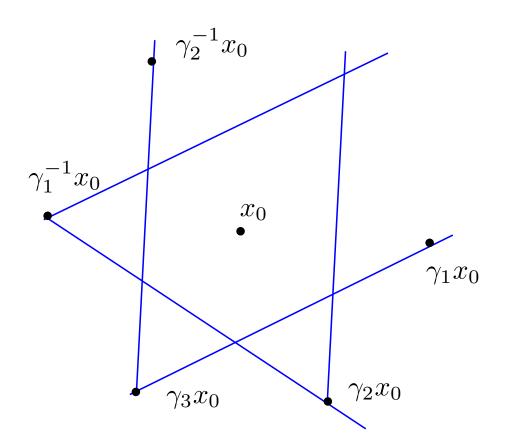
• If Γ acts on ${f R}$ or ${f H}^n$

<u>Dirichlet domain</u>: Voronoi cell of the orbit of a point x_0 with $\Gamma_{x_0} = 1$.



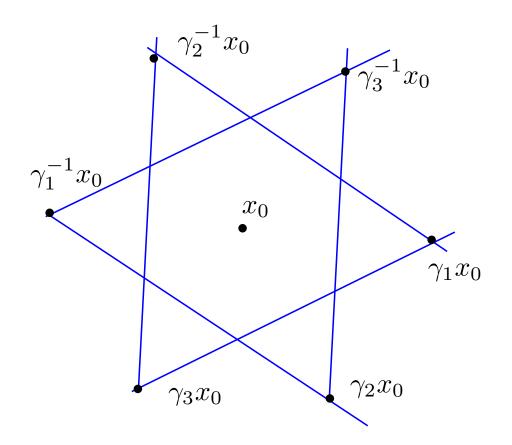
• If Γ acts on ${f R}$ or ${f H}^n$

<u>Dirichlet domain</u>: Voronoi cell of the orbit of a point x_0 with $\Gamma_{x_0} = 1$.



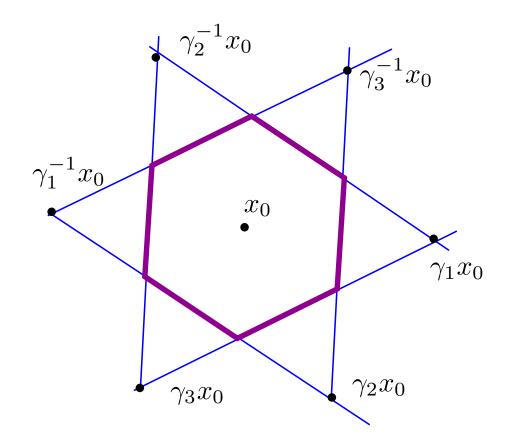
• If Γ acts on ${f R}$ or ${f H}^n$

<u>Dirichlet domain</u>: Voronoi cell of the orbit of a point x_0 with $\Gamma_{x_0} = 1$.



• If Γ acts on ${f R}$ or ${f H}^n$

<u>Dirichlet domain</u>: Voronoi cell of the orbit of a point x_0 with $\Gamma_{x_0} = 1$.

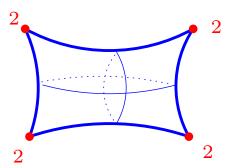


Structures on orbifolds

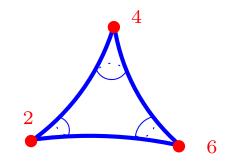
- Can define geometric structures on orbifolds by taking equivariant definitions on charts $\widetilde{U}_i, \Gamma_i$.
- A <u>Riemanian metric</u> on the charts $(\widetilde{U}_i, \Gamma_i)$ requires:
 - \widetilde{U}^i has a Riemannian metric
 - coordinate changes are isometries
 - $-\Gamma_i$ acts isometrically on \widetilde{U}_i
- e.g. Analytic, flat, hyperbolic, etc...

