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Homotopy Pull-back Squares up to Localization

Wojciech Chachólski, Wolfgang Pitsch, and Jérôme Scherer

Abstract. We characterize the class of homotopy pull-back squares by means
of elementary closure properties. The so called Puppe theorem which identi-
fies the homotopy fiber of certain maps constructed as homotopy colimits is
a straightforward consequence. Likewise we characterize the class of squares
which are homotopy pull-backs “up to Bousfield localization”. This yields a
generalization of Puppe’s theorem which allows us to identify the homotopy
type of the localized homotopy fiber. When the localization functor is homo-
logical localization this is one of the key ingredients in the group completion
theorem.

1. Introduction

In topology it is convenient to think about a continuous family of spaces as a
map whose fibers constitute the family. The homotopy fiber of this map is then
an important invariant of the family, but in general it is difficult to say anything
about this invariant. However if the “transition functions” of the map preserve
some property, it is often the case that the same property is inherited by the
homotopy fiber. The classical example is given by the so called Puppe theorem
[14] that says that if all the members of the family have the same homotopy type
(the transition functions are weak equivalences), then the homotopy fiber has this
homotopy type too. This is also the central idea in (generalized) Quillen’s group
completion theorem, as exposed by McDuff-Segal [12], Jardine [10], Tillman [16],
see also Adams’ book [1]. In their setting the members of the family have the
same integral homology type (the transition functions are HZ-isomorphisms). The
statement asserts then that the homotopy fiber shares the same integral homology
type as well. This was used to compute the homology of the group completion
of certain topological monoids: a celebrated consequence is the Barratt–Priddy
theorem [2] which identifies BΣ+

∞ × Z with QS0.
The aim of this paper is to generalize these results to the case when the members

of a continuous family of spaces have the same homotopy type after Bousfield
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sons Stiftelse, the second and third authors by MEC grant MTM2004-06686 and by the program
Ramón y Cajal, MEC, Spain.

c©0000 (copyright holder)

1
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localization with respect to a given map. It has been surprising to us that this
statement follows from properly reformulating the classical Puppe theorem together
with general properties of localizations of spaces.

To state our theorem it turns out that it is more appropriate to work in the
category Arrows of maps of spaces (see Section 2.1) rather than in the category
Spaces itself, where by a space we mean an unpointed simplicial set. Studying
homotopy fibers of continuous families can then be translated into investigating
properties of certain classes of morphisms in Arrows:

1.1. Definition. A class C of morphisms in Arrows is called distinguished if:

(1) Weak equivalences belong to C.
(2) Let φ : f → g and ψ : g → h be morphisms. Assume that either ψ or φ

is a weak equivalence. Then if two out of φ, ψ, ψφ belong to C, then so
does the third.

(3) Let φ : f → g and ψ : g → h be morphisms. If ψ and ψφ belong to C,
then so does φ.

(4) If F : I → Arrows sends any morphism in I to a morphism in C, then, for
every i ∈ I, F (i)→ hocolimIF belongs to C.

At first it might seem pointless to consider such collections since for example
the category Spaces has only one distinguished class that consists of all spaces. The
key observation is that there are much more interesting distinguished collections in
Arrows. For example a reformulation of Puppe’s theorem now identifies the class
of homotopy pull-backs.

6.2 THEOREM. The collection of homotopy pull-backs is the smallest distin-
guished class of morphisms in Arrows.

As in Spaces, Bousfield localization also exist in Arrows. Although it is very
hard to identify these localization functors with respect to an arbitrary morphism,
an explicit description can be given for Lφ when φ = (u, id∆[0]) is a morphism
between two maps collapsing a space to a point (see Section 2.1). In this case
Lφ is written Lu and coincides with the “fiberwise” application of the Bousfield
localization Lu of spaces (see Section 7). We say that a morphism ψ : f → g
in Arrows is an Lu-homotopy pull-back if ψ induces Lu-equivalences of homotopy
fibers of f and g (see Definition 8.1) or equivalently if Luψ : Luf → Lug is a
homotopy pull-back (see Proposition 8.2). Our main theorem can be now stated as
follows:

8.3 THEOREM. The collection of Lu-homotopy pull-backs is the smallest distin-
guished class containing all Lu-equivalences.

For example let us choose a map u for which Lu coincides with the localization
with respect to a chosen homology theory. Let F,G : I → Spaces be functors and
π : F → G be a natural transformation. Assume that for any morphism α ∈ I, the
commutative square:

F (i)
F (α) //

πi

²²

F (j)

πj

²²
G(i)

G(α) // G(j)
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induces an homology isomorphism between the homotopy fibers of πi and πj (i.e.
this square is an Lu-homotopy pull-back). Then, since Lu-homotopy pull-backs
form a distinguished collection, according to condition (4) of Definition 1.1, the
homotopy fibers of hocolimIπ have the same homology type as the homotopy fibers
of πi for an appropriate i.

Acknowledgments: It was Emmanuel Dror Farjoun who suggested to view
group completion as a fiberwise localization statement when we explained him the
result in [13]. Unlike some other participants we were not able to prove our main
theorem while hiking around Arolla. We thank the Göran Gustafssons Stiftelsethe
for support and KTH in Stockholm for its hospitality.

