THE GROUP STRUCTURE OF THE NORMALIZER OF $\Gamma_0(N)$ AFTER ATKIN-LEHNER

FRANCESC BARS

ABSTRACT. We determine the group structure of the normalizer of $\Gamma_0(N)$ in $SL_2(\mathbb{R})$ modulo $\Gamma_0(N)$. These results correct the Atkin-Lehner statement [1, Theorem 8].

1. INTRODUCTION

The modular curves $X_0(N)$ contain deep arithmetical information. These curves are the Riemann surfaces obtained by completing with the cusps the upper half plane modulo the modular subgroup

$$\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ Nc & d \end{pmatrix} \in SL_2(\mathbb{Z}) | c \in \mathbb{Z} \}.$$

It is clear that the elements in the normalizer of $\Gamma_0(N)$ in $SL_2(\mathbb{R})$ induce automorphisms of $X_0(N)$ and moreover one obtains in that way all automorphisms of $X_0(N)$ for $N \neq 37$ and 63 [3]. This is one reason coming from the modular world that shows the interest in computing the group structure of this normalizer modulo $\Gamma_0(N)$.

Morris Newman obtains a result for this normalizer in terms of matrices [5],[6], see also the work of Atkin-Lehner and Newman [4]. Moreover, Atkin-Lehner state without proof the group structure of this normalizer modulo $\Gamma_0(N)$ [1, Theorem 8]. In this paper we correct this statement and we obtain the right structure of the normalizer modulo $\Gamma_0(N)$. The results are a generalization of some results noticed in [2].

2. The Normalizer of $\Gamma_0(N)$ in $SL_2(\mathbb{R})$

Denote by Norm $(\Gamma_0(N)$ the normalizer of $\Gamma_0(N)$ in $SL_2(\mathbb{R})$.

Theorem 1 (Newman). Let $N = \sigma^2 q$ with $\sigma, q \in \mathbb{N}$ and q square-free. Let ϵ be the gcd of all integers of the form a - d where a, d are integers such that $\begin{pmatrix} a & b \\ Nc & d \end{pmatrix} \in \Gamma_0(N)$. Denote by $v := v(N) := \gcd(\sigma, \epsilon)$. Then $M \in \operatorname{Norm}(\Gamma_0(N))$ if and only if M is of the form

$$\sqrt{\delta} \left(\begin{array}{cc} r\Delta & \frac{u}{v\delta\Delta} \\ \frac{sN}{v\delta\Delta} & l\Delta \end{array} \right)$$

Date: Revised version: July 16th, 2007.

Work partially supported by MTM2006-11391. MSC: 20H05(19B37,11G18).

After the paper were accepted we learned that a similar result was obtained by M. Akbas and P_{i}

D. Singerman in The normalizer of $\Gamma_0(N)$ in $PSL(2,\mathbb{R})$ with a different proof. See the postcript.

with $r, u, s, l \in \mathbb{Z}$ and $\delta | q, \Delta | \frac{\sigma}{v}$. Moreover $v = 2^{\mu} 3^w$ with $\mu = \min(3, [\frac{1}{2}v_2(N)])$ and $w = \min(1, [\frac{1}{2}v_3(N)])$ where $v_{p_i}(N)$ is the valuation at the prime p_i of the integer N.

This theorem is really proved (and not only stated) by Morris Newman in [5] [6], see also [2, p.12-14].

Observe that if $gcd(\delta\Delta, 6) = 1$ we have $gcd(\delta\Delta^2, \frac{N}{\delta\Delta^2}) = 1$ because the determinant is one.

3. The group structure of Norm $(\Gamma_0(N))/\Gamma_0(N)$

In this section we obtain some partial results on the group structure of Norm $(\Gamma_0(N))$. Let us first introduce some particular elements of $SL_2(\mathbb{R})$.

Definition 1. Let N be fixed. For every divisor m' of N with gcd(m', N/m') = 1 the Atkin-Lehner involution $w_{m'}$ is defined as follows,

$$w_{m'} = \frac{1}{\sqrt{m'}} \begin{pmatrix} m'a & b\\ Nc & m'd \end{pmatrix} \in SL_2(\mathbb{R})$$

with $a, b, c, d \in \mathbb{Z}$.

Denote by $S_{v'} = \begin{pmatrix} 1 & \frac{1}{v'} \\ 0 & 1 \end{pmatrix}$ with $v' \in \mathbb{N} \setminus \{0\}$. Atkin-Lehner claimed in [1] the following:

Claim 2 (Atkin-Lehner). [1, Theorem 8] The quotient $\operatorname{Norm}(\Gamma_0(N))/\Gamma_0(N)$ is the direct product of the following groups:

