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Abstract
We give a proof of the Jardine-Tillmann generalized group

completion theorem. It is much in the spirit of the original
homology fibration approach by McDuff and Segal, but fol-
lows a modern treatment of homotopy colimits, using as little
simplicial technology as possible. We compare simplicial and
topological definitions of homology fibrations.

Introduction

The group completion of a topological monoid M is the loop space ΩBM and
a group completion theorem is originally a statement about the relation between
the homology of M and that of ΩBM . In the appendix of [FM94] D. Quillen
considers a simplicial monoid M . His main theorem is that under certain conditions
the homology of the group completion of M can be computed by inverting π0M in
the homology of M . A similar result can be found in May’s [May75, Theorem 15.1].
In this paper we focus on a more topological kind of group completion theorem, the
question being how to construct ΩBM out of M . Our starting point is McDuff’s
and Segal’s theorem, as it can be found in [MS76, Proposition 2] (a good account
on the subject is Adams’ book on infinite loop spaces [Ada78, Chapter 3]).

Theorem. Let M be a topological monoid acting on a space X by homology equiv-
alences. Then the map π : EM ×M X → BM from the Borel construction to the
classifying space of M is a homology fibration with fiber X.

The standard application is as follows. Let M be a homotopy commutative topo-
logical monoid with π0M ∼= N. Choose a point m in the component of 1 and form
the telescope M∞ = Tel(M ·m−→ M

·m−→ . . . ). The action of M by left multiplication
on M∞ is by homology equivalences because M is homotopy commutative. Hence
one obtains:
Corollary. Let M be a homotopy commutative topological monoid. Then there is
a homology equivalence M∞ → ΩBM . Moreover, when π1M∞ is perfect, ΩBM '
M+
∞.
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We discuss in Theorem 3.5 a strengthened version of the corollary which takes
into account cases when the fundamental group is not perfect. Taking for example
M to be the disjoint union

∐
BΣn of classifying spaces of the symmetric groups,

the Barrat-Priddy-Quillen Theorem states that BΣ+
∞ is the infinite loop space QS0,

[BP72]. Likewise, taking M to be
∐

BGLn(R) one gets back Quillen’s definition
of the algebraic K-theory of a ring R, [Qui71].

Simplicial versions of the group completion theorem started appearing at the end
of the eighties. I. Moerdijk provides a homological statement in [Moe89, Corol-
lary 3.1] and J.F. Jardine the analogue of the above theorem in [Jar89, Theorem
4.2], which he calls the “strong form of the Group Completion Theorem”. More
recently U. Tillmann introduced a “multiple object case” in her celebrated work on
the stable mapping class group ([Til97, Theorem 3.2]). In this context the Borel
construction is replaced by a bisimplicial version, i.e. the realization of a certain sim-
plicial space. LetM be a simplicial category and F : Mop → Spaces a contravariant
diagram. There is always a natural transformation to the trivial diagram. Taking
the bisimplicial Borel constructions yields a map πM : EMF → BM, analogous to
the map π in the classical theorem.

Theorem 3.2. Let M be a simplicial category and F : Mop → Spaces a con-
travariant diagram. Assume that any morphism f : i → j induces an isomorphism
in integral homology H∗(F (j);Z) → H∗(F (i);Z). Then, for each object i ∈ M, the
map F (i) → Fibi(πM) to the homotopy fiber of πM over i is a homology equivalence.

We offer in this paper a direct proof which uses as little simplicial technology as
possible. In comparison, Jardine’s proof makes use of bisimplex categories, trisimpli-
cial maps, and a homology spectral sequence (the Bousfield-Kan spectral sequence
is required if one wishes to prove the analogue theorem for an arbitrary homology
theory) and Tillmann’s theorem builds up on this result. Our main ingredient is
a rather classical result about comparing the fiber of the realization with the re-
alization of the fibers, an idea already used by McDuff and Segal in their proof
of the classical group completion theorem. Of course we do not avoid simplicial
spaces, the theorem after all is about delooping a simplicial classifying space. We
work however more in the spirit of the modern theory homotopy colimits. One very
powerful tool in this setting is to decompose a space as a diagram over its simplices.
The advantage of this approach is that one gets a more geometric feeling about the
constructions performed (such as the bisimplicial Borel construction). In particular
the generalization proposed in Remark 3.6 in the context of an arbitrary homology
theory is straightforward.

