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BIELLIPTIC SMOOTH PLANE CURVES AND QUADRATIC POINTS

ESLAM BADR AND FRANCESC BARS

Abstract. Let Ck be a smooth projective curve over a global field k, which is neither rational nor elliptic.

Harris-Silverman [15], when p = 0, and Schweizer, when p > 0 together with an extra condition on the Jacobian

variety Jac(Ck) arising from Mordell’s conjecture, showed that C has infinitely many quadratic points over some

finite field extension L/k inside k (a fixed algebraic closure of k) if and only if C is hyperelliptic or bielliptic.

Now, let Ck be a smooth plane curve of a fixed degree d ≥ 4 with p = 0 or p > (d−1)(d−2)+1 (up to an extra

condition on Jac(Ck) in positive characteristic). Then, Ck admits always finitely many quadratic points unless

d = 4; see Theorem 2.8. A so-called geometrically complete families for the different strata of smooth bielliptic

plane quartic curves by their automorphism groups, are given; see Theorem 2.3. Interestingly, we show (in a very

simple way) that there are only finitely many quadratic extensions k(
√
D) of a fixed number field k, in which

we may have more solutions to the Fermat’s and the Klein’s equations of degree d ≥ 5; Xd + Y d − Zd = 0 and

Xd−1Y + Y d−1Z +Zd−1X = 0 respectively, than these over k (the same holds for any non-singular projective

plane equation of degree d ≥ 5 over k, and also in general when k is a global field after imposing an extra

condition on Jac(Ck)); see Corollary 2.9.

Finally, given a stratum M(G) of smooth plane bielliptic quartic curves over a number field k associated to an

automorphism group G, we conjecture in section §3 that there are subsets E,D ⊂ M(G) of infinite cardinality,

such that all members of E (resp. D) have finitely (resp. infinitely) many quadratic points over k. We support

our claim when k = Q and G = Z/6Z, or GAP(16, 13); see Theorems 3.2, 3.4, 3.6 and 3.8.

1. The interplay between hyperelliptic (resp. bielliptic) curves and quadratic points

Let k (resp. ksep) be a fixed algebraic (resp. separable) closure of a field k of characteristic p 6= 2. By Ck

we mean a smooth projective curve defined over k of geometric genus gC ≥ 2 (that is, the genus of the base

extension Ck := C ⊗k k is at least two), and non-trivial automorphism group Aut(Ck). The set of all k-points

on Ck is denoted by C(k).

An arithmetic geometer finds a lot of interest to investigate the cardinality of C(k). When k is a global field;

i.e. when k is a finite field extension of either Q or Fp(T ), or it is the function field of P1 over the finite field Fp

(in this case, we denote the finite field k ∩ Fp by Fq, where q is a power of p, a priori).

In zero characteristic, we have the following result on Mordell’s Conjecture due to Faltings [11, 12]:

Theorem 1.1 (Faltings). Given a smooth projective curve Ck as above defined over a number field k, the set

C(k) is always finite.

On the other hand, we obtain by Grauert [14] and Samuel [27, Theorem 4 and 5b] the next result in positive

characteristic:

Theorem 1.2 (Grauert-Samuel). Let Ck be a smooth projective curve over a global field k of characteristic p > 0.

Assume also that Ck is conservative (see the definition in §1.1). Then, C(k) is always finite except possibly when

Ck⊗kk
sep is isomorphic to a smooth projective curve C′ over a finite field Fqn (in this situation, Ck or Ck⊗kk

sep

is called an isotrivial curve). More concretely, for C(k) to be infinite, it suffices the existence of a finite Galois

extension ℓ′/k, an ℓ′-isomorphism ϕ : Cℓ′ = Ck ⊗k ℓ
′ → C′ ⊗Fqn

ℓ′, an injection Gal(ℓ′/k) →֒ Aut(C′ ⊗Fqn
ℓ′) :

s 7→ js := ϕs ◦ ϕ−1, and a point z ∈ C′(ℓ′) \ C′(Fp) satisfying js(z) = zs for all s ∈ Gal(ℓ′/k). Under these

conditions, it exists a finite family (xi)i∈I of points of C′(ℓ′) with xsi = js(xi) for all i ∈ I, s ∈ Gal(ℓ′/k), and
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2 E. BADR AND F. BARS

moreover the infinite set C(k) is given by:

C(k) = (
⋃

i∈I,m≥0

ϕ−1(fm(xi))) ∪
(
C(k) ∩ (ϕ−1(C′(Fqn)))

)

where f : x 7→ xq
nß0

and ß0 is the strict least positive integer ß satisfying (x 7→ xq
nß

) ◦ js = js ◦ (x 7→ xq
nß

) for

all s ∈ Gal(ℓ′/k).1

Remark 1.3. Grauert-Samuel Theorem requires Ck to be geometrically non-singular instead of being conser-

vative, but if Ck is conservative then it is also geometrically non-singular by [14].

Remark 1.4. An example of Theorem 1.2, where an infinite number of points occur, is the Fermat curve

Ck : Xd + Y d = Zd over the global field k = Fp(w, v)/(w
d + vd − 1) with d and p coprime. It is isomorphic to

the Fermat curve over Fp, and we get an infinite set of points over k on it namely, (fn(w), fn(v), 1) for each

positive integer n by using the point (w, v, 1) ∈ C(k) \ C(Fp) where f is the Frobenious x 7→ xp.

For a finite field extension L/k inside k, the set of quadratic points of Ck over L, denoted by Γ2(C,L), is

given by

Γ2(C,L) :=
⋃{

C(L′) : L ⊆ L′ ⊆ kwith [L′ : L] ≤ 2
}
,

where (by an abuse of notation) C(L′) denotes the set of L′-points of CL′ := C ⊗k L
′.

It is a natural question to study whether Γ2(C,L) is finite or not.

Definition 1.5. A smooth projective curve Ck is called hyperelliptic (resp. bielliptic) over k if there exists

a degree two k-morphism to a projective line P1
k (resp. to an elliptic curve Ek) over k. We simply call it

hyperelliptic (resp. bielliptic) if Ck is hyperelliptic (resp. bielliptic) over k.

Remark 1.6. Clearly, if Ck is hyperelliptic over k and k is not a finite field, then Γ2(C, k) is an infinite set.

Also, if Ck is bielliptic over k and Ek has infinitely many k-points, then Γ2(C, k) is again an infinite set.

The following result is well-known in the literature (cf. [28] for (ii)).

Proposition 1.7. Let Ck be a smooth projective curve over k. Then,

(i) Ck is hyperelliptic if and only if there exists a (hyperelliptic) involution w ∈ Aut(Ck), having exactly

2gC + 2 fixed points. In particular, if Ck is hyperelliptic, then w is unique, defined over a finite purely

inseparable extension ℓ/k of k, and it is called the hyperelliptic involution of Ck.

(ii) Ck is bielliptic if and only if there exists a (bielliptic) involution w̃ ∈ Aut(Ck), having 2gC −2 fixed points.

