PLANE MODEL-FIELDS OF DEFINITION, FIELDS OF DEFINITION, THE FIELD OF MODULI OF SMOOTH PLANE CURVES

ESLAM BADR AND FRANCESC BARS

ABSTRACT. Given a smooth plane curve \overline{C} of genus $g \ge 3$ over an algebraically closed field \overline{k} , a field $L \subseteq \overline{k}$ is said to be a *plane model-field of definition for* \overline{C} if L is a field of definition for \overline{C} , i.e. \exists a smooth curve C' defined over L where $C' \times_L \overline{k} \cong \overline{C}$, and such that C' is L-isomorphic to a non-singular plane model F(X, Y, Z) = 0 in \mathbb{P}^2_L .

In this short note, we construct a smooth plane curve \overline{C} over $\overline{\mathbb{Q}}$, such that the field of moduli of \overline{C} is not a field of definition for \overline{C} , and also fields of definition do not coincide with plane model-fields of definition for \overline{C} . As far as we know, this is the first example in the literature with the above property, since this phenomenon does not occur for hyperelliptic curves, replacing plane model-fields of definition with the so-called hyperelliptic model-fields of definition.

1. INTRODUCTION

Consider F the base field for an algebraically closed field \overline{k} . Let $F \subseteq L \subseteq \overline{k}$ be fields, given a smooth projective curve \overline{C} over \overline{k} , then \overline{C} is *defined* over L if and only if there is a curve C' over L that is \overline{k} -isomorphic to \overline{C} , i.e. $C' \times_L \overline{k} \cong \overline{C}$. In such case, L is called a *field of definition* of \overline{C} . We say that \overline{C} is *definable* over L if there is a curve C'/L such that \overline{C} and $C' \times_L \overline{k}$ are \overline{k} -isomorphic.

Definition 1.1. The *field of moduli* of a smooth projective curve \overline{C} defined over \overline{k} , denoted by $K_{\overline{C}}$, is the intersection of all fields of definition of \overline{C} .

It becomes very natural to ask when the field of moduli of a smooth projective curve \overline{C} is also a field of definition. A necessary and sufficient condition (Weil's cocycle criterion of descent) for the field of moduli to be a field of definition was provided by Weil [12]. If $\operatorname{Aut}(\overline{C})$ is trivial, then this condition becomes trivially true and so the field of moduli needs to be a field of definition. It is also quite well known that a smooth curve \overline{C} of genus g = 0 or 1 can be defined over its field of moduli, where g is the geometric genus of \overline{C} . However, if g > 1 and $\operatorname{Aut}(\overline{C})$ is non-trivial, then Weil's conditions are difficult to be checked and so there is no guarantee that the field of moduli is a field of definition for \overline{C} . This was first pointed out by Earle [4] and Shimura [11]. More precisely, in page 177 of [11], the first examples not definable over their field of moduli are introduced, which are hyperelliptic curves over \mathbb{C} with two automorphisms. There are also examples of non-hyperelliptic curves not definable over their field of moduli given in [2, 5]. B. Huggins [6] studied this problem for hyperelliptic curves over a field \overline{k} of characteristic $p \neq 2$, proving that a hyperelliptic curve \overline{C} of genus $g \ge 2$ with hyperelliptic involution ι can be defined over $K_{\overline{C}}$ when $\operatorname{Aut}(\overline{C})/\langle \iota \rangle$ is not cyclic or is cyclic of order divisible by p.

On the other hand, one may define fields of definition of models of the same concrete type for a smooth projective curve \overline{C} . For example, if \overline{C} is hyperelliptic, a field M is called a hyperelliptic model-field of definition for \overline{C} if M, as a field of definition for \overline{C} , satisfies that \overline{C} is M-isomorphic to a hyperelliptic model of the form $y^2 = f(x)$, for some polynomial f(x) of degree 2g + 1 or 2g + 2.

By the work of Mestre [10], Huggins [5, 6], Lercier-Ritzenthaler [7], Lercier-Ritzenthaler-Sijsling [8] and Lombardo-Lorenzo in [9], one gets fair-enough characterizations for the interrelations between the three fields; the field of moduli, fields of definition and hyperelliptic model-fields of definition. For instance, if \overline{C} is hyperelliptic, then there are always two of these fields, which are equal. Summing up, one obtains the next table issued from Lercier-Ritzenthaler-Sijsling [8], where k = F is a perfect field of characteristic $char(F) \neq 2$:

E. Badr and F. Bars are supported by MTM2016-75980-P.

$H = \operatorname{Aut}(\overline{C})/\langle \iota \rangle$	Conditions	Fields of definition $=$	The field of moduli=
		Hyperelliptic model-fields	A field of definition
Not tamely cyclic		Yes	Yes
Tamely cyclic with $\#H > 1$	g odd, #H odd	No	Yes
	g even or $#H$ even	Yes	No
Tamely cyclic with $\#H = 1$	g odd	No	Yes
	g even	Yes	No

By *tamely cyclic*, we mean that the group is cyclic of order not divisible by the char(F).

