THE GROUP STRUCTURE OF THE NORMALIZER OF $\Gamma_{0}(N)$ AFTER ATKIN-LEHNER

FRANCESC BARS

Abstract

We determine the group structure of the normalizer of $\Gamma_{0}(N)$ in $S L_{2}(\mathbb{R})$ modulo $\Gamma_{0}(N)$. These results correct the Atkin-Lehner statement [1, Theorem 8].

1. Introduction

The modular curves $X_{0}(N)$ contain deep arithmetical information. These curves are the Riemann surfaces obtained by completing with the cusps the upper half plane modulo the modular subgroup

$$
\Gamma_{0}(N)=\left\{\left.\left(\begin{array}{cc}
a & b \\
N c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, c \in \mathbb{Z}\right\} .
$$

It is clear that the elements in the normalizer of $\Gamma_{0}(N)$ in $S L_{2}(\mathbb{R})$ induce automorphisms of $X_{0}(N)$ and moreover one obtains in that way all automorphisms of $X_{0}(N)$ for $N \neq 37$ and 63 [3]. This is one reason coming from the modular world that shows the interest in computing the group structure of this normalizer modulo $\Gamma_{0}(N)$.

Morris Newman obtains a result for this normalizer in terms of matrices [5],[6], see also the work of Atkin-Lehner and Newman [4]. Moreover, Atkin-Lehner state without proof the group structure of this normalizer modulo $\Gamma_{0}(N)$ [1, Theorem 8]. In this paper we correct this statement and we obtain the right structure of the normalizer modulo $\Gamma_{0}(N)$. The results are a generalization of some results noticed in [2].

2. The Normalizer of $\Gamma_{0}(N)$ in $S L_{2}(\mathbb{R})$

Denote by $\operatorname{Norm}\left(\Gamma_{0}(N)\right.$ the normalizer of $\Gamma_{0}(N)$ in $S L_{2}(\mathbb{R})$.
Theorem 1 (Newman). Let $N=\sigma^{2} q$ with $\sigma, q \in \mathbb{N}$ and q square-free. Let ϵ be the gcd of all integers of the form $a-d$ where a, d are integers such that $\left(\begin{array}{cc}a & b \\ N c & d\end{array}\right) \in$ $\Gamma_{0}(N)$. Denote by $v:=v(N):=\operatorname{gcd}(\sigma, \epsilon)$. Then $M \in \operatorname{Norm}\left(\Gamma_{0}(N)\right)$ if and only if M is of the form

$$
\sqrt{\delta}\left(\begin{array}{cc}
r \Delta & \frac{u}{v \delta \Delta} \\
\frac{s N}{v \delta \Delta} & l \Delta
\end{array}\right)
$$

[^0]with $r, u, s, l \in \mathbb{Z}$ and $\delta|q, \Delta| \frac{\sigma}{v}$. Moreover $v=2^{\mu} 3^{w}$ with $\mu=\min \left(3,\left[\frac{1}{2} v_{2}(N)\right]\right)$ and $w=\min \left(1,\left[\frac{1}{2} v_{3}(N)\right]\right)$ where $v_{p_{i}}(N)$ is the valuation at the prime p_{i} of the integer N.

This theorem is really proved (and not only stated) by Morris Newman in [5] [6], see also [2, p.12-14].

Observe that if $\operatorname{gcd}(\delta \Delta, 6)=1$ we have $\operatorname{gcd}\left(\delta \Delta^{2}, \frac{N}{\delta \Delta^{2}}\right)=1$ because the determinant is one.

3. The Group structure of $\operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)$

In this section we obtain some partial results on the group structure of $\operatorname{Norm}\left(\Gamma_{0}(N)\right)$. Let us first introduce some particular elements of $S L_{2}(\mathbb{R})$.
Definition 1. Let N be fixed. For every divisor m^{\prime} of N with $\operatorname{gcd}\left(m^{\prime}, N / m^{\prime}\right)=1$ the Atkin-Lehner involution $w_{m^{\prime}}$ is defined as follows,

$$
w_{m^{\prime}}=\frac{1}{\sqrt{m^{\prime}}}\left(\begin{array}{cc}
m^{\prime} a & b \\
N c & m^{\prime} d
\end{array}\right) \in S L_{2}(\mathbb{R})
$$