2. The category of maps of spaces

In this section we deal with combinatorics and geometry of simplicial sets. We
focus particularly on geometrical properties of push-outs and pull-backs.

2.1. The symbol Arrows denotes the category whose objects are maps in Spaces
and morphisms are commutative squares. Explicitly a morphism φ : f → g in
Arrows is given by a pair φ = (φ0, φ1) of maps for which the following square
commutes:

X
φ0 //

f

²²

A

g

²²
Y

φ1 // B

2.2. There are two forgetful functors D,R : Arrows → Spaces which assign to
a map f : X → Y its domain Df := X and its range Rf := Y . So for the morphism
φ, Dφ = φ0 and Rφ = φ1, which should not be mistaken for the domain f and the
range g of φ considered as a morphism in Arrows. A functor F : I → Arrows can be
identified with a natural transformation DF → RF between functors with values
in Spaces, denoted by πF . By the universal properties colimIF and limIF are
naturally isomorphic respectively to the maps colimIπF : colimIDF → colimIRF
and limIπF : limIDF → limIRF .

2.3. A morphism φ : f → g in Arrows is called a pull-back or a push-out if the
corresponding square is so in Spaces. It is called a monomorphism if both Dφ and
Rφ are so in Spaces.

Here is a list of basic properties of pull-backs and push-outs of spaces. One way
of proving them is to show that they are true for sets and are preserved by functor
categories, thus they remain valid for Spaces, Arrows, etc. The first property is the
classical “two out of three” property, similar statements can be found for example
in [8, Proposition 1.8].

2.4. Lemma. Let φ : f → g and ψ : g → h be two morphisms in Arrows.
(1) Assume that ψ (respectively φ) is a pull-back (respectively a push-out). Then φ
(respectively ψ) is a pull-back (respectively a push-out) if and only if ψφ is so.
(2) Assume that φ is a pull-back and Rφ : Rf → Rg is an epimorphism. Then ψ
is a pull-back if and only if ψφ is so.
(3) Assume that ψ is a push-out and f , g, h are monomorphisms. Then ψφ is a
push-out if and only if φ is so. ¤
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The following examples show that the additional assumptions in points (2) and
(3) above are essential.

2.5. Example. Let S0 denote the boundary of ∆[1]. Here is a diagram in
which the left square and the outer square are pull-backs, but the right square is
not:

∅

²²

// ∆[0]

d1

²²

d0 // S0

d1s0

²²
∆[0] d0 // S0 id // S0

Here is a diagram in which the right square and the outer square are push-outs,
but the left square is not:

∆[0]

²²

// S0

²²

// ∆[0]

²²
∆[0] // ∆[0] // ∆[0]

The next three properties are occurrences of push-out squares being at the
same time pull-back squares. Consider a commutative diagram in Arrows:

(A)

f
φ //

π

²²

g

µ

²²
h

ψ // k

2.6. Lemma.
(1) If φ : f → g is a monomorphism and a push-out, then it is a pull-back.
(2) Assume that the square (A) is a push-out. If φ is a monomorphism, then so is
ψ and this square is also a pull-back.
(3) Assume that the square (A) is a pull-back. If ψ is a pull-back (respectively a
monomorphism), then so is φ. In particular if ψ is a push-out and a monomor-
phism, then φ is a monomorphism and a pull-back. ¤

Finally we state two different “cube theorems”, named in analogy with Mather’s
theorem [11]. They say that sometimes push-outs do commute with pull-backs.

2.7. Lemma. Assume that in the square (A) the morphisms φ and ψ (respec-
tively φ, ψ, π, and µ) are pull-backs. Then (A) is a pull-back (respectively a push-
out) square if and only if the range square:

Rf
Rφ //

Rπ

²²

Rg

Rµ

²²
Rh

Rψ // Rk

is a pull-back (respectively a push-out) of spaces. ¤

This statement, which will be referred to as the cube lemma, has the following
extension to Arrows. We call it the hypercube lemma. Consider a commutative
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cube in Arrows:
f̄ //

¡¡££
££

££
££

²²

ḡ

¢¢££
££

££
££

²²

h̄ //

²²

k̄

²²

f //

¡¡¢¢
¢¢

¢¢
¢

g

¡¡¢¢
¢¢

¢¢
¢¢

h // k

2.8. Lemma. In the above cube assume that the squares (f̄ , h̄, f, h), (f̄ , ḡ, f, g),
(h̄, k̄, h, k), and (ḡ, k̄, g, k) are pull-backs and that the square (f, h, g, k) is a push-
out. Then the square (f̄ , h̄, ḡ, k̄) is also a push-out. ¤

2.9. Fix a morphism φ : f → g in Arrows. There are two natural operations
one can perform. First, given a morphism τ → g one can pull it back along φ and
define φ∗τ → f to be the morphism that fits into the following pull-back square in
Arrows:

φ∗τ //

²²

τ

²²
f

φ // g

In general φ∗τ → f is not a pull-back, but it is so whenever τ → g is a pull-back.
Second, for any σ → f , define the push-forward φ∗σ → g to be a pull-back that

fits into a commutative square in Arrows of the form:

σ //

²²

φ∗σ

²²
f

φ // g

and is initial with respect to this property. Explicitly φ∗σ → g is given by the
following pull-back square in Spaces:

A //

φ∗σ

²²

Dg

g

²²
Rσ // Rf

Rφ // Rg

This construction shows that the push-forward is functorial. Note that φ is a
pull-back if and only if, for any pull-back σ → f , the morphism σ → φ∗σ is an
isomorphism. By definition the push-forward φ∗σ → g is always a pull-back.

