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ABSTRACT. Given a smooth curve defined over a field k that admits a non-singular plane model over k, a fixed
separable closure of k, it does not necessarily have a non-singular plane model defined over the field k. We
determine under which conditions this happens and we show an example of such phenomenon. Now, even
assuming that such a smooth plane model exists, we wonder about the existence of non-singular plane models
over k for its twists. We characterize twists possessing such models and use such characterization to improve,
for the particular case of smooth plane curves, the algorithm to compute twists of non-hyperelliptic curves wrote
recently down by the third author. We also show an example of a twist not admitting such non-singular plane
model. As a consequence, we get explicit equations for a non-trivial Brauer-Severi surface. Finally, we obtain
a theoretical result to compute all the twists of smooth plane curves with cyclic automorphism group having a

k-model whose automorphism group is generated by a diagonal matrix. Some examples are also provided.

1. INTRODUCTION

Let C be a smooth curve over k, i.e. C' a projective non-singular and geometrically irreducible curve defined
over a field k. Denote by C the curve C xj k where k is a fixed separable closure of k, and by Aut(C) its
automorphism group. We assume, once and for all, that C' is non-hyperelliptic of genus g > 3. With the method
exposed in [16] we can compute the twists of C; i.e. a smooth curve C’ over k with a k-isomorphism ¢ : C' — C".
The set of twists of C' modulo k-isomorphism, denoted by Twisty(C), is in one to one correspondence with the
first Galois cohomology set H'(Gal(k/k), Aut(C)). Given a cocycle ¢ € H' (Gal(k/k), Aut(C)), the idea behind
computing equations for the twist, is finding a Gal(k/k)-modulo isomorphism between the subgroup generated

by the image of £ in Aut(C) with a subgroup of a general linear group GL, (k). After that, by making explicit
Hilbert’s 90 Theorem, we can compute an isomorphism ¢ : C' — C’ over k such that & = ¢~ -7 ¢ for all
7 of the Galois group Gal(k/k), and hence, obtain equations for the twist. For non-hyperelliptic curves, see

a description in [15], the canonical model gives a natural inclusion Aut(C) — PGL4(k) and with the natural
representation of Aut(C) on the regular differential forms, Aut(C) will live inside a general linear group (then
so does the subgroup generated by the image of a 1-cocycle in PGLg(E) provided by the canonical model),

Now consider a smooth plane curve C over k, i.e. C' is a smooth curve over k£ that admits a non-singular
plane model over k. Therefore, C has a g2 complete linear series which defines a map Y : C' < IP%, where IP’% is
the 2-th projective space over k, and moreover Image(Y) is defined by the zeroes of a degree d polynomial in
X,Y, Z with coefficients in k. Denote such a model by Fx(X,Y, Z) = 0, in particular g = 2(d — 1)(d — 2). It is
well-known that the complete linear series g2 is unique up to conjugation in PGL3(k), the automorphism group
of IP’%, see [10, Lemma 11.28]. Therefore, any k-model of C is defined by Fpm(X,Y,Z) := F(P(X,Y,Z)) =0
for some P € PGL3(k). Furthermore, a plane model of C' is defined over k if there exists a @ € PGL3(k) such
that FQg(X, Y, Z)€ k[X,Y, Z]. The group Aut(C) is isomorphic via T to the automorphism group Aut(Fpg)
of any of its k-models, and all these groups are conjugate in PGL3(k). We say that C' admits a smooth plane
model over k if it is k-isomorphic to a smooth plane model defined over k.

The aim of this paper is to make a study of the twists for smooth plane curves by considering the embedding
Aut(C) — PGL3(k) instead the one given by the canonical model. The embedding is of Gal(k/k)-groups if C

admits a smooth plane model over k.
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This approach leads also to two natural questions: the first one, given C' a smooth plane curve defined over
a field k, does it admit a smooth plane model defined over the base field k; and secondly, if the answer is yes,
does every twist of C' over k also have a smooth plane model defined over k7

For both questions the answer is no in general, it does not. We obtain general results for the curves and the
twists for which the above questions always have an affirmative answer, and also we show different examples
concerning the negative general answer. Interestingly, in the way to get these examples, we need to handle with
non-trivial Brauer-Severi surfaces, and we are able to compute explicit equations of a non-trivial one.

Moreover, for smooth plane curves defined over k with a cyclic automorphism group generated by a diagonal
matrix, we obtain a general theoretical result to obtain all its twists. Families of such smooth plane curves have
already been studied by the first two authors in [2,3]. These families have genus arbitrarily big, so the method
in [16] does not work for them.

1.1. Outline. The structure of this paper is as follows. In Section 2, we introduce the background and basic
definition about Galois cohomology and Brauer-Severi varieties needed in the sequel. We devote Section 3 to
deal with the question on the field where there exists a non-singular model for a smooth plane curve C defined
over k. We prove that if the degree of a non-singular plane model of C' is coprime with 3 or C has a k-point
or the 3-torsion of the Brauer group of k is trivial (in particular if & is a finite field), then the curve C' admits
a smooth plane model over k: Theorem 3.6 and Corollaries 3.2, 3.3. Moreover, we prove that a smooth plane
model of C always exists in a finite field extension of k of degree dividing 3, see Theorem 3.5. We end Section
3 with an explicit example of a smooth plane curve defined over Q and not admitting a smooth plane model
over Q; however, we construct a smooth plane model over a degree 3 extension of Q.

In Section 4, we assume that C' is a smooth plane curve defined over k having a smooth plane model over
k. We obtain Theorem 4.1 characterizing the twists of C' having also a smooth plane model over k. Moreover,
we construct a family of examples over k = QQ where a twist of C' over Q does not admit a non-singular plane
model over Q (this construction is not explicit because we do not provide equations of such twists).

We dedicate Section 5 to detail an explicit example of a smooth plane curve defined over the field Q((3)
having a twist that does not possess such a model in the field Q(¢3), where (5 is a primitive 3rd root of unity.
Interestingly, we find the already mentioned explicit equations for a non-trivial Brauer-Severi variety.

In Section 6, we study the twists for smooth plane curve C' over k with a non-singular plane model over k,
Fpz € k[X,Y, Z] such that Aut(C) is a cyclic group. We prove that if Aut(Fpg) is represented in PGLg3(k)
by a diagonal matrix, then all the twists are diagonal, i.e. of the form Fj,~(X,Y,Z) = 0 with D a diagonal
matrix, Theorem 6.2. We apply such result to a family of curves (one for each degree) where the techniques
of [16] does not apply if the degree is too big, see Theorems 6.4, 6.5. In the case that C' does not admit such
a model where Aut(Fpg) is cyclic diagonal in PGL3(k), we also construct an example where not all the twists
are given by a diagonal twist.

Finally, we apply the algorithm in [16] to the simplest degree 5 example in section 6, this shows the improve-
ments of Theorem 6.4 and Theorem 6.2 to compute the twists.

1.2. Notation and conventions. We set the following notations, to be used throughout.

By k we denote a field, k is a separable closure of k and L is an extension of k inside k. By ¢, we always
mean a fixed primitive n-th root of unity inside k& when the characteristic of k is coprime with n. We write
Gal(L/k) for the Galois group of L/k. All the Galois groups in this paper, when acting on sets, we denote
it by left exponentiation. We write H*(Gal(L/k),N) with i € {0,1} for the Galois cohomology set of a
Gal(L/k)-group N. In the particular case L = k, we also denote G}, instead of Gal(k/k) and H'(k, N) instead
of H*(Gk,N). Br(k) denotes the Brauer group of k consisting of the central simple algebras over k& modulo
k-algebras isomorphism.

When we work with groups, we use the SmallGroup Library-GAP [7]. Where the group < N,r > or
GAP(N,r) denotes the group of order N that appears in the r-th position in such library. By ID(G), we mean
the corresponding GAP notation for the group G. For cyclic groups, we use the standard notation Z/nZ.
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By smooth curve over k we mean a projective, non-singular and geometrically irreducible curve defined over
k, and usually we denote it by C or Cj. As usual C corresponds to C' xj k, (the curve C over k), Aut(C) the
automorphism group, and g(C) denotes the genus of the curve, and once and for all we assume that g(C) > 2.
We denote by . the r-th projective space over the field k.

