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In this paper we introduce two digital zoom

methods based on sampling theory and we study

their mathematical foundation. The first one (usu-

ally known by the names of ‘sinc interpolation’,

‘zero-padding’ and ‘Fourier zoom’) is commonly

used by the image processing community.

1 Introduction

Image zooming is a direct application of image in-

terpolation procedures. In fact, a zoom can be

easily seen as a homogeneous scaling of the image.

Many image interpolation methods have been pro-

posed in the literature and the mathematical foun-

dation for them goes from Fourier analysis (where



sampling theory is the key tool) [1], [7], [16], [15],

[22], [24], [26], [32], [36], to Wavelet analysis [30],

partial differential equations (in combination with

the maximum principle and/or some techniques

from calculus of variations) [4], [9], [23], [28], [29],

[39], fractal geometry [31], [38], statistical filter-

ing [20], mathematical morphology [21], machine

learning [12], [17], [18], etc., or to a combination

of several of these methods.

With respect to applications of zooming, there

are many reasons to be interested in resizing an

image retaining as most as possible of the infor-

mation it contains. Just to mention a few cases

where this is a main objective, let us cite what

other people say. In [39], the author comments

The applications of image zooming range from the com-

monplace viewing of online images to the more sophisti-

cated magnification of satellite images. With the rise of

consumer-based digital photography, users expect to have a

greater control over their digital images. Digital zooming



has a role in picking up clues and details in surveillance

images and video. As high-definition television (HDTV)

technology enters the marketplace, engineers are interested

in fast interpolation algorithms for viewing traditional low-

definition programs on HDTV. Astronomical images from

rovers and probes are received at an extremely low transmis-

sion rate (about 40 bytes per second), making the transmis-

sion of high-resolution data infeasible. In medical imaging,

neurologists would like to have the ability to zoom in on spe-

cific parts of brain tomography images. This is just a short

list of applications, but the wide variety cautions us that our

desired interpolation result could vary depending on the ap-

plication and user.

In [12] the authors comment other motivations

for zooming algorithms:

A common application occurs when we want to increase

the resolution of an image while enlarging it using a dig-

ital imaging software (such as Adobe Photoshop®). An-

other application is found in web pages with images. To

shorten the response time of browsing such web pages, im-

ages are often shown in low-resolution forms (as the so-

called “thumbnail images”). An enlarged, higher resolution



image is only shown if the user clicks on the corresponding

thumbnail. However, this approach still requires the high-

resolution image to be stored on the web server and down-

loaded to the user’s client machine on demand. To save

storage space and communication bandwidth (hence down-

load time), it would be desirable if the low-resolution image

is downloaded and then enlarged on the user’s machine. Yet

another application arises in the restoration of old, historic

photographs, sometimes known as image inpainting. Besides

reverting deteriorations in the photographs, it is sometimes

beneficial to also enlarge them with increased resolution for

display purposes.

Thus, it is evident that there are many interest-

ing applications of zooming. The main aim of this

paper is to show how the construction of zooms

of digital gray-level images can be approached as

a consequence of the well-known digital and ana-

log uniform sampling theorems in dimension two.

These theorems are used widely in signal process-

ing and in interpolation (for some applications of

these theorems in dimension one we recommend to



see [5], [15], [2]), and are a central tool for digital

and analog signal processing.

Although ‘Fourier zoom’ is by no way the best

choice for zooming images, since it produces Gibbs

oscillations near the boundaries of the image, it is

an interesting application of Fourier analysis that

can be explained both to mathematicians and en-

gineers at the undergraduate level. It is because

of this that we decided to write this paper on vul-

garization of mathematics. But we should not loss

the opportunity of stand up here that partial dif-

ferential equations have found a huge field of ap-

plications in the mathematical foundation of image

processing and, nowadays, they can be considered

the truly key stone for the mathematical treatment

of images. A very nice paper where this topic is de-

scribed with the exact detail for the beginner (and

a paper we strongly recommend) is [9]. Just to

motivate the interest of the reader on this subject,



let us comment here that the main idea behind the

use of PDE in image processing is a natural one.

