
THE GROUP STRUCTURE OF THE NORMALIZER OF Γ0(N)
AFTER ATKIN-LEHNER

FRANCESC BARS

Abstract. We determine the group structure of the normalizer of Γ0(N) in
SL2(R) modulo Γ0(N). These results correct the Atkin-Lehner statement [1,
Theorem 8].

1. Introduction

The modular curves X0(N) contain deep arithmetical information. These curves
are the Riemann surfaces obtained by completing with the cusps the upper half
plane modulo the modular subgroup

Γ0(N) = {
(

a b
Nc d

)
∈ SL2(Z)|c ∈ Z}.

It is clear that the elements in the normalizer of Γ0(N) in SL2(R) induce auto-
morphisms of X0(N) and moreover one obtains in that way all automorphisms of
X0(N) for N 6= 37 and 63 [3]. This is one reason coming from the modular world
that shows the interest in computing the group structure of this normalizer modulo
Γ0(N).

Morris Newman obtains a result for this normalizer in terms of matrices [5],[6],
see also the work of Atkin-Lehner and Newman [4]. Moreover, Atkin-Lehner state
without proof the group structure of this normalizer modulo Γ0(N) [1, Theorem
8]. In this paper we correct this statement and we obtain the right structure of the
normalizer modulo Γ0(N). The results are a generalization of some results noticed
in [2].

2. The Normalizer of Γ0(N) in SL2(R)

Denote by Norm(Γ0(N) the normalizer of Γ0(N) in SL2(R).

Theorem 1 (Newman). Let N = σ2q with σ, q ∈ N and q square-free. Let ε be the

gcd of all integers of the form a−d where a, d are integers such that
(

a b
Nc d

)
∈

Γ0(N). Denote by v := v(N) := gcd(σ, ε). Then M ∈ Norm(Γ0(N)) if and only if
M is of the form

√
δ

(
r∆ u

vδ∆
sN
vδ∆ l∆

)
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with r, u, s, l ∈ Z and δ|q, ∆|σv . Moreover v = 2µ3w with µ = min(3, [ 12v2(N)]) and
w = min(1, [ 12v3(N)]) where vpi

(N) is the valuation at the prime pi of the integer
N .

This theorem is really proved (and not only stated) by Morris Newman in [5] [6],
see also [2, p.12-14].

Observe that if gcd(δ∆, 6) = 1 we have gcd(δ∆2, N
δ∆2 ) = 1 because the determi-

nant is one .

3. The group structure of Norm(Γ0(N))/Γ0(N)

In this section we obtain some partial results on the group structure of Norm(Γ0(N)).
Let us first introduce some particular elements of SL2(R).

Definition 1. Let N be fixed. For every divisor m′ of N with gcd(m′, N/m′) = 1
the Atkin-Lehner involution wm′ is defined as follows,

wm′ =
1√
m′

(
m′a b
Nc m′d

)
∈ SL2(R)

with a, b, c, d ∈ Z.

Denote by Sv′ =
(

1 1
v′

0 1

)
with v′ ∈ N \ {0}. Atkin-Lehner claimed in [1] the

following:

Claim 2 (Atkin-Lehner). [1, Theorem 8] The quotient Norm(Γ0(N))/Γ0(N) is the
direct product of the following groups:

(1) {wqυq(N)} for every prime q, q ≥ 5 q | N .
(2) (a) If υ3(N) = 0, {1}

(b) If υ3(N) = 1, {w3}
(c) If υ3(N) = 2, {w9, S3}; satisfying w2

9 = S3
3 = (w9S3)3 = 1 (factor of

order 12)
(d) If υ3(N) ≥ 3; {w3υ3(N) , S3}; where w2

3υ3(N) = S3
3 = 1 and w3υ3(N)S3w3υ3(N)

commute with S3 (factor group with 18 elements)
(3) Let be λ = υ2(N) and µ = min(3, [λ

2 ]) and denote by υ′′ = 2µ the we have:
(a) If λ = 0 ; {1}
(b) If λ = 1; {w2}
(c) If λ = 2µ; {w2υ2(N) , Sυ′′} with the relations w2

2υ2(N) = Sυ′′
υ′′ = (w2υ2(N)Sυ′′)3 =

1, where they have orders 6,24, and 96 for υ = 2, 4, 8 respectively.
(One needs to warn that for v = 8 the relations do not define totally
this factor group).

