
RECIPROCITY LAWS À LA IWASAWA-WILES

FRANCESC BARS, IGNAZIO LONGHI

Abstract. This paper is a brief survey on explicit reciprocity laws of
Artin-Hasse-Iwasawa-Wiles type for the Kummer pairing on local fields.

1. Introduction

Let K be a complete discrete valuation field, OK its ring of integers,
mK its maximal ideal and kK the residue field. Suppose that K is an `-
dimensional local field: this means that there is a chain of fields K` =
K, K`−1, . . . , K0 where Ki is a complete discrete valuation field with residue
field Ki−1 and K0 is a finite field. We shall always assume that char(K0) = p.

Suppose char(kK) = p > 0: then we have the reciprocity law map

(1) ( ,Kab/K) : KM
` (K) → Gal(Kab/K),

where Kab is the maximal abelian extension of K, Gal denotes the Galois
group and KM

` is the Milnor K-theory.
Assume char(K) = 0 and ζpm ∈ K, where ζpm is a primitive pm-th root of

unity. The classical Hilbert symbol ( , )m : K∗×KM
` (K) →< ζpm >=: µpm

is:

(2) (α0, {α1, . . . , α`})m :=
β({α1,...,α`},Kab/K)

β
,

where β is a solution of Xpm
= α0 and ({α1, . . . , α`},Kab/K) is the element

given by the reciprocity law map.
When ` = 1, K is the completion at some place of a global field (i.e.,

a finite extension of Fp((T )) or of the p-adic field Qp), KM
1 (K) ∼= K∗ and

( ,Kab/K) is the classical norm symbol map of local class field theory.
Historically there was deep interest to compute this Hilbert symbol (or,

better, Kummer pairing) in terms of analytic objects, as a step in the pro-
gram of making local class field theory completely explicit. Vostokov [31]
suggests the existence of two different branches of explicit reciprocity for-
mulas: Kummer’s type and Artin-Hasse’s type (later extended by Iwasawa
and Wiles). Kummer’s reciprocity law [21] is

Theorem 1 (Kummer 1858). Let K = Qp(ζp), p 6= 2, and α0, α1 principal
units. Then

(α0, α1)1 = ζres(log α̃0(X)dlog α̃1(X)X−p)
p

where α̃0(X), α̃1(X) ∈ Zp[[X]]∗ are power series such that α̃1(ζp − 1) = α1,
α̃0(ζp−1) = α0, res means the residue and dlog is the logarithmic derivative.

1
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Artin-Hasse’s reciprocity law [2] is:

Theorem 2 (Artin-Hasse 1928). Let K = Qp(ζpm), p 6= 2, and α1 ∈ K∗ a
principal unit. Take π = ζpm − 1 a prime of K: then

(ζpm , α1)m = ζ
TrK/Qp(− log α1)/pm

pm , (π, α1)m = ζ
TrK/Qp (π−1ζpm log α1)/pm

pm ,

where log is the p-adic logarithm. Later Iwasawa [17] gave a formula for
(α0, α1)m with α0 any principal unit such that valK(α0 − 1) > 2valK(p)

p−1 .

Roughly speaking the difference between these two branches is that Kum-
mer’s type refers to residue formulas involving a power series for each com-
ponent of the pairing, while Artin-Hasse-Iwasawa’s type are non-residue
formulas evaluating some generic series at the K-theory component of the
Hilbert pairing.

There is a big amount of articles in the literature that contribute to
and extend the above seminal works of Kummer and Artin-Hasse-Iwasawa.
The Hilbert symbol can be extended to Lubin-Tate formal groups, and also
to p-divisible groups. These extensions are defined from Kummer theory:
hence one often speaks of Kummer pairing instead of Hilbert symbol. Wiles
extended Iwasawa’s result to Lubin-Tate formal groups.

In this survey we intend to review some of the results on Artin-Hasse-
Iwasawa-Wiles’ type reciprocity laws. We list different variants of the Kum-
mer pairing; afterwards we sketch some of the main points in the proof of
the Artin-Hasse-Iwasawa-Wiles reciprocity law for 1-dimensional local fields.
Finally we review Kato’s generalization of Wiles’ reciprocity law, which is
done in a cohomological setting. Kato’s work also extends the explicit reci-
procity law to higher dimensional local fields and to schemes.

For Kummer’s type, one should cite also a lot of contributions by Vos-
tokov, and many others, for example Shafarevich, Kneser, Brückner, Hen-
niart, Fesenko, Demchenko, and Kato and Kurihara in the cohomological
setting. We refer to Vostokov’s paper [31] for a list of results and references
for reciprocity laws in this case, adding to it the recent works of Benois
[5] (for cyclotomic extensions), Cao [8] (for Lubin-Tate formal groups) and
Fukaya [12] and the works of Ankeny and Berrizbeitia [6]. Given α a unit of
OK , K a totally ramified finite extension of Qp and π a uniformizer of K,
α has a factorization modulo K∗pn

by a product of E(πk), k ∈ N, where E
is the Artin-Hasse exponential. The contribution by Shafarevich is to com-
pute (α, β)n in terms of the above factorization for α and β. Berrizbeitia [6]
recovers Shafarevich results with different methods but also using the above
factorization.

Notations
Let L be a valuation field: we denote OL the ring of integers, mL its maximal
ideal, kL the residue field and valL the valuation function. We write L for
the algebraic closure of L if char(L) = 0 and the separable closure otherwise;
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L̂ will be the completion (which is algebraically closed). Denote Gal(L/L)
by GL and the continuous Galois cohomology group H i(GL, A) by H i(L,A).

For any ring R, R∗ means the invertible elements of R. As usual Fq is
the finite field of cardinality q.

The symbol M will always denote a finite extension of Qp: M0 is the
subfield of M such that M/M0 is totally ramified and M0/Qp is unramified.

For N a Zp-module, N(r) will be its r-th Tate twist, r ∈ Z (recall that
Zp(1) := lim

←−
n

µpn)

2. The Kummer pairing

Let K be an `-dimensional local field. Then K is isomorphic to one of
• Fq((X1)) . . . ((X`)) if char(K) = p
• M((X1)) . . . ((X`−1)) if char(K1) = 0
• a finite extension of M{{T1}} . . . {{Tn}}((Xn+2)) . . . ((X`)) if

char(Kn+1) = 0 and char(Kn) = p > 0
where L{{T}} is

{
+∞∑
−∞

aiT
i : ai ∈ L, inf(valL(ai)) > −∞, lim

i→−∞
valL(ai) = +∞

}
.