You can consider an image as a topographic map,

with many level curves (i.e., curves where the in-

tensity [or the gray-scale level] is the same). A set

of level curves of this kind can be easily zoomed

to another one. Then, in order to fill the space of

the image between two “adjacent” level curves, you

solve a Laplacian (or another PDE satisfying the

maximum principle) with boundary values the val-

ues associated to the level curves. This method has

shown to be very useful not only for zooming im-

ages but also for many other purposes. Meanwhile,

we should also comment that commercial software,

like Photoshop®, does not uses ‘Fourier zoom’ nor

PDE based methods but bicuadratic and bicubic

interpolation, with the extra aid of some filters af-

ter zooming the original image [14].

In section 2 the basic background on digital



and analog images is given, together with a formal

definition of image interpolation. The next three

sections (3, 4 and 5) contain the main results of

this work: in section 3, a zooming procedure (sinc

interpolation) is derived from the digital uniform

sampling theorem, obtaining some formal proper-

ties. Section 4 is devoted to the description of the

space of d-zoomed digital images in the frequency

domain. In section 5, the classical analog sampling

theorem of Shannon-Whittaker-Kotelnikov is used,

in dimension two, to build another image zooming

procedure. Last section contains some examples of

the algorithm performance, empirically comparing

both approaches.
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2 Preliminaries

2.1 Digital images

A digital (gray-scale) image is an array of gray-

level values. These values (sometimes called ‘sam-

ples’) are a discrete representation of a continuous

function (an analog image), after being applied the

process of sampling and quantization. In particu-

lar, it is usually assumed that there are only 256

gray levels, so that, given a real number h ∈ [0, 1]

the gray level assigned to h is the k−th gray level



if h ∈
[
k

256 ,
k+1
256

)
for k = 0, 1, . . . , 254 and the 256-

th gray level corresponds with h ∈
[

255
256 , 1

]
. More-

over, the gray level scale is such that 1 corresponds

to the white color and 0 corresponds to the black

one.

From a formal point of view, we can think of

a digital image of size N × M as a matrix I =

(I(n,m))m= 0,...,M−1
n= 0,..., N−1 of real or complex numbers,

being the unique digital images we can visualize

those with all entries belonging to the real interval

[0, 1]. This model allow us to identify the set of

digital images with the complex vector space

`2(ZN × ZM ) =
{
I : {0, . . . , N − 1} × {0, . . . ,M − 1} → C

: I is a map
}

=
{
I : Z× Z→ C : I is a map and

∀(k, l) ∈ Z× Z,

I(k +N, l) = I(k, l) = I(k, l +M)
}
,

which is naturally equipped with the following



scalar product:

〈I, J〉 =
N−1∑
n=0

M−1∑
m=0

I(n,m) J(n,m),

where the bar denotes complex conjugation. From

now on, and for simplicity, we will only consider

square images, so that N = M .

The standard basis of the space `2(ZN × ZN )

is given by

T = {Ti,j}0≤i, j<N ,

where

Ti,j(n,m) = 0 if (n,m) 6= (i, j) and Ti,j(i, j) = 1,

so that any digital image, when viewed as a two-

dimensional signal in the so called “time domain”,

is given by the expression

I =

N−1∑
i=0

N−1∑
j=0

I(i, j) Ti,j .



Now, as it occurs for digital one-dimensional

signals, there exists another special orthogonal ba-

sis which is naturally interpreted in terms of “fre-

quencies”. This basis is given by

F = {Expk,l}0≤k,l<N ,

where

Expk,l(n,m) = e
2πi(kn+lm)

N .

The usual notation for a digital image I when

viewed in the “frequency domain”, is

I =

N−1∑
n=0

N−1∑
m=0

Î(n,m) Expn,m.

and the map F : `2(ZN × ZN ) → `2(ZN × ZN )

given by

F
(

(I(n,m))
0≤n,m<N

)
=
(
Î(n,m)

)
0≤n,m<N

is the so called discrete Fourier transform (DFT).



This map is realized by the formula

Î(k, l) =
〈I,Expk,l〉
‖Expk,l‖2

=
1

N2

N−1∑
n=0

N−1∑
m=0

I(n,m) e
−2πi(kn+lm)

N .