If Ck is bielliptic and gC ≥ 6, then there is a unique bielliptic involution, which belongs to the center of

Aut(Ck) and defined over a finite purely inseparable extension ℓ of k.

1.1. Conservative curves. Let Ck be a smooth projective curve over a global field k of characteristic p > 0.

The genus of Ck relative to k is defined to be the integer gC,k that makes the Riemann-Roch formula hold, that

is, for any k-divisor D of C, of sufficiently large degree; ℓ(D) = deg(D) + 1− gC,k, where ℓ(D) is the dimension

of the k-(Riemann-Roch) vector space associated to D. The relative genus may change under inseparable

extensions of k inside k, see for example [32]. The absolute genus of Ck is defined to be the genus of Ck relative

to k, in particular it equals to the geometric genus gC we have seen before.

The relative genus gC,k to k is an upper bound for the absolute genus gC . We call Ck conservative over k, if

gC = gC,k (in particular, it is not genus-changing under inseparable extensions between k and k).

First, we prove:

Proposition 1.8. Let Ck be a smooth projective curve defined over a global field k of characteristic p > 0, that

is conservative over k. Assume also that Ck is hyperelliptic with hyperelliptic involution w defined over a finite

purely inseparable extension ℓ/k in k. Then, there is a (unique) degree two ℓ-morphism ϕ to a conic Q over ℓ.

Moreover, if Cℓ (or more generally if Cℓ/〈w〉) has an ℓ-point, then we reduce to that Q is ℓ-isomorphic to P1
ℓ .

1It is assumed in [27, Theorem 5b] that all automorphisms of C′ are also defined over Fqn , in particular, f ◦ js = js ◦ f for some

power of the Frobenius. Accordingly, we will impose the latter condition directly.
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Proof. By assumption Cℓ/〈w〉 is a genus 0 curve defined over ℓ. Thus it corresponds to a conic over ℓ, since by

definition it is a twist for P1
ℓ . Next, the covering π : Cℓ → Cℓ/〈w〉 is Galois (being cyclic of degree 2), hence π is

defined over a separable extension of ℓ inside k, a priori. Fix a separable closure ℓsep ⊆ k of ℓ and let Gal(ℓsep/ℓ)

denotes the absolute Galois group. By the uniqueness of the hyperelliptic involution w, π and σπ only differs

by an automorphism ξσ of P1
ℓsep , for any σ ∈ Gal(ℓsep/ℓ). In other words, for any σ ∈ Gal(ℓsep/ℓ), we obtain

ξσ ∈ PGL2(ℓ
sep); the projective general linear group of 2× 2 matrices over ℓsep), where σπ = ξσ ◦ π. It can be

easily checked that ξστ = σξτ ◦ ξσ for all σ, τ ∈ Gal(ℓsep/ℓ). Therefore,

ξ : Gal(ℓsep/ℓ) → PGL2(ℓ
sep) : σ 7→ ξσ

defines a 1-cocycle, in particular, an element of the first Galois cohomology set H1(Gal(ℓsep/ℓ),PGL2(ℓ
sep)).

Using the Twisting Theory for Varieties (cf. [29, III.1]), it exists a conic Q (a twist for P1
ℓ) over ℓ and an

isomorphism ϕ0 : Q → Cℓ/〈w〉 given by the rule ξσ = σϕ0 ◦ ϕ−1
0 , for all σ ∈ Gal(ℓsep/ℓ). Consequently,

ϕ := ϕ−1
0 ◦ π : Cℓ → Q is an ℓ-morphism from Cℓ to Q.

The rest is direct, since a conic over ℓ that has an ℓ-point is ℓ-isomorphic to P1
ℓ . This obviously happens if

Cℓ or Cℓ/〈w〉 has an ℓ-point via the morphism ϕ. �

Corollary 1.9. Let Ck be a smooth projective curve defined over a global field k of characteristic p > 0, that is

conservative over k. Then, Ck is hyperelliptic if and only if there exists a finite extension L/k inside k where

Ck ⊗k L is hyperelliptic over L. In this situation, Γ2(C,L) is an infinite set.

Also, we show:

Proposition 1.10. Let Ck be a smooth projective curve defined over a global field k of characteristic p > 0,

that is conservative over k. Then, Ck is bielliptic if and only if there exists a finite extension L/k inside k

where Ck ⊗k L is bielliptic over L (hence, Γ2(C,L
′) is an infinite set for some finite extension L′/L inside k).

Proof. Assume that Ck is bielliptic and consider a bielliptic involution w̃ ∈ Aut(Ck) as in Proposition 1.7.

Since gC ≥ 2, Aut(Ck) is a finite group, and so we only have finitely many possibilities for the Galois group

Gal(k/k)-action on w̃. Accordingly, w̃ must be defined over a finite field extension L0/k inside k. Because Ck is

also conservative over k, then by making a finite extension L/L0 with L ⊆ k, we get a degree two L-morphism

from Ck ⊗k L to a genus one curve that has L-points, hence to an elliptic curve E over L, and hence Ck is

bielliptic over L. Finally, it suffices to apply base extension to some L ⊆ L′ ⊆ k of finite index so that E ⊗L L
′

has positive rank. Consequently, Γ2(C,L
′) is infinite and we conclude. �

Furthermore, inspired by the case of number fields (Theorems 1.16 and 1.17 below), we have [28, Theorem

5.1]:

Theorem 1.11 (Schweizer, version I). Let Ck be a conservative smooth projective curve over a finite field

extension k of Fq(T ); i.e. k is a global field of characteristic p > 0. Under the conditions that; gC ≥ 3, C(k) 6= ∅,
Ck is not hyperelliptic over k, and that the Jacobian variety Jac(Ck) over k has no non-zero homomorphic images

defined over Fq, then Γ2(C, k) is an infinite set only if Jac(Ck) over k contains an elliptic curve Ek of positive

rank, moreover there is a degree two morphism from Ck to Ek.

Remark 1.12. The conditions on Jac(Ck) imply that Ek is not isotrivial, (i.e. its j-invariant of Ek does

not belong to Fq) and also that any factor of the Jacobian is a Jacobian of an isotrivial curve (as it happens,

for example, by the Jacobian of the Fermat curve Xd + Y d = Zd over a global field of positive characteristic,

relatively prime with d, which is isotrivial).

Remark 1.13. To ensure that the degree two morphism from Ck to Ek is also defined over k, it suffices to

assume that gC ≥ 6 and then to follow the argument of [15, Lemma 5], provided that Castellnuovo’s inequality

holds over the function field extensions over a global field k that are involved in Castellnuovo’s inequality (we

mention that by the proof of [15, Lemma 5] all of these extensions are of degree 2 in our situation). By [31,

Theorem 3. 11. 3], the inequality is true when k is perfect, which is not the case. However, in the proof of

[31, Theorem 3.11.3] under the assumption that Ck is conservative, one only needs to take the characteristic
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p big enough so that inseparable extensions do not appear (for example, to be greater than the degrees of the

function field extensions involved in Castellnuovo’s inequality). Consequently, under the hypothesis of Theorem

1.11 together with the assumptions gC ≥ 6 and p > 2, we have Ck is bielliptic over k.