We use in this paper a simplicial notion of homology fibrations : preimages of
simplices have the same homology as the homotopy fiber. The word space means
simplicial set and we write Spaces for the category of spaces. In the last section
we compare this concept to that of classical homology fibration in the category of
topological spaces and prove they coincide.
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talks. We are indebted to W. Chachólski for the helpful comments he made on an
early version of the manuscript, as well as for introducing the second author to
simplicial technology.

1. Homology fibrations

We begin by recalling some basic definitions. The standard n-simplex is denoted
by ∆[n]. It has a unique non-degenerate simplex in dimension n. A map of spaces
∆[n] → B is determined by the image of this simplex, which is an n-simplex of B.
The simplex category of a space B is the category ∆B whose objects are all simplices
σ : ∆[n] → B of B and the morphisms are commutative triangles (this category is
defined in [Seg74, p. 308], see also [DF96, p.182], and [CS02, Definition 6.1]). In
particular there is always a morphism diσ → σ, where diσ is the i-th face of the
simplex σ. This allows to decompose any map p : E → B as a diagram over ∆B in
the following way. Let σ be an n-simplex in B and denote by dp(σ) the pull-back
of the diagram ∆[n] σ−→ B

p←− E. This is the “preimage” of the simplex in E
and yields a functor dp : ∆B → Spaces. The map p can then be recovered up to
homotopy by taking the homotopy colimit over ∆B of the natural transformation
dp → ∗, as E ' hocolim∆Bdp and B ' hocolim∆B∆[n]. This last homotopy colimit
is equivalent to the nerve of ∆B and G. Segal introduced the simplex category in
[Seg74] precisely to explain the geometric realization.

We will also need a slight generalization of dp, replacing a simplex by any space
K. For a map f : K → B, define dp(f) to be the pull-back of f along p. By a
homology equivalence we mean a map which induces an isomorphism in ordinary
homology with integral coefficients.

Definition 1.1. A map of spaces p : E → B is a homology fibration if the natural
map dp(σ) → Fibσ(p) to the homotopy fiber of p over the component of σ is a
homology equivalence for any simplex σ ∈ B. It is a weak homology fibration if for
any simplex σ ∈ B and any simplicial operation θ we have a homology equivalence
dp(θσ) → dp(σ).

The aim of this section is to prove that a weak homology fibration is actually a
homology fibration. This part of the paper forms a simplicial analogue of McDuff
and Segal’s work on locally contractible paracompact spaces.

Lemma 1.2. [MS76, Proposition 6] Let p : E → B be a weak homology fibration
with B contractible. Then p is a homology fibration.

Proof. The category ∆B is contractible since B ' hocolim∆B∗ = N(∆B). So E
is equivalent to the homotopy colimit over a contractible category of a diagram in
which all maps are homology equivalences. This homotopy colimit has the same ho-
mology type as any of the values dp(σ) since it can be computed ([Ami94]) by using
only push-outs and telescopes of diagrams consisting of homology equivalences. We
conclude by the Mayer–Vietoris Theorem and the fact that homology commutes
with telescopes.
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Proposition 1.3. Let p : E → B be a weak homology fibration. The pull-back of p
along any map f : B′ → B is another weak homology fibration p′ : E′ → B′.

Proof. Let σ′ be a simplex in B′, σ = fσ′ its image in B and θ any simplicial
operation. Then dp(σ) has the same homology type as dp(θσ) by assumption. But
dp′(σ′) ' dp(σ) and dp′(θσ′) ' dp(θσ) since p′ was obtained as a pull-back.

Theorem 1.4. [MS76, Proposition 5] A weak homology fibration is a homology
fibration.

Proof. Let p : E → B be a weak homology fibration and choose f : PB→→B the
path space fibration. The above proposition applies, so p′ : Fibσ(p) → PB is a weak
homology fibration as well for any simplex σ in B. Since f is surjective, there exists
a simplex σ′ ∈ PB such that f(σ′) = σ. Therefore dp(σ) ' dp′(σ′), which has the
same homology type as the homotopy fiber Fibσ(p) by Lemma 1.2.