(d) If λ > 2µ; { w2υ2(N) , Sυ′′}; w2
2υ2(N) = Sυ′′

υ′′ = 1. Moreover, Sυ′′ com-
mutes with w2υ2(N)Sυ′′w2υ2(N) (factor group of order 2υ′′2).

Let us give some partial results first.

Proposition 3. Suppose that v(N) = 1 (thus 4 - N and 9 - N). Then the Atkin-
Lehner involutions generate Norm(Γ0(N)/Γ0(N) and the group structure is

∼=
π(N)∏

i=1

Z/2Z

where π(N) is the number of prime numbers ≤ N .
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Proof. This is classically known already in the 1970’s. We recall only that wmm′ =
wmwm′ for (m,m′) = 1 and easily wmwm′ = wm′wm; the the result follows by a
straightforward computation from Theorem 1, see also [2, p.14]. ¤

When v(N) > 1 it is clear that some element Sv′ appears in the group structure
of Norm(Γ0(N))/Γ0(N) from Theorem 1.

Lemma 4. If 4|N the involution S2 ∈ Norm(Γ0(N)) commutes with the Atkin-
Lehner involutions wm with gcd(m, 2) = 1 and with the other Sv′ .

Proof. By the hypothesis the following matrix belongs to Γ0(N)

wmS2wmS2 =

(
2mk2+2Nt+mkNt

2m
(2+2m)(2m+2mk+Nt)

4m
Nt(2m+2mk+Nt)

2m m + Nt + Nt
m + kNt

2 + Nt2

4m

)
.

¤
Proposition 5. Let N = 2v2(N)

∏
i pni

i , with pi different odd primes and assume
that v2(N) ≤ 3, v3(N) ≤ 1. Then Atkin-Lehner’s Claim 2 is true.

For the proof we need two lemmas.

Lemma 6. Let ũ ∈ Norm(Γ0(N)) and write it as:

ũ =
1√
δ∆2

(
∆2δr u

2
sN
2 l∆2δ

)
,

following the notation of Theorem 1. Then:

w∆2δũ =

(
r′ u′

2
s′N
2 v′

)
, if gcd(δ, 2) = 1,

w∆2 δ
2
ũ =

1√
2

(
2r′′ u′′

2
s′′N

2 2v′′

)
, if gcd(δ, 2) = 2.

Proof. This is an easy calculation. ¤
We study now the different elements of the type

a(r′, u′, s′, v′) =

(
r′ u′

2
s′N
2 v′

)
,

b(r′′, u′′, s′′, v′′) =
1√
2

(
2r′′ u′′

2
s′′N

2 2v′′

)
.

Observe that b(, , , ) only appears when N ≡ 0(mod 8).

Lemma 7. For N ≡ 4(mod 8) all the elements of the normalizer of type a(r′, u′, s′, v′)
belong to the order six group {S2, w4|S2

2 = w2
4 = (w4S2)3 = 1}.

Proof. Straightforward from the equalities:

a(r′, u′, s′, v′) ∈ Γ0(N) ⇔ s′ ≡ u′ ≡ 0(mod 2)

a(r′, u′, s′, v′)S2 ∈ Γ0(N) ⇔ r′ ≡ v′ ≡ u′ ≡ 1 s′ ≡ 0(mod 2)
a(r′, u′, s′, v′)w4 ∈ Γ0(N) ⇔ r′ ≡ v′ ≡ 0 u′ ≡ s′ ≡ 1(mod 2)

a(r′, u′, s′, v′)w4S2 ∈ Γ0(N) ⇔ r′ ≡ u′ ≡ s′ ≡ 1 v′ ≡ 0(mod 2)
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a(r′, u′, s′, v′)S2w4 ∈ Γ0(N) ⇔ v′ ≡ u′ ≡ s′ ≡ 1 r′ ≡ 0(mod 2)

a(r′, u′, s′, v′)S2w4S2 ∈ Γ0(N) ⇔ r′ ≡ v′ ≡ s′ ≡ 1 u′ ≡ 0(mod 2)
¤

Lemma 8. Let N be a positive integer with υ2(N) = 3. Then all the elements
of the form a(r′, u′, s′, v′) and b(r′′, u′′, s′′, v′′) correspond to some element of the
following group of 8 elements