By a smooth plane curve C over k we mean a smooth curve over k, which admits a non-singular plane model
F=(X,Y,Z) = 0 over k of degree d > 4. We denote by Fpz(X,Y,Z) = 0 with P € PGL3(k) another non-
singular model, where F,=(X,Y, Z) := F5(P(X,Y, Z)). By Aut(Fpz) we mean the automorphism group of the
curve Fps(X,Y, Z) = 0 in P2 which is a finite subgroup of PGL3(k). We have that Aut(Fpg) = P~ Aut(Fg)P
as subgroups of PGL3 (k).

A linear transformation A = (a; ;) of P2 is also written as [a11X +a12Y +a13Z : ag1 X + az2Y +as3Z :
a3 X +az2Y +as3Z).

Given C a smooth plane curve over k, we say that C' admits a non-singular plane model over L if there exists
P € PGL3(k) such that Fps(X,Y,Z) € L[X,Y, Z], and C and Fps(X,Y, Z) = 0 are isomorphic over L.

By an abuse of language, if a smooth plane curve C over k admits a non-singular plane model over k given
by Fpez = 0, we identify C with the plane model Fpm = 0 and we identify Aut(C) with Aut(Fpg) as a fixed

finite subgroup of PGL3 (k).

Acknowledgments. The authors would like to thank Xavier Xarles for his suggestions and comments con-
cerning our work and to clarify different aspects of his work in [19]. We are very happy also to thank René
Pannekoek for e-mailing us his Master thesis [18] and comments on Brauer-Severi surfaces related to his Master
thesis. Finally, we thank Christophe Ritzenthaler who pointed us different comments concerning smooth plane
curves over finite fields an hyperelliptic curves.

2. GALOIS COHOMOLOGY AND BRAUER-SEVERI VARIETIES

In this section, we state different results about Galois cohomology to be used through the paper (see a general
approach in [20, Chapter III]).

Definition 2.1. Given C a smooth curve over k. A twist of C over k is a smooth curve C” defined over k such
that C = C’. Given two twists of C over k, namely C;,C5, we say that they are equivalent if there exist an
isomorphism C7 = (5 defined over k. The set of twists of C' over £ modulo the above equivalence is denoted by
TWiStk(C).

The following result is well-known.
Theorem 2.2. There exists a bijection between the sets Twisty,(C) and H'(k, Aut(C)).

Recall that the above bijection [C'] — [¢] sends a twist ¢ : C — C” to the cocycle £ : T+ & =@ 1. Tp €

Aut(C) where 7 € Gy.

Lemma 2.3. Let C be a curve over k admitting a plane model Fz = 0 over k. Let us assume that there exists
a matriz P € PGL3(k) with Fpz(X,Y,Z) € k[X,Y, Z]. Then, there exists a twist C' of C over k given by the
non-singular plane model Fpg = 0 over k. Furthermore, we have a map X' : Twisty(C) — H(k, PGL3(k)).

Proof. Let h : C — Fpz be a k- isomorphism, and consider the 1l-cocycle o + h~! -7 (k) € Aut(C) in
H(k, Aut(C)) = Twist,(C). Then there exists a twist A : C — C’ of C over k such that h=1-“h = A"1. 7\
for all ¢ € G. Therefore Ao h™! : F ‘v — €’ is an isomorphism defined over k.

Now we can identify Aut(C’) with Aut(Fpg) as Gi-groups. Since Aut(Fpg) has an injective representation
inside Aut(]P’%) = PGL3(k) as a Gg-group, we get a natural map in Galois cohomology

Y Twisty(C) = H' (k, Aut(C")) — H'(k, PGL3(k)).
O

Definition 2.4. A Brauer-Severi variety D over k of dimension r is a smooth projective variety such that the
variety D ®j, k over k is isomorphic to the projective space ]P’% of dimension r over k.
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The following result is also well-known [12, Corollary 4.7]:

Lemma 2.5. The Brauer-Severi varieties over k of dimension r, up to k-isomorphism, are in bijection with
HY(Gal(k/k), PGL,y1(k)) = Hl(Gal(E/k),AutE(IP’%)).

2 over k (they

Denote by Azﬁ the set of all isomorphic classes of central simple algebras A of dimension n
split in a separable extension of degree n of k).

The next result is Corollary 3.8 in [12].

Theorem 2.6. Let k be a field, then there exists a bijection between the following sets
A «—— HY(Gy, PGL,(k)).

k

n’

For completeness, we recall the map defining the above bijection: given A € Az, we always get a Galois
extension L/k of degree n and an isomorphism f : A X, L — M, (L) such that there exists a matrix A, €

Aut(M, (L)) = PGL,(L) for every 7 € Gal(L/k) that makes the following diagram commutative:

Ax, L =7 M, (L)
T TA o7
Axp L =7 M, (L)

The map 7 — A, defines an element of H!(Gal(L/k), PGL, (L)), and we obtain an element in H*(k, PGL,,(k))
through the inflation map.

Definition 2.7. Let L/k be a cyclic extension of degree n with Gal(L/k) = (o), and fix an isomorphism
X : Gal(L/k) — Z/nZ. Given a € k*, we consider (a,x), the n-dimensional vector space over L with basis

le,...,en!

, 1.e.
(X, a) = Br<i<cn_1Le’,
where the multiplication rules are given by e\ = o(A)e for A € L and " = a. Such (x,a) becomes a central

2

simple algebra of dimension n® over k which splits in L (see [23, §2]), and is called a cyclic algebra of k.

Theorem 2.8. All the elements of Az]§ are cyclic algebras of the form (x,a) as in Definition 2.7 with n = 3.
In particular, modulo isomorphism of k-algebras, (x,a) € Azéf is the trivial k-algebra if and only if a is a norm
of L/k of an element of L. Moreover, the assignment

(X,CL) € Az]?f = inf({AT}TGGal(L/k))) € Hl(kv PGLS(E))

00a
is given by an A, of the shape | 1 0 0 | . Here inf denotes the inflation map in Galois cohomology.
010

Proof. By definition, any central cyclic simple algebra of Az’§ can be expressed as described. Recall also that
00a
the map f : A®, L — M3(L) is given by f(A ® 1) = diag(\,0(\),0%(\)) and f(e®1) =100 |. Itisa
010
result of Wedderbum [25], that all elements of Azlg corresponds to cyclic algebras. Moreover, it is well-known
that a cyclic algebra (x, a) is trivial if and only if a is a norm of its splitting field.
The last statement concerning the 1-cocycle assignment follows by [23, Example 5.5], after defining first
the cocycle element in H'(Gal(L/k),PGL3(L)) and using [12, Lemma 3.7] for the inflation map in Galois
cohomology groups. O

Because the Brauer group of a finite field is trivial, and taking cohomology of the short exact sequence
1=k — GL,(k) — PGL,(k) — 1, we mention:

Lemma 2.9. Let k be a finite field, then H'(Gy, PGL,(k)) = 1.
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3. THE FIELD OF DEFINITION OF A NON-SINGULAR PLANE MODEL

In this section, we prove that if a smooth curve defined over k admits a non-singular plane model over k,
then it is always possible to find a non-singular plane model defined over an extension L/k of degree dividing
3. Moreover, for a particular field k or if the smooth plane model has degree coprime with 3, we prove that
we can always find a non-singular plane model defined over the base field k. We provide an example of a curve
defined over QQ that does not admit a smooth plane model over QQ, but that it does over a Galois extension of
Q of degree 3.

Roé and Xarles prove the following result in [19, Corollary 6].

Theorem 3.1 (Roé-Xarles). Let C' be a smooth projective curve defined over k such that C has a non-singular
plane model. Let Y : C — ]P’% be a morphism given by the uniqueness of the gg—linear system over k, then there
exists a Brauer-Severi variety D (of dimension two) defined over k, together with a k-morphism g : C < D
such that g @,k : C — ]P)% is equal to Y.