2. Realizations and fibers

Theorem 1.4 will be used throughout this section. For checking that a map is a
homology fibration it suffices to check it is a weak homology fibration.

Lemma 2.1. Consider a commutative square

E0
//

p0

²²

E1

p1

²²
B0

// B1

where the vertical arrows are compatible homology fibrations in the sense that the
map Fibv(p0) → Fibv(p1) is a homology equivalence for any vertex v ∈ B0. Then
dp0(f) → dp1(f) is a homology equivalence for any map f : K → B0. Moreover if
both horizontal maps are cofibrations, then so is dp0(f) → dp1(f).

Proof. Notice first that if σ is a simplex in B0, then dp0(σ) → dp1(σ) is a homology
equivalence by our assumption on the homotopy fibers over vertices. Likewise the
preimages in E0 and E1 of a disjoint union of simplices have the same integral
homology type. We assume therefore that K is connected. Assume K = L ∪∂∆[n]

∆[n]. By induction on the dimension suppose that both dp0(f |L) → dp1(f |L) and
dp0(f |∂∆[n]) → dp1(f |∂∆[n]) are homology equivalences. We see that the preimage
of ∂∆[n] is contained in that of ∆[n] so that

dp0(f) = colim
(
dp0(f |L) ← dp0(f |∂∆[n]) ↪→ dp0(f |∆[n])

)

is actually a homotopy push-out. Thus dp0(f) → dp1(f) is a homotopy push-out of
homology equivalences.

We prove now that a push-out of homology fibrations is still a homology fibration.
As a map can always be replaced by a fibration, we must pay close attention to the
constructions we perform. We always use strict colimits, but for diagrams where the
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colimit is weakly equivalent to the homotopy colimit (thus in a push-out diagram
at least one map will be a cofibration, and in a telescope diagram all maps will be
cofibrations).

Proposition 2.2. Consider a natural transformation between push-out diagrams:

E

p

²²

= colim
(

E1

p1

²²

E0
oo � � //

p0

²²

E2

p2

²²

)

B = colim
(

B1 B0
oo � � // B2

)

such that pn : En → Bn is a homology fibration for 0 6 n 6 2 and the right hand-
side horizontal maps are cofibrations. Assume that the map Fibv(p0) → Fibv(pn)
is a homology equivalence for any vertex v ∈ B0 if n = 1, 2. Then p is a homology
fibration as well. Moreover, if for some 0 6 n 6 2, w is a vertex in Bn, then
Bn ↪→ B induces a homology equivalence Fibw(pn) → Fibw(p).

Proof. Any simplex σ in B lies either in B1 or in B2. Say it lies in B1 (the other case
is similar) and consider the pull-back K of ∆[n] → B1 ← B0. Apply Lemma 2.1 to
the map f : K → B0 to conclude that dp0(f) → dp2(f) is a homology equivalence,
which is even a cofibration. Hence the preimage dp(σ) is the (homotopy) push-
out colim

(
dp1(σ) ← dp0(f) ↪→ dp2(f)

)
. The homotopy push-out of a homology

equivalence is again a homology equivalence so that dp(σ) has the same homology
type as dp1(σ). We conclude that p is a weak homology fibration.

Proposition 2.3. Consider a natural transformation between telescope diagrams:

E

f

²²

= colim
(

E0

p0

²²

� � // E1
� � //

p1

²²

E2

p2

²²

� � // · · · )

B = colim
(

B0
� � // B1

� � // B2
� � // · · · )

such that pn : En → Bn is a homology fibration for any n > 0 and all horizontal
maps are cofibrations. Assume that the map Fibv(pn) → Fibv(pn+1) is a homology
equivalence for any n > 0 and any vertex v ∈ Bn. Then p is a homology fibration as
well. Moreover, if w is a vertex in Bn for some n > 0, then the inclusion Bn ↪→ B
induces a homology equivalence Fibw(pn) → Fibw(p).

Proof. As B =
⋃

Bn, any simplex σ of B lies in some BN . The conclusion follows
since dp(σ) =

⋃
n>N dpn(σ) has the same homology type as dpN (σ).