Moreover, the following inversion formula holds

I(k, l) =

N−1∑
n=0

N−1∑
m=0

Î(n,m) e
2πi(kn+lm)

N .

Now, using the periodicity of the elements of

`2(ZN × ZN ), one can also introduce negative fre-

quencies and rewrite the inversion formula as fol-

lows

I(k, l) =

N/2∑
n=−N/2

N/2∑
m=−N/2

Î(n,m) e
2πi(kn+lm)

N .

Finally, we say that the image I is band-limited

with band-size M < N/2, and we write this as



I ∈ BM (ZN × ZN ), if

I(k, l) =
M∑

n=−M

M∑
m=−M

Î(n,m) e
2πi(kn+lm)

N .

2.2 Analog images

Analog images are the elements of L2(R2). More-

over, we will say that f ∈ L2(R2) is band limited

with band size ≤M if

∀|ξ|, |ν| > M, f̂(ξ, ν) = 0,

where

f̂(ξ, ν) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) exp(−2πi(xξ+yν))dxdy

denotes the Fourier transform of f . Obviously,

these images are precisely those satisfying the for-

mula

f(x, y) =

∫ M

−M

∫ M

−M
f̂(ξ, ν) exp(2πi(xξ + yν))dξdν



J. Fourier (1768-1830)

2.3 Image interpolation based on filters

Image interpolation [26] is the process of determin-

ing the unknown values of an image at positions

lying between some known values, called samples.

This task is often achieved by fitting a continuous

function through the discrete input samples.

Interpolation methods are required in various

tasks in image processing and computer vision such

as image generation, compression, and zooming.

In fact, the last one can be considered as a spe-



cial case of interpolation, where the zoomed image

results from interpolation at certain uniformly dis-

tributed samples which are taken to coincide with

the original image. This will be our approach in

this paper.

The most usual methods to obtain an analog

image f(x, y) by using interpolation are expressed

as the convolution of the image samples fs(k, l)

with a continuous 2D filter H2D, which is called

interpolation kernel:

f(x, y) =

∞∑
k=−∞

∞∑
l=−∞

u(k, l)H2D(x− k, y − l)

Usually the interpolation kernel is selected to

have the following properties [26]:

(a) Separability: H2D(x, y) = H1(x)H2(y).

(b) Symmetry for the separated kernels:

Hi(−x) = Hi(x), for i ∈ {1, 2}.



(c) Image invariance: Hi(0) = 1, and Hi(x) =

0, ∀|x| = 1, 2, . . . and i ∈ {1, 2}.

(d) Partition of the unity condition:

∞∑
k=−∞

Hi(d+ k) = 1,∀d : 0 ≤ d < 1,

and i ∈ {1, 2}.

Conditions (a) and (b) are needed to avoid com-

putational complexity. With property (c), we do

not modify original image samples. Separated ker-

nels that fulfill (c) are called interpolators, and

those which do not verify that, are named approxi-

mators. The condition (d) implies that the bright-

ness of the image is not altered when the image

is interpolated, i.e. the energy (the standard `2

norm) of the image remains unchanged after the

interpolation.



3 Digital sampling and zoom

Let I(n,m), 0 ≤ n,m ≤ N − 1, be a digital im-

age of size N × N . It is quite natural to ask for

a simple algorithm to zoom this image into an-

other image J of size dN × dN for d = 2, 3, . . .

(we would say that J is a (d× 100)% zoom of I).

Clearly, there are several ways to zoom a digital

image and all of them imply a certain amount of

arbitrariness, since the original image I only gives

information about the zoomed image at the points

(kd, ld), k, l ∈ {0, . . . , N − 1}, where the identi-

ties J(kd, ld) = I(k, l) are assumed. Thus, we will

have a (d× 100)% zoom of I as soon as we define

a process to reconstruct J at the other points of

the array {0, . . . , dN − 1}2. More precisely, given

E ⊆ `2(ZN × ZN ) and F ⊆ `2(ZdN × ZdN ) two

spaces of digital images of size N×N and dN×dN



respectively, we say that a map

Z : E → F

defines a d-zoom process if for all I ∈ E and all

(k, l) ∈ {0, . . . , N − 1}2, we have that

Z(I)(kd, ld) = I(k, l).