- $(1) \ \{w_{q^{\upsilon_q(N)}}\} \ \text{for every prime } q, \ q \geq 5 \ q \mid N.$
- (2) (a) If $v_3(N) = 0$, {1}
 - (b) If $v_3(N) = 1$, $\{w_3\}$
 - (c) If $v_3(N) = 2$, $\{w_9, S_3\}$; satisfying $w_9^2 = S_3^3 = (w_9S_3)^3 = 1$ (factor of order 12)
 - (d) If $v_3(N) \ge 3$; $\{w_{3^{v_3(N)}}, S_3\}$; where $w_{3^{v_3(N)}}^2 = S_3^3 = 1$ and $w_{3^{v_3(N)}}S_3w_{3^{v_3(N)}}$ commute with S_3 (factor group with 18 elements)
- (3) Let be λ = v₂(N) and μ = min(3, [^λ/₂]) and denote by v'' = 2^μ the we have:
 (a) If λ = 0; {1}
 - (b) If $\lambda = 1$; $\{w_2\}$
 - (c) If $\lambda = 2\mu$; $\{w_{2^{\upsilon_2(N)}}, S_{v''}\}$ with the relations $w_{2^{\upsilon_2(N)}}^2 = S_{v''}^{\upsilon''} = (w_{2^{\upsilon_2(N)}}S_{v''})^3 = 1$, where they have orders 6,24, and 96 for v = 2,4,8 respectively. (One needs to warn that for v = 8 the relations do not define totally this factor group).
 - (d) If $\lambda > 2\mu$; { $w_{2^{\nu_2(N)}}, S_{\nu''}$ }; $w_{2^{\nu_2(N)}}^2 = S_{\nu''}^{\nu''} = 1$. Moreover, $S_{\nu''}$ commutes with $w_{2^{\nu_2(N)}}S_{\nu''}w_{2^{\nu_2(N)}}$ (factor group of order $2{\nu''}^2$).

Let us give some partial results first.

Proposition 3. Suppose that v(N) = 1 (thus $4 \nmid N$ and $9 \nmid N$). Then the Atkin-Lehner involutions generate Norm $(\Gamma_0(N)/\Gamma_0(N))$ and the group structure is

$$\cong \prod_{i=1}^{\pi(N)} \mathbb{Z}/2\mathbb{Z}$$

where $\pi(N)$ is the number of prime numbers $\leq N$.

2

Proof. This is classically known already in the 1970's. We recall only that $w_{mm'} = w_m w_{m'}$ for (m, m') = 1 and easily $w_m w_{m'} = w_{m'} w_m$; the the result follows by a straightforward computation from Theorem 1, see also [2, p.14].

When v(N) > 1 it is clear that some element $S_{v'}$ appears in the group structure of Norm $(\Gamma_0(N))/\Gamma_0(N)$ from Theorem 1.

Lemma 4. If 4|N the involution $S_2 \in \text{Norm}(\Gamma_0(N))$ commutes with the Atkin-Lehner involutions w_m with gcd(m, 2) = 1 and with the other $S_{v'}$.

Proof. By the hypothesis the following matrix belongs to $\Gamma_0(N)$

$$w_m S_2 w_m S_2 = \begin{pmatrix} \frac{2mk^2 + 2Nt + mkNt}{2m} & \frac{(2+2m)(2m+2mk+Nt)}{4m} \\ \frac{Nt(2m+2mk+Nt)}{2m} & m + Nt + \frac{Nt}{m} + \frac{kNt}{2} + \frac{Nt^2}{4m} \end{pmatrix}.$$

Proposition 5. Let $N = 2^{v_2(N)} \prod_i p_i^{n_i}$, with p_i different odd primes and assume that $v_2(N) \leq 3$, $v_3(N) \leq 1$. Then Atkin-Lehner's Claim 2 is true.

For the proof we need two lemmas.

Lemma 6. Let $\tilde{u} \in \text{Norm}(\Gamma_0(N))$ and write it as:

$$\tilde{u} = \frac{1}{\sqrt{\delta\Delta^2}} \left(\begin{array}{cc} \Delta^2 \delta r & \frac{u}{2} \\ \frac{sN}{2} & l\Delta^2 \delta \end{array} \right)$$

following the notation of Theorem 1. Then:

$$w_{\Delta^2\delta}\tilde{u} = \begin{pmatrix} r' & \frac{u'}{2} \\ \frac{s'N}{2} & v' \end{pmatrix}, \ if \ \gcd(\delta, 2) = 1,$$
$$w_{\Delta^2\frac{\delta}{2}}\tilde{u} = \frac{1}{\sqrt{2}} \begin{pmatrix} 2r'' & \frac{u''}{2} \\ \frac{s''N}{2} & 2v'' \end{pmatrix}, \ if \ \gcd(\delta, 2) = 2.$$

Proof. This is an easy calculation.

We study now the different elements of the type

$$a(r', u', s', v') = \begin{pmatrix} r' & \frac{u'}{2} \\ \frac{s'N}{2} & v' \end{pmatrix},$$

$$b(r'', u'', s'', v'') = \frac{1}{\sqrt{2}} \begin{pmatrix} 2r'' & \frac{u''}{2} \\ \frac{s''N}{2} & 2v'' \end{pmatrix}.$$

Observe that b(,,,) only appears when $N \equiv 0 \pmod{8}$.

Lemma 7. For $N \equiv 4 \pmod{8}$ all the elements of the normalizer of type a(r', u', s', v') belong to the order six group $\{S_2, w_4 | S_2^2 = w_4^2 = (w_4 S_2)^3 = 1\}$.

Proof. Straightforward from the equalities:

$$a(r', u', s', v') \in \Gamma_0(N) \Leftrightarrow s' \equiv u' \equiv 0 \pmod{2}$$
$$a(r', u', s', v')S_2 \in \Gamma_0(N) \Leftrightarrow r' \equiv v' \equiv u' \equiv 1 \ s' \equiv 0 \pmod{2}$$
$$a(r', u', s', v')w_4 \in \Gamma_0(N) \Leftrightarrow r' \equiv v' \equiv 0 \ u' \equiv s' \equiv 1 \pmod{2}$$
$$a(r', u', s', v')w_4S_2 \in \Gamma_0(N) \Leftrightarrow r' \equiv u' \equiv s' \equiv 1 \ v' \equiv 0 \pmod{2}$$

$$a(r', u', s', v')S_2w_4 \in \Gamma_0(N) \Leftrightarrow v' \equiv u' \equiv s' \equiv 1 \ r' \equiv 0 \pmod{2}$$
$$a(r', u', s', v')S_2w_4S_2 \in \Gamma_0(N) \Leftrightarrow r' \equiv v' \equiv s' \equiv 1 \ u' \equiv 0 \pmod{2}$$