{S2, w8|S2
2 = w2

8 = 1, S2w8S2w8 = w8S2w8S2}
Proof. If follows from the equalities:

a(r′, u′, s′, v′) ∈ Γ0(N) ⇔ r′ ≡ v′ ≡ 1, u′ ≡ s′ ≡ 0(mod 2)

a(r′, u′, s′, v′)S2 ∈ Γ0(N) ⇔ r′ ≡ v′ ≡ u′ ≡ 1, s′ ≡ 0(mod 2)

a(r′, u′, s′, v′)w8S2w8 ∈ Γ0(N) ⇔ r′ ≡ v′ ≡ s′ ≡ 1, u′ ≡ 0(mod 2)

a(r′, u′, s′, v′)S2w8S2w8 ∈ Γ0(N) ⇔ r′ ≡ v′ ≡ s′ ≡ v′ ≡ 1(mod 2)

b(r′′, u′′, s′′, v′′)w8 ∈ Γ0(N) ⇔ r′′ ≡ v′′ ≡ 0, u′′ ≡ s′′ ≡ 1(mod 2)

b(r′′, u′′, s′′, v′′)S2w8S2 ∈ Γ0(N) ⇔ r′′ ≡ v′′ ≡ u′′ ≡ s′′ ≡ 1(mod 2)

b(r′′, u′′, s′′, v′′)S2w8 ∈ Γ0(N) ⇔ r′′ ≡ 0, u′′ ≡ s′′ ≡ v′′ ≡ 1(mod 2)

b(r′′, u′′, s′′, v′′)w8S2 ∈ Γ0(N) ⇔ v′′ ≡ 0, u′′ ≡ s′′ ≡ r′′ ≡ 1(mod 2)
¤

We can now proof Proposition 5].

Proof. [ of Proposition 5] Let N = 2υ2(N)
∏

i pni
i , with pi different primes and

assume that 9 - N . If υ2(N) ≤ 1 we are done by proposition 3. Suppose υ2(N) = 2
and let ũ ∈ Norm(Γ0(N)). By lemmas 6 and 7, wδũ = α, α ∈ {S2, w4|S2

2 = w2
4 =

(w4S2)3 = 1 and it follows that ũ = wδα. Since wδ ((δ, 2) = 1) commutes with
S2 and the Atkin-Lehner involutions commute one to each other, we are already
done. In the situation 8||N the proof is exactly the same but using lemmas 6 and
8 instead. ¤

4. Counterexamples to Claim 2.

In the above section we have seen that Atkin-Lehner’s claim is true if v(N) ≤ 2
i.e. for v2(N) ≤ 3 and v3(N) ≤ 1. Now we obtain counterexamples when v2(N)
and/or v3(N) are bigger.

Lemma 9. Claim 2 for N = 48 is wrong.

Proof. We know by Ogg [7] that X0(48) is an hyperelliptic modular curve with
hyperelliptic involution not of Atkin-Lehner type. The hyperelliptic involution
always belongs to the center of the automorphism group. We know by [3] that
Aut(X0(48)) = Norm(Γ0(48))/Γ0(N). Now if Claim 2 where true this group would
be isomorphic to Z/2 × Π4 where Πn is the permutation group of n elements. It
is clear that the center of this group is Z/2 × {1}, generated by the Atkin-Lehner
involution w3, but this involution is not the hyperelliptic one. ¤

The problem of N = 48 is that S4 does not commute with the Atkin-Lehner
involution w3; thus the direct product decomposition of Claim 2 is not possible.