The next result is a weaker version of Theorem 1.11.

Theorem 1.14 (Schweizer, version II). Let Ck be a smooth projective curve defined over a global field k of

characteristic p > 0, that is conservative over k. Under the conditions that; gC ≥ 3, and that the Jacobian

variety Jac(Ck) over k has no non-zero homomorphic images defined over Fq, then, there exists a finite field

extension L/k inside k such that Γ2(C,L) is infinite if and only if Ck is bielliptic or hyperelliptic.

1.2. Number fields. Let us now assume that k is a global field of characteristic zero, that is, k is a number

field. If we follow the same line of discussion in the proofs of Propositions 1.7, 1.8 and 1.10, we deduce, since

inseparable extensions between k and k do not exist, that:

Proposition 1.15. A smooth projective curve Ck defined over a number field k is hyperelliptic with hyperelliptic

involution w such that C/〈w〉(k) 6= ∅ if and only if it is hyperelliptic over k. Also, for gC ≥ 6, Ck is bielliptic

if and only if it is bielliptic over k.

The next results are quite known to the specialists (they follow from the arguments of Abramovich-Harris in

[1], or from Harris-Silverman in [15]). One also can read a proof in [7].

Theorem 1.16. Let Ck be a smooth projective curve over a number field k with gC ≥ 2. Hence, Γ2(C, k)

is an infinite set if and only if Ck is hyperelliptic over k or bielliptic over k, such that it exists a degree two

k-morphism form Ck to an elliptic curve Ek of positive rank over k.

The next result in [15] is a weaker version of Theorem 1.16, not controlling the base field for quadratic points:

Theorem 1.17 (Harris-Silverman). Let Ck be a smooth projective curve over a number field k with gC ≥ 2.

Hence, there exists a finite field extension L/k inside k such that Γ2(C,L) is an infinite set if and only if Ck is

hyperelliptic or bielliptic.

2. Bielliptic smooth plane curves and their quadratic points

Let k be a field and k ⊆ L ⊆ k be a field extension. A curve C is said to be a smooth (k, L)-plane curve of

degree d or equivalently, L is a plane model field of definition for C, if C as a smooth projective curve is defined

over k such that CL := C ⊗k L admits a non-singular plane model over L, that is, CL is L-isomorphic to a non-

singular homogenous projective polynomial equation F (X,Y, Z) = 0 of degree d with coefficients in L. When

k is a plane model field of definition for C, then Ck has a unique g2d-linear series modulo PGL3(k)-conjugation,

which allows us to embed Ck into P2
k
as a non-singular plane model over k of degree d for some d (in this case,

g := gC = (d − 1)(d − 2)/2). Also, we call C a smooth plane curve of degree d over k when k itself is plane

model field of definition for C.

The present authors and et al. addressed in [5, §2] the problem where non-singular plane models of smooth

projective curves (also of their twists) are defined. For instance, we showed:

Theorem 2.1 (Badr-Bars-Garćıa). Given a smooth (k, ksep)-plane curve C of degree d ≥ 4, it does not neces-

sarily have a non-singular plane model defined over the field k. However, it does in any of the following cases;

if d is coprime with 3, if C(k) 6= ∅, or if the 3-torsion Br(k)[3] of the Brauer group Br(k) is trivial. In general,

C is a smooth (k, L)-plane curve of degree d for some cubic Galois field extension L/k.

It is a basic fact in algebraic geometry that a smooth (k, k)-plane curve of degree d ≥ 4 is non-hyperelliptic.

On the other hand, the (geometric) gonality of a smooth projective curve C is defined to be the minimum

degree of a k-morphism from Ck to the projective line P1
k
. For the special case of smooth (k, k)-plane curves C

of degree d ≥ 4, the gonality equals to d− 1 (cf. Namba [25] for zero characteristic and Homma [17] for positive

characteristic, also one can read the assertion in [35, p. 341]). Consequently, when d ≥ 6, the gonality of C is

at least 5, and C can not be bielliptic. When d = 5, we use the fact that Ck has an automorphism w̃ of order 2
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(a bielliptic involution) that also fixes 2g−2 = 10 points on Ck. Following the techniques in [3], we may assume

(up to PGL3(k)-conjugation) that w̃ : X 7→ X, Y 7→ Y, Z 7→ −Z and Ck : Z4L1,Z + Z2L2,Z + L5,Z , where Li,Z

denotes a homogenous degree i, binary form in X,Y . Thus, w̃ fixes exactly d + 1 = 6 < 10 points on Ck, a

contradiction, and C can not be bielliptic. This proves the result:

Proposition 2.2. A smooth (k, k)-plane curve C of degree d ≥ 5 is neither hyperelliptic nor bielliptic. Also,

C is never hyperelliptic when d = 4.

2.1. Smooth plane quartic curves, which are bielliptic. Next, we characterize smooth (k, k)-plane quartic

curves that might be bielliptic, hence, Γ2(C,L) is infinite for some finite field extension L/k inside k.

Let Mg be the (coarse) moduli space, representing k-isomorphism classes of smooth curves of genus g, and

define the substratum M̃Pl
g (G) ⊂ Mg, where G is a finite non-trivial group, whose k-points are k-isomorphism

classes of smooth plane curves [C], such that Aut(Ck) is PGL3(k)-conjugated to ̺(G), for some injective

representation ̺ : G →֒ PGL3(k).

Lercier-Ritzenthaler-Rovetta-Sijsling in [20, §2] introduced the notions of complete, finite and representative

families for strata of the moduli space Mg when k is any field of characteristic p = 0 or p > 2g+1. In the case

of plane curves, a family C of smooth plane curves over k is said to be complete over k for M̃Pl
g (G) if, for any

algebraic extension k′/k inside k and any k′-point [C]/k′ in the stratum M̃Pl
g (G), there exists a non-singular

plane model for C defined over k′ in the family C, moreover if such a model is always unique, then the family C
is representative over k for M̃Pl

g (G). A family C is geometrically complete (resp. geometrically representative)

if C ⊗k k is complete (resp. representative) over k.

Theorem 2.3 (Bielliptic quartic curves). Let C be a smooth (k, k)-plane quartic curve over a field k of char-

acteristic p = 0 or p > 7 2. Then, C is bielliptic if and only if C ⊗k k is isomorphic to a non-singular plane

model of the form Z4 + Z2L2,Z + L4,Z = 0, where Li,Z is a homogenous binary form in k[X,Y ] of degree i (in

this case, w̃ : X 7→ X, Y 7→ Y, Z 7→ −Z is a bielliptic involution).

Table 1 below gives a geometrically complete families for each substrata (in GAP library [13] notation) of M3

of smooth plane quartic curves over k, which are bielliptic.