Lemma 8. Let N be a positive integer with $v_2(N) = 3$. Then all the elements of the form a(r', u', s', v') and b(r'', u'', s'', v'') correspond to some element of the following group of 8 elements

$$\{S_2, w_8 | S_2^2 = w_8^2 = 1, S_2 w_8 S_2 w_8 = w_8 S_2 w_8 S_2\}$$

Proof. If follows from the equalities:

$$\begin{aligned} a(r', u', s', v') &\in \Gamma_0(N) \Leftrightarrow r' \equiv v' \equiv 1, u' \equiv s' \equiv 0 \pmod{2} \\ a(r', u', s', v') S_2 &\in \Gamma_0(N) \Leftrightarrow r' \equiv v' \equiv u' \equiv 1, s' \equiv 0 \pmod{2} \\ a(r', u', s', v') w_8 S_2 w_8 &\in \Gamma_0(N) \Leftrightarrow r' \equiv v' \equiv s' \equiv 1, u' \equiv 0 \pmod{2} \\ a(r', u', s', v') S_2 w_8 S_2 w_8 &\in \Gamma_0(N) \Leftrightarrow r' \equiv v' \equiv s' \equiv v' \equiv 1 \pmod{2} \\ b(r'', u'', s'', v'') w_8 &\in \Gamma_0(N) \Leftrightarrow r'' \equiv v'' \equiv 0, u'' \equiv s'' \equiv 1 \pmod{2} \\ b(r'', u'', s'', v'') S_2 w_8 S_2 &\in \Gamma_0(N) \Leftrightarrow r'' \equiv v'' \equiv u'' \equiv s'' \equiv 1 \pmod{2} \\ b(r'', u'', s'', v'') S_2 w_8 &\in \Gamma_0(N) \Leftrightarrow r'' \equiv 0, u'' \equiv s'' \equiv 1 \pmod{2} \\ b(r'', u'', s'', v'') w_8 &\in \Gamma_0(N) \Leftrightarrow r'' \equiv 0, u'' \equiv s'' \equiv 1 \pmod{2} \\ b(r'', u'', s'', v'') w_8 S_2 &\in \Gamma_0(N) \Leftrightarrow v'' \equiv 0, u'' \equiv s'' \equiv 1 \pmod{2} \\ b(r'', u'', s'', v'') w_8 S_2 &\in \Gamma_0(N) \Leftrightarrow v'' \equiv 0, u'' \equiv s'' \equiv r'' \equiv 1 \pmod{2} \end{aligned}$$

We can now proof Proposition 5].

Proof. [of Proposition 5] Let $N = 2^{v_2(N)} \prod_i p_i^{n_i}$, with p_i different primes and assume that $9 \nmid N$. If $v_2(N) \leq 1$ we are done by proposition 3. Suppose $v_2(N) = 2$ and let $\tilde{u} \in \operatorname{Norm}(\Gamma_0(N))$. By lemmas 6 and 7, $w_\delta \tilde{u} = \alpha$, $\alpha \in \{S_2, w_4|S_2^2 = w_4^2 = (w_4S_2)^3 = 1$ and it follows that $\tilde{u} = w_\delta \alpha$. Since w_δ (($\delta, 2$) = 1) commutes with S_2 and the Atkin-Lehner involutions commute one to each other, we are already done. In the situation 8||N the proof is exactly the same but using lemmas 6 and 8 instead.

4. Counterexamples to Claim 2.

In the above section we have seen that Atkin-Lehner's claim is true if $v(N) \leq 2$ i.e. for $v_2(N) \leq 3$ and $v_3(N) \leq 1$. Now we obtain counterexamples when $v_2(N)$ and/or $v_3(N)$ are bigger.

Lemma 9. Claim 2 for N = 48 is wrong.

Proof. We know by Ogg [7] that $X_0(48)$ is an hyperelliptic modular curve with hyperelliptic involution not of Atkin-Lehner type. The hyperelliptic involution always belongs to the center of the automorphism group. We know by [3] that $\operatorname{Aut}(X_0(48)) = \operatorname{Norm}(\Gamma_0(48))/\Gamma_0(N)$. Now if Claim 2 where true this group would be isomorphic to $\mathbb{Z}/2 \times \Pi_4$ where Π_n is the permutation group of n elements. It is clear that the center of this group is $\mathbb{Z}/2 \times \{1\}$, generated by the Atkin-Lehner involution w_3 , but this involution is not the hyperelliptic one.

The problem of N = 48 is that S_4 does not commute with the Atkin-Lehner involution w_3 ; thus the direct product decomposition of Claim 2 is not possible.

This problem appears also for powers of 3 one can prove,

Lemma 10. Let $N = 3^{v_3(N)} \prod_i p_i^{n_i}$ where p_i are different primes of \mathbb{Q} . Impose that $S_3 \in \operatorname{Norm}(\Gamma_0(N))$. Then S_3 commutes with $w_{p_i^{n_i}}$ if and only if $p_i^{n_i} \equiv 1 \pmod{3}$. Therefore if some $p_i^{n_i} \equiv -1 \pmod{3}$ the Claim 2 is not true.