From the above result, one obtain remarkable consequences.

Corollary 3.2. Let C' be a smooth curve over k that admits a non-singular plane model. Assume that C has

a k-point, i.e. C(k) is not-empty. Then C admits a non-singular plane model over k.

Proof. By a Severi result, see [12, Prop.4.8], a Brauer-Severi variety over k of dimension n with a k-point is
isomorphic over k£ to P}. By Theorem 3.1, the map g : C}y — D = ]P’z defined over k defines the non-singular
plane model of C' over k. g

Corollary 3.3. Consider a field k such that Br(k)[3] is trivial, where Br(k)[3] denotes the 3-torsion of Br(k).
Then any smooth plane curve C over k, admits a non-singular plane model over k, and in particular any twist
of C over k admits also a non-singular plane model over k.

Proof. A non-trivial Brauer-Severi surface over k corresponds to a non-trivial 3-torsion element of Br(k), there-
fore is such group is empty, by Theorem 3.1 the g¢-system factors through g : C, — P2 and all of them are
defined over k, so, they define a plane model of C over k. g

Remark 3.4. For a finite field k (see Lemma 2.9) or k =R, it is known that Br(k)[3] is trivial, therefore any
smooth plane curve over such fields admits always a non-singular plane model over k.

Theorem 3.5. Let C' be a smooth plane curve defined over k, then it admits a non-singular plane model over
L such that [L : k] | 3, i.e. 3P € PGL3(k) such that Fpz € L[X,Y,Z] and such that C and Fpz = 0 are
L-isomorphic.

Proof. From Theorem 3.1, we have a k-morphism of C to a Brauer-Severi surface D over k. By Theorem 2.6,
D corresponds to a central simple algebra over k of dimension 9 which splits (if is not the trivial algebra) in at
degree 3 Galois extension L of k, therefore D ®j, L corresponds to the trivial element in H'(Gal(k/L), PGL3(k)),
by theorem 2.6. Thus, D ®; L = P2 over L. We then obtain that

g, L:C @y L P2
are all defined over L, thus we have a non-singular plane model of C over L. Lastly, because all the non-singular
plane models of C over k are of the form Fpz(X,Y,Z) = 0 for some P € PGL3(k), we deduce the result. [

The next result is a particular case of an argument by Roé and Xarles in [19] following Chatelet [6].

Theorem 3.6. Let C' be a smooth curve defined over k, such that admits a non-singular plane model of degree
d with d coprime with 3. Then C' admits a non-singular plane model over k.

Proof. By the results of the previous section, Brauer-Severi surfaces over k corresponds to elements of H'(k, PGL3(k)),
hence to the set of equivalence classes of central simple algebras of dimension 9 with a splitting field of degree
3 over k (thus, they are elements of the Brauer group Br(k) of the field k of order dividing 3).
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Moreover, if D is a Brauer-Severi surface over a field k, then its class [D] in the Brauer group Br(k) verifies
that in the exact sequence
Pic(D) — Pic(D ®y k) =2 Z — Br(k),
the last map send 1 to [D], and hence the image of some generator of Pic(D) is equal to m, where m is the order
of [D]. Consequently, m divides 3, as the order of [D] does. Now, if C is a curve over k in Pic(D) such that C
has a non-singular plane model of degree d, then the image of C' in Pic(B ®; k) = 7Z is equal to the degree d.
Therefore, if d is coprime with 3, we thus get m = 1, and D is the projective plane ]P’% (see [19, Theorem 13] for
a more general statement on hypersurfaces in Brauer-Severi varieties).
O

Corollary 3.7. Let C be a smooth curve defined over k which admits a non-singular plane model over k of
degree d, coprime with 3. Then, every twist C' € Twist,(C) admits a non-singular plane model over k.

Proof. Tt follows, by our assumption, that every twist of C' over k admits a non-singular plane model over k of
degree d, coprime with 3. Hence, non-singular plane models over k exist for twists of C' over k, by Theorem 3.6.
O

3.1. An example of a smooth plane curve over Q without a non-singular plane model over Q. Let
us consider Qy the splitting field of the polynomial f(z) = z3+122%—64. It is an irreducible polynomial and the
discriminant of f is (2632)?, then Gal(Qy/Q) ~ Z/3Z, moreover by a computation in SAGE, the discriminant
of the field Qy is a power of 3, and the prime 2 becomes inert in Qy.

Let us denote the roots of f by a,b,c in a fixed algebraic closure of Q, and let us call o the element in the
Galois group that acts by sending a — b — c.

Proposition 3.8. The smooth plane curve over Qg
3 ab . .
C: 6425 + aby® + 28 + 823> + §y323 +az’z® =0,
has Q as a field of definition, but it does not admit a plane non-singular model over Q.

Proof. The matrix
002
¢=1100
010
defines an isomorphism ¢ : “C — C. This isomorphism ¢ satisfies the Weil cocycle condition [26] (¢ss = ¢35 =
1), we therefore obtain that the curve is defined over Q, and that there exists an isomorphism ¢y : Cg — C
where Cg is a rational model such that ¢ = ¢g ”goo_l € PGL3(Q). The assignation ¢, := g Tgogl defines an
element of H'(Gal(Qf/Q), PGL3(Qy)), by Theorem 2.8, this cohomology element is non-trivial because 2 is not
a norm of an element of Qy (since 2 is inert in Q). Therefore ¢y is not given by an element of PGL3(Qy), or
of PGL3(Q) because the cohomology class by the inflation map is neither trivial. Therefore the curve C over
Q does not admits a non-singular plane model over Q (because if admitted a non-singular plane model over

Q, such model would be of the form FPQG(Xv Y,Z) = 0 for some P € PGL3(k) where FQg(X,Y,Z) =0a
non-singular model over Qy, therefore ¢y would be representative by P € PGL;3 (k) which is not). O

Remark 3.9. We have just seen an example of a curve defined over a field k not admitting a particular model (a
plane one) over the same field. For hyperelliptic models, we find such examples after Proposition 4.14 in [15].
In [11, chp. 5,7], there are also examples of hyperelliptic curves and smooth plane curves where the field of
moduli is not a field of definition, so, in particular, there are not such models defined over the fields of moduli.

4. ON TWISTS OF PLANE MODELS DEFINED OVER k&

In this section, we assume, once and for all, that C is a smooth curve defined over k with a non-singular plane
model also defined over k, i.e. we can assume that C' is given by an equation Fg = 0 with Fz € k[X,Y, Z]. We
provide results characterizing when all the twists of C' admit a non-singular plane model over k, and we give a
(non-explicit) example of a family of such curves C having twists not admitting a plane model over k.
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Theorem 4.1. Let C be a curve defined over a field k with a plane non-singular model F(X,Y, Z) = 0 defined
over k. Then there exists a natural map

Y H'(k, Aut(Fz)) — H'(k, PGL3(k)),

defined by the inclusion Aut(Fg) € PGL3(k) as Gi-groups. The kernel of ¥ is the set of all twists of C' that admit
a non-singular plane model over k. Moreover, any such a plane model is obtained through an automorphism of
P2, that is, it is of the form Fy&(X,Y,Z) == Fs(M(X,Y, Z)) € k[X,Y, Z] for some M € PGLs(k).

Proof. The map is clearly well-defined. If a twist C’ admits a non-singular plane model Fg over k, the
isomorphism from F; to Fiz is then given by an element M € PGL3(k) (as any isomorphism between two non-
singular plane curves of degrees > 3 is given by a linear transformation in P2, [5]). Hence, the corresponding
1-cocycle o — M 7 M~ € Aut(Fg) becomes trivial in H'(k, PGL3(k)). Conversely, if a twist C’ is mapped by
¥ to the trivial element in H'(k, PGL3(k)), then this twist is given by a k-isomorphism ¢ : Fiz — C’ defined by

a matrix M € PGL3(k) that trivializes the cocycle and such an M produces a non-singular plane model defined
over k. B

Remark 4.2. We can reinterpret the map ¥ in Theorem 4.1 as the map that sends a twist C' to the Brauer-
Severi variety D in Theorem 3.1.