All the standard algorithms used to zoom digi-

tal images lie into this notion. Of course, this def-

inition is too general because it allows too many

zoom processes. For example, defining Z(I)(t, s) =

1 whenever (t, s) 6∈ {1, d, 2d, . . . d(N − 1)}2 would

be considered “a very poor zoom” of I. Thus,

it is usual to define zooms via some average pro-

cess which takes into account the topological or

morphological properties of the image I, a process

that usually receives the name of “spacial zoom”.

The easiest methods of spacial zooming are near-

est neighbor interpolation and pixel replication (see



[20] for details). These are fast methods and very

easy to implement. On the other hand, they pro-

duce an undesirable checkerboard effect when ap-

plied to get a high factor of magnification. Be-

cause of this, several other zooming methods based

on the use of bilinear interpolation or low degree

spline interpolation (such as bicubic and bicuadratic

interpolation) have been proposed (see [20], [26] for

instance).

We recall now the digital uniform sampling the-

orem (see [22], [2] for the proof in dimensions two

and one, respectively).

Theorem 1 (Digital uniform sampling theorem).

Let I ∈ BM (ZN × ZN ) be a digital image of size

N ×N and limited band size M . Let d be a divisor

of N and let us assume that d(2M+1) ≤ N . Then

I is completely determined by its samples I(kd, ld),

0 ≤ k, l ≤ r := N/d− 1. In particular, the follow-



ing synthesis formula holds

I(n,m) = d2
r∑
i=0

r∑
j=0

I(di, dj) sincM (n− di)

sincM (m− dj) (1)

with n,m = 0, . . . , N − 1, and where sincM (n) =
sin(π(2M+1)n/N)
N sin(πn/N) for n 6= 0 and sincM (0) = 2M+1

N .

Taking into account that the only imposed re-

striction by our definition of a d-zoom process Z is

given by the knowledge of some sampling values of

the zoomed image J = Z(I), it follows that a nat-

ural question is to study wether Theorem 1 is ap-

plicable in order to recover all the entries of J from

the known samples. More precisely, we would like

to know if J can be chosen as a band-limited digital

image, and for which band-size we can guarantee

a unique J = Z(I) verifying J(kd, ld) = I(k, l).

This is solved by the following result:



Theorem 2. Let M < N
2 , d ∈ {2, 3, . . . } and let

us assume that I ∈ BM (ZN ×ZN ). Then there ex-

ists a unique band-limited digital image

J ∈ BM (ZdN × ZdN ) satisfying J(kd, ld) = I(k, l),

k, l ∈ {0, . . . , N − 1}. In particular, there exists a

unique d-zoom process (which will be called a sam-

pling d-zoom) ZS : BM (ZN × ZN ) → BM (ZdN ×
ZdN ).

Proof. Let I ∈ BM (ZN × ZN ) be a band-limited

digital image of size N and band-size M < N
2 . We

have

I(k, l) =

M∑
n=−M

M∑
m=−M

Î(n,m) e
2πi(kn+lm)

N

=
M∑

n=−M

M∑
m=−M

Î(n,m) e
2πi((kd)n+(ld)m)

dN

= ZS(I)(kd, ld),



where

ZS(I)(t, s) :=
M∑

n=−M

M∑
m=−M

Î(n,m) e
2πi(tn+sm)

dN .

(2)

Obviously, ZS is well defined. Moreover, we can

use Theorem 1 to guarantee both the uniqueness

of ZS and the fact that

ZS(I)(n,m) = d2
N−1∑
i=0

N−1∑
j=0

I(i, j) sincM (n−di) sincM (m−dj),

(3)

where n,m = 0, . . . , dN − 1, since d(2M + 1) ≤
dN .

For an arbitrary digital image I ∈ `2(ZN×ZN )

we will have M = N/2, so that d(2M+1) > dN vi-

olates one of the assumptions of Theorem 1. This

is the reason because we have restricted our at-

tention to the space BM (ZN × ZN ) in Theorem 2.