Defining valL{{T}}(
∑

aiT
i) := min{valL(ai)} makes L{{T}} a discrete val-

uation field with residue field kL((t)) (see Zhukov [33]).
Since we assume char(kK) = p > 0 it follows that the `-dimensional

local field K has residue field isomorphic to Fq((X1)) . . . ((X`−1)). Then we
have the reciprocity map (1) obtained by Kato [18] (see the exposition [23]),
which had already been proved by Parshin [25] when char(K) = p > 0.

Now we introduce the Kummer pairing through the classical Hilbert sym-
bol (2). Assume first char(K) = 0 and ζpm ∈ K and restrict the Hilbert
pairing (2) to (1 + mK)×KM

` (K): then

(1 + δ0, {α1, . . . , α`})m =
β({α1,...,α`},Kab/K)

β
= ζc

pm ,

where β is a solution of Xpm
= 1 + δ0 and c ∈ Z/pmZ is determined by δ0

and the αi’s. Recall that Milnor K-groups KM
n (K) are defined as (K∗)⊗n

modulo the subgroup generated by a⊗ (1− a), a ∈ K∗ − 1.
We rewrite the above restricted pairing as

mK ×KM
` (K) → Wpm := {ζj

pm − 1|j ∈ Z} = {w ∈ K̂|(w + 1)pm − 1 = 0}

(3) (δ0, {α1, . . . , α`})m := ζc
pm − 1.

Recall that Ĝm is the formal group given by X +bGm
Y := X + Y + XY and

−bGm
X =

∑∞
i=1(−1)iXi. Summation pm-times in Ĝm is given by [pm](X) =
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(1 + X)pm − 1. Observe that

(4) (δ0, {α1, . . . , α`})m = (({α1, . . . , α`}, Kab/K)−bGm
1)(β)

where β is a solution of (1 + X)pm − 1 = δ0.
This reformulation of the classical Kummer pairing for Ĝm can be ex-

tended to classical Lubin-Tate formal groups, to Drinfeld modules and in
greater generality to p-divisible groups.

2.1. Classical Lubin-Tate formal groups. Lubin-Tate formal groups are
defined for 1-dimensional local fields: classically the emphasis is on the
unequal characteristic case and in this survey we shall restrict to such setting
when considering Lubin-Tate formal groups. We refer the interested reader
to [15] and [28] for proofs and detailed explanations.

Recall that a formal 1-dimensional commutative group law F over OM is
F (X, Y ) ∈ OM [[X,Y ]], satisfying:
(i) F (X,Y ) ≡ X + Y mod deg 2;
(ii) F (X,F (Y,Z)) = F (F (X, Y ), Z);
(iii) F (X,Y ) = F (Y, X).

We fix π a uniformizer of M . Define

Fπ := {f ∈ OM [[X]]
∣∣f ≡ πX mod deg 2, f ≡ Xpl

mod mM},
where pl is the number of elements of kM .

Theorem 3 (Lubin-Tate). We have:
1. for every f ∈ Fπ it exists a unique 1-dimensional commutative formal
group law Ff defined over OM and called of Lubin-Tate, such that f ∈
End(Ff ) (i.e. Ff (f(X), f(Y )) = f(Ff (X, Y ))).
2. Given f, g ∈ Fπ then Fg and Ff are isomorphic over OM .
3. Given f ∈ Fπ and a ∈ OM , it exists a unique [a]f (X) ∈ OM [[X]] with
[a]f ∈ End(Ff ) and [a]f (X) ≡ aX mod deg 2; the map a 7→ [a]f gives an
embedding OM → End(Ff ). We denote also [a]Ff

by [a]f .

Example The formal multiplicative group Ĝm over Qp corresponds to the
Lubin-Tate formal group with π = p and f = (1 + X)p − 1 ∈ Fp.

We denote by Ff (B) the B-valued points of Ff . Consider

WFf ,m := {zeroes of [πm]Ff
in Ff (m

K̂
)}.

Remark 4. We want to emphasize that we have an “embedding” of OM

into End(Ff ), from which we get a tower of field extensions M(WFf ,m) in

M̂ . For example take Ff = Ĝm and consider [pm]bGm
as m varies in N:

the roots of [pm]bGm
(X) = (1 + X)pm − 1 are ζpm − 1, thus M(WbGm,m

) is
the cyclotomic extension M(ζpm). The groups WFf ,m are the Lubin-Tate
analogs of µpm .
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Let K be a finite extension of M such that WFf ,m ⊆ K. The Kummer
pairing for Ff is:

( , )m : Ff (mK)×K∗ → WFf ,m

(5) (a, u)m := ((u,Kab/K)−Ff
1)β

where β is a solution of [πm]Ff
(X) = a.

There is a more general notion of Lubin-Tate formal group, called relative
Lubin-Tate formal group, which involves the unique unramified extension of
M of degree d. The corresponding formulation of the Kummer pairing differs
slightly from (5). We refer to [10, Chapter 1, §1.1,§1.4,§4.1] for the precise
statement.

We also remark that there is a notion of n-dimensional Lubin-Tate formal
group [15]. Also in this case we have an embedding of OM into End(Ff ),
and some generalized Kummer pairing appears. Since Kummer pairing on
p-divisible groups will also include this case we do not discuss it any further
here.

2.2. 1-dimensional local fields in char = p > 0: Drinfeld modules.
The key property of Lubin-Tate formal groups is the embedding: OM →
End(Ff ). This suggests to define a Kummer pairing for 1-dimensional local
fields K with char(K) = p > 0 in the following way.

For simplicity we take F = Fq(T ) and put A = Fq[T ]. Observe that
EndFq(Ga/F ) ∼= F{τ}, where τa = aqτ for a ∈ F , τ0 = id. We can think of
F{τ} as a subset of F [X], via τ0 ↔ X, τ ↔ Xq: then F{τ} consists of the
additive polynomials and the product in F{τ} corresponds to composition.

Drinfeld [11] defined elliptic modules (now called Drinfeld modules) as
embeddings

Φ : A → EndFq(Ga/F )

a 7→ Φa = a + (. . .)τ,
Fq-linear and non-trivial (i.e., there is a ∈ A such that Φa is not equal to a).

For a ∈ A we write Φ[a] := {zeroes of Φa(X)}. We have that Φ[a] ∼=
(A/(a))d and define rank(Φ) := d. Let p = (π) be a place of A: under some
technical assumptions (see [3] for a reference) we can extend Φ to

Ap → EndFq(Ĝa) ∼= Fp{{τ}}
which we also call Φ, a 7→ Φa, where Fp is the completion of the field F at
p and Fp{{τ}} is the ring of skew power series.