Remark 4.3. Consider a smooth plane curve C' defined over k, and assume that it has degree d coprime with
3 or that Br(k)[3] is trivial, then X in Theorem 4.1 is the trivial map by Corollaries 3.7 and 3.3.

Remark 4.4. Theorem 4.1 can be used to improve the algorithm for computing twists for non-hyperelliptic
curves, see [16] or [15, Chp.1], for the special case of non-singular plane curves. The algorithm requires to
compute a canonical model in P91, solutions to Galois embedding problems, and constructing equations for
the twists. The last step needs to see Aut(C) C GL4(k) via the canonical embedding and the action of the
automorphism group on the vector space of regular differentials, so, we can use an explicit version of Hilbert 90
Theorem.

Now, if ¥ is trivial in Theorem 4.1, then we can work on P? instead of on P9. The eract sequence 1 —
k — GLs(k) — PGLs(k) gives the exact, well-defined sequence 1 — H*(k, GL3(k)) — H*(k, PGL3(k)). Hence,
the trivial element of H'(k, PGL3(k)) corresponds to an element in H(k, GL3(k)) and we can proceed again by
Hilbert 90 Theorem.

In the appendiz, we use this improvement to compute the twists of some particular families of plane curves
over k having a cyclic diagonal automorphism group.

To finish we construct a family of smooth curves defined over Q that admits a non-singular plane model over
@ but some of its twists do not admit a non-singular plane model over Q. This construction is not explicit in
the sense that we do not construct the equations of the twist and the Brauer-Severi surface, see next section
for an explicit construction giving defining equations.

Theorem 4.5. Let p = 3,5 mod 7 be a prime number. Toke a € Q with a # —10,+2,—1,0. Consider the
family Cp o of smooth plane curves over Q given by

Cpa: X0+ ]%YG + ]%ZG + ]%(p2x3y3 +pX3Z3 +Y327%) = 0.
Then, there exists a twist C' € Twistg(Cp,q) which does not admit a non-singular plane model over Q.
We need some lemmas before proving Theorem 4.5.
Lemma 4.6. Consider the family of non-singular plane curves over Q defined by the equation
Co: X0+ YO+ 20 1 a(X3Y3 + X322 4+ V32%) =0,
with a # —10,4+2,—1,0. The full automorphism group Aut(C,) is generated by
S:=[X;GY3G2), U= [X:Y: (2], T = [Z: X;Y], and R:= [Y: X; Z].
In particular, it is isomorphic to GAP(54,5).
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Proof. First, it is necessary that a # +2, —1 for non-singularity of C,. Second, we use similar techniques and
notation to the ones used and developed in [2], in particular Aut(C,) should be one of the groups in [2, Theorem
2]. We have (R, S, T,U) < Aut(C,), hence Aut(C,) is not conjugate to a cyclic group, the Klein group PSL(2,7),
the icosahedral group As, the alternating group Ag (i.e. C, is not K-equivalent to the Wiman sextic curve),
or the Hessian groups Hess, with x € {36,72}. On the other hand, C, is not a descendant of the degree 6
Klein curve Kg, since 54 1 |Aut(Kg)|(= 63), also Aut(C,) fixes no points in the projective plane P?, thus from
Mitchel’s classification that is explicitly explained in [2], Aut(C,) fixes a triangle. Consequently, we need only
to worry about the following situations: Aut(C,) is conjugate to the Hessian group Hessaig or to a subgroup
of Aut(Fg) (i.e. C, is a descendant of the Fermat curve of degree 6).

We note that there is a unique representation of the Hessian group Hessaig inside PGL3(K), up to conjuga-
tion. Thus, without loss of generality, we consider Hessqo16 = (S, T, U, V) where

111
V=|1¢ ¢
1G5 G

Now, if Aut(C,) = P~'-(S,T,U,V) - P for some P € PGL3(k), then it is easy to check that it must be
Aut(C,) = (S,T,U,V). Moreover, if V € Aut(C,) then a = —10 (see the coefficient of X*Y Z), which is not
our case.

Let us now inspect the automorphism group of the Fermat curve of degree 6.
Aut(Fs) = ([ XY 7], [X;¢6Y5 2], [V Z; X, [X; Z;Y]) ~ GAP(216,92),

where (g is a primitive 6-th root of unity.

This group contains a unique group of order 54, up to conjugation. Hence, we may assume that C, is a
descendant of the Fermat curve Fg : X%+ Y% + Z% = 0 through a projective transformation P € PGL3(K)
such that P~1(S,U, T, R)P = (S,U, T, R). Consequently, the transformed equation should be again of the form
Cp: X04+YS+ 704+ a/(X3Y3+ X323 +Y3Z3) for some @’ € Q. Finally, elements of Aut(Fs) are of the forms

(X3 C5Y5CE 20, (X565 25 G50, (Y3 X5 Gh 2), (6 25V X, [Gh Y5 ¢ 23 X, 165 23 X5 GhY ]

with r,7" € Z. Because a # 0, then any of these forms belongs to Aut(Cp) only if 2|r,7’. This gives exactly
6(3 x 3) = 54 automorphisms inside Aut(Fg).

As a conclusion, the full automorphism group of C, with a # —10,+2,—1,0 is of order 54 and is isomorphic
to GAP(54,5). O

Remark 4.7. If the automorphism group of a smooth plane curve, as a subgroup of PGL3(k) contains a
subgroup conjugate to (S,U, T, R), then the degree d of the plane model is divisible by 3. This follows because

the non-singularity plus having the automorphism T implies that we must have one of the following cores *:

(1) X44+Yvi4 2z

(2) Xy + X741 yyd-tz,

(3) X4-1z +yzdi-1 4 Xyd-1
But also we have U as an automorphism of the plane model, therefore the plane model could only have the core
X4+ vd 4 74 with 3|d.

Lemma 4.8. Given a # —10,%2, —1,0 and ag € Q, the family of curves

1 1

Coga: X0+ V04 =75+ (a2X3Y3 4 agX32% + Y3 2%) =0,
o G o

has automorphism group isomorphic to GAP(54,5) with [Y, Z, a9 X] € Aut(Caq.a), and the elements of Aut(Coy q)

are defined over the field Q((s, ¢/ag), where (3 is a primitive 3-rd root of unity.

1For a non-zero monomial ¢X Y7 ZF | its exponent is defined to be max{i,j,k}. For a homogeneous polynomial F', the core of
F' is the sum of all terms of F' with the greatest exponent.



ON TWISTS OF SMOOTH PLANE CURVES 9

Proof. The curve Cy, , and C, of Lemma 4.6 are k-isomorphic through the projective transformation P =
diag(1; B; ) where 8% = L and p® = L -

ap’? a?”

Proof. (of Theorem 4.5)

Consider the Galois extension M/Q with M = Q(cos(27/7),(3, ¢/p) where all the elements of Aut(C) ) are
defined. Let o be a generator of the cyclic Galois group Gal(Q(cos(27/7))/Q). We define a 1-cocycle in
Gal(M/Q) = Gal(Q(cos(27/7))/Q) x Gal(Q((3, ¢/p)/Q) to Aut(Cp,,) by mapping (o,id) — [Y,Z,pX] and
(id, ) — id. This defines an element of H*(M/Q, Aut(Cy.q)).

Consider its image by ¥ inside H*(M/Q,PGL3(M)). We need to check that its image is not the trivial
element, and then the result is an immediate consequence by Theorem 4.1.

By Theorem 2.6, H'(M/Q,PGL3(M)) is the set of central simple algebras over Q of dimension 9 which splits
in a degree 3 field inside M. If we consider the image in H'(Gal(Q(cos(2m/7))/Q), PGL3(Q(cos(2w/7)))) then
it is non-trivial if and only if p is not a norm of the field extension Q(cos(27/7))/Q.