Table 1. Bielliptic geometrically complete classification

Aut(C
k
) Families Restrictions

Z/2Z Z4 + Z2L2,Z(X, Y ) + L4,Z(X, Y ) L2,Z(X,Y ) 6= 0, not below

Z/2Z × Z/2Z Z4 + Z2(bY 2 + cX2) + (X4 + Y 4 + aX2Y 2) a 6= ±b 6= c 6= ±a

Z/6Z Z4 + aZ2Y 2 + (X3Y + Y 4) a 6= 0

S3 (X3 + Y 3)Z + X2Y 2 + aXY Z2 + bZ4 a 6= b, ab 6= 0

D4 Z4 + bXY Z2 + (X4 + Y 4 + aX2Y 2) b 6= 0,± 2a√
1−a

GAP(16, 13) Z4 + (X4 + Y 4 + aX2Y 2) ±a 6= 0, 2, 6, 2
√
−3

S4 Z4 + aZ2(Y 2 + X2) + (X4 + Y 4 + aX2Y 2) a 6= 0, −1±√−7

2

GAP(48, 33) Z4 +
(

X4 + Y 4 + (4ζ3 + 2)X2Y 2
)

−
GAP(96, 64) Z4 + (X4 + Y 4) −
PSL2(F7) X3Y + Y 3Z + Z3X −

The algebraic restrictions for the parameters over k, in the last column, are taken so that the defining equation

is non-singular and has no bigger automorphism group. For example, the term “not below” means to assume

more restrictions for no larger automorphism group to occur.

2In case that k is a perfect field, Theorem 2.1 allows us to always assume that C is a smooth plane quartic curve over the base

field k, since d = 4 is coprime with 3.
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Remark 2.4. The two highlighted cases in Table 1 are not in the prescribed form Z4+Z2L2,Z +L4,Z = 0, that

is diag(1, 1,−1) is not a bielliptic involution. However, they do up to PGL3(k)-conjugation. The way to this

is simple; any 3 × 3 projective linear transformation of order two of the plane fixes (pointwise) a line L ⊂ P2
k
,

called its axis. So, we may ask for a change of variables φ such that the transformed L becomes the projective

line Z = 0. For example, for G = S3, we may apply the change of variables




1 −1 1

1 −1 −1

0 2 0


 ,

moving the axis L : X − Y = 0 of φ : X ↔ Y, Z 7→ Z to Z = 0. In particular, we obtain the k-equivalent model

Z4 − 2Z2
(
X2 − 8XY + (2a+ 7)Y 2

)
+
(
X4 + 2(2a− 3)(XY )2 − 8(a− 1)XY 3 + (4a+ 16b− 3)Y 4

)
.

Proof of Theorem 2.3. Given a smooth (k, k)-plane quartic curve C defined by the form Z4+Z2L2,Z +L4,Z = 0

over k, the map Ck → Ck/〈diag(1, 1,−1)〉 is, by Riemann-Hurwitz formula, a two-to-one k-morphism to a genus

one curve over k. Hence, Ck/〈diag(1, 1,−1)〉 is an elliptic over k, and C is bielliptic.

Conversely, let C be a smooth plane quartic curve over k, which is bielliptic. In particular, Ck admits an order

two automorphism that can be taken, up to k-projective equivalence, as w̃ = diag(1, 1,−1) leaving invariant a

non-singular plane model F (X,Y, Z) = 0 of Ck. By non-singularity, F (X,Y, Z) should be of degree at least 3 in

each variable. Consequently, F (X,Y, Z) reduces to the one of the forms Z4 + Z2L2,Z(X,Y ) + L4,Z(X,Y ) = 0

or Z3L1,Z +ZL3,Z = 0 (cf. [3]). However, the latter case is absurd, since it decomposes into Z ·G(X,Y, Z) and
it becomes singular.

The stratification by automorphism groups follows from the work of Henn [16] (see also [6]), and for the fami-

lies being geometrically complete, we refer to [20, 21]. �

Be noted that any of the strata M̃Pl
3 (G), whenever it is non-empty, corresponds to a unique representation

̺ : G →֒ PGL3(k). Consequently, any two smooth plane quartic curves with automorphism groups isomorphic

to G are also k-isomorphic (this is not the case for higher degrees, since there are smooth (k, k)-plane curves

C,C′ of the same degree d > 4 with isomorphic but non-conjugated automorphism groups, in particular, Ck

and C′
k
are not k-isomorphic (cf. [2, 4])). Accordingly, by the aid of GAP library [13], we can list down all

bielliptic involutions that may happen by considering the fixed ̺(G) given by Henn [16] (cf. [6, 20, 21]):

Notations. We use ζn for a fixed primitive nth root of unity inside k when the characteristic of k is coprime

with n. A projective linear transformation A = (ai,j) of the plane P2
k
is often written as

[a1,1X + a1,2Y + a1,3Z : a2,1X + a2,2Y + a2,3Z : a3,1X + a3,2Y + a3,3Z],

where {X,Y, Z} are the homogenous coordinates of P2
k
.

Corollary 2.5 (Bielliptic involutions). Let C be a smooth (k, k)-plane quartic curve over a field k of character-

istic p = 0 or p > 7. Assume that C is bielliptic, then the set of bielliptic involutions, acting on a non-singular

plane model for Ck in one of the families of Theorem 2.3, are classified as follows:

(i) when G = Z/2Z or Z/6Z; diag(1, 1,−1),

(ii) when G = Z/2Z× Z/2Z; diag(1, 1,−1), diag(1,−1, 1), and diag(−1, 1, 1),

(iii) when G = D4; diag(1, 1,−1), [Y : X : ±Z], and [Y : −X : ±ζ4Z],
(iv) when G = S3; [Y : X : Z], [ζ3Y : ζ23X : Z], and [ζ23Y : ζ3X : Z],

(v) when G = GAP(16, 13); diag(1, 1,−1), diag(1,−1, 1), diag(−1, 1, 1), [Y : X : ±Z], and [Y : −X : ±ζ4Z],
(vi) when G = S4; diag(1, 1,−1), diag(1,−1, 1), diag(−1, 1, 1), [Y : X : ±Z], [Z : ±Y : X ], and [±X : Z : Y ],

(vii) when G = GAP(48, 33); diag(1, 1,−1), diag(1,−1, 1), diag(−1, 1, 1), [Y : X : ±Z], and [Y : −X : ±ζ4Z],
(viii) when G = GAP(96, 64); diag(1, 1,−1), diag(1,−1, 1), diag(−1, 1, 1), [Y : X : ±Z], [Y : −X : ±ζ4Z], [Z :

±Y : X ], [±X : Z : Y ], [Z : ±ζ4Y : −X ], and [±ζ4X : −Z : Y ],
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(ix) when G = PSL2(F7); Let α := −1+
√
−7

2 , and

g :=




−2 α −1

α −1 1− α

−1 1− α −1− α


 , h :=




0 1 0

0 0 1

1 0 0


 , s :=




−3 −6 2

−6 2 −3

2 −3 −6


 .