Proof. Let us show that S_3 does not commute with $w_{p_i^{n_i}}$ if and only if $p_i^{n_i} \equiv -1 \pmod{3}$. 3). Observe the equality $w_{p_i^{n_i}} = \frac{1}{\sqrt{p_i^{n_i}}} \begin{pmatrix} p_i^{n_i}k & 1\\ Nt & p_i^{n_i} \end{pmatrix}$:

$$w_{p_i^{n_i}}S_3w_{p_i^{n_i}}S_3^2 =$$

$$\frac{1}{p_i^{n_i}} \left(\begin{array}{c} (p_i^{n_i}k)^2 + Nt(1 + \frac{p_i^{n_i}k}{3}) & p_i^{n_i}k(\frac{2p_i^{n_i}k}{3} + 1) + (\frac{p_i^{n_i}k}{3} + 1)(\frac{2Nt}{3} + p_i^{n_i}) \\ Nt(p_i^{n_i}k) + Nt(\frac{Nt}{3} + p_i^{n_i}) & Nt(\frac{2p_i^{n_i}k}{3} + 1) + p_i^{n_i}(\frac{Nt}{3} + p_i^{n_i})(\frac{2Nt}{3} + p_i^{n_i}) \end{array} \right).$$

For this element to belong to $\Gamma_0(N)$ one needs to impose $\frac{2k^2 p_i^{n_i}}{3} + \frac{p_i^{n_i} k}{3} \in \mathbb{Z}$. Since $p_i^{n_i} \equiv 1 \ o \ -1 \pmod{3}$ it is needed that $k \equiv 1 \pmod{3}$. Now from $\det(w_{p_i}) = 1$ we obtain that $p_i^{n_i} k \equiv 1 \pmod{3}$; therefore $p_i^{n_i} \equiv 1 \pmod{3}$.

5. The group structure of Norm $(\Gamma_0(N))/\Gamma_0(N)$ revisited.

In this section we correct Claim 2. We prove here that the quotient

$$\operatorname{Norm}(\Gamma_0(N))/\Gamma_0(N)$$

is the product of some groups associated every one of them to the primes which divide N. See for the explicit result theorem 16.

Theorem 11. Any element $w \in Norm(\Gamma_0(N))$ has an expression of the form

$$w = w_m \Omega,$$

where w_m is an Atkin-Lehner involution of $\Gamma_0(N)$ with (m, 6) = 1 and Ω belongs to the subgroup generated by $S_{v(N)}$ and the Atkin Lehner involutions $w_{2^{v_2(N)}}$, $w_{3^{v_3(N)}}$. Moreover for $gcd(v(N), 2^3) \leq 2$ the group structure for the subgroup $\langle S_{v_2(v(N))}, w_{2^{v_2(N)}} \rangle$ and $\langle S_{v_3(v(N))}, w_{3^{v_3(N)}} \rangle$ of $\langle S_{v(N)}, w_{2^{v_2(N)}}, w_{3^{v_3(N)}} \rangle$ is the predicted by Atkin-Lehner at Claim 2, but these two subgroups do not necessary commute withe each other element-wise.

Proof. Let us take any element w of the Norm $(\Gamma_0(N))$. By Theorem 1 we can express w as follows,

$$w = \sqrt{\delta} \left(\begin{array}{cc} r\Delta & \frac{u}{v\delta\Delta} \\ \frac{sN}{v\delta\Delta} & l\Delta \end{array} \right) = \frac{1}{\Delta\sqrt{\delta}} \left(\begin{array}{cc} r\delta\Delta^2 & \frac{u}{v} \\ \frac{sN}{v} & l\delta\Delta^2 \end{array} \right)$$

Let us denote by $U = 2^{v_2(N)} 3^{v_3(N)}$. Write $\Delta' = \text{gcd}(\Delta, N/U)$ and $\delta' = \text{gcd}(\delta, N/U)$; then we obtain

$$w_{\delta'\Delta'^2}w = \frac{1}{\frac{\Delta}{\Delta'}\sqrt{\delta/\delta'}} \begin{pmatrix} r'\frac{\delta}{\delta'}\frac{\Delta^2}{\Delta'^2} & \frac{u'}{v(N)}\\ \frac{Nt'}{v(N)} & v'\frac{\delta}{\delta'}\frac{\Delta^2}{\Delta'^2} \end{pmatrix}$$

Observe that if v(N) = 1 we already finish and we reobtain proposition 3. This is clear if gcd(N, 6) = 1; if not, the matrix $ww_{\delta'\Delta'^2}$ is the Atkin-Lehner involution at $(\frac{\Delta}{\Delta'})^2 \frac{\delta}{\delta'} \in \mathbb{N}$.

Now we need only to check that any matrix of the form

(1)
$$\Omega = \frac{1}{\frac{\Delta}{\Delta'}\sqrt{\delta/\delta'}} \begin{pmatrix} r'\frac{\delta}{\delta'}(\frac{\Delta}{\Delta'})^2 & \frac{u'}{v(N)} \\ \frac{Nt'}{v(N)} & v'\frac{\delta}{\delta'}(\frac{\Delta}{\Delta'})^2 \end{pmatrix}$$

is generated by $S_{v(N)}$ and the Atkin-Lehner involutions at 2 and 3 which are the factors of $\frac{\delta}{\delta'}(\frac{\Delta}{\Lambda'})^2$. To check this observe that $\Omega = \Omega_2 \Omega_3$ with