with $a, b, c, d \in \mathbb{Z}$.
Denote by $S_{v^{\prime}}=\left(\begin{array}{cc}1 & \frac{1}{v^{\prime}} \\ 0 & 1\end{array}\right)$ with $v^{\prime} \in \mathbb{N} \backslash\{0\}$. Atkin-Lehner claimed in [1] the following:
Claim 2 (Atkin-Lehner). [1, Theorem 8] The quotient $\operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)$ is the direct product of the following groups:
(1) $\left\{w_{q^{v}(N)}\right\}$ for every prime $q, q \geq 5 q \mid N$.
(2) (a) If $v_{3}(N)=0,\{1\}$
(b) If $v_{3}(N)=1,\left\{w_{3}\right\}$
(c) If $v_{3}(N)=2,\left\{w_{9}, S_{3}\right\}$; satisfying $w_{9}^{2}=S_{3}^{3}=\left(w_{9} S_{3}\right)^{3}=1$ (factor of order 12)
(d) If $v_{3}(N) \geq 3 ;\left\{w_{3^{v_{3}(N)}}, S_{3}\right\}$; where $w_{3^{v_{3}(N)}}^{2}=S_{3}^{3}=1$ and $w_{3^{v_{3}(N)}} S_{3} w_{3^{v_{3}(N)}}$ commute with S_{3} (factor group with 18 elements)
(3) Let be $\lambda=v_{2}(N)$ and $\mu=\min \left(3,\left[\frac{\lambda}{2}\right]\right)$ and denote by $v^{\prime \prime}=2^{\mu}$ the we have:
(a) If $\lambda=0$; \{1\}
(b) If $\lambda=1 ;\left\{w_{2}\right\}$
(c) If $\lambda=2 \mu ;\left\{w_{2^{v_{2}(N)}}, S_{v^{\prime \prime}}\right\}$ with the relations $w_{2^{v_{2}(N)}}^{2}=S_{v^{\prime \prime}}^{v^{\prime \prime}}=\left(w_{2^{v_{2}(N)}} S_{v^{\prime \prime}}\right)^{3}=$ 1, where they have orders 6,24, and 96 for $v=2,4,8$ respectively. (One needs to warn that for $v=8$ the relations do not define totally this factor group).
(d) If $\lambda>2 \mu$; $\left\{w_{2^{v_{2}(N)}}, S_{v^{\prime \prime}}\right\}$; $w_{2^{v_{2}(N)}}^{2}=S_{v^{\prime \prime}}^{v^{\prime \prime}}=1$. Moreover, $S_{v^{\prime \prime}}$ commutes with $w_{2^{v_{2}(N)}} S_{v^{\prime \prime}} w_{2^{v_{2}(N)}}$ (factor group of order $2 v^{\prime \prime 2}$).
Let us give some partial results first.
Proposition 3. Suppose that $v(N)=1$ (thus $4 \nmid N$ and $9 \nmid N$). Then the AtkinLehner involutions generate $\operatorname{Norm}\left(\Gamma_{0}(N) / \Gamma_{0}(N)\right.$ and the group structure is

$$
\cong \prod_{i=1}^{\pi(N)} \mathbb{Z} / 2 \mathbb{Z}
$$

where $\pi(N)$ is the number of prime numbers $\leq N$.

Proof. This is classically known already in the 1970's. We recall only that $w_{m m^{\prime}}=$ $w_{m} w_{m^{\prime}}$ for $\left(m, m^{\prime}\right)=1$ and easily $w_{m} w_{m^{\prime}}=w_{m^{\prime}} w_{m}$; the the result follows by a straightforward computation from Theorem 1, see also [2, p.14].

When $v(N)>1$ it is clear that some element $S_{v^{\prime}}$ appears in the group structure of $\operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)$ from Theorem 1.
Lemma 4. If $4 \mid N$ the involution $S_{2} \in \operatorname{Norm}\left(\Gamma_{0}(N)\right)$ commutes with the AtkinLehner involutions w_{m} with $\operatorname{gcd}(m, 2)=1$ and with the other $S_{v^{\prime}}$.
Proof. By the hypothesis the following matrix belongs to $\Gamma_{0}(N)$

$$
w_{m} S_{2} w_{m} S_{2}=\left(\begin{array}{cc}
\frac{2 m k^{2}+2 N t+m k N t}{2 m} & \frac{(2+2 m)(2 m+2 m k+N t)}{4 m} \\
\frac{N t(2 m+2 m k+N t)}{2 m} & m+N t+\frac{N t}{m}+\frac{k N t}{2}+\frac{N t^{2}}{4 m}
\end{array}\right) .
$$

Proposition 5. Let $N=2^{v_{2}(N)} \prod_{i} p_{i}^{n_{i}}$, with p_{i} different odd primes and assume that $v_{2}(N) \leq 3, v_{3}(N) \leq 1$. Then Atkin-Lehner's Claim 2 is true.