Then, we get the 21 involutions ψ ◦ (φ0 ◦ s ◦ φ−1
0 ) for ψ ∈ 〈g, h〉, where

φ0 :=




1 1 + ζ7α ζ27 + ζ67
1 + ζ7α ζ27 + ζ67 1

ζ27 + ζ67 1 1 + ζ7α


 ◦




−α 1 2α+ 3

2α+ 3 −α 1

1 2α+ 3 −α


 .

Remark 2.6. One observes that for smooth plane quartic curves that are bielliptic, all bielliptic involutions are

defined over a finite separable extension of the base field k, up to conjugation by a linear projective transformation

of the plane.

2.2. Infinitude of quadratic points.

Lemma 2.7. Let Ck be a smooth plane curve of degree d ≥ 4 over k, where k is a global field of characteristic

p > (d− 1)(d− 2) + 1. Then, Ck is conservative over k.

Proof. The result follows from [32, Corollary 2], since the relative genus gC,k = (d−1)(d−2)/2 < (p−1)/2. �

Theorem 2.8. Let C be a smooth plane curve of degree d ≥ 4 over a global field k of characteristic p = 0 or

p > (d− 1)(d− 2)+1, and assume in positive characteristic that Jac(Ck) over k has no non-zero homomorphic

images defined over Fq. For any finite field extension L/k inside k, the set of quadratic points Γ2(C,L) of C

over L is always a finite set when d ≥ 5, also it does when d = 4 and Aut(Ck)
∼= 1,Z/3Z, or Z/9Z. Moreover,

(i) if d = 4 and p = 0, then it exists a number field L/k inside k for which Γ2(C,L) is an infinite set if

and only if Aut(Ck)
∼= Z/2Z, Z/2Z × Z/2Z, Z/6Z, S3, D4, GAP(16, 13), S4, GAP(48, 33), GAP(96, 64),

or PSL2(F7).

(ii) if d = 4 and p > 7, then Jac(C) over k does not contain bielliptic quotients associated to isotrivial

elliptic curves only if Ck belongs to an open set (of the same dimension) of one of the strata M̃Pl
3 (G) with

G ∈ {Z/2Z, Z/2Z × Z/2Z, S3, D4, GAP(16, 13), S4} 3. Moreover, for such C’s (i.e when no isotrivial

elliptic curves appear), there is a finite field extension L/k inside k such that Γ2(C,L) is an infinite set.

Proof. First, when d ≥ 5 or d = 4 and Aut(Ck)
∼= 1,Z/3Z, or Z/9Z, C is neither hyperelliptic nor biel-

liptic (Proposition 2.2 and Theorem 2.3). Therefore, Γ2(C,L) is a finite set (Theorems 1.14, 1.17). Sec-

ond, if d = 4 and p = 0, then, by Theorem 2.3, C is bielliptic if and only if Aut(Ck)
∼= Z/2Z, Z/2Z ×

Z/2Z, Z/6Z, S3, D4, GAP(16, 13), S4, GAP(48, 33), GAP(96, 64), or PSL2(F7). Equivalently, Γ2(C,L) is an

infinite set for some finite extension k ⊆ L ⊆ k (Theorem 1.17). Finally, assume that d = 4 and p > 7, then,

by Lemma 2.7, C is conservative over k. If Aut(Ck) = Z/6Z, GAP(48, 33), GAP(96, 64), or PSL2(F7), then

isotrivial elliptic curves appear in Jac(C) over k (for more details, see Lemma 3.5 and its proof, in particular

the MAGMA code to compute the Jacobian and j-invariants), hence we can not apply Theorem 1.14 in these

situation. Furthermore, in some cases, the j-invariant depends on parameters where some particular special-

izations corresponds to isotrivial elliptic curves, but not the generic case (we again refer to Lemma 3.5), and

this justifies Ck being a member of an open set of one of the prescribed strata M̃Pl
3 (G). This shows the “only

if” part. For the remaining situations of M̃Pl
3 (G) where isotrivial elliptic curves do not occur, we may apply

Proposition 1.10 to deduce that Γ2(C,L) is infinite for some finite field extension L/k inside k. �

The next result maybe is well-known to specialists, however we present a quite easy proof.

3By the virtue of the theorem of Grauert-Samuel in §1, the other non-empty strata M̃Pl

3
(G) not satisfying the hypothesis of

Theorem 2.8 (ii) may also have infinite number of point without need to extend to a degree 2 extension.
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Corollary 2.9. Let d ≥ 5 be a fixed integer, and C be any smooth plane curve of degree d over a global field

k of characteristic p = 0 or p > (d − 1)(d − 2) + 1 (and in positive characteristic we further assume that

Jac(Ck) over k has no non-zero homomorphic images defined over Fq). Then, the number of quadratic field

extensions k ⊂ k′ ⊆ k where C(k′) 6= C(k) are finitely many. In particular, if we consider the Fermat curve

C : Xd+Y d−Zd = 0 of degree d over Q, then C(Q) = C(Q(
√
D)) for all square-free integers D, except possibly

finitely many values for D. That is, there are, in the worst case, only finitely many quadratic number fields in

which we may have more solutions in Q(
√
D) to Xd+Y d−Zd = 0 than these over Q. The same is true for the

Klein curve Xd−1Y + Y d−1Z + Zd−1X = 0, and any other smooth plane curves of degree d over Q or number

fields.

Proof. By definition, we have C(k) ⊆ C(k′) ⊆ Γ(C, k) for any quadratic field extension k ⊂ k′ ⊆ k. We also

know from Theorem 2.8 that Γ2(C, k) is a finite set. Hence, only finitely many k′ could satisfy C(k) ( C(k′). �

3. Quadratic points on smooth plane curves fixing the base field: case Q

In this section, we restrict our attention to smooth (Q,Q)-plane quartic curves C, which are bielliptic (see

Theorem 2.3). Since, the degree d = 4 is relatively prime to 3, we have that C is a smooth plane curve over Q,

that is, Q is not only a field of definition for C, but also a plane-model field of definition.

We find some interest to conjecture the following.

Conjecture 3.1. Fix a stratum of the shape M̃Pl
3 (G), where all of its Q-points are bielliptic, equivalently, take

G 6= 1,Z/3Z,Z/9Z. Then, there is an infinite family E (resp. D)⊆ M̃Pl
3 (G) of Q-isomorphism classes of smooth

plane quartic curves over Q, such that Γ2(C,Q) is a finite (resp. infinite) set, for all [C] ∈ E.