Let X• be a simplicial space. Recall that Segal’s thick realization ||X•|| ([Seg74,
Appendix A]) is defined by an inductive process. We have ||X•|| =

⋃
n ||X•||n where

||X•||0 = X0 and ||X•||n is constructed from ||X•||n−1 by the following push-out

colim
(||X•||n−1 ← ∂∆[n]×Xn ↪→ ∆[n]×Xn

)

and the map ∂∆[n] × Xn → ||X•||n−1 is defined using only the face maps. This
thick realization can be seen as the homotopy colimit of the diagram X• over the
subcategory of ∆op generated by the face morphisms.
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Theorem 2.4. [MS76, Proposition 4] Let p• : E• → B• be a map of simplicial
spaces such that pn : En → Bn is a weak homology fibration for any n > 0. Assume
that any face map di : [n] → [n + 1] induces a homology equivalence on homotopy
fibers Fibv(pn+1) → Fibdiv(pn) for any vertex v ∈ Bn+1. Then p : ||E•|| → ||B•||
is a homology fibration as well. Moreover, if w is a vertex in ||B•|| lying in the
same connected component as a vertex v ∈ Bn, then there is a homology equivalence
Fibw(pn) → Fibv(p).

Proof. Each step is a homotopy push-out involving only the face maps, so Proposi-
tion 2.2 applies. Hence ||p•||n is a homology fibration for any n > 0 and we conclude
by Proposition 2.3.

One could actually prove a more general statement involving a colimit over a
small indexing category instead of the realization of a simplicial space. In this paper
we will not need such a statement.

3. The generalized group completion

The aim is to find a model for the loops on the classifying space of a simplicial
category. Let us start with a brief reminder on simplicial categories. More details
can be found for example in [Til97, Section 1], especially about the link with
2-categories. Roughly speaking a simplicial category is a category equipped with
spaces of morphisms instead of sets of morphisms. So morM(i, j) is a space for any
objects i, j ∈ M and morM(i, i) contains the identity morphism as distinguished
base point. More precisely a simplicial category M is a simplicial object in the
category CAT of small categories with constant object set. It is helpful to look
at M as a functor ∆op → CAT , where the category of n-simplices is the category
having same objects asM and morphisms from i to j are the n-simplices of the space
of morphisms from i to j. Taking now the nerve of this simplicial category degree
by degree produces a simplicial space denoted by BM•, the simplicial classifying
space. classifying space is composable 2-morphisms.

A contravariant diagram F : Mop → Spaces is the data of spaces F (i) for all
objects i ∈ M and natural continuous maps µi,j : morM(i, j) × F (j) → F (i).
The simplicial category itself produces an example of a diagram with M(i) =∐

j∈Obj(M) morM(i, j).

Definition 3.1. The bisimplicial Borel construction of a diagram F : Mop →
Spaces is the simplicial space EMF• whose space of n-simplices is the disjoint
union over all n + 1-tuples of objects in M

∐

i0,...,in

morM(in, in−1)× · · · ×morM(i1, i0)× F (i0)

The degeneracy maps are the obvious inclusions. The face map dn : EMFn →
EMFn−1 is projection on the last n factors, d0 = 1× µi1,i0 , and the other dk’s are
defined by composition morM(ik+1, ik)×morM(ik, ik−1) → morM(ik+1, ik−1) .



Homology, Homotopy and Applications, vol. 6(1), 2004 159

The trivial diagram T (i) = {i} is the diagram in which any morphism i → j
induces the unique map {j} → {i}. The bisimplicial Borel construction of the trivial
diagram is nothing but the simplicial classifying space of M, i.e. EMT• = BM•.
Every diagram F : Mop → Spaces comes with a natural transformation π : F → T
and hence we get a map of simplicial spaces

EMπ• : EMF• → BM•.

The preimage of {i} in the bisimplicial Borel construction is F (i). Denote by EMF
the realization ||EMF•||, by BM the realization ||BM•||, and by πM : EMF →
BM the map induced by π. We are ready to prove now the main theorem of this
section.

Theorem 3.2. [Til97, Theorem 3.2] Let M be a simplicial category and F :
Mop → Spaces a contravariant diagram. Assume that any morphism f : i → j
induces an isomorphism in integral homology H∗(F (j);Z) → H∗(F (i);Z). Then,
for each object i ∈M, the map F (i) → Fibi(πM) to the homotopy fiber of πM over
i is a homology equivalence.