Observe that there is a natural morphism σ → φ∗φ∗σ, which is a pull-back if
σ → f is so. For any pull-back τ → g, there is also a natural pull-back morphism
φ∗φ∗τ → τ .

2.10. Proposition. Assume that the range square of the square (A) is a pull-
back of spaces. For any pull-back σ → h, the induced morphism φ∗π∗σ → µ∗ψ∗σ is
then an isomorphism.
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Proof. To prove the proposition we need to show that the following square is
a pull-back in Arrows:

φ∗π∗σ //

²²

g

µ

²²
ψ∗σ // k

Since the horizontal morphisms in this square are pull-backs, according to the cube
Lemma 2.7, it is enough to show that this square is a pull-back on the range level.
On the range level, this is the outer square of:

R(π∗σ) //

²²

Rf
Rφ //

Rπ

²²

Rg

Rµ

²²
Rσ // Rh

Rψ // Rk

As the left and right squares of this diagram are pull-backs, then so is the outer
one, proving the proposition. ¤

2.11. Proposition. Assume that the square (A) is a push-out and either φ is
a monomorphism or π is a monomorphism and a pull-back. Then for any pull-back
σ → h the following is a push-out square:

π∗σ //

²²

φ∗π∗σ

²²
σ // ψ∗σ

Proof. By Lemma 2.6.(1) the square (A) is also a pull-back. Hence according
to Proposition 2.10, the morphism φ∗π∗σ → µ∗ψ∗σ is an isomorphism. Consider
next the following commutative diagram in Arrows:

(B)

π∗σ //

||yy
yy

yy
yy

y
99

99
9

99

¿¿9
99

99
99

9

φ∗φ∗π∗σ //

yyssssssssss

²²

µ∗ψ∗σ

{{www
ww

ww
ww

²²

= φ∗π∗σ

σ //

¼¼3
33

33
33

33
33

33
33

3 ψ∗ψ∗σ //

²²

ψ∗σ

²²

f
φ //

π

yyrrrrrrrrrrrr g

µ

{{vvv
vv

vv
vv

vv

h
ψ // k

The top right square (φ∗φ∗π∗σ, ψ∗ψ∗σ, φ∗π∗σ, ψ∗σ) is a push-out by the hypercube
Lemma 2.8 since the square (f, h, g, k) is a push-out. Thus to prove the proposition
it is enough to show that the top left square (π∗σ, σ, φ∗φ∗π∗σ, ψ∗ψ∗σ) is also a
push-out.

Assume that φ is a monomorphism. It follows that so is ψ. We claim that in
this case σ → ψ∗ψ∗σ and π∗σ → φ∗φ∗π∗σ are isomorphisms. That will be proven
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once we show that the following is a pull-back square:

σ //

²²

ψ∗σ

²²
h

ψ // k

Since the vertical morphisms of this square are pull-backs, according to Lemma 2.7,
it suffices to check that on the range level we have a pull-back of spaces:

Rσ

²²

id // R(ψ∗σ)

²²
Rh

Rψ // Rk

As Rψ is a monomorphism, this is the case.
Assume now that π is a pull-back and a monomorphism. We use Lemma 2.7.

The assumption on π implies that the morphisms π∗σ → σ, φ∗φ∗π∗σ → ψ∗ψ∗σ, and
µ∗ψ∗σ → ψ∗σ are also monomorphisms and pull-backs. Thus all the morphisms in
the top left square of the diagram (B) are pull-backs. To see that this square is a
push-out we need to prove that it is so on the range level. Let us look at the ranges
of the top layer of the diagram (B). It is a commutative diagram of spaces of the
form:

A

~~~~
~~

~~
~

GF EDid

²²
// C //

~~~~
~~

~~
~

A

ÄÄ~~
~~

~~
~

B //
@A BC

id

OOD // B

where the right square (C,D,A,B) is a push-out and the diagonal maps are mono-
morphisms. We can now use the “two out of three” Lemma 2.4 to conclude that
the left square (A,B,C,D) is also a push-out. ¤

3. Homotopy theory of maps

3.1. The category Arrows can be given a model category structure where:
• a morphism φ in Arrows is a weak equivalence (cofibration) if Dφ and Rφ

are weak equivalences (cofibrations) in Spaces;
• a morphism φ : f → g in Arrows is a fibration if both Rφ and the map
Df → lim(Rf

Rφ−−→ Rg
g←− Dg

)
, induced by Dφ and f , are fibrations in

Spaces.

3.2. The category Arrows also supports a canonical simplicial structure:
• for a space K and a map f , f ⊗K := f × idK ;
• the mapping space map(f, g) is given by:

lim
(
map(Df,Dg)

g∗−→ map(Df,Rg
) f∗←− map(Rf,Rg)

)
.

The description of the mapping spaces is straightforward from the adjunction prop-
erty [15, II.1.3]. This simplicial structure is compatible with the model category
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structure defined above (the axiom SM7 is fulfilled), so that the category Arrows
is actually a simplicial model category.