Denote by WΦ,πm the set of roots of Φπm(X) in Fp. For any finite exten-
sion K/Fp containing WΦ,πm we define the Kummer pairing:

( , )m : mK ×K∗ → WΦ,πm

(6) (a, u)m := ((u,Kab/K)− 1)(β)

where β is a root of Φm
π (X) = a.



6 FRANCESC BARS, IGNAZIO LONGHI

For example for rank 1, the simplest Drinfeld module is the Carlitz module
defined by ΦT (τ) = Tid + τ . Then ΦT 2(τ) = ΦT (τ) ◦ ΦT (τ) = (Tid + τ) ◦
(Tid + τ) = T 2id + τT + Tτ + τ2 = T 2id + (T q + T )τ + τ2 and similarly
ΦT 3(τ) = T 3id + (T 2q + T q+1 + T 2)τ + (T q2

+ T q + T )τ2 + τ3. If we take
p = (T ) (π = T ) then Fp

∼= Fq((T )) and Wφ,T = {zeroes of TX + Xq},
Wφ,T 2 = {zeroes of T 2X +(T q +T )Xq +Xq2}, Wφ,T 3 = {zeroes of T 3X +
(T 2q + T q+1 + T 2)Xq + (T + T q + T q2

)Xq2
+ Xq3}, ...

2.3. p-divisible groups. A vast extension of the theory above considers
p-divisible groups (also called Barsotti-Tate groups). For the definition and
main properties see [29].

Let G be a p-divisible group scheme over OK of dimension d and finite
height h, where K is any `-dimensional local field with char(kK) = p > 0.
We denote by [pm]G the pm-th power map G → G and let G[pm] be the
group scheme kernel. As usual, X(B) denotes the B-points of the scheme
X. We put WG,pm := G[pm](OK) and we impose WG,pm = G[pm](OK), i.e.
WG,pm ⊂ K. Then Kummer pairing is defined by:

( , )m : G(mK)×KM
` (K) → WG,pm

(7) (a, u)m := ((u,Kab/K)−G 1)(β)

where β is a root of [pm]G(X) = a. Finally we observe that p-groups with an
action ofOK have also been studied [29]. In this case (7) can be reformulated
with respect to [πm]G, π a uniformizer of K.

2.4. Cohomological interpretation. Let K be an `-dimensional local
field with char(kK) = p > 0 and char(K) = 0 . The Kummer pairing
also admits an interpretation in terms of Galois cohomology. We do this in
the generality of p-divisible groups. Consider the exact sequence

0 → G[pm](mK) → G(mK) → G(mK) → 0.

This induces:
δ1,G,m : G(mK) → H1(K,G[pm](OK)).

We assume WG,pm ⊂ K, i.e. G[pm](OK) = G[pm](OK). The Galois symbol
map:

hr
K : KM

r (K) → Hr(K,Zp(r))

is obtained by cup product h1
K ∪ . . . ∪ h1

K , where h1
K is the connecting

morphism h1
K : K∗ → H1(K,Zp(1)) from the usual Kummer sequence.

There is a canonical isomorphism [18] H`+1(K,Zp(`)) ∼= Zp defining the
following pairing:

(̂ , )m : G(mK)×KM
` (K) → H`+1(K,Zp(`)⊗G[pm](OK)) ∼= G[pm](OK)

(8) (̂a, u)m := (−1)`δ1,G,m(u) ∪ h`
K(a).
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Then by [12, Proposition 6.1.1] (̂a, u)m = ((u,Kab/K) −G 1)(β) = (a, u)m

where β is a root of [pm]G(X) = a.
If one could define a good analog in characteristic p of the Galois symbol

maps for the cohomological groups from Illusie cohomologies used by Kato
[18] to obtain the reciprocity law map ( ,Kab/K), then a cohomological
interpretation should appear when char(K) = p > 0 (following arguments
like the proof of [12, Proposition 6.1.1]). We refer to [23, §5] for a very quick
review of the definitions of these cohomological groups and of Kato’s higher
local class field theory.

2.5. Limit forms of the Kummer pairing. In this subsection ( , )m

denotes any of the pairings (4) to (7).
Let W],m be one of WFf ,πm , WΦ,πm or WG,pm . We shorten K(W],m) to

K],m and write O],m (resp. m],m) for the ring of integers (resp. the maximal
ideal). By definition the Tate module is Tp(]) := lim

←−
m

W],m where the limit is

taken with respect to the map []] (which means [π]f , Φπ or [p]G). Consider
W],∞ := lim

−→
m

W],m = ∪mW],m.

The symbol M],m denotes one of Ff (m],m), m],m or G(m],m). Consider
lim
−→
m

M],m as the direct limit of []] : it consists of sequences (an)n≥N (for

some N ∈ N) such that an ∈ K],n and an+1 = []]an.
We need to impose that the K],m’s are abelian extensions of K (this is

satisfied for example by 1-dimensional classical Lubin-Tate formal groups
and rank 1 Drinfeld modules). Then we have a limit version of the Kummer
pairing:

(9) ( , ) : lim
−→
m

M],m × lim
←−
m

KM
` (K],m) → W],∞

where lim
←−
m

KM
` (K],m) is with respect to the Norm map. The limit pairing is

well defined: by the abelian assumption we have (Kato-Parshin’s reciprocity
law) (NK],n/K],n−1

(u′),Kab
],n−1/K],n−1) = (u′,Kab

],n/K],n) acting on the roots
of []]n−1(X) = a, when u′ ∈ KM

` (K],n).
We remark that the above is often formulated without taking the whole

limit tower. That is, suppose that one wants to compute explicitly (a, u)m

and u′ ∈ KM
` (K],m+k) is given so that NK],m+k/K],m

(u′) = u: then by a
similar argument as needed for defining (9) we have

(10) (a, u)m = ([]]a,NK],m+k/K],m+1
(u′))m+1 = . . . = ([]]ka, u′)m+k.

We can also write the above limit form (9) as:

(11) lim
←−
n

KM
` (K],n) → Hom(M],m, Tp(]))
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sending u = (un)n to a 7→ lim
n→∞(a, un)n with fixed m. These homomorphisms

are continuous because of the continuity of the Kummer pairing: see [3,
Lemma 15] for the case ` = 1.