Structures on orbifolds

- Can define geometric structures on orbifolds by taking equivariant definitions on charts $\widetilde{U}_i, \Gamma_i$.
- A <u>Riemanian metric</u> on the charts $(\widetilde{U}_i, \Gamma_i)$ requires:
 - $-\widetilde{U}^i$ has a Riemannian metric
 - coordinate changes are isometries
 - $-\Gamma_i$ acts isometrically on \widetilde{U}_i
- e.g. Analytic, flat, hyperbolic, etc...



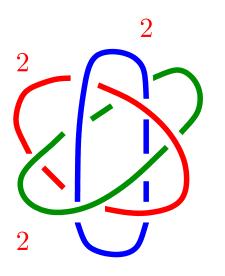
has a flat metric (Euclidean)

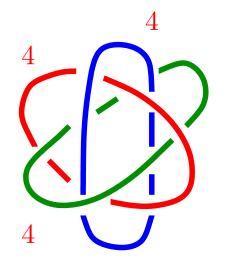


has a metric of curv -1 (hyperbolic)

Structures on orbifolds

• Can define geometric structures on orbifolds by taking equivariant definitions on charts $\widetilde{U}_i, \Gamma_i$.





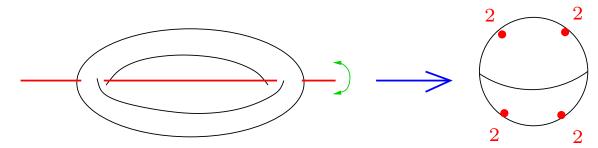
has a flat metric (Euclidean) has a metric of curv -1 (hyperbolic)

Coverings

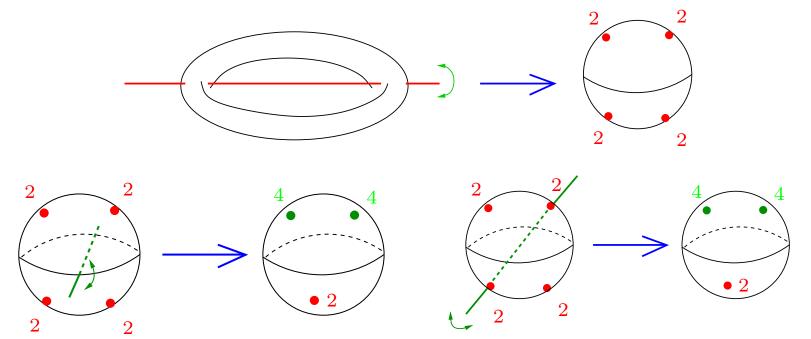
 $p: \mathcal{O}_0 \to \mathcal{O}_1$ is an orbifold covering if Every $x \in \mathcal{O}_1$ is in some $U \subset \mathcal{O}_1$ s.t. if V = component of $p^{-1}(U)$: then $\widetilde{V} \to V \xrightarrow{p} U$ is a chart for U

- Branched coverings can be seen as orbifold coverings
- If Γ acts properly discontinuously on M manifold then $M \to M/\Gamma$ is an orbifold covering.

- Branched coverings can be seen as orbifold coverings
- If Γ acts properly discontinuously on M manifold then $M \to M/\Gamma$ is an orbifold covering.
- Examples



- Branched coverings can be seen as orbifold coverings
- If Γ acts properly discontinuously on M manifold then $M \to M/\Gamma$ is an orbifold covering.
- Examples



Good and bad

Definition

 \mathcal{O} is good if $\mathcal{O} = M/\Gamma$

 Γ acts properly discontinuously on a manifold M

• \mathcal{O} is good iff \mathcal{O} has a covering that is a manifold.

Question When is an orbifold good?