Now, in practice this is just a formalism because



images from `2(ZN × ZN ) are very well approx-

imable by images from B[N/2]−1(ZN × ZN ), [N/2]

being the integer part of N/2. Indeed, they are vi-

sually identical. Moreover, we can also use formula

(2) instead of (3) to construct ZS for arbitrary dig-

ital images I. Finally, as we will see below, there

is an argument (see the comments after Theorem

4 below) which shows that ZS is the unique digital

d-zoom Z : `2(ZN ×ZN )→ BN/2(ZdN ×ZdN ) that

exists.

Remark 3. It is interesting to note that the map

ZS : BM (ZN × ZN ) → BM (ZdN × ZdN ) is an

isometry. Thus, we have proved that there exists

just one way to introduce a d-zoom between these

spaces, and this zoom is also an isometry. On the

other hand, if one wants to improve the quality of

this zoom, it is natural to look for signals with a

bigger band size than the original one. This may



be difficult since it is not clear how to introduce

the new frequencies from the information given by

the old ones.

4 Description, in the frequency domain,

of d-zoomed digital images

It is natural to ask about the implications of the

zooming condition I(n,m) = Z(I)(dn, dm) on the

spectrum of Z(I). This question is fully solved by

the following characterization:

Theorem 4. The following are equivalent claims:

(a) Z is a d-zoom process.

(b) For all I and all k, l satisfying 0 ≤ k, l ≤
N − 1, we have that

Î(k, l) =

d−1∑
p=0

d−1∑
q=0

Ẑ(I)(k + pN, l + qN). (4)



Proof. In order to prove (a)⇒ (b), let us note that

Î(k, l) =
1

N2

N−1∑
n=0

N−1∑
m=0

I(n,m)e
−2πi(kn+lm)

N

=
1

N2

N−1∑
n=0

N−1∑
m=0

Z(I)(dn, dm)e
−2πi(kn+lm)

N .

Now, for any (p, q) ∈ {0, 1, · · · , d − 1}2 we have

that:

Ẑ(I)(k + pN, l + qN)

=
1

(dN)2

dN−1∑
n=0

dN−1∑
m=0

Z(I)(n,m)e
−2πi((k+pN)n+(l+qN)m)

dN

=
1

(dN)2

dN−1∑
n=0

dN−1∑
m=0

Z(I)(n,m)e
−2πi(kn+lm)

dN e
−2πi(pn+qm)

d .

Moreover, it is easy to check that:

d−1∑
p=0

d−1∑
q=0

e
−2πi(pn+qm)

d =


d2 if (n,m) ∈ dZ× dZ

0 otherwise.

Indeed, the equation above is just a restatement of

the fact that the inverse discrete Fourier transform



of the d × d matrix A = (Aij) =
∑

0≤i,j<d Ti,j

(given by Aij = 1 for all i, j), is the matrix T0,0.

Hence

d−1∑
p=0

d−1∑
q=0

Ẑ(I)(k + pN, l + qN)

=
1

(dN)2

dN−1∑
n=0

dN−1∑
m=0

Z(I)(n,m)

[
d−1∑
p=0

d−1∑
q=0

e
−2πi(pn+qm)

d

]

e
−2πi(kn+lm)

dN

=
1

N2

N−1∑
n=0

N−1∑
m=0

Z(I)(dn, dm)e
−2πi(kn+lm)

N = Î(k, l),

which is what we wanted to prove.

To prove (b) ⇒ (a) it is enough to take into

account that the computations above show that

d−1∑
p=0

d−1∑
q=0

Ẑ(I)(k + pN, l + qN)

=
1

N2

N−1∑
n=0

N−1∑
m=0

Z(I)(dn, dm)e
−2πi(kn+lm)

N

holds for all images Z(I). Thus, (4) can be rewrit-



ten as

Î(k, l) =
1

N2

N−1∑
n=0

N−1∑
m=0

Z(I)(dn, dm)e
−2πi(kn+lm)

N

The proof follows just taking the inverse Fourier

transform to prove that I(k, l) = Z(I)(dk, dl).