(2)
$$\Omega_{2} = \frac{1}{2^{v_{2}\left(\frac{\Delta}{\Delta'}\sqrt{\delta/\delta'}\right)}} \begin{pmatrix} r''2^{v_{2}\left(\frac{\delta}{\delta'}\left(\frac{\Delta}{\Delta'}\right)^{2}\right)} & \frac{u''}{2^{v_{2}\left(v(N)\right)}} \\ \frac{Nt''}{2^{v_{2}\left(v(N)\right)}} & v''2^{v_{2}\left(\frac{\delta}{\delta'}\left(\frac{\Delta}{\Delta'}\right)^{2}\right)} \end{pmatrix}$$
$$\Omega_{3} = \frac{1}{3^{v_{3}\left(\frac{\Delta}{\Delta'}\sqrt{\delta/\delta'}\right)}} \begin{pmatrix} r'''3^{v_{3}\left(\frac{\delta}{\delta'}\left(\frac{\Delta}{\Delta'}\right)^{2}\right)} & \frac{u'''}{3^{v_{3}\left(v(N)\right)}} \\ \frac{Nt'''}{3^{v_{3}\left(v(N)\right)}} & v'''3^{v_{3}\left(\frac{\delta}{\delta'}\left(\frac{\Delta}{\Delta'}\right)^{2}\right)} \end{pmatrix}$$

We only consider the case for Ω_2 , the case for the Ω_3 is similar. We can assume that $2^{v_2(\frac{\Delta}{\Delta'}\sqrt{\delta/\delta'})} = 1$ substituting Ω_2 by $w_{2^{v_2(N)}}\Omega_2$ if necessary. Thus, we are reduced to a matrix of the form $\tilde{\Omega}_2 = \begin{pmatrix} r' & \frac{u'}{2^{v_2(v(N))}} \\ \frac{Nt'}{2^{v_2(v(N))}} & v' \end{pmatrix}$. Now for some *i* we can obtain $S_{2^{v_2(v(N))}}^i \tilde{\Omega}_2 = \begin{pmatrix} r' & u' \\ \frac{Nt'}{2^{v_2(v(N))}} & v' \end{pmatrix}$; name this matrix by $\overline{\Omega}_2$. Then, it is easy to check that $v_1 = C_1^{i_1}$ easy to check that $w_{2^{v_2(N)}}S_{2^{v_2(v(N))}}^i w_{2^{v_2(N)}}\overline{\Omega_2} \in \Gamma_0(N)$ for some *i*. Similar argument as above are obtained if we multiply *w* by w_m on the right,

i.e. ww_m is also some Ω as above obtaining similar conclusion.

Let us see now that the group generated by $S_{v_2(v(N))}$ and the Atkin-Lehner involutions at 2, and the group generated by $S_{v_3(v(N))}$ and the Atkin-Lehner involution at 3 have the structure predicted in Claim 2 when $gcd(v(N), 2^3) \leq 2$. We only need to check when v(N) is a power of 2 or 3 by (2). For v(N) = 1 the matrix (1) is $w_{\frac{\delta}{\delta \ell}(\frac{\Delta}{\Delta \ell})^2}$ (we denote $w_1 := id$) (we have in this case a much deeper result, see proposition 3). Take now v(N) = 2. If $l = gcd(3, \delta/\delta')$ let $\Omega = w_l \Omega'$; the matrix Ω' is as (1) but with $gcd(3, \delta/\delta') = 1$, and $\frac{\delta}{\delta'} \frac{\Delta^2}{\Delta'^2}$ is only a power of 2. Then $\Omega' \in \langle S_2, w_{2^{v_2(N)}} \rangle$, let us to precise the group structure. For v(N) = 2we have $v_2(N) = 2$ or 3, and we have already proved the group structure of Claim [1] in lemmas 7,8 (we have moreover that Claim 2 is true because S_2 commutes with the Atkin-Lehner involutions $w_{p_i^{n_i}}$ if $(p_i, 2) = 1$, see proposition 5). Assume now v(N) = 3. If $l = gcd(2, \delta/\delta')$ and $\Omega = w_l \Omega'$ then Ω' is as (1) but with $gcd(2,\delta/\delta') = 1$, and $\frac{\delta}{\delta'} \frac{\Delta^2}{\Delta'^2}$ is only a power of 3. Then $\Omega' \in \langle S_3, w_{3^{v_3(N)}} \rangle$, let us to precise the group structure. For v(N) = 3 we have $v_3(N) \ge 2$. Let us begin with $v_3(N) = 2$, then Ω' is of the form

$$\Omega' = \begin{pmatrix} r' & \frac{u'}{3} \\ \frac{Nt'}{3} & v' \end{pmatrix} =: a(r', u', t', v')$$

(from the formulation of Theorem 1 we can consider $\frac{\Delta}{\Delta'} = 1 = \frac{\delta}{\delta'}$ because the factors outside 3 does not appear if we multiply for a convenient Atkin-Lehner involution, and for 3 observe that under our condition $\Delta = 1$) and we have

$$a(r', u', t', v') \in \Gamma_0(N) \Leftrightarrow t' \equiv u' \equiv 0 \pmod{3}$$
$$a(r', u', t', v')w_9 \in \Gamma_0(N) \Leftrightarrow r' \equiv v' \equiv 0 \pmod{3}$$
$$a(r', u', t', v')S_3 \in \Gamma_0(N) \Leftrightarrow r' + u' \equiv t' \equiv 0 \pmod{3}$$