This problem appears also for powers of 3 one can prove,
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Lemma 10. Let N = 3v3(N)
∏

i pni
i where pi are different primes of Q. Impose that

S3 ∈ Norm(Γ0(N)). Then S3 commutes with wp
ni
i

if and only if pni
i ≡ 1(modulo 3).

Therefore if some pni
i ≡ −1(modulo 3) the Claim 2 is not true.

Proof. Let us show that S3 does not commute with wp
ni
i

if and only if pni
i ≡ −1(mod

3). Observe the equality wp
ni
i

= 1√
p

ni
i

(
pni

i k 1
Nt pni

i

)
:

wp
ni
i

S3wp
ni
i

S2
3 =

1
pni

i

(
(pni

i k)2 + Nt(1 + p
ni
i k

3 ) pni
i k( 2p

ni
i k

3 + 1) + (p
ni
i k

3 + 1)( 2Nt
3 + pni

i )
Nt(pni

i k) + Nt(Nt
3 + pni

i ) Nt( 2p
ni
i k

3 + 1) + pni
i (Nt

3 + pni
i )( 2Nt

3 + pni
i )

)
.

For this element to belong to Γ0(N) one needs to impose 2k2p
ni
i

3 + p
ni
i k

3 ∈ Z. Since
pni

i ≡ 1 o − 1(mod 3) it is needed that k ≡ 1(mod 3). Now from det(wpi
) = 1 we

obtain that pni
i k ≡ 1(mod 3); therefore pni

i ≡ 1(mod 3). ¤

5. The group structure of Norm(Γ0(N))/Γ0(N) revisited.

In this section we correct Claim 2. We prove here that the quotient

Norm(Γ0(N))/Γ0(N)

is the product of some groups associated every one of them to the primes which
divide N . See for the explicit result theorem 16.

Theorem 11. Any element w ∈ Norm(Γ0(N)) has an expression of the form

w = wmΩ,

where wm is an Atkin-Lehner involution of Γ0(N) with (m, 6) = 1 and Ω be-
longs to the subgroup generated by Sv(N) and the Atkin Lehner involutions w2v2(N) ,
w3v3(N) . Moreover for gcd(v(N), 23) ≤ 2 the group structure for the subgroup
< Sv2(v(N)), w2v2(N) > and < Sv3(v(N)), w3v3(N) > of < Sv(N), w2v2(N) , w3v3(N) >
is the predicted by Atkin-Lehner at Claim 2, but these two subgroups do not neces-
sary commute withe each other element-wise.

Proof. Let us take any element w of the Norm(Γ0(N)). By Theorem 1 we can
express w as follows,

w =
√

δ

(
r∆ u

vδ∆
sN
vδ∆ l∆

)
=

1
∆
√

δ

(
rδ∆2 u

v
sN
v lδ∆2

)

Let us denote by U = 2v2(N)3v3(N). Write ∆′ = gcd(∆, N/U) and δ′ = gcd(δ,N/U);
then we obtain

wδ′∆′2w =
1

∆
∆′

√
δ/δ′

(
r′ δ

δ′
∆2

∆′2
u′

v(N)
Nt′

v(N) v′ δ
δ′

∆2

∆′2

)

Observe that if v(N) = 1 we already finish and we reobtain proposition 3. This is
clear if gcd(N, 6) = 1; if not, the matrix wwδ′∆′2 is the Atkin-Lehner involution at
( ∆
∆′ )

2 δ
δ′ ∈ N.
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Now we need only to check that any matrix of the form

(1) Ω =
1

∆
∆′

√
δ/δ′

(
r′ δ

δ′ (
∆
∆′ )

2 u′
v(N)

Nt′
v(N) v′ δ

δ′ (
∆
∆′ )

2

)

is generated by Sv(N) and the Atkin-Lehner involutions at 2 and 3 which are the
factors of δ

δ′ (
∆
∆′ )

2. To check this observe that Ω = Ω2Ω3 with

(2) Ω2 =
1

2
v2( ∆

∆′
√

δ/δ′)

0
B@

r′′2v2( δ
δ′ (

∆
∆′ )