3.3. Let F : I → Arrows be a functor. By the universal properties, the mor-
phisms hocolimIF and holimIF are respectively naturally isomorphic to the ob-
jects in Ho(Arrows) represented by hocolimIπF : hocolimIDF → hocolimIRF and
holimIπF : holimIDF → holimIRF .

4. Fiberwise decomposition

4.1. Let f : X → Y be a map and σ : ∆[n] → Y be a simplex. Define
df(σ)→ ∆[n] to be the map that fits into the following pull-back square in Spaces:

df(σ) //

²²

X

f

²²
∆[n] σ // Y

These maps fit into a functor df : Y → Arrows, indexed by the simplex category
of Y (see [6, Definition 6.1]). The morphisms {df(σ) → f}σ∈Y , given by the
above commutative squares, satisfy the universal property of the colimit and so
colimY df = f .

Functors of the form df are not arbitrary, they satisfy a certain homotopy
invariance property.

4.2. Definition. A functor F : I → Arrows (indexed by a small category) is
called pseudo-cofibrant if the morphism hocolimIF → colimIF is an isomorphism
in Ho(Arrows).

Although the next proposition already appeared in Dror Farjoun’s book [7,
p.183], we offer a proof illustrating the ideas of the present paper.

4.3. Proposition. For any f : X → Y , the functor df : Y → Arrows is
pseudo-cofibrant.

Proof. Let S be the class of spaces Y for which the proposition is true. To
prove the proposition it is enough to show that S satisfies the following properties
(which then imply that S consists of all spaces):

(1) ∆[n] ∈ S;
(2)

∐
Yi ∈ S if Yi ∈ S;

(3) colim(Y0 ← Y1 ↪→ Y2) ∈ S if Yi ∈ S and Y1 ↪→ Y2 is a cofibration.
Since id : ∆[n] → ∆[n] is the terminal object of the simplex category of ∆[n],

statement (1) follows from cofinality properties of homotopy colimits ([5, Theorem
XI.9.2] and [6, Theorem 30.5]).

Statement (2) is clear. To prove (3), set Y := colim(Y0 ← Y1 ↪→ Y2). Let
f : X → Y be a map. Define fi : Xi → Yi to be the map that fits into the following
pull-back square:

Xi
//

fi

²²

X

f

²²
Yi // Y
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These maps form a natural transformation between the following push-outs, where
the indicated maps are cofibrations:

X

f

²²

= colim
(
X0

f0

²²

X1
oo Â Ä //

f1

²²

X2

f2

²²

)

Y = colim
(
Y0 Y1

oo Â Ä // Y2

)

Let Qf → dfε be a cofibrant replacement in Funb
(
N(Y ),Arrows

)
([6, Theorem

13.1]) of the composition of the diagram df : Y → Arrows with the forgetful functor
ε : N(Y ) → Y , (σn → · · · → σ0) 7→ σ0 ([6, Definition 6.6]). Since N(Yi) → N(Y )
is reduced ([6, Example 12.10] and [6, Proposition 5.1]), Qf restricted to N(Yi) is
a cofibrant replacement in Funb

(
N(Yi),Arrows

)
of the composition of dfi with the

forgetful functor N(Yi)→ Yi. The spaces Yi are assumed to be in S and hence the
morphism colimN(Yi)Qf → fi is a weak equivalence. Property (3) follows now from
the basic homotopy invariance of push-outs ([6, Proposition 2.5.(2)]). ¤

5. Homotopy pull-backs

5.1. Recall that a morphism f → g in Arrows is called a homotopy pull-back
if, for some (equivalently any) weak equivalence ψ : g '−→ h with h a fibration in
Spaces, the morphism f → ψ∗f is a weak equivalence. In other words the domain
Df is weakly equivalent to the homotopy pull-back of the diagram Rf → Rg ← Dg.

If φ : f → g is a pull-back and either g or Rφ : Rf → Rg is a fibration, then φ
is a homotopy pull-back.

A homotopy pull-back σ → f for which Rσ is contractible, is called a homotopy
fiber of f . If σ → f and τ → f are homotopy fibers of f such that the images of
Rσ and Rτ in Rf lie in the same connected component, then σ and τ are weakly
equivalent.

5.2. Here is a list of some basic properties of homotopy pull-backs:

(1) Right properness: If φ : f → g is a weak equivalence, then it is a homotopy
pull-back.

(2) Fiber characterization: A morphism φ : f → g is a homotopy pull-back if
and only if it induces a weak equivalence of homotopy fibers, i.e. for any
commutative square:

σ

²²

π // τ

²²
f

φ // g

if σ → f and τ → g are respectively homotopy fibers of f and g, then π
is a weak equivalence.

(3) Two out of three: Let φ : f → g and ψ : g → h be morphisms. Assume
that ψ is a homotopy pull-back. Then φ is a homotopy pull-back if and
only if ψφ is so. Assume that φ is a homotopy pull-back and that the
range Rφ : Rf → Rg induces an epimorphism on the sets of connected
components. Then ψ is a homotopy pull-back if and only if ψφ is so.
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(4) Disjoint union: Let {fi}i∈I and {gj}j∈J be collections of maps, h : I → J
a map of sets, and {φi : fi → gh(i)}i∈I a collection of homotopy pull-backs.
Then the following induced morphism is also a homotopy pull-back:

∐

i∈I
φi :

∐

i∈I
fi →

∐

j∈J
gj

Note that Example 2.5 also illustrates the failure of the full two out of three
property for homotopy pull-backs.