Proof. We apply Theorem 2.4 to the map EMπ•. For any n > 0, the map EMFn →
BMn is the projection on the first factors, thus a (homology) fibration. As all faces
but d0 induce the identity on the fibers, we have only to check that the face map
d0 induces a homology equivalence on the fibers. Choose a vertex

(fn, . . . , f1, i0) ∈ morM(in, in−1)× · · · ×morM(i1, i0)× {i0}
Its zeroth face is (fn, . . . , f2, i1) and the map induced on the homotopy fibers is
F (f0) : F (i0) → F (i1). This is a homology equivalence by assumption and we are
done.

In order to identify the space ΩBM we need to find a diagram F which satisfies
the assumptions of Theorem 3.2 and for which the bisimplicial Borel construction
EMF is contractible. We give a partial answer to that question which covers the
applications made in the context of the mapping class group.

Let us consider for any object j ∈ M the diagram Mj as defined in [Til97,
Section 3]. It is the restriction of the diagram M, i.e. Mj(i) = morM(i, j). The
proof of the next lemma (which we recall here for the sake of completeness) is based
on the standard trick to view a simplicial space X• as a vertical simplicial diagram
with entries Xn. Each of these entries can be seen as a horizontal simplicial diagram
with set valued entries Xn,m. Commuting the roles of m and n allows to consider
X• as a horizontal simplicial space where the space of m-simplices is X∗,m.

Lemma 3.3. [Til97, Lemma 3.3] Let M be a simplicial category and j any object
in M. The bisimplicial Borel construction EMMj is then contractible.

Proof. The space of m-simplices of the “horizontal” simplicial space (EMMj)• is
by definition the nerve of the category of m-simplices of M over the object j. This
over-category has a terminal object and is therefore contractible. Hence so is the
realization EMMj .
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Now fix an object 1 ∈ M and an endomorphism α : 1 → 1, i.e. a vertex in the
space of morphisms morM(1, 1). Form the telescope

M∞(i) = hocolim(M1(i)
α∗−→M1(i)

α∗−→ . . . )

Since homotopy colimits commute with themselves EMM∞ ' hocolimEMM1 is
contractible and the homotopy fiber of πM is ΩBM. We apply now the theorem to
the diagram M∞.

Proposition 3.4. Let M be a simplicial category and assume that there exists an
endomorphism α of a specific object 1 such that any morphism f : i → j induces a
homology equivalence M∞(j) → M∞(i). Then the natural map M∞(i) → ΩBM
is a homology equivalence for any object i ∈M.

In particular, this means that Bousfield’s homological localization LHZ coincides
on the spaces M∞(i) and ΩBM (we refer to [Bou75] for the construction and
properties of such a localization functor). As the localization LHZM∞(i) is in gen-
eral difficult to construct, one particularly likes the situation when ΩBM can be
identified as Quillen’s plus construction applied to the space M∞(1), because it is
better understood. Recall that Quillen’s plus construction X → X+ is a homology
equivalence which quotients out the maximal perfect subgroup of the fundamental
group of X by attaching to X only two- and three-dimensional cells.

We must thus look for conditions ensuring that the map M∞(1) → ΩBM is not
only a homology equivalence, but an acyclic map (its homotopy fiber is acyclic).
When is this so? In general a homology equivalence is acyclic if the fundamental
group of the base space acts nilpotently on the homology of the homotopy fiber
(assuming the fiber is connected, see [Ber82, 4.3 (xii)]). This again is usually rather
complicated to check, so we are looking for a more convenient condition. Consider
the following commutative square in which all arrows are homology equivalences

M∞(1) //

²²

ΩBM

²²
M∞(1)+ // (ΩBM)+

Since the fundamental group of any component of a loop space is abelian
(ΩBM)+ ' ΩBM. Moreover a loop space is always nilpotent, hence HZ-local.
As a homology equivalence between HZ-local spaces is an equivalence, we just need
a condition that ensures that every connected component of the space M∞(1)+ is
HZ-local as well.