2) u′′
2v2(v(N))

Nt′′
2v2(v(N)) v′′2v2( δ

δ′ (
∆
∆′ )

2)

1
CA

Ω3 =
1

3
v3( ∆

∆′
√

δ/δ′)

0
B@

r′′′3v3( δ
δ′ (

∆
∆′ )

2) u′′′
3v3(v(N))

Nt′′′
3v3(v(N)) v′′′3v3( δ

δ′ (
∆
∆′ )

2)

1
CA .

We only consider the case for Ω2, the case for the Ω3 is similar. We can assume
that 2v2(

∆
∆′
√

δ/δ′) = 1 substituting Ω2 by w2v2(N)Ω2 if necessary. Thus, we are

reduced to a matrix of the form Ω̃2 =

(
r′ u′

2v2(v(N))

Nt′

2v2(v(N)) v′

)
. Now for some i we

can obtain Si
2v2(v(N))Ω̃2 =

(
r′ u′

Nt′

2v2(v(N)) v′

)
; name this matrix by Ω2. Then, it is

easy to check that w2v2(N)Si
2v2(v(N))w2v2(N)Ω2 ∈ Γ0(N) for some i.

Similar argument as above are obtained if we multiply w by wm on the right,
i.e. wwm is also some Ω as above obtaining similar conclusion.

Let us see now that the group generated by Sv2(v(N)) and the Atkin-Lehner invo-
lutions at 2, and the group generated by Sv3(v(N)) and the Atkin-Lehner involution
at 3 have the structure predicted in Claim 2 when gcd(v(N), 23) ≤ 2. We only
need to check when v(N) is a power of 2 or 3 by (2). For v(N) = 1 the matrix
(1) is w δ

δ′ (
∆
∆′ )

2 (we denote w1 := id) (we have in this case a much deeper result,
see proposition 3). Take now v(N) = 2. If l = gcd(3, δ/δ′) let Ω = wlΩ′; the
matrix Ω′ is as (1) but with gcd(3, δ/δ′) = 1, and δ

δ′
∆2

∆′2 is only a power of 2.
Then Ω′ ∈< S2, w2v2(N) >, let us to precise the group structure. For v(N) = 2
we have v2(N) = 2 or 3, and we have already proved the group structure of Claim
[1] in lemmas 7,8 (we have moreover that Claim 2 is true because S2 commutes
with the Atkin-Lehner involutions wp

ni
i

if (pi, 2) = 1, see proposition 5). Assume
now v(N) = 3. If l = gcd(2, δ/δ′) and Ω = wlΩ′ then Ω′ is as (1) but with
gcd(2, δ/δ′) = 1, and δ

δ′
∆2

∆′2 is only a power of 3. Then Ω′ ∈< S3, w3v3(N) >, let us
to precise the group structure. For v(N) = 3 we have v3(N) ≥ 2. Let us begin with
v3(N) = 2, then Ω′ is of the form

Ω′ =

(
r′ u′

3
Nt′
3 v′

)
=: a(r′, u′, t′, v′)

(from the formulation of Theorem 1 we can consider ∆
∆′ = 1 = δ

δ′ because the
factors outside 3 does not appear if we multiply for a convenient Atkin-Lehner
involution, and for 3 observe that under our condition ∆ = 1) and we have

a(r′, u′, t′, v′) ∈ Γ0(N) ⇔ t′ ≡ u′ ≡ 0(mod 3)

a(r′, u′, t′, v′)w9 ∈ Γ0(N) ⇔ r′ ≡ v′ ≡ 0(mod 3)

a(r′, u′, t′, v′)S3 ∈ Γ0(N) ⇔ r′ + u′ ≡ t′ ≡ 0(mod 3)
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a(r′, u′, t′, v′)S2
3 ∈ Γ0(N) ⇔ 2r′ + u′ ≡ t′ ≡ 0(mod 3)

a(r′, u′, t′, v′)S3w9 ∈ Γ0(N) ⇔ r′ ≡ qt′ + v′ ≡ 0(mod 3)