Thus, to make a zoom Z(I) of I means to dis-

tribute the frequency content of Î(k, l) between the

frequencies Ẑ(I)(k + pN, l+ qN), p, q ∈ {0, 1, · · · ,
d− 1} in such a way that relation (4) holds. As a

particular case, ‘Fourier zoom’ appears when, for

I ∈ BM (ZN × ZN ), we impose Z(I) ∈ BM (ZdN ×
ZdN ). This, in conjunction with (4), forces a unique

choice for the values Ẑ(I)(n,m), which proves (with

a new argument) Theorem 2, this time including

also the case M = N/2. For example, for d = 2

the only distribution of frequencies valid for Z(I)

is given by:



• Case 0 ≤ k, l ≤M :

Ẑ(I)(k, l) = Î(k, l)

and

Ẑ(I)(k +N, l) = Ẑ(I)(k, l +N)

= Ẑ(I)(k +N, l +N) = 0.

• Case N −M ≤ k < N, 0 ≤ l ≤M :

Ẑ(I)(k +N, l) = Î(k, l)

and

Ẑ(I)(k, l) = Ẑ(I)(k, l +N)

= Ẑ(I)(k +N, l +N) = 0.

• Case N −M ≤ l < N, 0 ≤ k ≤M :

Ẑ(I)(k, l +N) = Î(k, l)



and

Ẑ(I)(k, l) = Ẑ(I)(k +N, l)

= Ẑ(I)(k +N, l +N) = 0.

• Case N −M ≤ k, l < N :

Ẑ(I)(k +N, l +N) = Î(k, l)

and

Ẑ(I)(k, l) = Ẑ(I)(k +N, l)

= Ẑ(I)(k, l +N) = 0.

• Ẑ(I)(n,m) = 0 for all frequencies (n,m) not

appearing in the above mentioned cases.

What is more, an analogous result appears for zoom-

ing bandlimited images to images containing only

high frequencies (i.e. the frequencies appearing in

a box of the form

ΓM = {(n,m) : max{|n−N |, |m−N |} ≤M/2})



The only difference is the forced choice for the new

distribution of frequencies. Unfortunately, this new

zoom is, in general, a very bad one, since the pres-

ence of high frequencies everywhere in a picture

produces a highly non-smooth aspect. This proves

that, for working with digital images, a mixture

of mathematical motivation and real experience -

guided by experiments- are simultaneously neces-

sary.

Thus, in order to look for a good d-zoom pro-

cess, one should add certain impositions to equa-

tion (4). A very reasonable way would be to mini-

mize certain energy functional defined on the space

of solutions of (4) (which is an affine space). Sev-

eral authors have studied this situation and usu-

ally their algorithms take a gradient descend like

method with initial value given by the ‘Fourier

zoom’. Moreover, we can impose that, for a certain

fixed linear filter S : `2(ZN ×ZN )→ `2(ZN ×ZN ),



the zoomed image Z(I) belongs to the image of

S . This would serve to guarantee a certain reg-

ularity on Z(I). In this case, if we write Z(I) =

S(W (I)) = s ∗ W (I), then Ẑ(I) = ŝŴ (I) and

equation (4) is transformed into the new equation

Î(k, l) =

d−1∑
p=0

d−1∑
q=0

ŝ(k + pN, l + qN)

Ŵ (I)(k + pN, l + qN). (5)

In fact, Guichard and Malgouyres (see [23], [27],

[28], [29]) have studied a method of this kind for

the construction of zooms. To be more precise,

we should mention the filter they use is a little

bit different. They take S : L2(TN × TN ) →
L2(TN × TN ), where TN is the unidimensional

torus of size N . Thus the relation between I and

Z(I) is that I is just a sampling of the analog

image s ∗ W (I), where both s and W (I) belong

to L2(TN × TN ). In any case, they use Poisson



summation formula to get an equation for W (I)

analogous to the equation (5) above. If we de-

note by WI,s the space of solutions W (I) of this

new equation, the method proposed by Guichard

and Malgouyres consists of looking for an element

W ∈ WI,s that minimizes the total variation of

the image W . They have proved this method is a

very reasonable one and, in particular, their results

greatly improve ‘Fourier zoom’.