NORMALIZER OF $\Gamma_0(N)$

$$\begin{split} a(r', u', t', v')S_3^2 &\in \Gamma_0(N) \Leftrightarrow 2r' + u' \equiv t' \equiv 0 \pmod{3} \\ a(r', u', t', v')S_3w_9 &\in \Gamma_0(N) \Leftrightarrow r' \equiv qt' + v' \equiv 0 \pmod{3} \\ a(r', u', t', v')S_3^2w_9 &\in \Gamma_0(N) \Leftrightarrow r' \equiv 2qt' + v' \equiv 0 \pmod{3} \\ a(r', u', t', v')w_9S_3^2 &\in \Gamma_0(N) \Leftrightarrow r' + u' \equiv v' \equiv 0 \pmod{3} \\ a(r', u', t', v')w_9S_3 &\in \Gamma_0(N) \Leftrightarrow r' + 2u' \equiv v' \equiv 0 \pmod{3} \\ a(r', u', t', v')w_9S_3^2w_9 &\in \Gamma_0(N) \Leftrightarrow u' \equiv qt' + v' \equiv 0 \pmod{3} \\ a(r', u', t', v')S_3^2w_9S_3^2 &\in \Gamma_0(N) \Leftrightarrow u' \equiv 2qt' + v' \equiv 0 \pmod{3} \\ a(r', u', t', v')S_3^2w_9S_3 &\in \Gamma_0(N) \Leftrightarrow r' + u' \equiv 2t'q + v' \equiv 0 \pmod{3} \\ a(r', u', t', v')S_3w_9S_3^2 &\in \Gamma_0(N) \Leftrightarrow r' + u' \equiv 2t'q + v' \equiv 0 \pmod{3} \\ a(r', u', t', v')S_3w_9S_3^2 &\in \Gamma_0(N) \Leftrightarrow 2r' + u' \equiv qt' + v' \equiv 0 \pmod{3} \\ \end{split}$$

and these are all the possibilities, proving that the group is $\{S_3, w_9|S_3^3 = w_9^2 = (w_9S_3)^3 = 1\}$ of order 12. Observe that S_3 does not commute with w_2 (see for example lemma 7).

Suppose now that $v_3(N) \ge 3$. We distinguish the cases $v_3(N)$ odd and $v_3(N)$ even. Suppose $v_3(N)$ is even, then $\frac{\delta}{\delta'} = 1$ and Ω' has the following form

$$\frac{1}{\frac{\Delta}{\Delta'}} \left(\begin{array}{cc} r'(\frac{\Delta}{\Delta'})^2 & \frac{u'}{3} \\ \frac{Nt'}{3} & v'(\frac{\Delta}{\Delta'})^2 \end{array} \right)$$

with $\alpha := \Delta/\Delta'$ dividing $3^{[v_3(N)/2]-1}$. Since this last matrix has determinant 1 we see that α satisfies $gcd(\alpha, N/(3^2\alpha^2)) = 1$; thus $\alpha = 1$ or $\alpha = 3^{[v_3(N)/2]-1}$. Write $a(r', u', t', v') = \begin{pmatrix} r' & \frac{u'}{3} \\ \frac{Nt'}{3} & v' \end{pmatrix}$ when we take $\alpha = 1$ and $b(r', u', t', v') = \begin{pmatrix} r'(3^{[v_3(N)/2]-1}) & \frac{u'}{3^{[v_3(N)/2]}} \\ \frac{Nt'}{3^{[v_3(N)/2]}} & v'(3^{[v_3(N)/2]-1}) \end{pmatrix}$ when $\alpha = 3^{[v_3(N)/2]-1}$. It is easy to check that $b(r', u', t', v') = w_{3v_3(N)}a(r', u', t', v')$ and that the group structure is the predicted in a circular way as the one done above for u(N) = 2. Suppose now that

that $b(r', u', t', v') = w_{3^{v_3(N)}}a(r', u', t', v')$ and that the group structure is the predicted in a similar way as the one done above for v(N) = 2. Suppose now that $v_3(N)$ is odd, then $\frac{\delta}{\delta'}$ is 1 or 3 and $\frac{\Delta}{\Delta'}$ divides $3^{[v_3(N)/2]-1}$. Now from det() = 1 we obtain that the only possibilities are $\frac{\delta}{\delta'} = 1 = \frac{\Delta}{\Delta'}$ name the matrices for this case following equation 1 by a(r', u', t', v'), and the other possibility is $\frac{\delta}{\delta'} = 3$ and $\frac{\Delta}{\Delta'} = 3^{[v_3(N)/2]-1}$, write the matrices for this case following equation 1 by c(r', u', t', v'). It is also easy to check that $c(r', u', t', v') = w_{3^{v_3(N)}}a(r'', u'', t'', v'')$, and that the group structure is the predicted.

Corollary 12. Let $N = 3^{v_3(N)} \prod_i p_i^{n_i}$, with p_i different primes such that $gcd(p_i, 6) = 1$. Suppose that v(N) = 3 and $p_i^{n_i} \equiv 1 \pmod{3}$ for all *i*. Then Claim 2 is true.

Proof. From the proof of the above theorem 11 for v(N) = 3 with $v_3(N) \ge 2$, lemma 10, and that the general observation that the Atkin-Lehner involutions commute one with each other we obtain that the direct product decomposition of Claim 2 is true obtaining the result.

Now we shows the corrections to Claim 2 for v(N) = 4 and v(N) = 8, about the group structure of the subgroup of Norm $(\Gamma_0(N))/\Gamma_0(N)$ generated for S_{2^k} and the Atkin-Lehner involution at prime 2.

Proposition 13. Suppose v(N) = 4, observe that in this situation $v_2(N) = 4$, or 5. Then the group structure of the subgroup $\langle w_{2^{\nu_2(N)}}, S_4 \rangle$ of $\operatorname{Norm}(\Gamma_0(N))/\Gamma_0(N)$ is given by the relations:

- (1) For $v_2(N) = 4$ we have $S_4^4 = w_{16}^2 = (w_{16}S_4)^3 = 1$. (2) For $v_2(N) = 5$ we have $S_4^4 = w_{32}^2 = (w_{32}S_4)^4 = 1$.