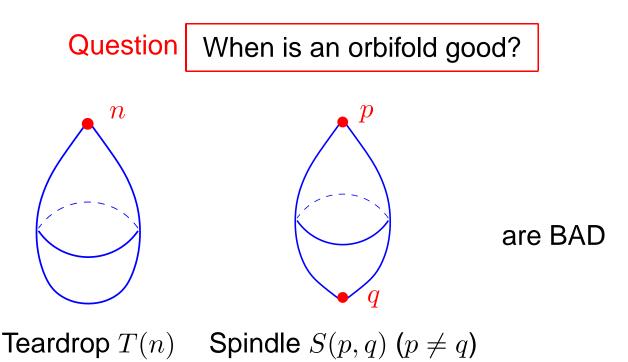
Good and bad

Definition

 \mathcal{O} is good if $\mathcal{O} = M/\Gamma$

 Γ acts properly discontinuously on a manifold M

• \mathcal{O} is good iff \mathcal{O} has a covering that is a manifold.



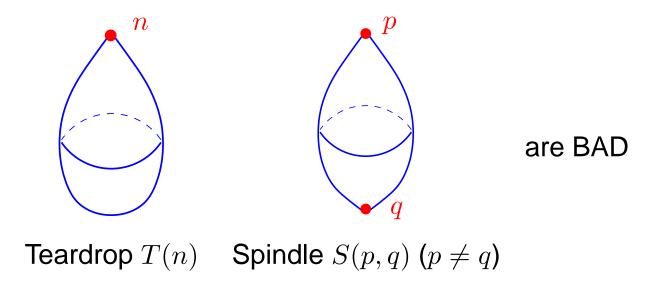
Good and bad

Definition

 \mathcal{O} is good if $\mathcal{O} = M/\Gamma$

 Γ acts properly discontinuously on a manifold M

• \mathcal{O} is good iff \mathcal{O} has a covering that is a manifold.

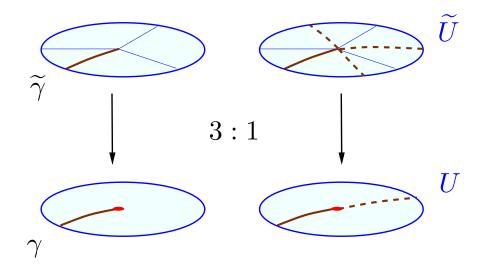


• Those and their nonorientable quotients are the only bad 2-orbifolds

Def: A loop based at $x \in \mathcal{O} \setminus \Sigma_{\mathcal{O}}$:

 $\gamma: [0,1] \rightarrow \mathcal{O}$ such that $\gamma(0) = \gamma(1) = x$

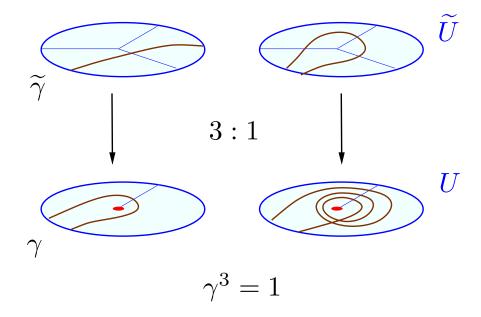
with a choice of lifts at branchings:



- Define homotopies as continuous 1-parameter families of paths.
- $\pi_1(\mathcal{O}, x) = \{ \text{ loops based at } x \text{ up to homotopy relative to } x \}$

• $\pi_1(\mathcal{O}, x) = \{ \text{ loops based at } x \text{ up to homotopy relative to } x \}$

 $\pi_1(D^2/ ext{rotation order }n)\cong \mathbf{Z}/n\mathbf{Z}$



• $\pi_1(\mathcal{O}, x) = \{ \text{ loops based at } x \text{ up to homotopy relative to } x \}$

Seifert-Van Kampen theorem (Haëfliger):

If $\mathcal{O} = U \cup V$, $U \cap V$ conected, then: $\pi_1(\mathcal{O}) \cong \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V)$