3. Explicit reciprocity law formulas à la Wiles’ for
1-dimensional local fields

In this section we fix ` = 1 and sketch some of the main ideas to obtain
explicit reciprocity laws for a 1-dimensional local field K in the context of
classical Lubin-Tate formal groups and rank 1 Drinfeld modules, introducing
Coleman power series. See the last section for different approaches to this
explicit reciprocity law through the exponential or dual exponential map.

Let K be either M or Fp. In the Drinfeld module case Φ is required to be
of rank 1 (in order to obtain abelian extensions) and sign-normalized. We
refrain from explaining this last technical condition (the reader is referred
to [3, §2.1] and the sources cited there) and just notice that when A = Fq[T ]
as in §2.2 this means that Φ is the Carlitz module, i.e. ΦT (X) = TX + Xq.
Furthermore we take π ∈ A a monic polynomial.

We lighten the notation introduced in §2.5 by shortening K],m to Km.
The extensions Km/K, are totally ramified and abelian: they are gen-

erated by roots of Eisenstein polynomials and Gal(Km/K) ∼= (OK/(π)n)∗.
The Tate module Tp(]) is a rank 1 OK-module with OK-action given by
α ·γ := [α]fγ or Φα(γ). Let (εn)n be an OK-generator of Tp(]): then K],m =
K(εm), since εm generates W],m, and one has []]εn+1 = εn, []]n+1εn = 0
where []] is respectively [π]f or Φπ. Moreover the εn’s form a norm compat-
ible system. Denote ∪mK(W],m) by K],∞.

In this section ( , )m refers to (5) or (6) and ( , ) refers to (9).
First, notice that ( , )m is bilinear, additive in the first variable and

multiplicative in the second variable. In particular ( , ζ)m = 0 for any root
of unity ζ.

Consider the character

χ : Gal(K],∞/K) → O∗K
σ 7→ χσ defined by σ((εn)n) = χσ ·((εn)n); it can be thought of as a character
of Gal(Kab/K). We remark that for Ĝm this χ corresponds to the cyclotomic
character χcycl. The main point is the following: χ−1 : O∗K → Gal(K],∞/K)
coincides with the inverse of the local norm symbol map. Therefore:

(12) (εm, u)m =

{
([NKm/Ku]−1

f −Ff
1)(ε2m) K = M

Φ(NKm/Ku)−1(ε2m)− ε2m K = Fp.

Inspired by (12) one can ask: could we find h such that (am, um)m =
[h(a, u)]f (εm) for classical Lubin-Tate formal groups or = Φh(a,u)(εm) for
rank 1 Drinfeld modules? Observe that h(a, u) modulo πm defines the same
action over εm (because W],m is isomorphic to OK/(πm)).
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In this direction one obtains the following results. From class field theory
it follows (a, a)n = 0. Exploiting linearity and continuity of the pairing
( , )m one obtains (assuming v(c) greater than a fixed value which depends
linearly of n),

(13) (c, w)n = (cεn
dlog w

dεn
, εn)n

where
dlog : O∗],n → Ω1

O],n/OK

is the map x 7→ dx
x (recall that the module of Kähler differentials Ω1

O],n/OK

is free with generator dεn over O],n/dKn/K , where dKn/K is the different of
Kn over K). Notice that one can pick a power series g ∈ OK((X)) such that
g(εn) = w and dlog w/dεn = g′(εn)/g(εn).

Finally one proves that exists m > n such that

(an, εn)n = −(εm, 1 + amε−1
m )m

giving a positive answer to the question above.
This suggests the following definition of an analytic pairing:

[a, u]n := TrKn/K

(
π−nλ(a)

dlog u

dεn

)
· εn .

Here · is the action on the Tate module at level n and λ is the logarithm
map defined by λ(a) := lim 1

πn []]na (the limit exists for valK(a) sufficiently
big).

In order to compare (a, u)n and [a, u]n, Iwasawa (theorem 2) imposes
the condition that there exists m such that u = NQp(ζpm )/Qp(ζpn )(u′) : then
(a, u)n = ([p]m−n

bGm
a, u′)m and it is at level m that he compares the two

pairings obtaining ([p]m−n
bGm

a, u′)m = [[p]m−n
bGm

a, u′]m.
The general case follows Iwasawa’s argument. Here we will state a limit

version, hence we suppose that (un) ∈ lim← K∗
n (limit w.r.t. the norm).

To express in compact form the limit of the pairings [ , ]n it is convenient
to introduce Coleman’s power series.

Theorem 5. Let K, Ff , Φ be as above. Then
(1) [9] (case K = M) There exists a unique operator N (the Coleman

norm) defined by the property

(Nh) ◦ f(X) =
∏

w∈WFf ,0

h(X +Ff
w)

for any h ∈ M((x))1 (the set of those Laurent series which are con-
vergent in the unit ball).

(2) [3] (case K = Fp) There exists a unique operator N such that

(Nh) ◦ Φπ =
∏

v∈Φ[p]

h(x + v)
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for any h ∈ Fp((x))1.
Moreover, in both cases the evaluation map ev : f 7→ (f(εn))n gives an
isomorphism

(OK((x))∗)N=id ∼= lim← K∗
],n .

Denote by Colu the power series associated to u ∈ lim← K∗
],n. Then we

define the limit form of the analytic pairing by

[ , ] : lim
−→
n

M],m × lim
←−
n

K∗
],m → W],∞

[a, u] := TrK],n/K(π−nλ(an)dlog Colu(εn)) · εn .

Notice that dlog Colu(εn) = dlog un

dεn
.

Finally one observes that [a, u] has similar properties to (a, u); in partic-
ular [a, u] = [anεndlog Colu(εn), εn]n (compare with (13)) and to prove the
reciprocity law one is reduced to show [ , εn]n = ( , εn)n for n big enough.

Theorem 6. Under the above notation, we have
(1) [32] ( , ) = [ , ] for classical Lubin-Tate formal groups Ff .
(2) [3] ( , ) = [ , ] for Fp and Φ.

In [32] Wiles proved this result for classical Lubin-Tate formal groups
without using Coleman power series: he takes m big enough in order to
compare ( , )m and [ , ]m, like Iwasawa had done for Ĝm. This strategy
requires a very precise valuation calculation. For a detailed explanation one
can look also at [24, §8,9]. The above limit version with Coleman power
series for classical Lubin-Tate formal groups can be found in [10, I,§4].

For the Carlitz module, Anglès in [1] obtained Wiles’ version of theorem
6, i.e. without Coleman power series.

