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PLANE MODEL-FIELDS OF DEFINITION, FIELDS OF DEFINITION, THE FIELD OF

MODULI OF SMOOTH PLANE CURVES

ESLAM BADR AND FRANCESC BARS

Abstract. Given a smooth plane curve C of genus g ≥ 3 over an algebraically closed field k, a field L ⊆ k is

said to be a plane model-field of definition for C if L is a field of definition for C, i.e. ∃ a smooth curve C′ defined

over L where C′ ×L k ∼= C, and such that C′ is L-isomorphic to a non-singular plane model F (X,Y,Z) = 0 in

P2

L
.

In this short note, we construct a smooth plane curve C over Q, such that the field of moduli of C is not a

field of definition for C, and also fields of definition do not coincide with plane model-fields of definition for C.

As far as we know, this is the first example in the literature with the above property, since this phenomenon

does not occur for hyperelliptic curves, replacing plane model-fields of definition with the so-called hyperelliptic

model-fields of definition.

1. Introduction

Consider F the base field for an algebraically closed field k. Let F ⊆ L ⊆ k be fields, given a smooth

projective curve C over k, then C is defined over L if and only if there is a curve C′ over L that is k-isomorphic

to C, i.e. C′ ×L k ∼= C. In such case, L is called a field of definition of C. We say that C is definable over L if

there is a curve C′/L such that C and C′ ×L k are k-isomorphic.

Definition 1.1. The field of moduli of a smooth projective curve C defined over k, denoted by KC , is the

intersection of all fields of definition of C.

It becomes very natural to ask when the field of moduli of a smooth projective curve C is also a field of

definition. A necessary and sufficient condition (Weil’s cocycle criterion of descent) for the field of moduli to be

a field of definition was provided by Weil [12]. If Aut(C) is trivial, then this condition becomes trivially true

and so the field of moduli needs to be a field of definition. It is also quite well known that a smooth curve C of

genus g = 0 or 1 can be defined over its field of moduli, where g is the geometric genus of C. However, if g > 1

and Aut(C) is non-trivial, then Weil’s conditions are difficult to be checked and so there is no guarantee that

the field of moduli is a field of definition for C. This was first pointed out by Earle [4] and Shimura [11]. More

precisely, in page 177 of [11], the first examples not definable over their field of moduli are introduced, which are

hyperelliptic curves over C with two automorphisms. There are also examples of non-hyperelliptic curves not

definable over their field of moduli given in [2, 5]. B. Huggins [6] studied this problem for hyperelliptic curves

over a field k of characteristic p 6= 2, proving that a hyperelliptic curve C of genus g ≥ 2 with hyperelliptic

involution ι can be defined over KC when Aut(C)/〈ι〉 is not cyclic or is cyclic of order divisible by p.

On the other hand, one may define fields of definition of models of the same concrete type for a smooth

projective curve C. For example, if C is hyperelliptic, a field M is called a hyperelliptic model-field of definition

for C if M , as a field of definition for C, satisfies that C is M -isomorphic to a hyperelliptic model of the form

y2 = f(x), for some polynomial f(x) of degree 2g + 1 or 2g + 2.

By the work of Mestre [10], Huggins [5, 6], Lercier-Ritzenthaler [7], Lercier-Ritzenthaler-Sijsling [8] and

Lombardo-Lorenzo in [9], one gets fair-enough characterizations for the interrelations between the three fields;

the field of moduli, fields of definition and hyperelliptic model-fields of definition. For instance, if C is hyperel-

liptic, then there are always two of these fields, which are equal. Summing up, one obtains the next table issued

from Lercier-Ritzenthaler-Sijsling [8], where k = F is a perfect field of characteristic char(F ) 6= 2:
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H = Aut(C)/〈ι〉 Conditions Fields of definition = The field of moduli=

Hyperelliptic model-fields A field of definition

Not tamely cyclic Yes Yes

Tamely cyclic with #H > 1
g odd,#Hodd No Yes

g even or #H even Yes No

Tamely cyclic with #H = 1
g odd No Yes

g even Yes No

By tamely cyclic, we mean that the group is cyclic of order not divisible by the char(F ).