 $\pi_1 \mathcal{O}$ = free product of $\pi_1(U)$ and $\pi_1(V)$ quotiented by $\pi_1(U \cap V)$

• $\pi_1(\mathcal{O}, x) = \{ \text{ loops based at } x \text{ up to homotopy relative to } x \}$

Seifert-Van Kampen theorem (Haëfliger):

If $\mathcal{O} = U \cup V$, $U \cap V$ conected, then: $\pi_1(\mathcal{O}) \cong \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V)$

 $\pi_1 \mathcal{O}$ = free product of $\pi_1(U)$ and $\pi_1(V)$ quotiented by $\pi_1(U \cap V)$



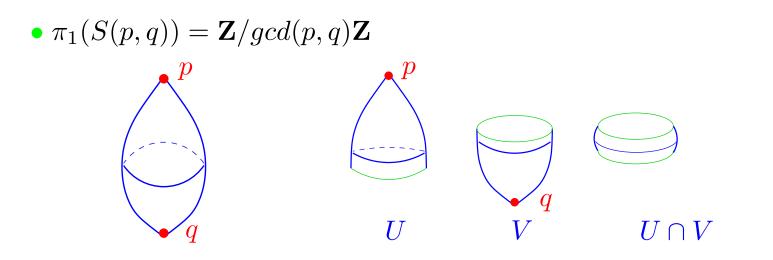
• $\pi_1(\mathcal{O}, x) = \{ \text{ loops based at } x \text{ up to homotopy relative to } x \}$

Seifert-Van Kampen theorem (Haëfliger):

If $\mathcal{O} = U \cup V$, $U \cap V$ conected, then:

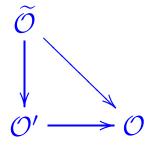
 $\pi_1(\mathcal{O}) \cong \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V)$

 $\pi_1 \mathcal{O}$ = free product of $\pi_1(U)$ and $\pi_1(V)$ quotiented by $\pi_1(U \cap V)$



Universal covering

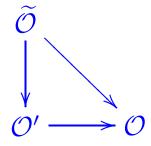
• Universal covering: $\widetilde{\mathcal{O}} \to \mathcal{O}$ such that every other covering $\mathcal{O}' \to \mathcal{O}$:



• Existence: $\widetilde{\mathcal{O}} = \{$ rel. homotopy classes of paths starting at $x \}$

Universal covering

• Universal covering: $\widetilde{\mathcal{O}} \to \mathcal{O}$ such that every other covering $\mathcal{O}' \to \mathcal{O}$:



- Existence: $\widetilde{\mathcal{O}} = \{$ rel. homotopy classes of paths starting at $x \}$
- $\pi_1(\mathcal{O}) \cong$ deck transformation group of $\widetilde{\mathcal{O}} \to \mathcal{O}$.
- $\pi_1(T(n)) = \{1\}$ and $\pi_1(S(p,q)) = \mathbb{Z}/\gcd(p,q)\mathbb{Z}$,

hence T(n) and S(p,q), $p \neq q$, are bad.

Developable orbifolds

Theorem

1. If an orbifold has a metric of constant curvature, then it is good.

2. If an orbifold has a metric of nonpositive curvature, then it is good.

Proof 1: use developing maps $\widetilde{U} \to \mathbf{H}^n, \, S^n, \, \mathbf{R}^n$

Proof 2: use developing maps, convexity, uniqueness of geodesics.

Developable orbifolds

Theorem

1. If an orbifold has a metric of constant curvature, then it is good.

2. If an orbifold has a metric of nonpositive curvature, then it is good.

Proof 1: use developing maps $\widetilde{U} \to \mathbf{H}^n, S^n, \mathbf{R}^n$

Proof 2: use developing maps, convexity, uniqueness of geodesics.