For the proof we need two lemmas.
Lemma 6. Let $\tilde{u} \in \operatorname{Norm}\left(\Gamma_{0}(N)\right)$ and write it as:

$$
\tilde{u}=\frac{1}{\sqrt{\delta \Delta^{2}}}\left(\begin{array}{cc}
\Delta^{2} \delta r & \frac{u}{2} \\
\frac{s N}{2} & l \Delta^{2} \delta
\end{array}\right)
$$

following the notation of Theorem 1. Then:

$$
\begin{gathered}
w_{\Delta^{2} \delta} \tilde{u}=\left(\begin{array}{cc}
r^{\prime} & \frac{u^{\prime}}{2} \\
\frac{s^{\prime} N}{2} & v^{\prime}
\end{array}\right) \text {, if } \operatorname{gcd}(\delta, 2)=1 \\
w_{\Delta^{2} \frac{\delta}{2}} \tilde{u}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
2 r^{\prime \prime} & \frac{u^{\prime \prime}}{2} \\
\frac{s^{\prime \prime} N}{2} & 2 v^{\prime \prime}
\end{array}\right), \text { if } \operatorname{gcd}(\delta, 2)=2
\end{gathered}
$$

Proof. This is an easy calculation.
We study now the different elements of the type

$$
\begin{gathered}
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right)=\left(\begin{array}{cc}
r^{\prime} & \frac{u^{\prime}}{2} \\
\frac{s^{\prime} N}{2} & v^{\prime}
\end{array}\right) \\
b\left(r^{\prime \prime}, u^{\prime \prime}, s^{\prime \prime}, v^{\prime \prime}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
2 r^{\prime \prime} & \frac{u^{\prime \prime}}{2} \\
\frac{s^{\prime \prime} N}{2} & 2 v^{\prime \prime}
\end{array}\right) .
\end{gathered}
$$

Observe that $b(,,$,$) only appears when N \equiv 0(\bmod 8)$.
Lemma 7. For $N \equiv 4(\bmod 8)$ all the elements of the normalizer of type $a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right)$ belong to the order six group $\left\{S_{2}, w_{4} \mid S_{2}^{2}=w_{4}^{2}=\left(w_{4} S_{2}\right)^{3}=1\right\}$.
Proof. Straightforward from the equalities:

$$
\begin{gathered}
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) \in \Gamma_{0}(N) \Leftrightarrow s^{\prime} \equiv u^{\prime} \equiv 0(\bmod 2) \\
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) S_{2} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv v^{\prime} \equiv u^{\prime} \equiv 1 s^{\prime} \equiv 0(\bmod 2) \\
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) w_{4} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv v^{\prime} \equiv 0 u^{\prime} \equiv s^{\prime} \equiv 1(\bmod 2) \\
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) w_{4} S_{2} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv u^{\prime} \equiv s^{\prime} \equiv 1 v^{\prime} \equiv 0(\bmod 2)
\end{gathered}
$$

$$
\begin{gathered}
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) S_{2} w_{4} \in \Gamma_{0}(N) \Leftrightarrow v^{\prime} \equiv u^{\prime} \equiv s^{\prime} \equiv 1 r^{\prime} \equiv 0(\bmod 2) \\
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) S_{2} w_{4} S_{2} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv v^{\prime} \equiv s^{\prime} \equiv 1 u^{\prime} \equiv 0(\bmod 2)
\end{gathered}
$$

Lemma 8. Let N be a positive integer with $v_{2}(N)=3$. Then all the elements of the form $a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right)$ and $b\left(r^{\prime \prime}, u^{\prime \prime}, s^{\prime \prime}, v^{\prime \prime}\right)$ correspond to some element of the following group of 8 elements

$$
\left\{S_{2}, w_{8} \mid S_{2}^{2}=w_{8}^{2}=1, S_{2} w_{8} S_{2} w_{8}=w_{8} S_{2} w_{8} S_{2}\right\}
$$