4. Explicit reciprocity laws and higher K-theory groups

The starting point for the results in §3 is explicit local class field theory
applied to ε and the dlog homomorphism. In [19] and [20] Kato reinter-
preted Wiles’ reciprocity law as an equality between two maps obtained by
composition of natural maps from cohomology groups and gave generalized
reciprocity laws in higher K-theory. Here we introduce his approach to the
classical Hilbert symbol for `-dimensional local fields, ` > 1, and reformulate
parts of it for rank 1 Drinfeld modules.

4.1. Exponential map in the Hilbert symbol. In this paragraph we
assume char(K) = 0 and char(kK) = p > 0. Take:

expδ : OK → O∗K
given by expδ(a) = exp(δa) if valK(δ) > valK(p)

(p−1) where exp(X) =
∑

m≥0
Xm

m!

is the exponential. Assuming valK(δ) ≥ 2valK(p)
(p−1) , the map expδ extends to
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a group morphism [22]:

expδ,r : Ωr−1
OK

→ K̂M
r (K)

adlog b1 ∧ · · · ∧ dlog br−1 7→ {exp(δa), b1, . . . , br−1},
where K̂M

r (K) := lim
←−
n

KM
r (K)/pnKM

r (K), Ωr
R :=

∧r
R Ω1

R, Ω1
R are the Kähler

differentials and r is a strict positive integer. The function expδ,r factors
through

∧r−1
OK

Ω̂1
OK

where Ω̂1
OK

is the p-adic completion of Ω1
OK

.
Sen [27] generalizes theorem 2:

Theorem 7. Assume ζpn ∈ M . Fix π a uniformizer of M , α1 ∈ OM −{0},
and α ∈ K with valK(α− 1) ≥ 2valK(p)

p−1 + valK(α1). Then

(α, α1)n = ζc
pn , with c =

−1
pn

TrM/Qp
(

ζpm

h′(π)
g′(π)
α1

log α)

where g, h ∈ OM0 [T ] are such that g(π) = α1 and h(π) = ζpn, and the
pairing is (2).

From now on take valM (η) = 2valM (p)
p−1 , η ∈ M0(ζpn). The proof of theorem

7 reduces to theorem 2 because TrM/M0(ζpm )(adπ) = TrM/M0(ζpm )( a
h′(π))dζpm

and the commutativity of the following diagram ([22, p.217]):

Ω̂1
OM

expη,2−−−−→ K̂M
2 (M) hM−−−−→ Z/pn(1)yTrM/M0(ζpm )

yNM/M0(ζpm )

yid

Ω̂1
OM0(ζpn )

expη,2−−−−→ K̂M
2 (M0(ζpn))

hM0(ζpn )−−−−−−→ Z/pn(1)

where h∗ is the Hilbert symbol {a, b} 7→ (a, b)n.
We rewrite Sen’s theorem as a commutative diagram. Take γ ∈ OM with

valM (γ) = valM (p)
p−1 . Fontaine proved that we have the following isomorphism

ΨM : Ω̂1
OM

/pnγ−1 → γ−1d−1
M/M0

/γ−1d−1
M/M0(ζpn )(1)

induced from the map adlog ζpm 7→ ap−m ⊗ (ζpm)m>0 where dL1/L2
is the

different of the finite extension of fields L1/L2. Commutativity of the dia-
gram

Ω̂1
OM

/pnγ−1 ΨM−−−−→ γ−1d−1
M/M0

/γ−1d−1
M/M0(ζpn )(1)

−expη

y Trη⊗id

y
KM

2 (M)/pn hM−−−−→ Z/pn(1)
(where Trη is the map induced by x 7→ TrM/Qp

(ηx)) is Sen’s theorem [22,
§4].

Now we consider ` > 1. Assume ζpn ∈ K. Consider K0 with K/K0 a
finite and totally ramified extension such that p is a prime element of OK0 .
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Recall kK = Fq((t1)) . . . ((t`−1)). Take M such that M = M0, M ⊆ K0

and the residue field is Fq: then K0 = M{{T1}} · · · {{T`−1}}. Kurihara
extends Sen’s result to higher Milnor K-theory (theorem 8) by means of the
commutativity of the diagram:

Ω̂`
OK

expη,`+1−−−−−→ K̂M
`+1(K) hK−−−−→ Z/pn(1) = µpnyTrK/K0(ζpm )

yNK/K0(ζpm )

yid

Ω̂`
OK0(ζpn )

expη,`+1−−−−−→ K̂M
`+1(K0(ζpn))

hK0(ζpn )−−−−−−→ Z/pn(1)
yRes

yRes

yid

Ω̂1
OM(ζpn )

expη,2−−−−→ K̂M
2 (M(ζpn))

hM(ζpn )−−−−−→ Z/pn(1)

where Res : Ω̂`
OK0(ζpn )

→ Ω̂1
OM

is defined by Res(wdlog T1∧· · ·∧dlog T`−1) =

w where w ∈ Ω̂1
OM(ζpn )

, Res is the Kato’s residue homomorphism in Milnor

K-groups and hL is the Hilbert symbol {a1, . . . , a`+1} 7→ (a1, {a2, . . . , a`+1})n.

Theorem 8 ([22]). Take α1, . . . , α` ∈ O∗K and α ∈ O∗K with valK(α− 1) ≥
2valK(p)

p−1 . Take fi(T, T2, . . . , T`) ∈ OK0 [T ] such that fi(π, T2, . . . , T`) = αi,
and h(T ) ∈ OK0 [T ] with h(π) = ζpn where π is a fixed uniformizer of K.
Then (α, {α1, . . . , α`}) = ζc

pn where

c = − 1
pn
T

(
log α

T2 · · ·T`

α1 · · ·α`

ζpn

h′(π)

[
det(

∂fi

∂Tj
)1≤i,j≤`

]

|T1=π

)
.

Here T := TrM(ζpn)/Qp
◦cK0(ζpn)/M(ζpn )◦TrK/K0(ζpn ), with cL{{T}}/L(

∑
aiT

i) :=
a0 and cL{{T2}}{{T3}}···{{Tk}}/L defined recursively as composition of the maps
cL{{T2}}{{T3}}···{{Ti+1}}/L{{T2}}{{T3}}···{{Ti}}.

Remark 9. Benois in [4] extends theorem 7 to formal groups.

4.2. Kato’s generalized explicit reciprocity laws. Kato generalizes Wiles’
reciprocity law for an unequal characteristic local field K giving a natural
interpretation in the context of cohomology groups. Here we introduce two
generalizations.