A fibration f possesses the property that for any simplex σ ∈ Rf the morphism
df(σ)→ f is a homotopy pull-back. Maps with that property play a crucial role in
this paper.

5.3. Definition. A map f : X → Y is called a quasi-fibration if for any mor-
phism α : σ → τ in Y , the morphism df(α) : df(σ)→ df(τ) is a weak equivalence.

Even if quasi-fibrations lack the global lifting properties enjoyed by fibrations,
the local information given by the preimages of simplices still allows us to recover
the homotopy fiber.

5.4. Proposition. A map f is a quasi-fibration if and only if the morphism
df(σ)→ f is a homotopy pull-back for any simplex σ : ∆[n]→ Rf .

Proof. If the morphisms df(σ) → f are homotopy pull-backs, then they are
homotopy fibers of f . Thus by the homotopy invariance of homotopy fibers, f is a
quasi-fibration.

Assume that f is a quasi-fibration. Factor the morphism df(σ) → f as a
composition df(σ) → p → f where Rp is contractible and p → f is a fibration
and a pull-back (hence a homotopy pull-back). It follows that p is a quasi-fibration
and df(σ) → p is a pull-back. Since Rp is a contractible, according to [6, Lemma
27.8], the morphism df(σ)→ hocolimRpdp is an isomorphism in Ho(Arrows). Thus
by Proposition 4.3, df(σ) → colimRpdp = p is a weak equivalence and therefore a
homotopy pull-back. We can conclude that the composition df(σ)→ p→ f is also
a homotopy pull-back. ¤

The last proposition combined with the fiber characterization of homotopy
pull-backs (property 5.2.(2)) gives:

5.5. Corollary. A morphism φ : f → g between quasi-fibrations f and g is a
homotopy pull-back if and only if, for any simplex σ ∈ Rf , the induced morphism
φ(σ) : df(σ)→ dg((Rφ)σ) is a weak equivalence. ¤

6. Distinguished collections

In this section we prove some fundamental properties of distinguished collec-
tions (see Definition 1.1 in the introduction). We start with a stronger form of
condition (3).

6.1. Proposition. Let C be a distinguished class. If φ : f → g and ψ : g → h
belong to C, then so does ψφ.

Proof. The homotopy colimit of the following diagram F in Arrows:

f
φ−→ g

idg←−− g ψ−→ h
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is homotopy equivalent to h. Moreover the morphism f → hocolimF can be iden-
tified with the composition ψφ. Since all morphisms in this diagram belong to C,
by condition (4) in Definition 1.1 so does ψφ. ¤

We next characterize the collection of homotopy pull-backs.

6.2. Theorem. The collection of homotopy pull-backs is the smallest distin-
guished class of morphisms in Arrows.

Proof. We first show that homotopy pull-backs form a distinguished class.
According to 5.2, the requirements (1), (2), and (3) of Definition 1.1 are satisfied.
We need to prove that homotopy pull-backs satisfy also requirement (4). We first
show a particular case:

6.3. Lemma. Let the following be a push-out square in Arrows:

f
φ //

π

²²

g

µ

²²
h

ψ // k

Assume that φ and π are homotopy pull-backs and one of them is a monomorphism.
Then µ and ψ are also homotopy pull-backs.

Proof of Lemma 6.3. By making various factorizations we may assume that
both morphisms φ and π are monomorphisms and the maps f , g, h are fibrations.

Choose a simplex in Rk. Since it is in the image of either Rµ or Rψ, by
symmetry, we can assume that it is of the form ∆[n] σ−→ Rh

Rψ−−→ Rk. It follows that
dk(σ) = ψ∗dh(σ) and the following is a push-out square (see Proposition 2.11):

π∗dh(σ) //

²²

φ∗π∗dh(σ)

²²
dh(σ) // dk(σ)= ψ∗dh(σ)

Since φ is a homotopy pull-back between fibrations, according to Proposition 4.3
and Corollary 5.5, the morphism π∗dh(σ) → φ∗π∗dh(σ) is a weak equivalence.
Same is therefore true for dh(σ)→ dk(σ). We conclude that k is a quasi-fibration
and ψ is a homotopy pull-back (Corollary 5.5). ¤

To prove in general that homotopy pull-backs satisfy requirement (4) of Def-
inition 1.1, it would be enough to show that, for any bounded and cofibrant
F : K → Arrows which sends morphisms in K to homotopy pull-backs, the mor-
phism F (σ)→ colimKF is a homotopy pull-back for any simplex σ ∈ K. Induction
on the dimension of K seems to be the right strategy to do that. Unfortunately
the notion of cofibrancy of bounded functors is to rigid for that: cofibrant functors
are not preserved by restricting along maps of simplicial sets. To circumvent this
problem we need to allow “more general cofibrant” diagrams. We are going to ap-
ply the idea of relative boundedness and cofibrancy introduced in [6, Sections 17,
19] to deal with such problems.