Now, consider a smooth plane curve C, i.e. C viewed as a smooth curve over k admits a non-singular plane

model defined by an equation of the form F (X,Y, Z) = 0 in P2
k
, where F (X,Y, Z) is a homogenous polynomial

of degree d ≥ 4 over k with g = 1
2 (d − 1)(d − 2) ≥ 3. Similarly, we define a so-called plane model-fields of

definition for C:

Definition 1.2. Given a smooth plane curve C over k, a subfield M ⊂ k is said to be a plane model-field of

definition for C if and only if the following conditions holds

(i) M is a field of definition for C.

(ii) ∃ a smooth curve C′ defined over M , which is k-isomorphic to C, and M -isomorphic to a non-singular

plane model F (X,Y, Z) = 0, for some homogenous polynomial F (X,Y, Z) ∈M [X,Y, Z] of degree d ≥ 3.

In this short note, we start with a smooth plane curve C over Q where the field of moduli is not a field of

definition by the work of B. Huggins in [5]. Next, we go further, following the techniques developed in [1], to

construct a twist of C, for which there is a field of definition for C, which is not a plane model-field of definition.

Acknowledgments. We would like to thank Elisa Lorenzo and Christophe Ritzenthaler for bringing this

problem to our attention, as a consequence of our discussion with them in BGSMath-Barcelona Graduate

School in March 2017.

2. The example

Consider the Hessian group of order 18, denoted by Hess18, which is PGL3(Q)-conjugate to the group

generated by

S :=







1 0 0

0 ζ3 0

0 0 ζ23






, T :=







0 1 0

0 0 1

1 0 0






, and R :=







1 0 0

0 0 1

0 1 0






.

First, we reproduce an example, by B. Huggins in [5, Chp. 7, §2], of a smooth Q-plane curve of genus 10 not

definable over its field of moduli, and with full automorphism groups Hess18.

Definition 2.1. A quaternion extension of a field K is a Galois extension K ′/K such that Gal(K ′/K) is

isomorphic to the quaternion group of order 8.

Definition 2.2. ( [5, Lemma 7.2.3]) A field K is of level 2 if −1 is not a square in K, but it is a sum of two

squares in K.

Lemma 2.3. ( [5, Lemma 7.2.3]) Let K be a field of level 2. Then, for u, v ∈ K∗ \ (K∗)2 such that uv /∈ (K∗)2,

K(
√
u,

√
v) is embeddable into a quaternion extension of K if and only if −u is a norm from K(

√−v) to K

(i.e. −u = x2 + vy2 for some x, y ∈ K).

For instance, the field K := Q(ζ3) is of level 2, since (ζ23 )
2 + ζ23 = −1 and

√
−1 /∈ K. It is easily shown

that ±2 are not norms from K(
√
−13) to K. So neither K(

√
2,
√
13) nor K(

√
−2,

√
13) are embeddable into a

quaternion extension of K.

Now fix K to be the field Q(ζ3), and define the following:

φ := XY Z,

ψ := X3 + Y 3 + Z3,

χ := (XY )3 + (Y Z)3 + (XZ)3.
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Suppose that u, v ∈ Q∗, such that L := K(
√
u,

√
v) is a Z/2Z×Z/2Z extension of K that can not be embedded

into a quaternion extension of K. Let

cφ2 := ζ3
√
u+

√
v + ζ23

√
uv,

cφψ := ζ23
√
u+

√
v + ζ3

√
uv,

cψ2 :=
√
u+

√
v +

√
uv − 1

12
.

Fix an algebraic closure Q of Q containing L as above.

Theorem 2.4. (B. Huggins, [5, Lemma 7.2.5 and Proposition 7.2.6]) Following the above notations, let

F√
u,

√
v(X,Y, Z) := cφ2φ2 − 6cφψφψ − 18cψ2ψ2 + χ.

Then the equation F√
u,

√
v(X,Y, Z) = 0 such that F√

u,
√
v(X, 1, 1) is square free, defines a smooth Q-plane curve

C over Q, with automorphism group Hess18. The field of moduli KC is K = Q(ζ3), but it is not a field of

definition.