By [24, Theorem 2.13], the ideal (p) is prime in Q(cos(27/7))/Q, therefore p is not a norm of an element
of Q(cos(27/7)). Now H'(M/Q,PGL3(M)) is the union of the above central simple algebras over Q running
through the subfields F' C M of degree 3 over Q, see [12]. Thus the element is not trivial, which was to be
shown. O

5. EXPLICIT NON-PLANE MODEL TWISTS OVER k OF A PLANE MODEL DEFINED OVER k

In this section, we explicitly construct a twist of a curve C, over Q(¢3) which does not admit a plane model
over Q(¢3). In particular, we construct a non-trivial Brauer-Severi surface over Q({3) giving its equations inside
P%(Cs)'

Let us consider the curve C, : X6 + Y + Z¢ 4+ o(X3Y3 + Y323 4+ Z3X3) = 0 defined over a number
field £ O Q(¢3) where (3 is a primitive third root of unity and a € k. For a # —10,—-2,—1,0,2, it is a non-
hyperelliptic, non-singular plane curve of genus g = 10 and its automorphism group is the group of order 54
determined in the previous section.

The algorithm in [16], allows us to compute all the twists of C,, previous computation of its canonical
model in P?. We follow such algorithm, since this time we will see that ¥ is not trivial, so we cannot use the

improvements in Remark 4.4.

5.1. A canonical model of C, in PY. Let us denote by «; the six different root of the polynomial T64aT3+1 =
0, and define the points on Cy: P; = (0: «; : 1), Q; = (a; : 0: 1) and 0o; = (a; : 1 : 0). The divisor of the
function x = X/Z is div(x) = P, — 00. Let P = (X : Yy : 1) € C,, the function z is a uniformizer at P if the
polynomial 76 + a(X§ + 1)T3 + X§ + aX§ + 1 = 0 does not have double roots. That is, if X§ +aX§+1# 0 or
A(X§+aXF+1) # a*(X§+1)2 Let us denote by 3; the six different roots of the polynomial T¢+ 24 T3 +1 = 0

and denote by V;; = (8; g“f/—%(,b’? +1): 1) where j € {1,2,3}. In order to compute ordp(dz) we need to
use the expression

y? 2y° 4+ a(2® + 1)
22243 +a(yd + 1)
for the points Q; and V; ;. Notice that div(2y® 4+ a(z® 4 1)) = V; ; — 30c. For the points at infinity, we use that
the degree of a differential is 2g — 2 = 18. We finally get

dr =

dlv(dl‘) =2Q; + ‘/;‘J' — 200's.

Hence, a basis of regular differentials is given by

xdx z2 y? 1
= Wy = —W, W3 = =W, Wy = —w
v +a@@+1) 7y U T e

Y x 1
W5 = TW, Wg = —W, Wy = —W, Wg = Yw, Wg = —W, Wig = —W.
xT Y Yy T

w; =W

We list the divisors of these differentials below.

div(wy) = P 4+ Q; + o0, div(wy) = 3P;, div(ws) = 3Q;, div(wg) = 300
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div(wg,) =2P, + Q;, diV(Ld(;) =2Q; + oo, div(w7) = P; + 200,
diV(wg) = P, 4+ 2Q;, diV(UJg) = 2P, + o0, diV(wlo) =Q; + 200.

Lemma 5.1. The ideal of the canonical model of Cy in P%[wy,ws, w3, ws, ws, Ws, wr, ws, Wy, wWig] is generated by
the polynomials

2 2
Walg = Wy, Wale = Wi, WalW1 = WrWi0, Wils = WoW10, WalWg = WeW7, Wil = WrWyg, W43 = WeW10,
_ .2 _ 2 _ 2 _ 2 _ _ .2
W3W10 = Wg, WaW7 = Wy, WeWy = Wy, W3Ws = Wy, WalW3 = WsWsg, Walg = Ws,
2 2 2 -0
w5 + wj + wi + a(wsws + wewip + wrwy) = 0.

We denote by C, this canonical model.

Proof. If wy # 0, then the des-homogenization of this ideal with respect to wy gives the affine curve C, for
Z =1. If wy =0, then w; = wip =0, 80 wg = wg = 0 and w; = 0, so if wg # 0 we recover the part at infinity
(Z=0) of Cy. If wgy = w3 =0, then all the variables are equal to zero which produces a contradiction.

To check that it is non-singular, we need to see if the rank of the matrix of partial derivatives of the previous
generating functions has rank equal to 8 = dim(P?) — dim(C) at every point. If wy # 0, then the partial
derivatives of the first seven equation plus the last one produce linearly independent vectors If wy = 0, we have
already seen that w3 # 0 and by equivalent arguments, neither it is ws. Then the 6th, Tth, 8th, 9th equations
plus the last four equations produce the linearly independent vectors. O

Remark 5.2. The canonical embedding of C, in PI~1 = PY coincides with the composition of the g§-linear
system of C, with the Veronese embedding given by:

3 3 3

P2 PV (z:y:z) = (zyz: a2y 2% 2%y P2 220y s 2P

2 y2?).

In particular, we get that the ideal defining the projective space P? in P? by the Veronese embedding is generated
by the polynomials defined in Lemma 5.1 after removing the last one.

5.2. The automorphism group of C, in P°. Let us consider the automorphisms of the curve C, given by
R =[y;z;z], T = [z;z;y] and U = [z;y; (32]. We easily check that < R, T,U >C Aut(C,) and by Lemma 4.6,
we obtain that Aut(C,) =< R, T,U >.

Notice that the pullbacks R*(w) = —w, T*(w) = w and U*(w) = (3w. So, in the canonical model, these
automorphisms look like

000/000|000
010/000{000
100000000
001000/000
000/000|100
000/000|010
000000|001

000/000[000
001000000
100000000
010/000[000
000/001j000
000/100[000
000/010[000
000(100{000 000/000[010
000/010[000 000/000/001
0/000{001j000 0j000j000(100

and U — (3Diag(1,¢3,¢3,¢3,¢3,1,(3,(3,1,(3) = (3U. We define the faithful linear representation Aut(C,) <

GL1o(k) by sending R, T,U — R, T,U. Moreover, it preserves the action of the Galois group Gy.

R—-R=- I =T =

O OO O OO0 O o
O OO O OO O O+

5.3. A explicit twist over k = Q((3) of C, without a non-singular plane model over k. Let us consider
the subgroup N of Aut(C,) generated by N :=< TU >~ 7Z/3Z.

Let us consider the curve C, defined over k = Q((3), and the field extension L = k(3/7) with Galois
group Gal(L/k) =< o >~ Z/37Z, where o(/7) = (3¢/7. We define the cocycle ¢ € Z' (G, Aut(Cy)) —
7' (G, PGLyo(k)) given by &, = TU.

Lemma 5.3. The image of the cocycle & by the map ¥ : H (G, Aut(C,)) — H*(Gy, PGL3(k)) is not trivial.
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Proof. By construction, the image of the cocycle & in H!(k, PGL3(k)) coincides with the inflation of the cocycle
in H'(Gal(L/k),PGL3(L)) where &, = TU. Now by Theorem 2.8 we conclude, since (3 is not a norm in L/k
(no new primitive root of unity appears in L than k and (3 is not a norm of an element of L). O

In order to compute equations defining the twist C, associated to the cocycle £ (and the Brauer-Severi surface
that contains such twist), we need to find a matrix ¢ € PGLyo(k) such that &, = ¢ -7 ¢ L.
We can then take

1o o oo o 0o o o 0
0v/7 V72 710 0 0 [0 o 0
0|V/7 VT2 7¢2|0 0 0 |0 0 0
0|V/7 2V 7¢3|0 0 0 |0 0 0

~lofo 0o o1 ¥7T Vo 0 0

°=lolo o 011 GY7T Y720 0 0
000 0 0| V7T V2|0 0 0
000 0 010 0 0 |1 GV7 GV
o000 0o o]0 o0 0 |G GVT V72
000 0 00 0 0 |¢G V7T GV

If we simply substitute this isomorphism ¢ in the equations of C,, we will get equations for C,. However,
even defining a curve over k, this equations are defined over L = k(+/7). In order to get generators of the ideal
defined over k, we use next lemma.