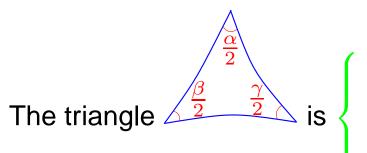
Corollary:

All orientable 2-orbifolds other than T(n) and S(p,q), $p \neq q$

have a constant curvature metric, hence are good.

Can put an orbifold metric of constant curvature by using polygons.

2 dim example: turnovers



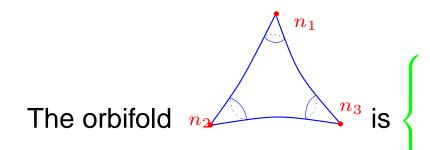
 $\begin{array}{c|c} \hline 2 \\ \hline 3 \\ \hline 5 \\ \hline 5$

2 dim example: turnovers

The triangle
$$\frac{\beta}{2}$$
 $\frac{\gamma}{2}$ is $\begin{cases} \frac{\beta}{2} & \frac{\gamma}{2} \\ \frac{\beta}{2} & \frac{\beta}{2} \\ \frac{\beta}{2} \\ \frac{\beta}{2} \\ \frac{\beta}{2$

hyperbolic if $\alpha + \beta + \gamma < 2\pi$ Euclidean if $\alpha + \beta + \gamma = 2\pi$ spherical if $\alpha + \beta + \gamma > 2\pi$

• Glue two triangles along the boundaries, set $\alpha = \frac{2\pi}{n_1}$, $\beta = \frac{2\pi}{n_2}$, $\gamma = \frac{2\pi}{n_3}$, $|\mathcal{O}| = S^2$, $\Sigma_{\mathcal{O}}$ =three points, cyclic isotropy groups of orders n_1 , n_2 , n_3 .



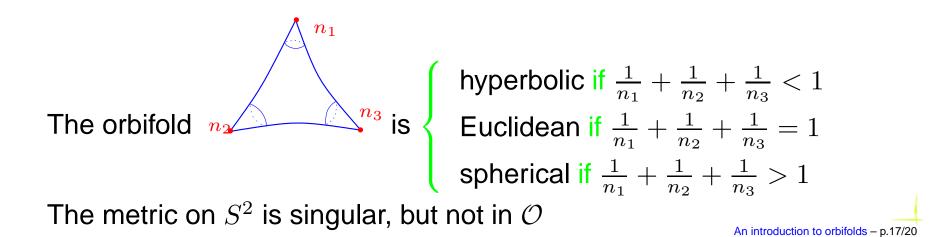
 $\int_{n_3}^{n_3} \text{is} \begin{cases} \text{hyperbolic if } \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} < 1 \\ \text{Euclidean if } \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} = 1 \\ \text{spherical if } \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} > 1 \end{cases}$

2 dim example: turnovers

The triangle
$$\frac{\beta}{2} = \frac{\gamma}{2}$$
 is $\left\{ \begin{array}{c} & & \\ &$

hyperbolic if $\alpha + \beta + \gamma < 2\pi$ Euclidean if $\alpha + \beta + \gamma = 2\pi$ spherical if $\alpha + \beta + \gamma > 2\pi$

• Glue two triangles along the boundaries, set $\alpha = \frac{2\pi}{n_1}$, $\beta = \frac{2\pi}{n_2}$, $\gamma = \frac{2\pi}{n_3}$, $|\mathcal{O}| = S^2$, $\Sigma_{\mathcal{O}}$ =three points, cyclic isotropy groups of orders n_1 , n_2 , n_3 .



Euler characteristic

$$\chi(\mathcal{O}) = \sum_{e} (-1)^{\dim e} \frac{1}{|\Gamma_e|}$$

The sum runs over the cells of a cellulation of \mathcal{O} that preserves the stratification of the branching locus.

Euler characteristic

$$\chi(\mathcal{O}) = \sum_{e} (-1)^{\dim e} \frac{1}{|\Gamma_e|}$$

The sum runs over the cells of a cellulation of \mathcal{O} that preserves the stratification of the branching locus.