Remark 2.5. The condition that F√
u,

√
v(X, 1, 1) is square free is possible. For example, with u = 2 and v = 13,

the resultant of F√
2,
√
13(X, 1, 1) and

∂F
∂X (X, 1, 1) is not zero.

Lemma 2.6. Let C be a smooth curve defined over an algebraically closed field k, with F = k and k perfect.

An k-isomorphism φ : C′ → C does not change the field of moduli or fields of definition, that is both C and C′

have the same fields of moduli and fields of definitions.

Proof. A field L ⊆ k is a field of definition for C if and only if there exists a smooth curve C′′ over L, such that

C′′×L k is k-isomorphic to C through some ψ : C′′×L k → C. Hence φ−1 ◦ψ : C′′×L k is a k-isomorphism, and

L is a field of definition for C′. The converse is true by a similar discussion. Consequently, the field of moduli

for C and C′ coincides, being the intersection of all fields of definition. �

Corollary 2.7. Consider a smooth Q-plane curve C defined by an equation of the form

cφ2

p2
(XY Z)2− 6cφψ

p
(XY Z)(X3+

1

p
Y 3+

1

p2
Z3)−18cψ2(X3+

1

p
Y 3+

1

p2
Z3)2+

1

p
X3Y 3+

1

p3
(Y Z)3+

1

p2
X3Z3 = 0,

where p ∈ Q, in particular C admits Q(
√
u,

√
v, ζ3) as a plane model-field of definition for C. Then Aut(C) is

isomorphic to Hess18. Moreover, the field of moduli KC is K = Q(ζ3), but it is not a field of definition.

Proof. Since C is Q( 3
√
p)-isomorphic to F√

u,
√
v(X,Y, Z) = 0 through a change of variables of the shape φ =

diag(1, 1/ 3
√
p, 1/ 3

√

p2), therefore they have conjugate automorphism groups. Moreover, fields of definition and

the field of moduli of both curves are the same by Lemma 2.6. Consequently, the field of moduli KC is

K = Q(ζ3), but it is not a field of definition, using Theorem 2.4. �

Theorem 2.8. Consider the family Cp of smooth plane curves over the plane model-field of definition L =

Q(
√
u,

√
v, ζ3) given by an equation of the form

cφ2

p2
(XY Z)2− 6cφψ

p
(XY Z)(X3+

1

p
Y 3+

1

p2
Z3)−18cψ2(X3+

1

p
Y 3+

1

p2
Z3)2+

1

p
X3Y 3+

1

p3
(Y Z)3+

1

p2
X3Z3 = 0,

where p is a prime integer such that p ≡ 3 or 5 mod 7. Given a smooth plane curve C over L in Cp, then there

exists a twist C′ of C over L which does not have L as a plane model-field of definition. Moreover, the field of

moduli of C′ is Q(ζ3), and is not a field of definition for C′.

Proof. Consider the Galois extension M ′/L with M ′ = L(cos(2π/7), 3
√
p), where all the automorphisms of

C := C ×L Q are defined. Let σ be a generator of the cyclic Galois group Gal(L(cos(2π/7))/L). We define a

1-cocycle on Gal(M ′/L) ∼= Gal(L(cos(2π/7))/L)×Gal(L( 3
√
p)/L) to Aut(C) by mapping (σ, id) 7→ [Y : Z : pX ]

and (id, τ) 7→ id. This defines an element of H1(Gal(M ′/L),Aut(C)), coming from the inflation of an element

in H1(Gal(L(cos(2π/7))/L),Aut(C))Gal(M
′/L(cos(2π/7)))).

This 1-cocycle is trivial if and only if p is a norm of an element of L(cos(2π/7) over L. However, this is not

the case, since Q(cos(2π/7)) and L are disjoint with [L : Q] and [Q(cos(2π/7)) : Q] coprime, and moreover p is
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not a norm of an element of Q(cos(2π/7)) over Q being inert by our assumption. Consequently, the twist C′ is

not L-isomorphic to a non-singular plane model in P2
L by [1, Theorem 4.1]. That is, L is not a plane model-field

of definition for C′. The last sentence in the theorem follows by Lemma 2.6 and Corollary 2.7. �

Remark 2.9. By our work in [1], we know that a non-singular plane model of C′ exists over at least a degree

degree 3 extension of L.
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