4.2.1. Local approach. Let us first rewrite (11) in the context of Wiles’ reci-
procity law: let π be a fixed uniformizer of M , Ff a formal Lubin-Tate
group and ε a fixed generator for the Tate module. For simplicity we as-
sume that p is prime in K. Recall [20, Remark 4.1.3] that a Lubin-Tate
formal group G over OM has the following characterization in p-divisible
groups: dim(G) = 1, and the canonical map End(G) → EndOM

(LieG) ∼=
OM is an isomorphism, where Lie(G) is the tangent of G at the origin
and coLie(G) is HomOM

(Lie(G),OM ). Put G′ := G ×OM
OKFf ,m

; then
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Lie(G′)⊗OM
Q ∼= KFf ,m and coLie(G′)⊗OM

Q ∼= KFf ,m. Consider the map
%ε : lim

←−
n

K∗
Ff ,n → KFf ,m given by the composition

lim
←−
n

K∗
Ff ,n

( , )(11)−−−−−→ HomOM ,cont(Ff (mf,m),OM )
◦exp−−−−→ HomOM

(Lie(G′),M)

Tr−−−−→ KFf ,m
∼= Q⊗OM

coLie(G′)

where the last isomorphism is Kato’s trace pairing [19, II,§2] and exp is the
exponential map.

Wiles’ reciprocity law affirms that %ε(a) has an expression in terms of
dlog , which can be reformulated by defining a natural map δε. Here we
define %ε and δε in Kato’s generality [20, §6]: this essentially includes Lubin-
Tate formal groups and the generalized Wiles’ reciprocity law obtained in
§3 ([20, 6.1.10]).

Let K be an `-dimensional local field with char(K) = 0 and char(kK) =
p > 0. Take G a p-divisible group over OK with dim(G) = 1. Suppose
Λ ↪→ End(G) with Λ an integral domain over Zp which is free of finite rank
as Zp-module. Suppose TpG is a free Λ-module of rank 1 and fix a gen-
erator ε. Let Kn/K be the field extension corresponding to Ker(GK →
AutΛ(TpG/pn)). Denote the p-adic GK-representation TpG ⊗ Qp by VpG:
to it one can apply Fontaine’s theory. By Fontaine’s ring BdR,K (here we
just recall that it is a filtered GK-module - see [19, §2] for more) one con-
structs the filtered module DdR,K(VpG) := H0(K, BdR,K ⊗Qp VpG). One
has that gr−1DdR,K(VpG) is canonically isomorphic to Q ⊗ Lie(G) and
dimK(DdR,K(VpG)) = dimQp(VpG). Then one defines a map [20, Propo-
sition(2.3.3),p.118]

FDR : H`−1(K,Zp(`)⊗HomΛ(TpG,Λ)) → Ω̂`−1
K ⊗OK

coLie(G)

where Ω̂r
K is the p-adic completion of Ωr

OK/Z tensored by Q.
Kato extends the above %ε to

%ε : lim
←−
n

KM
` (Kn) GSM−−−−→ H`(K,Zp(`)⊗HomΛ(TpG,Λ))

FDR−−−−→ Ω̂`−1
K ⊗OK

coLie(G) .

The recipe to construct GSM is: fix n, then compose the Galois symbol
map defined in §2.4 (but with coefficients in (Z/pnZ)(`)) instead of Zp(`))
with ∪ε−1

n : H`(Kn, (Z/pnZ)(`)) → H`(Kn, (Z/pnZ)(`) ⊗ HomΛ(TpG,Λ))
and take the trace map to have the cohomology group over K, and finally
take the limit with respect to n.

As for δε: up to some technical details which we do not reproduce here
(see [20, p.119]) it is essentially the map dlog : KM

` (Kn) → Ω̂`
K given by

{α1, . . . , α`} 7→ dlog (α1) ∧ · · · ∧ dlog (α`).

Theorem 10. One has %ε = (−1)`−1δε [20, Theorem 6.1.9].
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Remark 11. Kato obtains a generalized reciprocity law when dim(G) = 1,
TpG is Λ-free with rankΛTpG = ` ≥ 1 and some technical conditions
from Fontaine’s theory are satisfied [20, Theorem 4.3.4]. He also defines
%s (from Fontaine’s theory) and δs (on the dlog side) with s ∈ N` as maps
lim
←−
n

KM
` (Yn) → O(Ym) ⊗OK

coLie(G)⊗(`+r(s)) where Yn is a scheme repre-

senting a functor related with the pn-torsion points associated to G and
r(s) ∈ N.

Remark 12. Kato’s generalized reciprocity laws (theorem 10 and remark
11) did not include a generalization of Coleman power series. Fukaya [13]
obtains a K2-analog for the Coleman isomorphism.

Remark 13. In the previous paper [19, II] Kato had obtained a reciprocity
law for a map %̂ε whose definition involves the Kummer map (11) for the
tower of fields given by any classical Lubin-Tate formal group (i.e. ` = 1 and
K = M) and the dual exponential map (see below) associated to a certain
representation of the formal group (more precisely, to a power of a Hecke
character obtained from a CM elliptic curve). He relates %̂ε with a map δ̂ε

constructed mainly from dlog . This reciprocity law is expressed in terms of
Coleman power series [19, II]. Tsuji in [30, I] extends Kato’s reciprocity law
[19, II] to representations coming from more general Hecke characters.

4.2.2. Global approach. Now the base field is M , in particular ` = 1 and
car(kM ) = p > 0. As explained in [26, §3.3], Kato proves that Wiles’ reci-
procity (or rather Iwasawa’s, since it is the case Ff = Gm) is equivalent to
the commutativity of the following diagram (which follows from cohomolog-
ical properties):

Q⊗ lim
←−

n,Norm

O∗M(ζpn ) −−−−−−→
Kummer

Q⊗ lim
←−
n

Homcont(GM(ζpn )), µpn)

dlog

y
yζpn 7→1

Q⊗ lim
←−

n,Trace

Ω1
OM(ζpn )/OM

Q⊗ lim
←−
n

H1(M(ζpn),Z/pn)

dlog ζpn 7→1

y
ycor

Q⊗ lim
←−

t−,−

OM [ζpn ]/pn Q⊗ lim
←−
n

H1(Km,Z/pn)

(tn,m)n

y
yinc

M(ζpm)
∼=−−−−−−−−→

∪ 1
pm log χcycl

H1(M(ζpm), M̂)

where tn,m := 1
pn−m TrM(ζpn )/M(ζpm ), cor is the corestriction map, χcycl is the

cyclotomic character as in §3, ∪ log χcycl is the cup product by the element
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log χcycl ∈ Homcont(GM ,Zp), inc is the map induced by lim
←−
n

Z/pn = Zp ↪→

M̂ and Homcont(GM(ζpn ),µpn) ∼= H1(M(ζpn),Z/pn(1)) by ζpn 7→ 1.
Inspired by this cohomological approach, Kato formulates a new reci-

procity law. To state it we need to introduce some more notation. Take
a smooth OM -scheme U , complement of a divisor Z with relatively normal
crossings in a smooth proper OM -scheme X. We assume there is a theory of
Chern classes for higher Quillen K-theory giving functorial homomorphisms

chr : Kr(U ⊗OM
OM(ζpn)) → Hr

et(U ⊗M M(ζpn),Zp(r))

where the Kr’s are Quillen K-theory groups and Het denotes continuous
ètale cohomology. By the Hochschild-Serre spectral sequence we obtain a
map

HS ◦ chr : Kr(U ⊗OM
OM(ζpn)) → Hr(M(ζpn), Hr−1(U ⊗M M,Zp(r))).