Theorem 3.5. Let M be a simplicial category and assume that there exists an
endomorphism α of a specific object 1 such that any morphism f : i → j induces a
homology equivalence M∞(j) →M∞(i). Let P be the maximal perfect subgroup of
π1M∞(1) and M∞(1)P the corresponding cover. Then we have a weak equivalence
M∞(1)+ ' ΩBM if and only if the quotient π1M∞(1)/P is an abelian group
acting trivially on the homology of M∞(1)P .
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Proof. Consider the covering fibration M∞(1)P →M∞(1) → K(π1M∞(1)/P, 1),
which is quasi-nilpotent, see [Ber82, p.37]. The plus-construction preserves this
fibration so we get a new one

M∞(1)+P →M∞(1)+ → K(π1M∞(1)/P, 1)

which is quasi-nilpotent again since the action of the fundamental group coincides
with the former one. The fundamental group ofM∞(1)P is perfect, thusM∞(1)+P is
simply-connected. By [Ber82, 4.9] the fibration is nilpotent, i.e. the space M∞(1)+

is nilpotent. By Bousfield’s result [Bou75, Theorem 5.5] this means that it is an
HZ-local space. Therefore the map M∞(1)+ → ΩBM is a homology equivalence
between HZ-local spaces, hence a weak equivalence.

Conversely, if the total space M∞(1)+ of the above fibration is a loop space, it
is not only HZ-local, but it must be a space with an abelian fundamental group
acting trivially on all homotopy groups, therefore also on all homology groups.

The stronger condition that π1M∞(1) is perfect is precisely the one checked in
the proof of [Til97, Theorem 3.1] to identify the plus construction on the classifying
space of the stable mapping class group as a loop space, which turns then out to be
an infinite loop space. In [Wah] N. Wahl compares this infinite loop space structure
on the stable mapping class group with another one, obtained by operadic means
and due to U. Tillmann as well. She proves that both structures actually coincide
and makes use of a more amenable variant of Tillmann’s simplicial category.

Remark 3.6. The homology theory which has been used in the present work is
integral homology and all applications we know of are obtained working with integral
homology. However, with little effort one can replace this homology theory by an
arbitrary (possibly extraordinary) homology theory E∗. Hence an E∗-fibration is a
map p : E → B such that dp(σ) → Fibσ(p) is an E∗-equivalence. This is equivalent
to require that p be a weak E∗-fibration, i.e. dp(σ) → dp(θσ) is an E∗-equivalence
for any simplex σ in B and any simplicial operation θ. Then one can prove the
analogous of Theorem 2.4: The realization of a natural transformation p• : E• → B•
of simplicial spaces where all fibers have the same E∗-homology is an E∗-fibration.
The generalized group completion theorem has an E∗-analogue as well, and the
question would then be to compare the homotopy type of ΩBM with the E∗-
theoretic plus construction.

4. Simplices versus topology

In this section we compare the notions of homology fibration in the category of
simplicial sets and topological spaces. So as not to create confusion we will consis-
tently use the terminology “simplicial sets” (not spaces as in the former sections)
and emphasize when we deal with topological spaces. The general idea behind sim-
plicial sets is to replace topological data (points) by a combinatorial one (simplices).
This is precisely why one defines simplicially a homology fibration by imposing a
condition on the preimages of simplices, instead of classically looking at preimages of
points. There is however a subtle difference, as shown by the following example due
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to W. Waldhausen, which we learned from J. Rognes during the BCAT02. A simple
map of topological spaces is a map f : X → Y such that the preimages of points
f−1(y) ' ∗ are contractible for all y ∈ Y . Thus one would be tempted to define
simplicially a simple map as a map of simplicial sets f : X → Y for which preimages
of simplices dp(σ) ' ∗ are all contractible. This is not equivalent to the topologi-
cal definition. Consider indeed your favorite (but non-trivial) acyclic simplicial set
A. The map A → ∗ induces one on the unreduced suspensions ΣA → ∆[1]. The
preimage of the simplices in ∆[1] are either points, or ΣA, so all are contractible.
But topologically the geometric realization of this map is not simple because the
preimage of any other point than the end points of the interval is A.