a(r′, u′, t′, v′)S2
3w9 ∈ Γ0(N) ⇔ r′ ≡ 2qt′ + v′ ≡ 0(mod 3)

a(r′, u′, t′, v′)w9S
2
3 ∈ Γ0(N) ⇔ r′ + u′ ≡ v′ ≡ 0(mod 3)

a(r′, u′, t′, v′)w9S3 ∈ Γ0(N) ⇔ r′ + 2u′ ≡ v′ ≡ 0(mod 3)

a(r′, u′, t′, v′)w9S
2
3w9 ∈ Γ0(N) ⇔ u′ ≡ qt′ + v′ ≡ 0(mod 3)

a(r′, u′, t′, v′)S2
3w9S

2
3 ∈ Γ0(N) ⇔ u′ ≡ 2qt′ + v′ ≡ 0(mod 3)

a(r′, u′, t′, v′)S2
3w9S3 ∈ Γ0(N) ⇔ r′ + u′ ≡ 2t′q + v′ ≡ 0(mod 3)

a(r′, u′, t′, v′)S3w9S
2
3 ∈ Γ0(N) ⇔ 2r′ + u′ ≡ qt′ + v′ ≡ 0(mod 3)

and these are all the possibilities, proving that the group is {S3, w9|S3
3 = w2

9 =
(w9S3)3 = 1} of order 12. Observe that S3 does not commute with w2 (see for
example lemma 7).

Suppose now that v3(N) ≥ 3. We distinguish the cases v3(N) odd and v3(N)
even. Suppose v3(N) is even, then δ

δ′ = 1 and Ω′ has the following form

1
∆
∆′

(
r′( ∆

∆′ )
2 u′

3
Nt′
3 v′( ∆

∆′ )
2

)

with α := ∆/∆′ dividing 3[v3(N)/2]−1. Since this last matrix has determinant 1
we see that α satisfies gcd(α, N/(32α2)) = 1; thus α = 1 or α = 3[v3(N)/2]−1.

Write a(r′, u′, t′, v′) =

(
r′ u′

3
Nt′
3 v′

)
when we take α = 1 and b(r′, u′, t′, v′) =

(
r′(3[v3(N)/2]−1) u′

3[v3(N)/2]

Nt′

3[v3(N)/2] v′(3[v3(N)/2]−1)

)
when α = 3[v3(N)/2]−1. It is easy to check

that b(r′, u′, t′, v′) = w3v3(N)a(r′, u′, t′, v′) and that the group structure is the pre-
dicted in a similar way as the one done above for v(N) = 2. Suppose now that
v3(N) is odd, then δ

δ′ is 1 or 3 and ∆
∆′ divides 3[v3(N)/2]−1. Now from det() = 1

we obtain that the only possibilities are δ
δ′ = 1 = ∆

∆′ name the matrices for this
case following equation 1 by a(r′, u′, t′, v′), and the other possibility is δ

δ′ = 3
and ∆

∆′ = 3[v3(N)/2]−1, write the matrices for this case following equation 1 by
c(r′, u′, t′, v′). It is also easy to check that c(r′, u′, t′, v′) = w3v3(N)a(r′′, u′′, t′′, v′′),
and that the group structure is the predicted.

¤

Corollary 12. Let N = 3v3(N)
∏

i pni
i , with pi different primes such that gcd(pi, 6) =

1. Suppose that v(N) = 3 and pni
i ≡ 1(mod 3) for all i. Then Claim 2 is true.

Proof. From the proof of the above theorem 11 for v(N) = 3 with v3(N) ≥ 2, lemma
10, and that the general observation that the Atkin-Lehner involutions commute
one with each other we obtain that the direct product decomposition of Claim 2 is
true obtaining the result. ¤

Now we shows the corrections to Claim 2 for v(N) = 4 and v(N) = 8, about the
group structure of the subgroup of Norm(Γ0(N))/Γ0(N) generated for S2k and the
Atkin-Lehner involution at prime 2.
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Proposition 13. Suppose v(N) = 4, observe that in this situation v2(N) = 4, or 5.
Then the group structure of the subgroup < w2v2(N) , S4 > of Norm(Γ0(N))/Γ0(N)
is given by the relations:

(1) For v2(N) = 4 we have S4
4 = w2

16 = (w16S4)3 = 1.
(2) For v2(N) = 5 we have S4

4 = w2
32 = (w32S4)4 = 1.