Properties:

• If $\mathcal{O} \to \mathcal{O}'$ is a covering of degree $n \Rightarrow \chi(\mathcal{O}) = n\chi(\mathcal{O}')$

• Gauss-Bonnet formula. If $\dim \mathcal{O} = 2$, then:

$$\int_{\mathcal{O}} K = 2\pi \chi(\mathcal{O})$$

where K = curvature.

Ricci flow on two orbifolds

Normalized Ricci flow:

$$\frac{\partial g}{\partial t} = -2\operatorname{Ric} + \frac{2}{n}\overline{r}\,g$$

- g Riemmannian metric,
- $\bar{r} = \int_{\mathcal{O}} scal / \int_{\mathcal{O}} 1$ average scalar curvature
- Ric Ricci curvature.
- In dim 2, $\operatorname{Ric} = K g$.

So write $g_t = e^u g_0$ for some function u = u(x, t).

The conformal class is preserved and

$$\frac{\partial}{\partial t}u = e^{-u}\nabla_{g_0}u$$

Ricci flow on two orbifolds

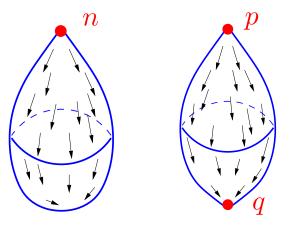
Normalized Ricci flow:

$$\frac{\partial g}{\partial t} = -2\operatorname{Ric} + \frac{2}{n}\overline{r}\,g$$

• Hamilton, Chow, Wu, Chen-Lu-Tian:

Either it converges to a metric of constant curvature, or to a gradient soliton on T(n) or S(p,q)

• Gradient soliton: $g_t = a_t \phi_t^* g_0$, with $\frac{\partial}{\partial t} \phi_t = \operatorname{grad}(F)$



Dimension 3

A 3-orbifold is good iff it does not contain bad 2-suborbifolds.

Thurston's orbifold theorem

If \mathcal{O} has no bad 2-suborbifolds, then

 \mathcal{O} decomposes canonically into locally homogeneous pieces

- \mathcal{O} Locally homogeneous, if $\mathcal{O} = M/\Gamma$,
 - M = homogeneous manifold eg. \mathbf{R}^3 , \mathbf{H}^3 , S^3 , $\mathbf{H}^2 \times \mathbf{R}$, $PSL_2(\mathbf{R})$...
- Canonical decomposition:
 - 1. Orbifold connected sum: $(\mathcal{O}_1 \setminus B^3/\Gamma) \cup_{S^2/\Gamma} (\mathcal{O}_2 \setminus B^3/\Gamma)$
 - **2.** Cut along $T^2/\Gamma \pi_1$ -injective in \mathcal{O} (orbifold JSJ-theory)

Thurston's orbifold theorem

If \mathcal{O} has no bad 2-suborbifolds, then

 \mathcal{O} decomposes canonically into locally homogeneous pieces

- \mathcal{O} Locally homogeneous, if $\mathcal{O} = M/\Gamma$,
 - M = homogeneous manifold eg. \mathbf{R}^3 , \mathbf{H}^3 , S^3 , $\mathbf{H}^2 \times \mathbf{R}$, $PSL_2(\mathbf{R})$...
- Canonical decomposition:
 - 1. Orbifold connected sum: $(\mathcal{O}_1 \setminus B^3/\Gamma) \cup_{S^2/\Gamma} (\mathcal{O}_2 \setminus B^3/\Gamma)$
 - 2. Cut along $T^2/\Gamma \pi_1$ -injective in \mathcal{O} (orbifold JSJ-theory)
- $\widetilde{\mathcal{O}} \cong_{\mathsf{diff}} \mathbf{R}^3$, \mathbf{S}^3 or infinite connected sums.