At this point, it is interesting to note that The-

orem 4 alerts us that to sample an image and to re-

construct it from the samples via formula (1) is not

an ideal low-pass filter. This process will produce a

band-limited image, but the low frequencies of the

new image will not coincide with the original ones.

To be more precise, assume that I ∈ `2(ZN × ZN )

and d is a divisor of N , M = N/d. We define

R(I) ∈ `2(ZM × ZM ) by R(I)(k, l) = I(kd, ld)

for all 0 < k, l ≤ M − 1 and J(I) = ZS(R(I)).



Then Theorem 4 implies that, for example, for

0 ≤ k, l ≤M/2,

R̂(I)(k, l) = Ĵ(k, l) =
d−1∑
p=0

d−1∑
q=0

Î(k + pM, l + qM).

Thus, J(I) is not the result of the application of

an ideal low-pass filter to I (which would left un-

modified the low frequencies of I) but it is just

the unique band-limited image of band size ≤M/2

that interpolates the original image I at the points

{(kd, ld)}0≤k,l<M . Of course, the same arguments

apply to one-dimensional signals.

5 Analog sampling and zoom

The classical analog uniform sampling theorem, in

dimension two, reads as follows (see [22], [32]):

Theorem 5 (2-Dimensional analog sampling theo-

rem). Let f(x, y) be an analog image of finite band



size M <∞. Then

f(x, y) = 4M2
∞∑

k=−∞

∞∑
l=−∞

f
( k

2M
,
l

2M

)
sinc(2Mx− k) sinc(2My − l)

In practice, this theorem implies that, for f(x, y)

an analog image of finite band size M < ∞, the

partial sums

PN (x, y) = 4M2
N∑

k=−N

N∑
l=−N

f
( k

2M
,
l

2M

)
sinc(2Mx− k) sinc(2My − l) (6)

are good approximations of f(x, y) inside the square

[−N2M , N
2M ]× [−N2M , N

2M ]. In fact, these approximation

should be visually good except near the border of

the square, where some waves will distort the orig-

inal image.

Now, the analog d-zoom of f(x, y) is obviously



given by the scaling g(x, y) = f(xd ,
y
d), so that

g(x, y) =

∫ M

−M

∫ M

−M
f̂(ξ, τ)e2πi(x

d
ξ+ y

d
τ)dξdτ

= d2

∫ M/d

−M/d

∫ M/d

−M/d
f̂(d · u, d · v)e2πi(xu+yv) dudv.

It follows that g(x, y) is band limited with band

size M/d, so that

g(x, y) =
4M2

d2

∞∑
k=−∞

∞∑
l=−∞

g
( kd

2M
,
ld

2M

)
sinc

(2M

d
x− k

)
sinc

(2M

d
y − l

)
(7)

and the partial sums

QN (x, y) = PN

(x
d
,
y

d

)
(8)

are good approximations of g(x, y) inside the square

[−Nd2M , Nd2M ]× [−Nd2M , Nd2M ].



Let us now assume that I ∈ `2(Z2N+1×Z2N+1)

is a digital image which has been constructed by

sampling the analog image f(x, y) of finite band

size M < ∞ on the square [−N2M , N
2M ] × [−N2M , N

2M ]

exactly at the Nyquist rate, so that

I(k, l) = f
(k −N

2M
,
l −N
2M

)
, k, l = 0, . . . , 2N. (9)

If we denote by J a digital d-zoom of I we have

that

J(kd, ld) = I(k, l) = g
(d(k −N)

2M
,
d(l −N)

2M

)
,

(10)

so that these samples are enough to recover g(x, y)

approximately inside the square [−Nd2M , Nd2M ]

×[−Nd2M , Nd2M ]. In particular, using (9) and (8), the



formula

J(n,m) = QN

(n− dN
2M

,
m− dN

2M

)
(11)

=
4M2

d2

N∑
k=−N

N∑
l=−N

I(k +N, l +N)

× sinc
(n
d
−N − k

)
× sinc

(m
d
−N − l

)

defines a reasonable digital d-zoom of I.