Proof. It is a straightforward computation. Observe that for v2(N) = 4 the state-
ment coincides with Claim 2 but not for v2(N) = 5, where one checks that S4 does
not commute with w32S4w32. ¤

Proposition 14. Suppose v(N) = 8 and v2(N) even (this is the case (3)(c) in
Claim 2). Then the group < w2v2(N) , S8 >⊆ Norm(Γ0(N))/Γ0(N) satisfies the
following relations: S8

8 = w2
2v2(N) = 1, and

(1) for v2(N) = 6 we have (w64S8)3 = 1,
(2) for v2(N) ≥ 8 we do not have the relation (w2v2(N)S8)3 = 1,
(3) for v2(N) ≥ 10 we have the relation: S8 commutes with w2v2(N)S8w2v2(N) ,
(4) for v2(N) = 6 or 8 we do not have the relation: S8 commutes with the

element w2v2(N)S8w2v2(N) .
(5) For v2(N) = 8 we have the relation: w256S8w256S8w256S

3
8w256S

3
8 = 1.

Proof. Straightforward. ¤

Proposition 15. Suppose v(N) = 8 and v2(N) odd (this is the case (3)(d) in Claim
2). Then the group < w2v2(N) , S8 >⊆ Norm(Γ0(N))/Γ0(N) satisfies the following
relations: S8

8 = w2
2v2(N) = 1, and

(1) for v2(N) = 7 (w128S8)4 = 1,
(2) for v2(N) ≥ 9 we do not have the relation (w2v2(N)S8)4 = 1,
(3) for v2(N) ≥ 9 we have the Atkin-Lehner relation: S8 commutes with

w2v2(N)S8w2v2(N) ,
(4) for v2(N) = 7 we do not have that S8 commutes with w128S8w128.

Proof. Straightforward. ¤

Let us finally write the revisited results concerning Claim 2 that we prove;

Theorem 16. The quotient Norm(Γ0(N))/Γ0(N) is a product of the following
groups:

(1) {wqυq(N)} for every prime q, q ≥ 5 q | N .
(2) (a) If υ3(N) = 0, {1}

(b) If υ3(N) = 1, {w3}
(c) If υ3(N) = 2, {w9, S3}; satisfying w2

9 = S3
3 = (w9S3)3 = 1 (factor of

order 12)
(d) If υ3(N) ≥ 3; {w3υ3(N) , S3}; where w2

3υ3(N) = S3
3 = 1 and w3υ3(N)S3w3υ3(N)

commute with S3 (factor group with 18 elements)
(3) Let be λ = υ2(N) and µ = min(3, [λ

2 ]) and denote by υ′′ = 2µ the we have:
(a) If λ = 0 ; {1}
(b) If λ = 1; {w2}
(c) If λ = 2µ and 2 ≤ λ ≤ 6; {w2υ2(N) , Sυ′′} with the relations w2

2υ2(N) =
Sυ′′

υ′′ = (w2υ2(N)Sυ′′)3 = 1, where they have orders 6,24, and 96 for
υ = 2, 4, 8 respectively.
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(d) If λ > 2µ and 2 ≤ λ ≤ 7; { w2υ2(N) , Sυ′′}; w2
2υ2(N) = Sυ′′

υ′′ = 1.
Moreover, (w2υ2(N)Sυ′′)4 = 1.

(c̃),(d̃) If λ ≥ 9; {w2υ2(N) , S8} with the relations w2
2υ2(N) = S8

8 = 1 and S8

commutes with w2v2(N)S8w2v2(N) .
(ĉ) If λ = 8; {w2υ2(N) , S8} with relations given by w2

2υ2(N) = S8
8 = 1 and

w256S8w256S8w256S
3
8w256S

3
8 = 1.