Fix a space L and denote by SL the class of maps of the form f : K → L
that satisfy the following property: If F : K → Arrows is any f -bounded and
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f -cofibrant diagram which sends morphisms in K to homotopy pull-backs, then
the morphism F (σ)→ colimKF is a homotopy pull-back for any simplex σ ∈ K.

We will show that SL satisfies the following properties, and thus consists of all
maps with range L:

(1) All maps of the form ∆[n]→ L belong to SL.
(2) If a set of maps Ki → L belongs to SL then so does

∐
Ki → L.

(3) Let the following be a commutative diagram where the indicated map is
a cofibration:

K

f

²²

= colim
(
K0

f0

²²

K1
oo Â Ä //

f1

²²

K2

f2

²²

)

L = colim
(

L L
idoo id // L

)

If each fi belongs to SL then so does f .

Property (1) is clear, since ∆[n] has a terminal object. Property (2) is easily verified
as a simplex of

∐
Ki is a simplex of one of the spaces Ki. It remains to prove (3).

Let F : K → Arrows be an f -bounded and f -cofibrant functor. Consider the
following commutative diagram:

(C)

∐
σ∈K1

F (σ) b //

d

''NNNNNNNNNNN

a

²²

∐
σ∈K2

F (σ)

e

²²
colimK1F

Â Ä //

²²

colimK2F

²²∐
σ∈K0

F (σ) c // colimK0F
Â Ä // colimKF

According to the disjoint union property 5.2.(4), the morphisms a and b are homo-
topy pull-backs. The functor F restricted along fi : Ki → L is both fi-bounded
and fi-cofibrant (see [6, Corollaries 17.5 (1), 19.6 (1)]). Thus by the inductive
hypothesis c, d, and e are homotopy pull-backs. We can now apply the two out
of three property 5.2(3) to see that both morphisms colimK1F ↪→ colimK2F and
colimK1F → colimK0F are homotopy pull-backs too. By Lemma 6.3 we can con-
clude that all the morphisms in the diagram (C) are homotopy pull-backs.

We are left to show that homotopy pull-backs are contained in any distinguished
class. For that it is enough to show that any pull-back φ : f → g with g a fibration
belongs to any distinguished class.

Assume first that φ coincides with dg(σ) → g, for some σ ∈ Rg. Note that
the functor dg : Rg → Arrows is pseudo-cofibrant (Proposition 4.3) and it takes
all the morphisms in K to weak equivalences. As weak equivalences belong to any
distinguished class, then so does dg(σ)→ g.

For a general pull-back φ : f → g, define I to be the Grothendieck construction
I := Gr(∆[0] ← Rf

Rφ−−→ Rg) ([6, Section 38]). Define further F : I → Arrows to
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be the functor given by the data (see [6, Section 40]):

(D)

F∆[0] : ∆[0]→ Arrows is the constant functor with value f ;
FRf : Rf → Arrows is df ;
FRg : Rg → Arrows is dg;
FRf → F∆[0] is given by the morphisms df → colimRfdf = f ;
FRf → FRg is induced by φ.

Again by Proposition 4.3, the functor F is pseudo-cofibrant. Moreover it takes any
morphism in I to either a weak equivalence or a morphism of the form df(σ)→ f .
Since such morphisms belong to any distinguished class we conclude that so does
φ : f = F (∆[0])→ colimIF = g. ¤

Note that we have not used condition (3) in Definition 1.1 while proving The-
orem 6.2. This means that the collection of homotopy pull-backs can be charac-
terized as the smallest class that satisfies only the three other requirements of the
definition. The significance of the third condition is illustrated by:

6.4. Corollary. Let C be a distinguished class. Then φ : f → g belongs to C
if and only if the morphism π : σ → τ does so for any commutative square of the
form:

σ

²²

π // τ

²²
f

φ // g

where σ → f and τ → g are respectively homotopy fibers of f and g.

Proof. Since σ → f and τ → g are homotopy pull-backs they belong to
any distinguished class by Theorem 6.2. Let us assume that φ is a member of C.
By Proposition 6.1 the morphism σ → g is in C and hence by condition (3) in
Definition 1.1 so is π.

Let us prove now the converse. By making an appropriate factorization we can
assume that f and g are fibrations. Let F : I → Arrows be the functor given by
(D) in the proof of Theorem 6.2. This functor takes any morphism in I either to
a morphism in C (by assumption) or to a homotopy pull-back, which is also in C.
Therefore φ : f = F (∆[0])→ colimIF = g belongs to C. ¤

7. Fiberwise localization

7.1. Let φ be a morphism in Arrows. Recall that a map of spaces f is called
φ-local if, for some (equivalently any) weak equivalence f ' g with g fibrant, the
map of spaces map(φ, g) is a weak equivalence.

According to [3], [4], [7], and [9], there is a functor Lφ : Arrows → Arrows and
a natural transformation f → Lφf (called localization) such that:

• Lφf is fibrant and φ-local;
• the map of spaces map(Lφf, g)→ map(f, g) is a weak equivalence, for any

fibrant and φ-local g.