Proof. If follows from the equalities:

$$
\begin{gathered}
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv v^{\prime} \equiv 1, u^{\prime} \equiv s^{\prime} \equiv 0(\bmod 2) \\
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) S_{2} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv v^{\prime} \equiv u^{\prime} \equiv 1, s^{\prime} \equiv 0(\bmod 2) \\
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) w_{8} S_{2} w_{8} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv v^{\prime} \equiv s^{\prime} \equiv 1, u^{\prime} \equiv 0(\bmod 2) \\
a\left(r^{\prime}, u^{\prime}, s^{\prime}, v^{\prime}\right) S_{2} w_{8} S_{2} w_{8} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv v^{\prime} \equiv s^{\prime} \equiv v^{\prime} \equiv 1(\bmod 2) \\
b\left(r^{\prime \prime}, u^{\prime \prime}, s^{\prime \prime}, v^{\prime \prime}\right) w_{8} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime \prime} \equiv v^{\prime \prime} \equiv 0, u^{\prime \prime} \equiv s^{\prime \prime} \equiv 1(\bmod 2) \\
b\left(r^{\prime \prime}, u^{\prime \prime}, s^{\prime \prime}, v^{\prime \prime}\right) S_{2} w_{8} S_{2} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime \prime} \equiv v^{\prime \prime} \equiv u^{\prime \prime} \equiv s^{\prime \prime} \equiv 1(\bmod 2) \\
b\left(r^{\prime \prime}, u^{\prime \prime}, s^{\prime \prime}, v^{\prime \prime}\right) S_{2} w_{8} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime \prime} \equiv 0, u^{\prime \prime} \equiv s^{\prime \prime} \equiv v^{\prime \prime} \equiv 1(\bmod 2) \\
b\left(r^{\prime \prime}, u^{\prime \prime}, s^{\prime \prime}, v^{\prime \prime}\right) w_{8} S_{2} \in \Gamma_{0}(N) \Leftrightarrow v^{\prime \prime} \equiv 0, u^{\prime \prime} \equiv s^{\prime \prime} \equiv r^{\prime \prime} \equiv 1(\bmod 2)
\end{gathered}
$$

We can now proof Proposition 5].
Proof. [of Proposition 5] Let $N=2^{v_{2}(N)} \prod_{i} p_{i}^{n_{i}}$, with p_{i} different primes and assume that $9 \nmid N$. If $v_{2}(N) \leq 1$ we are done by proposition 3 . Suppose $v_{2}(N)=2$ and let $\tilde{u} \in \operatorname{Norm}\left(\Gamma_{0}(N)\right)$. By lemmas 6 and $7, w_{\delta} \tilde{u}=\alpha, \alpha \in\left\{S_{2}, w_{4} \mid S_{2}^{2}=w_{4}^{2}=\right.$ $\left(w_{4} S_{2}\right)^{3}=1$ and it follows that $\tilde{u}=w_{\delta} \alpha$. Since $w_{\delta}((\delta, 2)=1)$ commutes with S_{2} and the Atkin-Lehner involutions commute one to each other, we are already done. In the situation $8 \| N$ the proof is exactly the same but using lemmas 6 and 8 instead.

4. Counterexamples to Claim 2.

In the above section we have seen that Atkin-Lehner's claim is true if $v(N) \leq 2$ i.e. for $v_{2}(N) \leq 3$ and $v_{3}(N) \leq 1$. Now we obtain counterexamples when $v_{2}(N)$ and/or $v_{3}(N)$ are bigger.

Lemma 9. Claim 2 for $N=48$ is wrong.
Proof. We know by Ogg [7] that $X_{0}(48)$ is an hyperelliptic modular curve with hyperelliptic involution not of Atkin-Lehner type. The hyperelliptic involution always belongs to the center of the automorphism group. We know by [3] that $\operatorname{Aut}\left(X_{0}(48)\right)=\operatorname{Norm}\left(\Gamma_{0}(48)\right) / \Gamma_{0}(N)$. Now if Claim 2 where true this group would be isomorphic to $\mathbb{Z} / 2 \times \Pi_{4}$ where Π_{n} is the permutation group of n elements. It is clear that the center of this group is $\mathbb{Z} / 2 \times\{1\}$, generated by the Atkin-Lehner involution w_{3}, but this involution is not the hyperelliptic one.

The problem of $N=48$ is that S_{4} does not commute with the Atkin-Lehner involution w_{3}; thus the direct product decomposition of Claim 2 is not possible.