In what follows, we are going to support the above conjecture in two different situations. By the work

of Lercier-Ritzenthaler-Rovetta-Sijsling in [20, §2], we have a parametrization of the (coarse) moduli space of

smooth plane quartic curves in terms of complete and representative families over Q for all the strata M̃Pl
3 (G),

except when G = Z/2Z (a representative family over R does not exist). Moreover, the work of Lorenzo in [21]

detailed the study of the twists of smooth plane quartic curves over Q. These results helps us a lot in our study

of quadratic points in the sense of the previous conjecture. The main idea is to start with a family of smooth

plane quartic curves over Q, having many parameters in the defining equation over Q. This in turns allows us

to construct a subfamily with infinite cardinality of non Q-isomorphic smooth plane quartic curves with the

same automorphism group G (up to group isomorphisms), where its members are mapped to concrete elliptic

curves over Q whose rank is zero (resp. positive) over Q. We note that, in the first case, we may reduce up to

change of variables to some twists over Q that have a unique bielliptic involution defined over Q (in particular,

it suffices to deal with a specific elliptic curve of rank zero, not with family of a elliptic curves over Q).

3.1. The conjecture 3.1 is true for M̃Pl
3 (Z/6Z). Let k be a field of characteristic p = 0 or p > 7. The one

parameter family Ca defined by

Ca : aZ4 + Y 2(Y 2 + aZ2) +X3Y = 0,

where a 6= 0, 4, is a representative family over k for M̃Pl
3 (Z/6Z), see [20, Theorem 3.3]. Thus, any smooth plane

quartic curve C over k with automorphism group isomorphic to Z/6Z has a non-singular plane model in Ca for

a unique a ∈ k, that is, there exists a finite extension L/k inside k where C ⊗k L is L-isomorphic to a unique

non-singular polynomial equation of the form aZ4 + Y 2(Y 2 + aZ2) +X3Y = 0 for some a ∈ k. In particular,

Γ2(C,L) = Γ2(aZ
4 + Y 2(Y 2 + aZ2) +X3Y = 0, L).

We also note that the above family is k-isomorphic to the geometrically complete family in Theorem 2.3

via a diagonal change of variables [20], hence by Corollary 2.5, w̃ = diag(1, 1,−1) is again a unique bielliptic

involution for any smooth curve in the family Ca.

Theorem 3.2. Consider a smooth bielliptic quartic plane curve Ca of the form aZ4+Y 2(Y 2+aZ2)+X3Y = 0

for some a ∈ Q\{0, 4}. Then, the quotient Ca/〈w̃〉 is an elliptic curve of positive rank over Q. In particular, Ca
with a ∈ Q\{0, 4} is an infinite family of bielliptic smooth plane quartic curves over Q whose full automorphism

group isomorphic to Z/6Z, and such that Γ2(Ca,Q) is an infinite set.
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Proof. We work affine with az4 + az2 + x3 + 1 = 0 by taking Y = 1 (observe that, we have a unique point on

Ca with Y = 0 that is also fixed by w̃). In particular, Ca/〈w̃〉 : az2 + az + x3 + 1 = 0. We apply the Q-change

of variables x 7→ −x and z 7→ z − 1
2 to obtain az2 = x3 + a/4− 1. Next, change z 7→ (1/a2)z and x 7→ (1/a)x

to finally get the elliptic curve E/Q : z2 = x3 − a3(1− a/4) whose j-invariant equals to zero. Furthermore, the

point Pa := (x, z) = (a, a2/2) is a non-torsion point on E/Q (if it is not, then it has order m ≤ 10 or m = 12

(cf. [24, Theroem 7’]), and one can check by MAGMA that the order of Pa is distinct from these values).

Consequently, rankQ(Ca/〈w̃〉) ≥ 1 for any a ∈ Q \ {0, 4}, and thus Γ2(Ca,Q) is an infinite set (Theorem 1.16).

Finally, the family Ca is representative for M̃Pl
3 (Z/6Z) over Q, that is Ca and Ca′ in the family with a 6= a′ ∈ Q

can not be Q-isomorphic. Therefore, we get infinitely many smooth plane quartic curves that have infinitely

many quadratic points over Q. �

Now, if we are interested to parameterize the set of k-isomorphism classes of smooth plane quartic curves

over k with automorphism group isomorphic to Z/6Z, then we may use [21, Proposition 3.2.8] to have that the

family with A, n,m ∈ k∗;

CA,n,m : Am2Z4 +mY 2Z2 + nX3Y + Y 4 = 0,

where (A, n,m) ∈ k∗×k∗/k∗3×k∗/k∗2

does4. That is, any smooth plane quartic curve over k with automorphism

group Z/6Z is k-isomorphic to a non-singular plane model in the family CA,n,m for some triple (A, n,m) ∈
k∗ × k∗/k∗

3 × k∗/k∗
2

, in particular, it is bielliptic with unique bielliptic involution w̃ = diag(1, 1,−1), by

Corollary 2.5. Moreover, two such curves are k-isomorphic if and only if they have the same parameter A ∈ k∗.

Therefore, it suffices to assume Γ2(CA,n,m, k) for (A, n,m) ∈ k∗ × k∗/k∗
3 × k∗/k∗

2

in order to investigate the

infinitude of quadratic points over k of smooth plane quartic curves inside M̃Pl
3 (Z/6Z) over k.

Lemma 3.3. For an arbitrary but a fixed (A, n) ∈ k∗ × k∗/k∗
3

, the set Γ2(CA,n,m, k) being finite or infinite is

independent of the choice of m.

Proof. One finds that CA,n,m/〈w̃〉 is k-isomorphic to the elliptic curve DA,n/k : z2 = x3 + n2A2(1−4A)
4 over

k. Indeed, one works affine Y = 1 to easily obtain that CA,n,m/〈w̃〉 is k-isomorphic to the elliptic curve

Az2 + z+ nx3 +1 = 0 over k, in particular, its defining equation and its rank is independent from m. To reach

the Weierstrass form DA,n, we follow the usual way (cf. [30]); first, by the change of variables z 7→ z − 1
2A and

x 7→ −x, we get z2 = (n/A)x3 + 1−4A
4A2 , and after by z 7→ (1/nA2)z and x 7→ (1/An)x. �

Theorem 3.4. There are infinitely many smooth plane quartic curves C over Q in the family CA,n,m, with

(A, n,m) ∈ Q∗ ×Q∗/Q∗3 ×Q∗/Q∗2, such that Γ2(C,Q) is a finite set.

Proof. For example, we may consider the subfamily CA(t),n(t),m : A(t)m2Z4 + mY 2Z2 + n(t)X3Y + Y 4 = 0

where A(t) := (108t2 + 1)/4 and n(t) := 4/t(108t2 + 1), for t = a/b ∈ Q∗ with a, b odd relatively prime integers

(note that n(t) ∈ Q∗3

only if either a or b is even). In this situation, CA(t),n(t),m/〈w̃〉 is always Q-isomorphic

to DA(t),n(t) : z
2 = x3 − 27, which has rank 0 over Q. Since, two curves in the family associated to the triples

(A(t), n(t),m) and (A(t′), n(t′),m′) with A(t) 6= A(t′) are not Q-isomorphic, we get infinitely many smooth

plane quartic curves over Q that have infinitely many quadratic points over Q, which was to be shown. �

3.2. The conjecture 3.1 is true for M̃Pl
3 (GAP(16, 13)). The family defined by

Ca : Z4 + (X4 + Y 4 + aX2Y 2) = 0,

where ±a 6= 0, 2, 6, 2
√
−3, is a geometrically complete family for the stratum M̃Pl

3 (GAP(16, 13)) over Q. As al-

ready mentioned in Corollary 2.5, we have exactly seven bielliptic involutions, namely ι1 := diag(1, 1,−1), ι2 :=

diag(−1, 1, 1), ι3 := diag(1,−1, 1), ι4 := [Y : X : Z], ι5 := [Y : X : −Z], ι6 := [Y : −X : ζ4Z] and

ι7 := [Y : −X : −ζ4Z], where ζ4 is a fixed primitive 4th root of unity in Q.