We are going to refer to φ-local maps also as Lφ-local and to morphisms ψ for
which Lφψ is a weak equivalence as Lφ-equivalences.
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In general it is very difficult to understand the localization with respect to an
arbitrary morphism φ. However when φ is a morphism of the form (u, id∆[0]) the
next two propositions identify the localization with a very familiar object. Through
out this section we are going to fix a map of spaces u : A → B. The symbol Lu
will be used to denote both the localization in Spaces with respect to u and the
localization in Arrows with respect to the morphism (u, id∆[0]). We will show that
the functor Lu in Arrows is the fiberwise version of Lu in Spaces.

We start by characterizing the Lu-local maps as those for which the homotopy
fibers are Lu-local spaces.

7.2. Proposition. A map f is Lu-local in Arrows if and only if, for any homo-
topy fiber σ → f , the space Dσ is Lu-local in Spaces, i.e. for any weak equivalence
Dσ ' Z with Z fibrant, the map of spaces map(u, Z) is a weak equivalence.

Proof. Choose a weak equivalence f ' g with g fibrant (Rg is fibrant and g
is a fibration). By definition of the simplicial structure given in 3.2 we have the
following cube of spaces :

map(B → ∆[0], g) //b //

vvlllllllllllll
map(φ,g)

²²

Rg

yytttttttttt

id

²²

map(B,Dg) //map(B,g) //

map(u,Dg)

²²

map(B,Rg)

map(u,Rg)

²²

map(A→ ∆[0], g) a // //

vvlllllllllllll
Rg

yytttttttttt

map(A,Dg) //map(A,g) // map(A,Rg)

where the top and bottom faces are pull-back squares and the labelled arrows
are fibrations. Let x ∈ Rg be a vertex. The fibers of a and b over the ver-
tex x can be identified respectively with the mapping spaces map(A, g−1(x)) and
map(B, g−1(x)). Thus map(φ, g) is a weak equivalence if and only if, for any vertex
x ∈ Rg, the map map(u, g−1(x)) is a weak equivalence. ¤

In general local objects are not closed under homotopy colimits. However in
the case of Lu we have:

7.3. Corollary. Let F : I → Arrows be a pseudo-cofibrant functor. As-
sume that, for any i, the map F (i) is Lu-local and, for any morphism α in I, the
morphism F (α) is a homotopy pull-back. The map colimIF is then Lu-local.

Proof. Since for any i ∈ I, F (i) → colimIF is a homotopy pull-back (see
Theorem 6.2), any homotopy fiber of colimIF is a homotopy fiber of some F (i). As
these are Lu-local spaces, the map colimIF is Lu-local in Arrows. ¤

Next we describe Lu-equivalences:
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7.4. Proposition. A morphism ψ in Arrows is an Lu-equivalence if and only
if firstly Rψ is a weak equivalence and secondly for any commutative square

σ
π //

²²

τ

²²
f

ψ // g

if σ → f and τ → g are homotopy fibers, then Dπ is an Lu-equivalence in Spaces.

Proof. Assume first that ψ : f → g is an Lu-equivalence. Note that for
any fibrant space X, the map idX is Lu-local by Proposition 7.2. It follows that
map(ψ, idX) = map(Rψ,X) is a weak equivalence of spaces for all fibrant X. Hence
Rψ is a weak equivalence.

If Z is a fibrant and Lu-local space, then the map Z → ∆[0] is Lu-local in
Arrows. Thus the map of spaces:

map(Dg,Z)

map(Dψ,Z)

²²

= map(g, Z → ∆[0])

map(ψ,Z→∆[0])

²²
map(Df,Z) = map(f, Z → ∆[0])

is a weak equivalence. This together with the fact that Rψ is a weak equivalence
implies that, for any commutative square:

σ

²²

π // τ

²²
f

ψ // g

where σ → f and τ → g are homotopy fibers, map(Dπ,Z) is a weak equivalence of
spaces. As this holds for any Lu-local space Z, the map Dπ is an Lu-equivalence.

To prove the other implication consider the following commutative square:

f
ψ //

²²

g

²²
Luf

Luψ // Lug

The vertical morphisms are Lu-equivalences and we already know they induce weak
equivalences on ranges and Lu-equivalences on homotopy fibers. Thus if ψ satisfies
the two properties of the proposition, then so does Luψ. Since Luψ is a morphism
between Lu-local maps, i.e. maps whose homotopy fibers are Lu-local spaces (see
Proposition 7.2), the morphism Luψ is a weak equivalence. We can conclude that
ψ is an Lu-equivalence. ¤

8. Lu-homotopy pull-backs

In Theorem 6.2 we saw that any distinguished class containing all weak equiv-
alences must also contain all homotopy pull-backs. The analogous statement for
Lφ-equivalences should involve Lφ-homotopy pull-backs.
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8.1. Definition. A morphism f → g in Arrows is called an Lφ-homotopy pull-
back if, for some (equivalently any) weak equivalence ψ : g '→ h with h a fibration
in Spaces, the morphism f → ψ∗f is an Lφ-equivalence.

There is a more amenable description of Lφ-homotopy pull-backs when φ is of
the form (u, id∆[0]).

8.2. Proposition. If u is a map of spaces, then π : f → g is an Lu-homotopy
pull-back if and only if Luπ is a homotopy pull-back.