Recall that a map of topological spaces is a homology fibration if the preimages
of all points have the same homology type as the homotopy fiber of p. We prove
in this section that the simplicial and topological definitions of homology fibrations
are equivalent. Basically this is due to the Mayer–Vietoris Theorem. The idea is to
take the barycentric subdivision of the map and reconstruct the preimage of the
barycenter of a simplex in the base from the data given by the preimages of the
simplices. Let us first recall some standard definitions from [Kan57] (or [FP90,
Chapter 4]).

Let µ be a proper face of ∆[n]. We denote by kµ the dimension of µ, that is µ
is an injection µ : ∆[kµ] ↪→ ∆[n]. The barycentric subdivision of ∆[n], denoted by
∆′[n], is the space which has as q-simplices µ the increasing sequences of q +1 faces
of ∆[n], i.e. µ = (µ0, · · · , µq) where µi(∆[ki]) ⊂ µi+1(∆[ki+1]) for all i 6 q− 1. The
simplicial operations are the usual: If θ : ∆[q] −→ ∆[p] is any simplicial operation
then ∆′α(µ) = (µθ(0), · · · , µθ(q)).

The subdivision functor Sd is left adjoint to Kan’s extension functor Ex (see
[Kan57, Section 7]). For any simplicial set E, the q-simplices of SdE are by defini-
tion the equivalence classes [x, µ] of a simplex x ∈ E of dimension p and µ ∈ ∆′[p]
of dimension q. Two pairs (x, µ) and (x′, µ′) are equivalent if there exists a map
α : ∆[p′] → ∆[p] such that x′ = xα and µ = ∆′α(µ). In other words, SdE is
the colimit over the simplex category of E of the subdivisions of these simplices:
SdE = colim∆E∆[n]′.

Let us fix a surjective map f : E → ∆[n]. Its subdivision Sdf : SdE → ∆′[n]
is defined as follows. Let [x, µ] be a simplex in SdE as above and consider for any
0 6 i 6 q the composite

∆[ki]
µi−→ ∆[p] x−→ E

f−→ ∆[n]

It can be decomposed in a unique way as a degeneracy followed by an injection
∆[ki]

φi−→ ∆[li]
νi
↪→ ∆[n]. Set f([x, µ]) = ν = (ν0, . . . , νq).

Definition 4.1. In ∆′[n] fix a vertex α, i.e. a proper face of ∆[n]. The star of α,
St(α) is the subspace of ∆′[n] which has as simplices the sequences (µ0, · · · , µp)
such that ∀i 6 p, Imµi ⊃ Imα. We will further denote by ESt(α) the preimage of
St(α) under Sdf .

Lemma 4.2. The inclusion Sdf−1(α) ↪→ ESt(α) is a homotopy equivalence.
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Proof. Let α be of dimension k. We construct first a retraction r : ESt(α) →
Sdf−1(α). Let [x, µ] ∈ ESt(α) be a simplex of dimension q. Then, for any i 6 q,
there exists a maximal injective morphism ∆[ti] ↪→ ∆[ki] (determined by the vertices
of µi whose image under f(x) is a vertex of α) together with a (necessary unique)
surjection φ : ∆[ti] → ∆[k] rendering the following diagram commutative

∆[ki]
� � µi // ∆[p] x // E

f

²²
∆[ti]

?�

OO

φ // ∆[k] α // ∆[n]

We denote the composite ∆[ti] → ∆[ki] → ∆[p] by µ̄i and define r[x, µ] = [x, µ̄]. By
construction Sdf([x, µ̄]) is some degeneracy of α. Moreover r is well defined and is
clearly a retraction of the inclusion i : Sdf−1(α) ↪→ ESt(α).

Finally we construct a homotopy H : ESt(α)×∆[1] → ESt(α) from i ◦ r to the
identity. Let ([x, µ], τ) be a q-simplex in the cylinder, so τ is a q-simplex in ∆[1]
and can be represented by a sequence of r + 1 zero’s and q− r one’s: (0 . . . 01 · · · 1).
Define then H([x, µ], τ) = [x, µ̄0, . . . , µ̄r, µr+1, . . . , µq].