Now, consider a smooth plane curve \overline{C} , i.e. \overline{C} viewed as a smooth curve over \overline{k} admits a non-singular plane model defined by an equation of the form F(X, Y, Z) = 0 in $\mathbb{P}^2_{\overline{k}}$, where F(X, Y, Z) is a homogenous polynomial of degree $d \ge 4$ over \overline{k} with $g = \frac{1}{2}(d-1)(d-2) \ge 3$. Similarly, we define a so-called *plane model-fields of definition for C*:

Definition 1.2. Given a smooth plane curve \overline{C} over \overline{k} , a subfield $M \subset \overline{k}$ is said to be a *plane model-field of definition for* C if and only if the following conditions holds

- (i) M is a field of definition for \overline{C} .
- (ii) \exists a smooth curve C' defined over M, which is \overline{k} -isomorphic to \overline{C} , and M-isomorphic to a non-singular plane model F(X, Y, Z) = 0, for some homogenous polynomial $F(X, Y, Z) \in M[X, Y, Z]$ of degree $d \ge 3$.

In this short note, we start with a smooth plane curve \overline{C} over $\overline{\mathbb{Q}}$ where the field of moduli is not a field of definition by the work of B. Huggins in [5]. Next, we go further, following the techniques developed in [1], to construct a twist of \overline{C} , for which there is a field of definition for \overline{C} , which is not a plane model-field of definition.

Acknowledgments. We would like to thank Elisa Lorenzo and Christophe Ritzenthaler for bringing this problem to our attention, as a consequence of our discussion with them in BGSMath-Barcelona Graduate School in March 2017.

2. The example

Consider the Hessian group of order 18, denoted by Hess_{18} , which is $\text{PGL}_3(\overline{\mathbb{Q}})$ -conjugate to the group generated by

$$S := \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta_3 & 0 \\ 0 & 0 & \zeta_3^2 \end{pmatrix}, \ T := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \ \text{and} \ R := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

First, we reproduce an example, by B. Huggins in [5, Chp. 7, §2], of a smooth $\overline{\mathbb{Q}}$ -plane curve of genus 10 not definable over its field of moduli, and with full automorphism groups Hess₁₈.

Definition 2.1. A quaternion extension of a field K is a Galois extension K'/K such that Gal(K'/K) is isomorphic to the quaternion group of order 8.

Definition 2.2. ([5, Lemma 7.2.3]) A field K is of level 2 if -1 is not a square in K, but it is a sum of two squares in K.

Lemma 2.3. ([5, Lemma 7.2.3]) Let K be a field of level 2. Then, for $u, v \in K^* \setminus (K^*)^2$ such that $uv \notin (K^*)^2$, $K(\sqrt{u}, \sqrt{v})$ is embeddable into a quaternion extension of K if and only if -u is a norm from $K(\sqrt{-v})$ to K (i.e. $-u = x^2 + vy^2$ for some $x, y \in K$).

For instance, the field $K := \mathbb{Q}(\zeta_3)$ is of level 2, since $(\zeta_3^2)^2 + \zeta_3^2 = -1$ and $\sqrt{-1} \notin K$. It is easily shown that ± 2 are not norms from $K(\sqrt{-13})$ to K. So neither $K(\sqrt{2},\sqrt{13})$ nor $K(\sqrt{-2},\sqrt{13})$ are embeddable into a quaternion extension of K.

Now fix K to be the field $\mathbb{Q}(\zeta_3)$, and define the following:

$$\phi := XYZ,
\psi := X^3 + Y^3 + Z^3,
\chi := (XY)^3 + (YZ)^3 + (XZ)^3.$$

Suppose that $u, v \in \mathbb{Q}^*$, such that $L := K(\sqrt{u}, \sqrt{v})$ is a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ extension of K that can not be embedded into a quaternion extension of K. Let

$$c_{\phi^2} := \zeta_3 \sqrt{u} + \sqrt{v} + \zeta_3^2 \sqrt{uv},$$

$$c_{\phi\psi} := \zeta_3^2 \sqrt{u} + \sqrt{v} + \zeta_3 \sqrt{uv},$$

$$c_{\psi^2} := \sqrt{u} + \sqrt{v} + \sqrt{uv} - \frac{1}{12}$$

Fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} containing L as above.