Proof. From the fiber characterization property 5.2.(2) we see that the mor-
phism Luπ : Luf → Lug is a homotopy pull-back if and only if it induces a weak
equivalence on homotopy fibers. According to Proposition 7.4 this is the case if and
only if the morphism π induces Lu-equivalences on homotopy fibers. For any weak
equivalence ψ : g '→ h with h a fibration in Spaces, the morphism ψ∗f → h always
induces an equivalence on homotopy fibers. By construction, f and ψ∗f have the
same range. Therefore, the morphism f → ψ∗f is an Lu-equivalence if and only if
Luπ is a homotopy pull-back. ¤

Using this characterization, we can now prove our main result:

8.3. Theorem. Let u be a map of spaces. The collection of Lu-homotopy pull-
backs is the smallest distinguished class containing all Lu-equivalences.

Proof. Consider a commutative square:

f
π //

²²

g

²²
Luf

Luπ // Lug

If π is an Lu-homotopy pull-back, then Luπ is a homotopy pull-back and hence by
Theorem 6.2 it belongs to any distinguished class. By condition (3) of Definition 1.1
it follows that π belongs to any distinguished class that contains Lu-equivalences.

To prove the theorem it remains to show that the collection in the statement is
a distinguished class. It is clear that requirements (1), (2), and (3) of Definition 1.1
are satisfied. Let F : I → Arrows be a pseudo-cofibrant functor which takes
morphisms in I to Lu-homotopy pull-backs. We need to show that, for any i ∈ I,
LuF (i) → Lu(colimIF ) is a homotopy pull-back. The functor F fits into the
following commutative square:

H //

'
²²

G

'
²²

F // LuF

where H and G are pseudo-cofibrant and the indicated natural transformations are
weak equivalences (see [6, Remark 16.3]). Choose an object i ∈ I and consider the
following commutative diagram, where the indicated arrows are weak equivalences:

LuF (i)

e

²²

LuH(i)'oo

²²

' // LuG(i)

²²

G(i)boo

a

²²
Lu(colimIF ) Lu(colimIH)'oo d // Lu(colimIG) colimIG

coo
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As G(α) is a homotopy pull-back for any morphism α ∈ I, by Theorem 6.2, the
morphism a is a homotopy pull-back. Furthermore the values of G are Lu-local so
b is a weak equivalence. It follows from Corollary 7.3 that colimIG is also Lu-local
and consequently the morphism c is a weak equivalence. Since Lu-equivalences are
preserved by homotopy colimits, the morphism d is a weak equivalence. We can
therefore conclude that e is a homotopy pull-back. ¤

To illustrate this theorem we offer an application with a classical flavor. If for
a map of spaces all the preimages of simplices have the same homotopy type up
to Lu-localization, then the Lu-localization of the homotopy fiber shares the same
homotopy type as well (the proof is identical as that of Proposition 5.4):

8.4. Corollary. Let f : X → Y be a map over a connected space Y and
denote by F its homotopy fiber. Assume that any morphism α : σ → τ in Y
induces an Lu-homotopy pull-back df(σ) → df(τ). Then the map Ddf(σ) → F is
an Lu-equivalence for any simplex σ in Y . ¤

The particular case when the preimages of simplices are acyclic with respect to
some generalized homology theory is due to E. Dror Farjoun [7, Corollary 9.B.3.2].

8.5. Corollary. Let E be a generalized homology theory and f : X → Y
be a map over a connected space Y such that df(σ) is E-acyclic for any simplex
σ : ∆[n]→ Y . The homotopy fiber of f is then also E-acyclic. ¤

9. Concluding remark

According to Corollary 6.4 a distinguished collection C is determined by the
class T(C) of maps f : A → B of spaces for which the morphism (f, id∆[0]) in
Arrows belongs to C. Members of T(C) are called transition functions for C. For
example the transition functions for homotopy pull-backs are weak equivalences and
the transition functions for HZ-homotopy pull-backs are HZ-equivalences. More
generally, if u is a map of spaces, then the transition functions for Lu-homotopy
pull-backs are Lu-equivalences.

In these three examples, the class T(C) satisfies the following properties:
(A) T(C) contains weak equivalences.
(B) Let f : A→ B and g : B → C be maps. If two out of f , g and gf are in

T(C), then so is the third.
(C) Let F : I → Arrows be a functor. If, for any i ∈ I, F (i) belongs to T(C),

then so does hocolimIF .
On the other hand we could start with a class of maps D and define D-homotopy

pull-backs to be the collection C(D) of morphisms φ : f → g in Arrows for which
the maps induced on homotopy fibers of f and g belong to D.

While writing this paper we have not found answers to the following questions:

9.1. Question. Is it true that, for any distinguished collection C, the class of
transition functions T(C) satisfies the above three conditions (A), (B), and (C)?

Note that if T(C) satisfies the full “two out of three” condition (B), then C
has the following “extended two out of three” condition: Let φ : f → g and
ψ : g → h be morphisms. Assume that Rφ is an epimorphism on the set of
connected components. Then ψ belongs to C if and only if ψφ does. This should
be compared with property (3) in Section 5.2. We do not know if any distinguished
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collection satisfies such an “extended two out of three” condition. Maybe this extra
requirement ought to be added to the definition of a distinguished collection. In
this paper though we tried to avoid making any general connectivity assumption.

9.2. Question. What are the necessary and sufficient requirements on a class
of maps D, so that C(D) is a distinguished collection?

Requirements (A), (B), and (C) above are possible candidates.
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