Lemma 5.4. Let fo, f1, f2 € k[x1, ..., xn], and define go = fo + VTf1+ VT2 fa, g1 = fo+ VT 1 + GV fa,
g2 = fo+ Cg\sﬁﬁ + C3\L77>2f2. Then the ideals in L{z1,...,x,] generated by < go, 91,92 > and < fo, f1, f2 > are
equal.

Proof. Clearly, we have the inclusion < gg, 91,92 >C< fo, f1, f2 >. The reverse inclusion can be checked by
writing 3fo = go + g1 + g2, (3 — )V7f1 = g1 — G392 + (G — 1) fo and VT2 fz = go — fo — V7 f1. O

Proposition 5.5. The equations in P° of the non-trivial Braver-Severi surface B over k constructed as in
Theorem 4.1 from the cocycle & above are

_ 2 _
wiwz = (3wWswy + (3wews + TC3wrwio, Wi — Twawy = (3wswig + (3wrws + (3Wewo,
_ 2 2 _ 2
wiw3 = wswig + CCwrws + (3wewo, Tws — T(3wawy = wswy + (Fwews + T(3wrwio,
2 2 2 2
Twiwyg = (3wsws + Twewio + 7§3W7W9, 49wy — 7{3(«020\)3 = wsws + TC3wewio + 7C3LU7QJQ,

w? + 14Gwewr = T¢wawio + Twaws + TCawswy, wi — T(swewr = Twawig + Twaws + T¢Fwswy,
wg + 2Gwswr = (3wawg + wsws + T¢3wawio, wE — (wswr = wowg + (swaws + T(3waw1o,
7w$ 4 2(3wswe = (3waws + 7(3?(.4}36010 + 7<§OJ4LU9, 7LU$ — (3Wwswg = wawsg + Twswig + 7<§W4WQ,

wj + 14¢3wowio = T3wawr + waws + T(Ewsws, wi — T(3wowio = T¢Gwowr + T¢Ewaws + Twsw,
wd + 14 wswio = (swaws + (Bwsws + T¢wawr, wi — TCRwswig = (Bwaws + (3wsws + T(3wawr,
7w%0 + 2C§w8w9 = C§w2w5 + Twawr + Twawes, 7W%0 - C??WSUJ -9= C§w2w5 + 7C§w3w7 + Twaweg,

Proof. We only need to plug the equations of the isomorphism ¢ into the equations defining C, and apply
Lemma 5.4. 0

In order to get the equations of the twisted curve, we only need to add the equation that we get by plugging
¢ in w3 + w? + w? + a(wsws + wWewip + wrwg) = 0, and apply Lemma 5.4 again.

Proposition 5.6. The curve Cl is a twist over k of the curve Cy, for a # —10,—2,—1,0,2 which does not admits
a non-singular plane model over k and the defining equations of C, in P° are the ones given in Proposition 5.5
plus the extra equation:

w3 + 14wswy + a(ws — Twswy) = 0
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5.4. A non-singular plane model for the twist of C/ over finite fields. We consider the reductions C,
and C, at a prime p of good reduction of the curve C,/k and the twist C’. /k computed in subsection 5.3. Since
k = Q(¢3), the resulting reductions curves are defined over a finite field Fy with ¢ = 1 mod 3, and ¢ = p! for
some f € Nand p | p. We also assume that p > 21 = (6—1)(6—2)+1 in order to ensure that Aut(Cy) ~< 54,5 >,
see [1, §6] and Lemma 4.6.

The natural map G — G, induces a map H'(k, Aut(C,)) — H'(F,, Aut(C,)). Since Z'(F,, Aut(C,)) <
Zl(G]Fq, PGL;(F,)) and H'(Gr,, PGL3(F,)) = 1, see lemma 2.9, the reduction twist has a non-singular plane
models.

Clearly, if 7 € F27 then the twist C!, becomes trivial. Otherwise, we get that the reduction of the cocycle & is

given by its image at 7, the Frobenius endomorphism [17], and &, can take the values

00 ¢
100 ,
010

where e = 0,1,2 according to the splitting behaviour of the prime p in L = k(+/7). In the first case, we
get the trivial twist. In the later and the former, let assume e = 1 (the other can be treat symmetrically)
and ¢ # 1 mod 9, we can then take a generator n of Fys/F,, such that n* = (5. Then, the cocycle is given
(&, = ¢7¢~1) by the isomorphism

I n 7
o= 7)2 Cg 7 : C’(/l — C,,
n ¢n? (3

and the twist C/, has a non-singular plane model

Cl: 222+ 2%y + Gy’x) — 5(1 + CG3)(y* 2" + 2%2") + 92%y® + 20G3 (2 y2? + 2y 2) — 20(Cs + 1)wy®2°+

ta(— (22 + 2%y + Gay’u) + 2007 — 2(Cs + 1) (2% +y"2%) = G(27y2® — 2%y’2) + (G + Day?s?).

If ¢ =1 mod 9, the same ¢ works, but this time the cocycle becomes trivial since n € [F,.

6. TWISTS OF SMOOTH PLANE CURVES WITH DIAGONAL CYCLIC AUTOMORPHISM GROUP

We observed in Remark 4.4, that the algorithm for computing Twisty(C') described in [16] can be substantially
improved if the smooth curve C' over k admits a non-singular plane model and such that the morphism ¥ in
theorem 4.1 is trivial.

In this section, we apply this algorithm for curves C having an extra property: there exists a plane k-model
F&(X,Y,Z) = 0 having a diagonal cyclic automorphism group, i.e., we have that Aut(Fz) =< a > with a a
diagonal matrix. In such case, we prove that all the elements of Twist,(Fg = 0) are given by non-singular
plane models of the form F,z = 0 with D a diagonal matrix. We apply this method to some particular families
of smooth plane curves.

Definition 6.1. Consider a smooth plane curve C' over k with a non-singular plane model over k given by
Fe(X,Y,Z) = 0. We say that C" € Twist(C) is a diagonal twist of C' if there exist M € PGL3(k) and D a
diagonal matrix in PGL3(k) such that C” is k-isomorphic to Fy, ,&(X,Y, Z) = 0.

The condition of having cyclic automorphism group is not enough to ensure that all the twists having plane
non-singular models, are diagonal twists. We will show an example.

6.1. Diagonal cyclic automorphism group: all twists are diagonal.

Motivated by the results in Section 4 and following the philosophy of the third author’s thesis in [15], we
prove the next result.
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Theorem 6.2. Let C: F5(X,Y,Z) =0 be a non-singular plane curve defined over k. Assume that Aut(Fg) C
PGL3(k) is a non-trivial cyclic group of exact order n (prime with the characteristic of k) generated by an
element o = diag(1,¢2, %) where a,b € N.

Then all the twists Twisty,(C) are given by plane equations of the form F,=(X,Y, Z) = 0 with F,5(X,Y, Z) €
k[X,Y,Z] and D is a diagonal matriz. In particular, the map X is trivial.

Proof. We just need to notice that the map X in Theorem 4.1 factors as follows:
¥ H' (k, Aut(Fpg)) — (H'(k, GL1(%)))* — H' (k, GL3(k)) — H' (k, PGL3(k)).

Hence, ¥ is trivial and all the cocycles are given by diagonal matrices.
O

Remark 6.3. A general statement of the above result is as follows: Assume that C is a curve defined over k
with a plane non-singular model over k say, F&(X,Y,Z) =0, and that there exists [C'] € Twisty,(C) such that
C" admits a non-singular plane model over k given by Foz(X,Y,Z) = 0 with Aut(Fuz) = (diag(l, a b)),
Then, any [C"] € Twist,(C) has a representative C" given by a non-singular plane model over k of the form
FQD? = 0 with D diagonal. In particular, Aut(FQDg) is diagonal, and the twists of C' over k are diagonal. >

We apply now Theorem 6.2 to some particular smooth plane curves with cyclic automorphism group. These
twists are also computed in the appendix by the algorithm in [16] with the improvement of Theorem 4.1 in
order to run the algorithm in [16] in PGL3 instead of PGL, where g the genus of the smooth plane curve.