Theorem 2.4. (B. Huggins, [5, Lemma 7.2.5 and Proposition 7.2.6]) Following the above notations, let

$$F_{\sqrt{u},\sqrt{v}}(X,Y,Z) := c_{\phi^2}\phi^2 - 6c_{\phi\psi}\phi\psi - 18c_{\psi^2}\psi^2 + \chi.$$

Then the equation $F_{\sqrt{u},\sqrt{v}}(X,Y,Z) = 0$ such that $F_{\sqrt{u},\sqrt{v}}(X,1,1)$ is square free, defines a smooth $\overline{\mathbb{Q}}$ -plane curve \overline{C} over $\overline{\mathbb{Q}}$, with automorphism group Hess₁₈. The field of moduli $K_{\overline{C}}$ is $K = \mathbb{Q}(\zeta_3)$, but it is not a field of definition.

Remark 2.5. The condition that $F_{\sqrt{u},\sqrt{v}}(X,1,1)$ is square free is possible. For example, with u = 2 and v = 13, the resultant of $F_{\sqrt{2},\sqrt{13}}(X,1,1)$ and $\frac{\partial F}{\partial X}(X,1,1)$ is not zero.

Lemma 2.6. Let \overline{C} be a smooth curve defined over an algebraically closed field \overline{k} , with F = k and k perfect. An \overline{k} -isomorphism $\phi : \overline{C'} \to \overline{C}$ does not change the field of moduli or fields of definition, that is both \overline{C} and $\overline{C'}$ have the same fields of moduli and fields of definitions.

Proof. A field $L \subseteq \overline{k}$ is a field of definition for \overline{C} if and only if there exists a smooth curve C'' over L, such that $C'' \times_L \overline{k}$ is \overline{k} -isomorphic to \overline{C} through some $\psi : C'' \times_L \overline{k} \to \overline{C}$. Hence $\phi^{-1} \circ \psi : C'' \times_L \overline{k}$ is a \overline{k} -isomorphism, and L is a field of definition for $\overline{C'}$. The converse is true by a similar discussion. Consequently, the field of moduli for \overline{C} and $\overline{C'}$ coincides, being the intersection of all fields of definition.

Corollary 2.7. Consider a smooth $\overline{\mathbb{Q}}$ -plane curve \overline{C} defined by an equation of the form

$$\frac{c_{\phi^2}}{p^2}(XYZ)^2 - \frac{6c_{\phi\psi}}{p}(XYZ)(X^3 + \frac{1}{p}Y^3 + \frac{1}{p^2}Z^3) - 18c_{\psi^2}(X^3 + \frac{1}{p}Y^3 + \frac{1}{p^2}Z^3)^2 + \frac{1}{p}X^3Y^3 + \frac{1}{p^3}(YZ)^3 + \frac{1}{p^2}X^3Z^3 = 0,$$

where $p \in \mathbb{Q}$, in particular \overline{C} admits $\mathbb{Q}(\sqrt{u}, \sqrt{v}, \zeta_3)$ as a plane model-field of definition for \overline{C} . Then $\operatorname{Aut}(\overline{C})$ is isomorphic to Hess_{18} . Moreover, the field of moduli $K_{\overline{C}}$ is $K = \mathbb{Q}(\zeta_3)$, but it is not a field of definition.

Proof. Since \overline{C} is $\mathbb{Q}(\sqrt[3]{p})$ -isomorphic to $F_{\sqrt{u},\sqrt{v}}(X,Y,Z) = 0$ through a change of variables of the shape $\phi = \text{diag}(1, 1/\sqrt[3]{p}, 1/\sqrt[3]{p^2})$, therefore they have conjugate automorphism groups. Moreover, fields of definition and the field of moduli of both curves are the same by Lemma 2.6. Consequently, the field of moduli $K_{\overline{C}}$ is $K = \mathbb{Q}(\zeta_3)$, but it is not a field of definition, using Theorem 2.4.

Theorem 2.8. Consider the family C_p of smooth plane curves over the plane model-field of definition $L = \mathbb{Q}(\sqrt{u}, \sqrt{v}, \zeta_3)$ given by an equation of the form

$$\frac{c_{\phi^2}}{p^2}(XYZ)^2 - \frac{6c_{\phi\psi}}{p}(XYZ)(X^3 + \frac{1}{p}Y^3 + \frac{1}{p^2}Z^3) - 18c_{\psi^2}(X^3 + \frac{1}{p}Y^3 + \frac{1}{p^2}Z^3)^2 + \frac{1}{p}X^3Y^3 + \frac{1}{p^3}(YZ)^3 + \frac{1}{p^2}X^3Z^3 = 0,$$

where p is a prime integer such that $p \equiv 3 \text{ or } 5 \mod 7$. Given a smooth plane curve C over L in C_p , then there exists a twist C' of C over L which does not have L as a plane model-field of definition. Moreover, the field of moduli of C' is $\mathbb{Q}(\zeta_3)$, and is not a field of definition for C'.