Now V := Hr−1(U⊗MM,Zp(r)) is a p-adic GM -representation and Fontaine’s
theory applies. By Fontaine’s ring BdR,M (here we just recall that it is a
filtered GM -module - see [19, §2] for more) one constructs the filtered M -
vector space DdR,M (V ) := (BdR,M ⊗Qp V )GM . Suppose that V is de Rham,
that is dimM (DdR,M (V )) = dimQp(V ). Then the dual exponential map
exp∗ : H1(M, V ) → D0

dR,M (V ) is given by the composition of

H1(M, V ) inclusion−−−−−−→ H1(M, M̂ ⊗Qp V )
∼=−−−−→ H1(M, M̂)⊗M D0

dR,M (V )
∼=∪ log χcycl−−−−−−−→ D0

dR,M (V ),

where ∪ log χcycl is the Tate isomorphism M = H0(M, M̂) → H1(M, M̂) and

the first isomorphism is induced by the Hodge-Tate decomposition M̂ ⊗Qp

V ∼= ⊕i∈ZM̂(−i)⊗M griDdR,M (V ) [26, p.407] (for more on exp∗ and how it
fits into a motivic Tamagawa number framework see [7]).

On the dlog side we need a Chern character into de Rham cohomology
(cohomology of differentials). When X = Spec(R) is noetherian it exists a
map dlog : Kq(Spec(R)) → Ωq

R/Z satisfying dlog (a∪b) = dlog (a)∧dlog (b),
and other properties [26, p.393]. Denote H i

dR(U/OM ) := H i(X, Ω·X/OM
(Z))

the hypercohomology of the de Rham complex of differentials on X with
logarithmic singularities over Z: it has a natural filtration. We recall that

D0
dR,M (V ) = H0(X, Ω1

X/OM
(log Z))⊗OM

M = Fil1H1
dR(U/OM )⊗OM

M.

For simplicity assume M = M0, so that Ω1
OM(ζpn )/OM

is generated by

dlog ζpn and dM(ζpn )/M is pn(ζp − 1)−1OM [ζpn ].

Theorem 14. (Explicit reciprocity law) Take p > 2. Let X be a smooth
and proper curve over OM and take an affine U ⊂ X as above. Then the
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following diagram commutes:

lim←−
n

(K2(U ⊗OM(ζpn )))⊗ µ
⊗−1
pn −−−−−−→

HS◦ch2
lim←−

n

H
1
(M(ζpn ), H

1
et(U ×M M, µpn ))

??ydlog cor

??y

lim←−
n

H
0
(X ⊗OM(ζpn ), Ω

2
X⊗OM(ζpn )/OM

(log Z))(−1) lim←−
n≥m

H
1
(M(ζpm ), H

1
(U ×M M, µpn ))

??y= ∼=
??y

lim←−
n

Ω
1
OM(ζpn )/OM

⊗ Fil
1
(H

1
dR(U/OM )) H1(M(ζpm ), H1(U ×M M,Zp)(1))

??y exp∗
??y

lim←−
n

OM(ζpn )/dM(ζpn )/M ⊗OM
Fil

1
H

1
dR(U/OM ) −−−−−−→

tr
M(ζpm )⊗OM

Fil1H1
dR(U/OM )

where tr denotes ( 1
pn trM(ζpn )/M(ζpm ))n≥m.

Remark 15. Take X = P1 and U = A1 − {0} = Spec(OM [t, t−1]). Take
(un)n ∈ lim

←−
n

O∗M(ζpn) and consider {un, t} ∈ K2(U ⊗ OM(ζpn)). Then from

theorem 14 one recovers Iwasawa’s theorem 2 [26, Remark p.411]. See also
remark 13.

Remark 16. Theorem 14 has been vastly extended by Härkönen [16]: he
shows that, under some technical assumptions, the map exp∗◦corestriction◦
HS ◦ chr : lim

←−
n

Kr(U ⊗OM
M(εn)) → M(εm)⊗D0

dR,M (V ) can be computed

in terms of a dlog map, for any r with 1 ≤ r ≤ p− 2 (as before ε is a fixed
generator of TpFf for a Lubin-Tate formal group Ff over OM ). We refer to
[16] for precise statements.

4.3. Rank 1 Drinfeld modules. Kato’s approach inspired the construc-
tion of the diagram presented in this subsection, which is the only new
material of this survey paper. As in the rest of this work, we restrict our-
selves to the case of the Carlitz module; however, we remark that theorem
18 can easily be extended to any rank 1 sign-normalized Drinfeld module,
with exactly the same proof (mutatis mutandis: the changes are the same
necessary to pass from the function field results exposed in this paper to the
more general statements of [3]).

Remember that the Galois action on the module of Kähler differentials
ΩOΦ,n/O is given by σ(αdβ) = σ(α)dσ(β), σ ∈ Gal(KΦ,n/K), α, β ∈ OΦ,n.
In particular, one has

σ(dεn) = d(σεn) = d(Φχ(σ)(εn)) = χ(σ)dεn .

Besides, dεn = dΦπk(εn+k) = πkdεn+k.

By lim← ΩOΦ,n/O we denote the limit with respect to the trace map, defined

as usual by Trn
m(ω) :=

∑
σ∈Gal(KΦ,n/KΦ,m) σ(ω) where Trn

m = TrKΦ,n/KΦ,m
.



RECIPROCITY LAWS FOR LOCAL FIELDS 17

Lemma 17. Let (ωn)n ∈ lim← ΩOΦ,n/O and for each n choose xn ∈ On so

that ωn = xndεn. Then the sequence yn := π−nTrn
m(xn) converges to a limit

in KΦ,m for any fixed m.