—_~—

For a finite group G, we denote by M, gP /(@) the elements, in the moduli space M, of smooth, genus g curves
over k, that admit a non-singular plane model, and their full automorphism group is isomorphic to G. The strata

MPFPYG) is the disjoint union of the different components p(M[F!(G)) where p denote different non-conjugate
injective representations of G inside PGL3(k), we refer to [1] for complete details.
Let k be a field of characteristic 0 or p > (d—1)(d —2)+1 (see the last section in [1] and [3]). Then we have:

ey _ fyd d d—1 _
MFPYZ/d(d—1)Z) ={X* + Y+ XZ°" =0},
T d d—1 d—1
MFPUZ/(d—=1)?Z) ={X"+ Y Z+ XZ°" =0}.
Both curves are defined over k£ and they have a non-singular plane model over k whose automorphism groups
are cyclic diagonal of orders d(d — 1) and (d — 1)? respectively. These groups are generated by

. _ . d—1)(d—
dzag(la Cj(dl_ly Cj(d—l))v and dlag(lv C(dfl)Qa C((d_ll))Q( 2))7

respectively, see Theorem 1 in [3].

Theorem 6.4. Let k be a field of characteristic zero or p > (d — 1)(d — 2) + 1. Consider the curve C :
Xd4ydy X 7471 = 0 withd > 5. Then, the set Twisty,(C) is parameterized by Ay := (k*\k*d) X (k*\k*d_l)/ ~,
where (M, N) ~ (M',N") if and only if M' = n®M, N' = nm~N for some n,m € k. More precisely, a pair

2Here we present a different proof of Theorem 6.2 assuming the general statement:

Consider the natural map ¥ : H'(k, Aut(FPQg)) — H'(k,PGL3(k)), then by Theorem 4.1, any twist that has a non-singular
plane model over k is given by some Q' € PGL3(k), i.e. it has a non-singular plane model over k of the form FPQQ’? = 0. This,
in particular, defines the cocycle o — Q' -@ (Q’)~1, which is trivial in H'(k, PGL3(k)) because Q' € PGL3(k).

Now, Q' -2 Q7! € Aut(Fpgog) = (diag(1,£2,€0)) ( observe that Q' : Fpoe — Fpggra), thus QY =
Q' ldiag(1,£% ,£,b') for some integers a’,b’. Writing Q'~1 = (as,j), one easily deduces that o(a; ;) = uja;; with uy = 1,up =
Eﬁ/,U3 = EZ/; therefore fixing j, we get a(ai,j)a;’jl
aij = giay ; for some g; € k. Then, we can consider Q' = DM with D diagonal over k and M € PGL3(k).

Now, the k-model FPQDMﬁ(X7 Y, Z) = 0 is k-isomorphic to FPQDG(X’ Y, Z) = 0, which is a diagonal twist of FPQU(X’ Y, Z) =
0. Thus, all the twists of C over k admitting a non-singular plane model over k are diagonal. But, also the morphism Aut(FPQa) =<
diag(1,£2,€b) > PGL3(k) factors through GL3(k), and H'(k, GL3(k)) is trivial. Hence X is the zero map, and all the twists of

C over k admit also a non-singular plane model over k.

= U(ai/J)a;l].. In particular, ai’ja;,lj is invariant under all o € Gy, and thus

This completes the proof.
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(M,N) € 2, corresponds to a twist of the form MX? + Y% + NXZ% ! = 0 and vice versa, i.e, every twist
corresponds to some pair (M, N) € ;.

Proof. The description of the twists is an easy consequence of Theorem 4.1. Finally, the equivalence of twists

comes from the fact that two such cohomologous cocycles are related by a diagonal matrix.
O

Similarly, we have:

Theorem 6.5. Let k be a field of characteristic zero or positive characteristic > (d—1)(d—2)+1. Consider the
curve X4+ Y917 4 X 291 = 0 with d > 5. Then, the set Twisty(C) is parameterized by Ay = (k* \ k*" ) x
(k*\k*"")/ ~, where (M, N) ~ (M',N") if and only if M' = n®"‘mM, N' = ma=1N for some n,m € k. That
is, we associate to an (M, N) € 2y the twist X4+ MY?¥1Z + NXZ%1 =0, and vice versa.

Remark 6.6. In the work in [3] (or in [2], for curves of genus 6), the first two authors give different families of
curves depending on certain parameters for p(Mgfjj(—\Z7nZ)) with p(Z/nZ) generated by a diagonal matriz. So,
it is possible to apply Theorem 6.2 to compute the twists of curves in these families. In order to get a precise
parametrization of the twists, we need to deal with representative families for such strata p(M, f@nZ)) (see the

ideas of Lercier, Ritzenthaler, Rovetta and Sisjling in [14]). In the upcomming work [4], we study representative
families for the different stratas of p(MFY(G)).

6.2. Aut(C) cyclic does not imply diagonal twists. The hypothesis that the automorphism group of C' is
generated by a diagonal matrix on Theorem 6.2 cannot be removed.

Example 6.7. Consider the non-singular plane curve Cy defined over Q by the equation
XY Y Z+ X2+ (X3Y2+ Y322+ X223 =0
and denote such model by Fg(X,Y, Z) = 0.
Lemma 6.8. The group Aut(Fg;) is isomorphic to Z/3Z (then so does Aut(Cyp)), and it is generated by

[Y; Z; X] as a subgroup of PGL3(Q).

Proof. We have s := [Y; Z; X]| € Aut(Fg;) is of order 3, therefore the group Aut(fi;) should be one of the
groups in [3, Table 2] with 3 dividing the order. First, we note that there are no elements t € Aut(Fc,) of order
2 such that tst = s~!: To show this we consider, for simplicity, the Q-equivalent model Fpg; of the form

4X° +20X°3Y Z + ((—5 —9iV3)Y3 4+ (=5 + 9i\/§)Z3) X2 —6XY222 -4y Z(Y? + Z%),

through the transformation P of the shape

111

1& &3

163 &
Recall that Aut(Fpg;) = P~ Aut(Fg)P, in particular s’ := P~'sP = diag(1;£3;£3) € Aut(Fpg;). Now, if
t' € PGL3(Q) is of order 2 such that ¢'s’t' = s'~!, then ' should be of the shapes [X;aZ;a"'Y], [aZ;Y;a 1 X]
or [aY;a~1Y; Z] for some a € Q. But non of these transformations retains the defining equation F pa, = U, hence
S3 does not occur as a bigger group of automorphisms. Then so are the groups GAP(30,1) and GAP(150,5),
as both groups contain an S5 and also there exists a single conjugacy class of elements of order 3 inside these
groups. In particular, we get the same conclusion for Aut(FCfO), which was to be shown.

Second, assume that Aut(Fg;) is conjugate, through some P € PGL3(Q) to GAP(39,1) such that Fpe (X, Y, Z) =
XYY +Y1Z+XZ*. Now, any element of order 3 in GAP(39, 1), with respect to the given representation in [2, Ta-
ble 2], is conjugate to s or s~1. Then we may impose, without loss of generality, that P~1sP = s, since s is not
conjugate to s~! in PGL3(Q). In particular, P has the shape

(65} (65 Qs
Gaz (GAar (Faz | € PGL3(Q),
G las (3 ag (3 an
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When 7 = 0, we need to cancel the coefficients of Y*, Y*X,Y?X? Y37 and Y?X Z in Fpg, which is impossible
due to invertibility of P. Furthermore, if r = 1 or 2, we also force the coefficients of X°,Y® and Z° in F pa, o
be zeros, and then we obtain a diagonal transformation P. In particular, the defining equation F' poy = 0 is not
the claimed one. That is Aut(F¢,) can not be conjugate to GAP(39,1). Hence, Aut(F¢,) is cyclic of order 3,
and we are done.

O

Lemma 6.9. There exists a non-diagonal twist Cy over Q.

Proof. The defining equation Fz; = 0 has degree 5, thus any twist of Cy admits also a non-singular plane model
over Q defined by I (X, Y, Z) = 0 for some P € PGL3(Q).

We construct the twist following the classical algorithm in [16] and Theorem 4.1 because ¥ is trivial.