Proof. It is a straightforward computation. Observe that for $v_2(N) = 4$ the statement coincides with Claim 2 but not for $v_2(N) = 5$, where one checks that S_4 does not commute with $w_{32}S_4w_{32}$.

Proposition 14. Suppose v(N) = 8 and $v_2(N)$ even (this is the case (3)(c) in Claim 2). Then the group $\langle w_{2^{v_2(N)}}, S_8 \rangle \subseteq \operatorname{Norm}(\Gamma_0(N))/\Gamma_0(N)$ satisfies the following relations: $S_8^8 = w_{2^{v_2(N)}}^2 = 1$, and

- (1) for $v_2(N) = 6$ we have $(w_{64}S_8)^3 = 1$,
- (2) for $v_2(N) \ge 8$ we do not have the relation $(w_{2^{v_2(N)}}S_8)^3 = 1$,
- (3) for $v_2(N) \ge 10$ we have the relation: S_8 commutes with $w_{2^{v_2(N)}}S_8w_{2^{v_2(N)}}$,
- (4) for $v_2(N) = 6$ or 8 we do not have the relation: S_8 commutes with the element $w_{2^{v_2(N)}}S_8w_{2^{v_2(N)}}$.

(5) For $v_2(N) = 8$ we have the relation: $w_{256}S_8w_{256}S_8w_{256}S_8^3w_{256}S_8^3 = 1$.

Proof. Straightforward.

Proposition 15. Suppose v(N) = 8 and $v_2(N)$ odd (this is the case (3)(d) in Claim 2). Then the group $\langle w_{2^{v_2(N)}}, S_8 \rangle \subseteq \operatorname{Norm}(\Gamma_0(N))/\Gamma_0(N)$ satisfies the following relations: $S_8^8 = w_{2^{v_2(N)}}^2 = 1$, and

- (1) for $v_2(N) = 7 (w_{128}S_8)^4 = 1$,
- (2) for $v_2(N) \ge 9$ we do not have the relation $(w_{2^{v_2(N)}}S_8)^4 = 1$,
- (3) for $v_2(N) \geq 9$ we have the Atkin-Lehner relation: S_8 commutes with $w_{2^{v_2(N)}}S_8w_{2^{v_2(N)}},$
- (4) for $v_2(N) = 7$ we do not have that S_8 commutes with $w_{128}S_8w_{128}$.

Proof. Straightforward.

Let us finally write the revisited results concerning Claim 2 that we prove;

Theorem 16. The quotient Norm $(\Gamma_0(N))/\Gamma_0(N)$ is a product of the following groups:

- (1) $\{w_{q^{v_q(N)}}\}$ for every prime $q, q \ge 5 q \mid N$.
- (2) (a) If $v_3(N) = 0$, {1}
 - (b) If $v_3(N) = 1$, $\{w_3\}$
 - (c) If $v_3(N) = 2$, $\{w_9, S_3\}$; satisfying $w_9^2 = S_3^3 = (w_9S_3)^3 = 1$ (factor of order 12)
 - (d) If $v_3(N) \ge 3$; $\{w_{3^{v_3(N)}}, S_3\}$; where $w_{3^{v_3(N)}}^2 = S_3^3 = 1$ and $w_{3^{v_3(N)}}S_3w_{3^{v_3(N)}}$ commute with S_3 (factor group with 18 elements)
- (3) Let be $\lambda = v_2(N)$ and $\mu = \min(3, \lfloor \frac{\lambda}{2} \rfloor)$ and denote by $v'' = 2^{\mu}$ the we have: (a) If $\lambda = 0$; {1}
 - (b) If $\lambda = 1$; $\{w_2\}$
 - (c) If $\lambda = 2\mu$ and $2 \le \lambda \le 6$; $\{w_{2^{\nu_2(N)}}, S_{\nu''}\}$ with the relations $w_{2^{\nu_2(N)}}^2 =$ $S_{v''}^{v''} = (w_{2^{v_2(N)}}S_{v''})^3 = 1$, where they have orders 6,24, and 96 for v = 2, 4, 8 respectively.

NORMALIZER OF $\Gamma_0(N)$

- (d) If $\lambda > 2\mu$ and $2 \le \lambda \le 7$; { $w_{2^{\nu_2(N)}}, S_{\nu''}$ }; $w_{2^{\nu_2(N)}}^2 = S_{\nu''}^{\nu''} = 1$. Moreover, $(w_{2^{\nu_2(N)}}S_{\nu''})^4 = 1$.
- $(\tilde{c}), (\tilde{d})$ If $\lambda \geq 9$; $\{w_{2^{\nu_2(N)}}, S_8\}$ with the relations $w_{2^{\nu_2(N)}}^2 = S_8^8 = 1$ and S_8
 - $\begin{array}{l} \text{(a)} \ 15^{(N)} = 0, \ (w_{2}v_{2}(n), S_{8}) \text{ with other other other } w_{2}v_{2}(n) & S_{8} & 1 \text{ and } S_{8} \\ \text{commutes with } w_{2}v_{2}(n) S_{8}w_{2}v_{2}(n). \\ \text{(c)} \ If \ \lambda = 8; \ \{w_{2}v_{2}(n), S_{8}\} \text{ with relations given by } w_{2}^{2}v_{2}(n) = S_{8}^{8} = 1 \text{ and } \\ w_{256}S_{8}w_{256}S_{8}w_{256}S_{8}^{3}w_{256}S_{8}^{3} = 1. \end{array}$

Observation 17. One needs to warn that for the situations v(N) = 8 or $\lambda = 5$ possible the relations does not define totally the factor group, but it is a computation more.