Proof. To lighten notation put Gr
n := Gal(KΦ,r/KΦ,n), r > n. The diagram

0 −−−−−→ Gr
n −−−−−→ Gal(KΦ,r/K) −−−−−→ Gal(KΦ,n/K) −−−−−→ 0

'
??y '

??y '
??y

0 −−−−−→ (1 + pn)/(1 + pr) −−−−−→ (A/pr)∗ −−−−−→ (A/pn)∗ −−−−−→ 0

(where vertical maps are induced by χ) shows that χ(σ)−1 ∈ pn for σ ∈ Gr
n.

The equality ωn = Trn+k
n ωn+k can be rewritten as

xnπkdεn+k = xndεn =
∑

σ∈Gn+k
n

σ(xn+k)χ(σ)dεn+k ,

that is, πkxn =
∑

σ(xn+k)χ(σ) + δn,n+k for some δn,n+k ∈ dKΦ,n+k/K . Let

zn,n+k :=
∑

σ∈Gn+k
n

σ(xn+k)(χ(σ)− 1) + δn,n+k .

By [3, Lemma 3] we know v(δn,n+k) > n+k−1; together with the observation
above, this implies that v(zn,n+k) ≥ n. It is computed in [3, cor.4] that
v(Trn

m(a)) > v(a) + n−m− 1: applying it to

yn − yn+k =
1

πn+k
Trn

m


xnπk −

∑

σ∈Gn+k
n

σ(xn+k)


 = Trn

m

(zn,n+k

πn+k

)

we see that v(yn − yn+k) ≥ n − (m + k + 1), proving that the yn’s form a
Cauchy sequence. ¤

By abuse of notation, we denote the limit in lemma 17 as lim
n→∞

1
πn

Trn
m

(
ωn

dεn

)
.

Inspired by [20, §1.1] and [26, Theorem 3.3.15], we construct the following
diagram:

lim← K∗
Φ,n

(1)−−−−→ Homcont(mΦ,m, TpΦ)
y(2) (4)

y

lim← Fp
dεn

εn
⊕ Ω1

OΦ,n/OFp

(3)−−−−→ KΦ,m ' HomFp(Km,Φ, Fp)

Arrow (1) is the Kummer map: it sends u = (un)n to a → lim
n→∞(a, un)n.

(This limit exists in TpΦ:

Φπ(a, un)n = ((un,Kab
Φ,n/KΦ,n)− 1)Φπ( π

n
√

a) = (a, un−1)n−1

because Φπ ∈ O{τ} commutes with the action of GK ; here π
n
√

a is a root of
Φn

π(X) = a.)
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As for (2), it is just dlog : u 7→ du
u , extended to K∗

Φ,n by putting dlog εi
n :=

idεn
εn

, as described in [3, §4.2.1]; the limit of differentials is taken with respect
to the trace and dε

ε denotes the inverse system dεn
εn

.
The isomorphism KΦ,m ' HomFp(KΦ,m, Fp) is given by the trace pairing:
b ∈ KΦ,m is sent to a 7→ TrKΦ,m/Fp

(ab) . The map (3) is

(ωn)n 7→ lim
n→∞

1
πn

TrKΦ,n/KΦ,m

(
ωn

dεn

)
.

The definition of (4) needs more explanation. The logarithm λ has locally
an inverse e : mtn

Φ,n → mΦ,n for tn À 0; this can be extended to ẽ : KΦ,n →
Fp⊗Φ mΦ,n (the tensor product is taken on Ap, which acts on mΦ,n via Φ) by
putting ẽ(πiz) := πi ⊗ e(z) for i À 0. In order to define (4), first remember
the isomorphism TpΦ ' Ap, via a · ε ↔ a; then use composition with ẽ,
f 7→ f ◦ ẽ, to get Hom(mΦ,m, Ap) → Hom(KΦ,m, Fp) .

Theorem 18. The diagram above is commutative.

Proof. Working out definitions, one sees that this is equivalent to part 2 of
theorem 6. More precisely (3) ◦ (2) sends u = (un) ∈ lim← K∗

Φ,n to the map

w 7→ TrKΦ,m/K

( w

πm
dlog Colu(εm)

)
.

On the other hand, the image of u under (4) ◦ (1) is the morphism map-
ping πiz, v(z) À 0, to πigu(e(z)), where gu ∈ Hom(mΦ,m, Ap) is uniquely
determined by the condition gu(a) · εn = (a, un)n for all n ≥ m. Recalling
that

[e(z), un]n := TrKΦ,n/K

�
λ(e(z))

πn
dlog Colu(εn)

�
·εn = TrKΦ,m/K

� z

πm
dlog Colu(εm)

�
·εn ,

it is clear that (3) ◦ (2) = (4) ◦ (1) iff (·, ·) = [·, ·]. ¤
Remark 19. The similarity of our diagram with the first diagram of §4.2.2
is rather vague. It would be nice to express (and prove) the reciprocity
law in the cohomological setting, as in [26, §3.3]; the big problem here is
to find a good analogue of H1(GQp ,Cp) in characteristic p > 0 (a naive
approach cannot work: Y. Taguchi proved that H1(GK ,Cp) = 0 ). Recent
developments in extending Fontaine’s theory to the equal characteristic case
(for a survey see [14]) might be helpful.
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Reine Angew. Math. 56 (1858), 270-279.

[22] Kurihara, M.: The exponential homomorphisms for the Milnor K-groups and
an explicit reciprocity law. J. Reine Angew. Math. 498 (1998), 201-221.

[23] Kurihara, M.: Kato’s higher local class field theory. In Invitation to higher
local fields., 53-60. Geometry and Topology Monographs Vol 3, 2000, Inter-
national Press.

[24] Lang, S.: Cyclotomic Fields I and II. Graduate Texts in Mathematics 121.
Springer-Verlag, New York, 1990.

[25] Parshin, A.N.: Class field theory and algebraic K-theory. Uspekhi Mat.Nauk
30, no.1 (1975), 253-254, English transl.:Russian Math.Surv.

[26] Scholl, A.J.: An introduction to Kato’s Euler systems In Galois represen-
tations in Arithmetic Algebraic Geometry (A.J.Scholl and R.L.Taylor eds.),
379-460. London Math.Soc. Lecture Notes 254, 1998.

[27] Sen, S.: On explicit reciprocity laws. J.Reine Angew. Math.313 (1980), 1-26.
[28] Serre, J.P.: Local class field theory. In Algebraic Number Fields. J.W.S.Cassels
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