Lemma 3.5. For a ∈ Q \ {0,±2,±6} and assuming that Ca/〈ιi〉 has a Q-point, then it is Q-isomorphic to an

elliptic curve E/Q of one of the forms:

4It remains to determine the algebraic restrictions on the parameters to ensure non-singularity and no larger automorphism

group. For example, A 6= 1/4, since we get the singular points (0 : ±
√

m/2 : 1) on C1/4,n,m, otherwise.
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Involution E j-invariant

ι1 z2 = x3 − ax2 − 4x+ 4a (16a6 + 576a4 + 6912a2 + 27648)/(a4 − 8a2 + 16)

ι2, ι3 z2 = x3 + (a2 − 4)x 1728

ι4, ι5, ι6, ι7 z2 = x3 + (1− a2/4)x 1728

Proof. The next MAGMA code applied for Ca/〈ι6〉 can also be adapted elsewhere. It assures that Ca/〈ι6〉 is a
smooth curve of genus 1 over Q. Because Ca/〈ιi〉 has rational points, it is Q-isomorphic to its Jacobian variety

over Q, which is an elliptic curve over Q, a priori.

> R<x>:=PolynomialRing(Integers());

> K<k>:=NumberField(x2+1);

> L<a>:=FunctionField(K,1);

> P2<X,Y,Z>:=ProjectiveSpace(L,2);

> g:=X4+Y4+Z4+aX2Y2;

> C:=Curve(P2,g);

> phi1:=iso<C->C|[Y,-X,k*Z],[Y,-X,k*Z]>;

> G1:=AutomorphismGroup(C,[phi1]);

> CG1,prj:=CurveQuotient(G1);

> Genus(CG1);

1

> Jacobian(CG1); E:=Jacobian(CG1);

Elliptic Curve defined by y2 = x3+(-1/4a2+1)x over Multivariate rational function field

of rank 1 over K

> jInvariant(E);

1728

The condition that Ca/〈ιi〉 has rational points is verified in many cases. For example, we can see that Ca/〈ι1〉
is defined inside P3

Q
by the two quadrics −X2X3 +X2

4 = 0, and X2
1 +X2

2 +X2
3 + aX2X3 = 0 over Q. Hence, if

we impose −(a+ 2) ∈ Q∗2 \ {4}, then (
√
−(a+ 2) : 1 : 1 : 1) is an obvious Q-point. �

Consider the family C′
A : AX4+Y 4+Z4+X2Y 2 = 0, where ±A 6= {1/4, 1/36, 1/12}. This is a representative

family over Q (cf. [21, p. 36,37]), in particular, any smooth plane quartic curve over Q with automorphism

group isomorphic to GAP(16, 13) is isomorphic (not necessarily over Q) to a smooth curve CA : AX4 + Y 4 +

Z4 +X2Y 2 = 0 in the family C′
A for an unique A ∈ Q∗ \ {±1/4,±1/36,±1/12}.

The transformed seven bielliptic involutions of any smooth plane quartic curve in the family C′
A over Q are

ι′i := P−1ιiP , for i = 1, . . . , 7, where

P :=




1
4
√
A

0 0

0 1 0

0 0 1




We also impose, once and for all, that A ∈ Q∗ \Q∗4

. In particular, ι′1 = ι1, ι
′
2 = ι2, ι

′
3 = ι3 are the only bielliptic

involutions defined over Q.

By the work of E. Lorenzo Garćıa in [21, Chp. 3], we know that any diagonal twist of CA, for a fixed A, in

the family C′
A is Q-isomorphic to

CA,m,q : mAX4 + q2mY 4 + Z4 + qmX2Y 2 = 0,

for some A,m, q ∈ Q∗, where two of twists {A,m, q} and {A′,m′, q′} are Q-isomorphic if A = A′,m ≡
m′ mod Q∗4

and q ≡ q′ mod Q∗2

. First, we consider smooth curves of the form CA,m,q with (A,m, q) ∈
Q∗ × Q∗/Q∗4 × Q∗/Q∗2

. Next, the quotient curve CA,m,q/〈ι′3〉 is a genus one curve Q-isomorphic to y2 +

(1/m)z4 − (1/4 − A) = 0, in particular it is independent of the parameter q ∈ Q∗/Q∗2

. Let us assume that

f := 1/4−A is a square (hence, CA,m,q/〈ι′3〉 has a Q-point), and after one may use Maple’s Weierstrassform

function

> algcurves:-Weierstrassform(y2 - (-1/m)z4 - f, x, y, u, v);
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which returns the normal form in variables u, ν:

ν2 = u3 + ((1 − 4A)/m)u.

Theorem 3.6. Consider a smooth bielliptic quartic plane curve in the family CA,m,q : mAX4 + q2mY 4 +

Z4 + qmX2Y 2 = 0, for some q ∈ Q∗ \ Q∗2

and A,m ∈ Q∗ \ Q∗4

such that 1/4 − A is a square. Then, the

quotient CA,m,q/〈w̃〉, where w̃ = diag(1,−1, 1), is an elliptic curve of positive rank over Q. In particular, CA,m,q

gives an infinite family of smooth plane quartic curves C over Q whose automorphism group is isomorphic to

GAP(16, 13), and Γ2(C,Q) is an infinite set.

Proof. We have seen above that CA,m,q/〈w̃〉 is Q-isomorphic to DA,m : ν2 = u3+Du with D := (1−4A)/m inde-

pendently from the parameter q ∈ Q∗/Q∗2

. It now suffices to specialize A,m accordingly so that rankQ(DA,m)

is positive, hence Γ2(C,Q) is infinite. For example, take D := (1 − 4A)/m = p, where p is a prime integer

< 1000 and congruent to 5 modulo 8, so the rank is always 1 in accordance with the conjecture of Selmer and

Mordell (see [8]). Take the case D := (1 − 4A)/m = −p, where p is a Fermat or a Mersenne prime, then the

ranks 0, 1 and 2 were found (see [19]). Take D := (1 − 4A)/m = −n, where n is related to the positive integer

solutions of the diophantine equation n = α4 + β4 = γ4 + µ4, then the rank is at least 3 (see [18]). Take

D := (1 − 4A)/m = −pq, where p and q are two different odd primes, then, up to an extra condition, a family

of rank 4 was found (see [22]), etc... Finally, by [21, Proposition 3.2.9], two twists CA,q,m and CA,q′,m′ , with