In the next proposition we use the decomposition of ∆′[n] as union of all its stars.
More precisely consider the category Cn whose objects are the non-degenerate sim-
plices of ∆[n] and whose morphisms are generated by the faces σ → diσ. The unique
non-degenerate simplex τ of dimension n is an initial object and diagrams indexed
by Cn are n-cubes without terminal object. We have ∆′[n] = colimσ∈CnSt(σ) =
hocolimσ∈CnSt(σ) because the diagram St is cofibrant (see for example [DS95]),
and even strongly co-Cartesian as defined in [Goo92, Definition 2.1]. Likewise

E ' SdE = colimσ∈CnESt(σ) = hocolimσ∈CnESt(σ)

Proposition 4.3. Let f : E → ∆[n] be a homology fibration. Then the preimage of
the barycenter of ∆′[n] under Sdf has the same homology type as E. In particular
the realization |f | : |E| → |∆[n]| is a homology fibration of topological spaces.

Proof. By Lemma 4.2 the values of the cubical diagram ESt are equivalent to the
preimages Sdf−1(σ). When σ is a vertex of ∆[n], one has that Sdf−1(σ) ' f−1(σ) =
df(σ), which by hypothesis has the same homology type as E. By induction on the
dimension of σ we can assume thus that all values in the diagram but the initial
one (ESt(τ) ' Sdf−1(τ), the preimage of the barycenter) are homology equivalent
to E. As the homotopy colimit of the cubical diagram is E, we deduce that ESt(τ)
as well has the same homology type as E. We claim that this implies that |f |
is a (topological) homology fibration. Indeed by induction again we need only to
compute preimages under |f | of points in the interior of the realization of ∆[n].
Any such preimage is a deformation retract of the preimage under |p| of the open
simplex, so it is enough to consider the barycenter. The above computation shows
precisely that it has the same homology type as |E|, the homotopy fiber of |f |.
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Let us now consider a map of simplicial sets p : E → B. To compare both types
of homology fibrations we need to control the homological properties of fibers of
points in the realization. Any point b ∈ |B| lies in the interior of the realization of
a unique non-degenerate simplex σb ∈ B (see for instance [FP90, Lemma 4.2.5]).
Moreover the interior of the realization of σb embeds in |B|.

Theorem 4.4. A map of simplicial sets p : E → B is a homology fibration if and
only if its realization |p| : |E| → |B| is a homology fibration of topological spaces.

Proof. First assume that p : E → B is a homology fibration. We need to compute
the homology type of fibers of points in the realization of B and show that the map
|p|−1(b) → Fibb(|p|) is a homology equivalence , where Fibb(|p|) denotes the homo-
topy fiber of |p| over the connected component of b. When σ = σb is a 0-simplex, this
is trivial as p is a homology fibration. If σ is of dimension n > 1, notice that all the
fibers over the points in the interior of |σ| have the same homotopy type (a straight-
forward computation shows then that the preimage of any point is a deformation
retract of the preimage under |p| of the open simplex). Therefore it suffices to ana-
lyze the barycenter ιn of the realization of σ and to prove that |p|−1(ιn) → Fibιn(|p|)
is a homology equivalence. As the realization functor commutes with finite limits
(see [FP90, Theorem 4.3.16]), we have a pull-back square :

|dp(σ)|

²²

// |E|

²²
|∆[n]| σ // |B|

The map dp(σ) → ∆[n] is a homology fibration by Proposition 1.3 and its realization
is thus a homology fibration by Proposition 4.3: the preimage of the barycenter of
|∆[n]| is homology equivalent to the homotopy fiber |dp(σ)|, which by assumption
has the same homology type as the homotopy fiber |F | of |p|.

Assume now |p| : |E| → |B| is a homology equivalence. Inductively we may
suppose that for all simplices of dimension 6 n− 1 the pull-back dp(τ) is homology
equivalent to the homotopy fiber above the component of τ . Let σ be a simplex of
dimension n. We have as before a pull-back diagram

|dp(σ)|

²²

// |E|

²²
|∆[n]| σ // |B|

Decompose dp(σ) as a cubical homotopy colimit dp(σ) ' hocolimτ∈CnESt(τ)
following the method seen in the proof of Proposition 4.3. As |p| is a homology fi-
bration, there is a natural transformation by homology equivalences to the constant
cubical diagram Fibσ(p) (use Lemma 4.2). A homotopy colimit of homology equiva-
lences is a homology equivalence, hence dp(σ) → Fibσ(p) is a homology equivalence
as well.
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CH–1200 Genève,
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