Observation 18. The product between the different groups appearing in theorem 16 is easily computable. Effectively, we know that the Atkin-Lehner involutions commute, and $S_{2^{v_2(v(N))}}$ commutes with $S_{3^{v_3(v(N))}}$. Moreover S_2 commutes with any element different from Atkin-Lehner involutions involving the prime 2 from lemma 4. Consider w_{p^n} an Atkin-Lehner involution for $X_0(N)$ with p a prime. One obtains the following results by using the same arguments appearing in the proof of lemma 10;

- (1) let p be coprime with 3 and 3|v(N). S_3 commutes with w_{p^n} if and only if $p^n \equiv 1 \pmod{3}$. If $p^n \equiv -1 \pmod{3}$ then $w_{p^n}S_3 = S_3^2w_{p^n}$.
- (2) Let p be coprime with 2 and 4|v(N). S_4 commutes with w_{p^n} if and only if $p^n \equiv 1 (modulo \ 4).$ If $p^n \equiv -1 (modulo \ 4)$ then $w_{p^n} S_4 = S_4^3 w_{p^n}.$
- (3) Let p be coprime with 2 and 8|v(N). Then, $w_{p^n}S_8 = S_8^k w_{p^n}$ if $p^n \equiv$ k(modulo 8), in particular S_8 commutes with w_{p^n} if and only if $p^n \equiv$ 1(modulo 8).

6. Postcript

The normalizer of $\Gamma_0(N)$ in $SL_2(\mathbb{R})$ has conjecturally deep interest in group theory for the Monster simple group. Let j be the j-invariant function for elliptic curves, the field $\mathbb{C}(i)$ corresponds to the function field of the compactification of $\mathbb{H}/SL_2(\mathbb{Z})$, where \mathbb{H} is the Poincaré semi-half plane, which has genus zero. We usually write this function as a $q(=e^{2\pi i})$ -series, $j = q^{-1} + 744 + 196884q + \dots$ A q-series is normalized for group theory specialists in this field when the constant term is zero, thus take $J := j - 744 = q^{-1} + 0 + H_1q + \dots$ where the H_r are conjecturally related with certain representations for the Monster, called the head representations. Thompson replaces H_r with what he calls character values $H_r(m)$. This gives another normalized series $T_m = q^{-1} + 0 + H_1(m)q + \dots$ Roughly speaking, the conjecture claims some sort of relation between the function field generated for the normalizer function T_m and the generating normalized function for a genus 0 curve arising from a group between $\Gamma_0(N)$ and its normalizer in $PSL_2(\mathbb{R})$.

Conway and Norton in the paper "Monstrous moonshine" (Bull. London Mat. Soc., 11,(1979),308-339) gives a very nice exposition of the subject from a group theorical point of view. Conway and Norton take the matrices for the normalizer of $\Gamma_0(N)$ given by the last theorem in [1] (we observed in this paper that this theorem is wrong, but Conway and Norton use the matrix statement of Atkin-Lehner paper which is from Newmann, which is correct) and express the normalizer of $\Gamma_0(N)$ in a better form for the above conjecture. This new formulation of the normalizer is used for obtaining the normalizer of $\Gamma_0(N)$ in $PSL_2(\mathbb{R})$ by Akbas-Singerman (*The*

normalizer of $\Gamma_0(N)$ in $PSL(2, \mathbb{R})$; Glasgow Math. J. 32 (1990), no.3, 317-327) correcting the Atkin-Lehner statement, and the Conway-Norton matrix formulation for the normalizer is also used to obtain in particular some normalizers for modular subgroups as $\Gamma_0(N)$ + some Atkin – Lehner involution: results of Lang (Normalizers of the congruence subgroups of the Hecke groups G_4 and G_6 : J. Number Theory 90 (2001), no.1, 31-43; Groups commensurable with the modular group: J. Algebra 274 (2004), no.2, 804-821) and Chua-Lang (Congruence subgroups associated to the monster: Experiment. Math. 13 (2004), no.3, 343-360).

Our approach follows the old Newmann formulation for the normalizer, and the results obtained agree with those obtained by Akbas-Singerman. We only mention that the claimed relation $w_{256}S_8^2w_{256}S_8 = S_8^2w_{256}S_8w_{256}$ when N = 256 at Akbas-Singerman result in p.324 (loc. cit.) is not true, (the others relations at this result in p.324 are true).

I thank John McKay for drawing these references to my attention.

References

- [1] Atkin, A.O.L., Lehner, J.: Hecke operator on $\Gamma_0(N)$. Math.Ann.185, 134-160 (1970).
- [2] Bars, F.: Determinació de les corbes $X_0(N)$ biel.líptiques. Tesina Universitat Autònoma de
- Barcelona. September 1997. Find a copy at http://mat.uab.es/~francesc/publicac.html [3] Kenku, M.A., Momose, F.: Automorphisms groups of the modular curves $X_0(N)$. Compositio
- Math. 65, 51-80, (1988). [4] Lehner, J., Newman, M.: Weierstrass points of $\Gamma_0(N)$. Ann. of Math. 79, 360-368 (1964).
- [5] Newman, M.: Structure theorem for modular subgroups. Duke Math. J.22, 25-32 (1955).
- [6] Newman, M.: Conjugacy, genus and class numbers. Math.Ann.196m 198-217 (1975).
- [7] Ogg, A.P.: Hyperelliptic modular curves. Bull.Soc.math. France 102,449-462 (1974).

Francesc Bars Cortina, Depart. Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra. Catalonia. Spain. E-mail: francesc@mat.uab.cat