Observation 17. One needs to warn that for the situations v(N) = 8 or λ = 5
possible the relations does not define totally the factor group, but it is a computation
more.

Observation 18. The product between the different groups appearing in theorem
16 is easily computable. Effectively, we know that the Atkin-Lehner involutions
commute, and S2v2(v(N)) commutes with S3v3(v(N)) . Moreover S2 commutes with
any element different from Atkin-Lehner involutions involving the prime 2 from
lemma 4. Consider wpn an Atkin-Lehner involution for X0(N) with p a prime.
One obtains the following results by using the same arguments appearing in the
proof of lemma 10;

(1) let p be coprime with 3 and 3|v(N). S3 commutes with wpn if and only if
pn ≡ 1(modulo 3). If pn ≡ −1(modulo 3) then wpnS3 = S2

3wpn .
(2) Let p be coprime with 2 and 4|v(N). S4 commutes with wpn if and only if

pn ≡ 1(modulo 4). If pn ≡ −1(modulo 4) then wpnS4 = S3
4wpn .

(3) Let p be coprime with 2 and 8|v(N). Then, wpnS8 = Sk
8 wpn if pn ≡

k(modulo 8), in particular S8 commutes with wpn if and only if pn ≡
1(modulo 8).

6. Postcript

The normalizer of Γ0(N) in SL2(R) has conjecturally deep interest in group
theory for the Monster simple group. Let j be the j-invariant function for elliptic
curves, the field C(j) corresponds to the function field of the compactification of
H/SL2(Z), where H is the Poincaré semi-half plane, which has genus zero. We
usually write this function as a q(= e2πi)-series, j = q−1 + 744 + 196884q + . . .. A
q-series is normalized for group theory specialists in this field when the constant
term is zero, thus take J := j − 744 = q−1 + 0 + H1q + .... where the Hr are
conjecturally related with certain representations for the Monster, called the head
representations. Thompson replaces Hr with what he calls character values Hr(m).
This gives another normalized series Tm = q−1+0+H1(m)q+. . .. Roughly speaking,
the conjecture claims some sort of relation between the function field generated for
the normalizer function Tm and the generating normalized function for a genus 0
curve arising from a group between Γ0(N) and its normalizer in PSL2(R).

Conway and Norton in the paper “Monstrous moonshine” (Bull. London Mat.
Soc., 11,(1979),308-339) gives a very nice exposition of the subject from a group
theorical point of view. Conway and Norton take the matrices for the normalizer of
Γ0(N) given by the last theorem in [1] (we observed in this paper that this theorem
is wrong, but Conway and Norton use the matrix statement of Atkin-Lehner paper
which is from Newmann, which is correct) and express the normalizer of Γ0(N) in
a better form for the above conjecture. This new formulation of the normalizer is
used for obtaining the normalizer of Γ0(N) in PSL2(R) by Akbas-Singerman (The
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normalizer of Γ0(N) in PSL(2,R); Glasgow Math. J. 32 (1990), no.3, 317-327) cor-
recting the Atkin-Lehner statement, and the Conway-Norton matrix formulation
for the normalizer is also used to obtain in particular some normalizers for modular
subgroups as Γ0(N)+some Atkin−Lehner involution: results of Lang (Normaliz-
ers of the congruence subgroups of the Hecke groups G4 and G6: J. Number Theory
90 (2001), no.1, 31-43; Groups commensurable with the modular group: J. Algebra
274 (2004), no.2, 804-821) and Chua-Lang (Congruence subgroups associated to the
monster: Experiment. Math. 13 (2004), no.3, 343-360).

Our approach follows the old Newmann formulation for the normalizer, and the
results obtained agree with those obtained by Akbas-Singerman. We only mention
that the claimed relation w256S

2
8w256S8 = S2

8w256S8w256 when N = 256 at Akbas-
Singerman result in p.324 (loc. cit.) is not true, (the others relations at this result
in p.324 are true).

I thank John McKay for drawing these references to my attention.
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08193 Bellaterra. Catalonia. Spain. E-mail: francesc@mat.uab.cat