(A,m, q), (A,m′, q′) ∈ Q∗ × Q∗/Q∗2 × Q∗/Q∗4

are Q-isomorphic only if m = m′ in Q∗/Q∗4

. Consequently, for

any fixed A, we can run m and q as before to obtain infinitely many non-Q-isomorphic smooth plane quartic

curves with infinitely many quadratic points over Q. �

Now, we ask for an infinite family of smooth quartic curves over Q in the stratum M̃Pl
3 (GAP(16, 13)) such

that the quotient by any bielliptic involutions may only provide elliptic curves of rank 0 over Q. In particular,

the set quadratic points over Q is finite. To do so, we turn out to non-diagonal twists of CA, for a fixed A ∈ Q∗,

that are parameterized (see [21, Proposition 3.2.9]) by

Ca,b,m,q,A : 2aX4 + 8bmX3Y + 12amX2Y 2 + 8bm2XY 3 + 2am2Y 4 + q(X2 −mY 2)2 + Z4 = 0

wherem ∈ Q∗, a, b, q ∈ Q satisfy a2−b2m = q4A. Two such twists {a, b,m} and {a′, b′,m′} for CA are equivalent

if and only if m ≡ m′ modQ∗2 and that there exist c, d ∈ Q such that a+ b
√
m = (c+ d

√
m)4(a′ + b′

√
m).

The transformed seven bielliptic involutions of any smooth plane quartic curve Ca,b,m,q,A in the family

Ca,b,m,q,A over Q are ι′′i := P ′−1ι′iP
′, for i = 1, . . . , 7, where

P ′ :=




4
√
a+ b

√
m

√
m 4
√
a+ b

√
m 0

4
√
a− b

√
m −√

m 4
√
a− b

√
m 0

0 0 1




One can check that diag(1, 1,−1) is the unique bielliptic involution defined over Q for Ca,b,m,q,A, when A /∈ Q∗4

and m /∈ Q∗2

. Thus, the only way to obtain a degree two Q-morphisms to elliptic curves over Q is to quotient

by w̃ := diag(1, 1,−1). Assume moreover that the quotient family Ca,b,m,q,A/〈w̃〉 has Q-points (for example, we

fix q = −2a and we always get the point (0 : 1 : 0)), hence Ca,b,m,q=−2a,A/〈w̃〉 is Q-isomorphic to its Jacobian

variety, which (by MAGMA) is given by (for simplicity, we impose a = −b, which is enough for our proposes):

Em,q : y
2 = x3 + 8qmx2 + 16q2m3x.

With respect to the specialization q = −2a = 2b, we should have A = (1−m)
4q2 and we always impose A /∈ Q∗4

.

Lemma 3.7. The two parameter family Em,q : y
2 = x3 +8qmx2 + 16q2m3x, for q ∈ Q and m ∈ Q∗ \Q∗2 such

that 1−m
4q2 /∈ Q∗4

, contains infinitely many elliptic curves Em,q of rank 0 over Q. More precisely, for any fixed

m ∈ Z \ Z2 with m /∈ {1− h2 |h ∈ Z}, there exist infinitely many q ∈ Q∗modQ∗2

with qm square-free integer,

and for which rankQ(Em,q) = 0.

Proof. If we specialize m,mq ∈ Z so that m /∈ Z2 and mq is square-free, then the elliptic curve Em,q is Q-

isomorphic to the quadratic twist ED : Dy2 = x3+8x2+16mx for E : y2 = x3+8x2+16mx over Q, associated
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to D = mq; indeed, if we multiply the defining equation for ED by D3 and then apply the change of variables

y 7→ (1/D2)y and x 7→ (1/D)x we obtain the equation of Em,q. We know that E/Q is modular by the work of

so many people around; mainly C. Breuil, B. Conrad, F. Diamond, R. Taylor and A. Wiles (cf. [9, 10, 33, 34]).

Therefore, we deduce from by L. Main-R. Murty [23] (cf. see also the first line of the abstract [26]) that for

a fixed m there are infinitely many square-free integers D = mq so that ED has rank 0 over Q (each D is

congruent to 1 mod 4n, where n is the conductor of the elliptic curve E/Q). In particular, we get infinitely

many elliptic curves Em,q (corresponding to infinitely many such q’s mod Q∗2

) of rank 0 over Q. The condition

that m /∈ Z2 with m /∈ {1− h2 |h ∈ Z} is to ensure that A is not a fourth power. �

Theorem 3.8. The two parameter family

Cm,q : −qX4 + 4qmX3Y − 6qmX2Y 2 + 4qm2XY 3 − qm2Y 4 + q(X2 −mY 2)2 + Z4 = 0,

for q ∈ Q∗ \ Q∗2

and m ∈ Q∗/Q∗2

such that A = 1−m
4q2 /∈ Q∗4

, contains infinitely many, non Q-isomorphic,

smooth plane curves C over Q that have only finitely many quadratic points over Q.

Proof. If we specialize q = −2a = 2b in the family Ca,b,m,q,A mentioned above, then we get the subfamily Cm,q.

In particular, any smooth plane curve in Cm,q is bielliptic and has only one bielliptic involution w̃ over Q.

Furthermore, by Lemma 3.7, for any m ∈ Z \ Z2 with m /∈ {1 − h2 |h ∈ Z}, there exists an infinite number

of q ∈ Q∗modQ∗2

with mq a square-free integer, such that Cm,q/〈w̃〉 is an elliptic curve over Q and whose

rank is zero. Therefore, the number of quadratic points over Q is finite by Theorem 1.16. Moreover, if any two

curves Cm,q and Cm,q′ , which gives rank 0, are Q-isomorphic, then C(1−m)/4q2 : 1−m
4q2 X

4+ Y 4 +Z4+X2Y 2 = 0

and C(1−m)/4q′2 : 1−m
4q′2 X

4 + Y 4 + Z4 +X2Y 2 = 0 are Q-isomorphic (recall that Cm,q and Cm,q′ are twists for

C(1−m)/4q2 and C(1−m)/4q′2 , respectively), but this contradicts the fact that the family C′
A : AX4 + Y 4 + Z4 +

X2Y 2 = 0 is a representative family for over Q for the stratum M̃Pl
3 (GAP(16, 13)). �

Remark 3.9. The previous discussion tends to be applicable for any zero-dimensional stratum M̃Pl
3 (G), that

is, when G = {GAP(48, 33),GAP(96, 64),PSL2(F7)}. However, once we start with families that parameterize

the twists over Q, we need to precise the algebraic restrictions on the parameters that appear in the defining

equations, which characterize when two twists are Q-equivalent. This is a key point in order to construct an

infinite family of non Q-isomorphic smooth plane quartic curves with infinitely (resp. finitely) many quadratic

points over Q. In particular, one may check Conjecture 3.1 for Fermat and Klein quartic curves considering all

the details of constructing their twists in [21].
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