The previous discussion is summarized on the

following result:

Theorem 6. Let f(x, y) be an analog image of

finite band size M <∞ and let us set

I(k, l) = f
(k −N

2M
,
l −N
2M

)
, k, l = 0, . . . , 2N.



Then,

J(n,m) =
4M2

d2

N∑
k=−N

N∑
l=−N

I(k +N, l +N)

sinc
(n
d
−N − k

)
sinc

(m
d
−N − l

)
defines a digital d-zoom of I.

It seems natural to normalize the zoomed im-

age given by (11) to another whose entries belong

to the interval [0, 1]. Surprisingly, this defines an

image ZA(I) which is independent of the value of

M and is given by the formula

ZA(I) =
J −min(J)U

max(J)
=
E −min(E)U

max(E)
, (12)

where E is defined by E = 1
M2J , and

U ∈ `2(Zd(2N+1)×Zd(2N+1)) is given by U(i, j) = 1

for all i, j. It is important to note that E satisfies

E = E(I) (i.e., M has no role for the computation

of the entries of E).



Particularly this is the “digital zoom” we wanted

to introduce in this section.

Remark 7. Properly speaking, ZA(I) does not

define a zoom of I, since the imposed normaliza-

tion may have the negative effect that the new

image does not satisfy the interpolation condition

I(n,m) = ZA(I)(dn, dm). On the other hand, the

experiments show that this is indeed a very rea-

sonable “zoom of I”.

Remark 8. It should be noticed that, in practice,

the images are not finite band sized, in general, so

that a high band size M is needed to get a good

approximation of them, according our procedure.

This fact implies that our assumption that we have

a digital image which has been constructed by sam-

pling an analog image at the Nyquist rate is not a

reasonable one, since each pixel covers a square of

size bigger than 1/2M . Moreover, for analog finite



band sized images, it is a main problem to know

their exact band size M . These objections have

motivated the normalized version of the zoom, pre-

viously introduced.

Remark 9. In general, the zoomed image defined

by (12) is not a band limited digital signal. This

could be used to improve the high frequency con-

tent of the sampling zoom given by (3). More-

over, the pictures that one visualizes when drawing

the frequency content of the zoomed images are

highly nonlinear and unpredictable. This should

put some light on the difficulty of the problem of

improving the sampling d-zoom mentioned at the

very end of the section above.

6 A few examples

We have implemented in Matlab 7.0 the algorithm

for sampling d-zoom of arbitrary images by using



formula (3). The algorithm, for I ∈ `2(ZN × ZN ),

takes a piece T of I and uses the sampling d-zoom

ZS to produce the image J = ZS(T ). Moreover, we

have implemented another algorithm which takes

the entire image and, after zooming the whole pic-

ture with the d-zoom ZS , extracts the desired frag-

ment. Finally, we have also implemented the “ana-

log” zoom ZA given by formula (12). In this case

we have tested too the zoom on the fragment of

the image, and on the entire image.

We show the two algorithms working over a

fragment of two well known test images in com-

puter vision: “Lena” and “Living room” (size =

512× 512). We have compared our approach with

the simpler one, pixel replication, using d = 8 for

both cases, showing original images too.



(a) Original image with frag-

ment marked

(b) Fragment zoomed with

pixel replication

Figure 1: “Lena” image



(a) Using all the information

from the original image

(b) Using only information

from the fragment

Figure 2: “Lena” image, fragment zoomed with ZS for d = 8



(a) Using all the information

from the original image

(b) Using only information

from the fragment

Figure 3: “Lena” image, fragment zoomed with ZA for d = 8



(a) Original image with frag-

ment marked

(b) Fragment zoomed with

pixel replication

Figure 4: “Living room” image



(a) Using all the information

from the original image

(b) Using only information

from the fragment

Figure 5: “Living room” image, fragment zoomed with ZS

for d = 8



(a) Using all the information

from the original image

(b) Using only information

from the fragment

Figure 6: “Living room” image, fragment zoomed with ZA

for d = 8
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