Proof. Consider the Galois extension M'/L with $M' = L(cos(2\pi/7), \sqrt[3]{p})$, where all the automorphisms of $\overline{C} := C \times_L \overline{\mathbb{Q}}$ are defined. Let σ be a generator of the cyclic Galois group $\operatorname{Gal}(L(cos(2\pi/7))/L)$. We define a 1-cocycle on $\operatorname{Gal}(M'/L) \cong \operatorname{Gal}(L(cos(2\pi/7))/L) \times \operatorname{Gal}(L(\sqrt[3]{p})/L)$ to $\operatorname{Aut}(\overline{C})$ by mapping $(\sigma, id) \mapsto [Y : Z : pX]$ and $(id, \tau) \mapsto id$. This defines an element of $\operatorname{H}^1(\operatorname{Gal}(M'/L), \operatorname{Aut}(\overline{C}))$, coming from the inflation of an element in $\operatorname{H}^1(\operatorname{Gal}(L(\cos(2\pi/7))/L), \operatorname{Aut}(\overline{C}))^{\operatorname{Gal}(M'/L(\cos(2\pi/7)))})$.

This 1-cocycle is trivial if and only if p is a norm of an element of $L(\cos(2\pi/7) \text{ over } L$. However, this is not the case, since $\mathbb{Q}(\cos(2\pi/7))$ and L are disjoint with $[L:\mathbb{Q}]$ and $[\mathbb{Q}(\cos(2\pi/7)):\mathbb{Q}]$ coprime, and moreover p is

not a norm of an element of $\mathbb{Q}(\cos(2\pi/7))$ over \mathbb{Q} being inert by our assumption. Consequently, the twist C' is not *L*-isomorphic to a non-singular plane model in \mathbb{P}^2_L by [1, Theorem 4.1]. That is, *L* is not a plane model-field of definition for C'. The last sentence in the theorem follows by Lemma 2.6 and Corollary 2.7.

Remark 2.9. By our work in [1], we know that a non-singular plane model of C' exists over at least a degree degree 3 extension of L.

References

- [1] E. Badr, F. Bars, E. Lorenzo García, On twists of smooth plane curves, arXiv:1603.08711v1.
- [2] R. Hidalgo, Non-hyperelliptic Riemann surfaces with real field of moduli but not definable over the reals, Arch. Math. 93 (2009), 219-224.
- B. Huggins; Fields of moduli and fields of definition of curves. PhD thesis, Berkeley (2005), see http://arxiv.org/abs/math/0610247v1.
- [4] C. J. Earle, On the moduli of closed Riemann surfaces with symmetries, Advances in the Theory of Riemann Surfaces. Ann. Math. Studies 66 (1971), 119-130.
- [5] B. Huggins, Fields of moduli and fields of definition of curves. PhD thesis, Berkeley (2005), arxiv.org/abs/math/0610247v1.
- [6] B. Huggins; Fields of moduli of hyperelliptic curves. Math. Res. Lett. 14 (2007), 249-262.
- [7] R. Lercier and C. Ritzenthaler. Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects. J. Algebra, 372:595636, 2012.
- [8] R. Lercier, C. Ritzenthaler, and J. Sijsling. Explicit galois obstruction and descent for hyperelliptic curves with tamely cyclic reduced automorphism group. Math. Comp. To appear.
- [9] D. Lombardo, E. Lorenzo García; Computing twists of hyperelliptic curves, arXiv:1611.04856, November 2016.
- [10] J.-F. Mestre. Construction de courbes de genre 2 a partir de leurs modules. In Effective methods in algebraic geometry (Castiglioncello, 1990), volume 94 of Progr. Math., pages 313334. Birkhäuser Boston, Boston, MA, 1991.
- [11] G. Shimura, On the field of rationality for an abelian variety, Nagoya Math. J. 45 (1971), 167-178.
- [12] A. Weil, The field of definition of a variety, American J. of Math. vol. 78, n17 (1956), 509-524.

• ESLAM ESSAM EBRAHIM FARAG BADR

Departament Matemàtiques, Edif. C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain *E-mail address*: eslam@mat.uab.cat

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CAIRO UNIVERSITY, GIZA-EGYPT *E-mail address*: eslam@sci.cu.edu.eg

• FRANCESC BARS CORTINA

DEPARTAMENT MATEMÀTIQUES, EDIF. C, UNIVERSITAT AUTÒNOMA DE BARCELONA, 08193 BELLATERRA, CATALONIA E-mail address: francesc@mat.uab.cat