Firstly, the twisted product I' := Aut(Fg;) x Gal(K/Q) is isomorphic to Z/3Z (recall that the field K, where
all automorphisms of Fi are defined, is Q). The group Aut(Fg;) is identified with lat[2] (see notation in the
code) inside the lattice of subgroups of I'. Then, if we modify the MAGMA code in [15, Table 5.5] to fit our
case, then we deduce that Fiz has exactly two non-trivial twists for each cyclic cubic field extension L /Q. Since
the set of such extensions is not empty, the curve Cy has a non-trivial twist.

Secondly, a twist of F&; through a diagonal isomorphism D € PGL3(Q) is always trivial (then so are all the
twists of the form Fp, )&z with M € PGL3(Q)). On the other hand, to obtain a non-trivial twist of the form
Fype; with D = diag(1;a;b) € PGL3(Q) and M = (a;;) € PGL3(Q), we must satisfy the 1-cocycle condition
(MD)."(MD)~" = s (recall that ¢ = (MD)™! : Fg= — Fy;pz:), where h is a generator of Gal(L/Q). In

particular,

a1 aai2 bais a21 h(a)a22 h(b)a23
a21 aaz2 bagg = )\ a3zl h(a)a32 h(b)a33
as1 aasg ba33 a1 h(a)alg h(b)a13

for some A € Q. From the 1% column, we get Aas; = a1, \as; = az1, and Aaj; = ag;. Hence A> — 1 = 0, but
also a;; € Q, then A\ = 1. Consequently, h(a®) = a3, and h(b%) = b>. That is a3,b% € LM (= Q), thus a = V/N,
and b = /N’ for some N, N’ € Q. In particular, the twist ¢ has Q(v/N, V/N') as its splitting field, which is
not Galois if a or b does not belong to Q, a contradiction.

Consequently, Cy has a non-trivial twist, which can not be obtained through any diagonal isomorphism
modulo PGL3(Q).
O

Therefore we obtain,

Proposition 6.10. Let C be a non-singular plane curve over k, a field of characteristic zero, admitting a
non-singular plane model F=(X,Y,Z) = 0 over k such that Aut(Fg) C PGL3(k) is a cyclic group of order n
generated by a matriz o, and no element in the conjugacy class of a in PGL3(k) is neither a diagonal matriz.
Then the twists mapping to zero by ¥ (i.e., those ones admitting a plane non-singular model over k), are not
necessarily diagonal twist.

Remark 6.11. The above example in §6.2 extends to positive characteristic p, for p > (d —1)(d — 2) + 1 with
d =5, (Lemma 6.8 remains true by the arguments in [1, §6]), and (3 ¢ k in order to construct the non-trivial
diagonal twist in the proof of Lemma 6.9.

Remark 6.12. Degree 5 is the smallest degree for which such an example exists, see the third author thesis [15]
to discard degree 4 exceptions.

APPENDIX A. THE CLASSICAL ALGORITHM ON TWISTS FOR NON-HYPERELLIPTIC CURVES

The algorithm for computing Twisty (C) of a non-hyperelliptic curve C of genus g > 3 developed in [15, Chp.1]
and [16] has three main steps: (1) canonical model of C, (2) Solutions of the Galois embedding problem, (3)
Explicit equation of Twists.
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Assume that C' is a smooth curve over k with a plane non-singular model over k such that X is trivial, in
such case all the twist admits a plane non-singular model over k, see Theorem 4.1. Now, instead of computing
a canonical model of C, we can consider a plane model over k associated to C, modifying point (1) of the
algorithm. The point (2) is independent of the embedding of C' inside a projective space. In point (3), the

algorithm of [16] requires to investigate the solutions in GL,(k) using [15, Lemma 1.1.3]. Now, in the modified
algorithm, it is enough to look for solutions in GL3(k). As in [15,16], the isomorphisms covering the solutions
of the Galois embedding problems in GL4(k) or GL3(k) is quite hard except that we have a control of the matrix
shape that could appear.

We use the above modified algorithm to compute the twist over k for the curve C : X° +Y? + XZ4 =0
where k is a field of zero characteristic or positive characteristic > (5 —1)(5 —2) + 1 = 13. Here we recover the
result obtained for such curve in Theorem 6.4.

The automorphism group Aut(C) = GAP(20,2) is generated by the elements s := diag(1;1;1), and ¢ :=
diag(1;(s5; 1), so it is defined over K = k(i,(5) (we assume the generic case in which i, (5 ¢ k).

Then, [K : k] = 8 and the Galois group Gal(K/k) is generated by 71 : i +— —i, (5 + (5 and 79 : i = i, (5 > &2
of order 2 and 4 respectively with 77 = 7172 (in particular, Gal(K/k) = GAP(8,2)).

The group Gal(K/k) acts naturally on Aut(C) as: 71 : s+ s>, t+—tand 75 : s+ s, t = t2.

The twisted product I' := Aut(C) x Gal(K/k) is isomorphic to GAP(160, 207), and generated by the elements

11 — 13 _
,xz = zx® and yzy = 2.

x:=(st,1),y:= (1,71) and 2z := (1,72), where 22° = ¢y? = 2* =1, yzy = 2

The degree of the defining equation of C' is coprime with 3, thus, by Corollary 3.7, every twist of C' has a
non-singular plane model over k. Consequently, by Theorem 4.1, the map ¥ is trivial. In particular, we only
look for solutions of the Galois embedding problems, generated by a similar MAGMA code as in [15, Table 5.5],
inside GL3(k), not in GLg(k). One finds that all the twists of C' over k are covered by diagonal matrices, and
they are of the form a X+ Y? + X Z9! for some a, 8 € k through an isomorphism of the shape diag(a;1;c)
in GL3(k).

We thus collect the computations into the following result:

Theorem A.1l. (Galois embedding problems) The set Twisty(C) is completely determined by table 1.

Remark A.2. The Galois embedding problems for C are given by the pairs (G, H) appearing in the second and
the third columns in GAP notations. This means that a twist ¢ : C — C" of C over k has a splitting field L
such that Gal(L/k) =2 G and Gal(L/K) = H for some pair (G,H) in the list. By the aid of Proposition 4.1
in [15], we find solutions to these Galois embedding problems as described in the 8" column, where N € k* \ k*2
and M € k* \ k*>. We also provide generators of G and H in the 4", 5! and 6! columns: G is generated by
the elements h x 1 € H x 1 and g; x 7; with © = 1,2. The integer n(q, m) that appears in the 7 column is the
number of non-equivalent twists of C with the same splitting field L. In the remaining part of the table, we give
the associated set of non-equivalent twists which are defined by equations of the form aX® +Y? + X741 =0
through an isomorphism of the form diag(a;1;c) with a = o, r € {1,25}, £ € {1,2,3,4}, j; € {0,1}.
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TABLE 1. The pairs (G, H), and Twists

ID(G) ID(H) | gen (H) | g1 | 92 | n(q,m) L a B ®
1 s 1 —4
2 s | s —100
— <8,2> <1,1> 1 1 K 1
3 1 | s? 25
4 1|1 1 I
ﬁ
5 < 16,10 > s 1 K(VN) —4rN? o
6 < 16,3 > s s —20rN2
<2,1> s2 2 K(V5N?) 1
7 < 16,3 > 1 s 5rN2
8 < 16,10 > 1 1 K(VN) rN?
9 1| s? 25M¢ o
I
10 1 1 e ~
< 40,12 > <51> t 4 K (YD) Mt i‘m
11 s | s? —100M* o
12 s 1 —aMm?t
13 < 32,25 > <4,1> s 1 1 8 K(YN) 1 (—4)71(25)92 N273+1
(o]
Il
14 | < 80,50 > s |1 K(VN, ¥YM) —4rN2M?* .
S
15 | < 80,34 > 1| s 125 N2 M* %‘
< 10,2 > s2,t 8 K(V5N2, YD) | Mt X
16 | < 80,34 > s s —500rN2 Mt
17 < 80,50 > 1 1 K(VN, YM) rN2M?t
18 | < 160,207 > | < 20,2 > s, t 1] 1 32 K(YN, ¥YM) | MY | (—4)d1(25)d2 N2i3+1 ppt
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