This problem appears also for powers of 3 one can prove,

Lemma 10. Let $N=3^{v_{3}(N)} \prod_{i} p_{i}^{n_{i}}$ where p_{i} are different primes of \mathbb{Q}. Impose that $S_{3} \in \operatorname{Norm}\left(\Gamma_{0}(N)\right)$. Then S_{3} commutes with $w_{p_{i}^{n_{i}}}$ if and only if $p_{i}^{n_{i}} \equiv 1$ (modulo 3$)$. Therefore if some $p_{i}^{n_{i}} \equiv-1$ (modulo 3) the Claim 2 is not true.

Proof. Let us show that S_{3} does not commute with $w_{p_{i}^{n_{i}}}$ if and only if $p_{i}^{n_{i}} \equiv-1$ (\bmod 3). Observe the equality $w_{p_{i}^{n_{i}}}=\frac{1}{\sqrt{p_{i}^{n_{i}}}}\left(\begin{array}{cc}p_{i}^{n_{i}} k & 1 \\ N t & p_{i}^{n_{i}}\end{array}\right)^{p_{i}}$:

$$
\begin{gathered}
w_{p_{i}^{n_{i}}} S_{3} w_{p_{i}^{n_{i}}} S_{3}^{2}= \\
\frac{1}{p_{i}^{n_{i}}}\left(\begin{array}{cc}
\left(p_{i}^{n_{i}} k\right)^{2}+N t\left(1+\frac{p_{i}^{n_{i}} k}{3}\right) & p_{i}^{n_{i}} k\left(\frac{2 p_{i}^{n_{i}} k}{3}+1\right)+\left(\frac{p_{i}^{n_{i}} k}{3}+1\right)\left(\frac{2 N t}{3}+p_{i}^{n_{i}}\right) \\
N t\left(p_{i}^{n_{i}} k\right)+N t\left(\frac{N t}{3}+p_{i}^{n_{i}}\right) & N t\left(\frac{2 p_{i}^{n_{i}} k}{3}+1\right)+p_{i}^{n_{i}}\left(\frac{N t}{3}+p_{i}^{n_{i}}\right)\left(\frac{2 N t}{3}+p_{i}^{n_{i}}\right)
\end{array}\right) .
\end{gathered}
$$

For this element to belong to $\Gamma_{0}(N)$ one needs to impose $\frac{2 k^{2} p_{i}^{n_{i}}}{3}+\frac{p_{i}^{n_{i}} k}{3} \in \mathbb{Z}$. Since $p_{i}^{n_{i}} \equiv 1 o-1(\bmod 3)$ it is needed that $k \equiv 1(\bmod 3)$. Now from $\operatorname{det}\left(w_{p_{i}}\right)=1$ we obtain that $p_{i}^{n_{i}} k \equiv 1(\bmod 3)$; therefore $p_{i}^{n_{i}} \equiv 1(\bmod 3)$.
5. The group structure of $\operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)$ Revisited.

In this section we correct Claim 2. We prove here that the quotient

$$
\operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)
$$

is the product of some groups associated every one of them to the primes which divide N. See for the explicit result theorem 16 .

Theorem 11. Any element $w \in \operatorname{Norm}\left(\Gamma_{0}(N)\right)$ has an expression of the form

$$
w=w_{m} \Omega,
$$

where w_{m} is an Atkin-Lehner involution of $\Gamma_{0}(N)$ with $(m, 6)=1$ and Ω belongs to the subgroup generated by $S_{v(N)}$ and the Atkin Lehner involutions $w_{2^{v_{2}(N)}}$, $w_{3^{v}(N)}$. Moreover for $\operatorname{gcd}\left(v(N), 2^{3}\right) \leq 2$ the group structure for the subgroup $<S_{v_{2}(v(N))}, w_{2^{v_{2}(N)}}>$ and $<S_{v_{3}(v(N))}, w_{3^{v_{3}(N)}}>$ of $<S_{v(N)}, w_{2^{v_{2}(N)}}, w_{3^{v_{3}(N)}}>$ is the predicted by Atkin-Lehner at Claim 2, but these two subgroups do not necessary commute withe each other element-wise.

Proof. Let us take any element w of the $\operatorname{Norm}\left(\Gamma_{0}(N)\right)$. By Theorem 1 we can express w as follows,

$$
w=\sqrt{\delta}\left(\begin{array}{cc}
r \Delta & \frac{u}{v \delta \Delta} \\
\frac{s N}{v \delta \Delta} & l \Delta
\end{array}\right)=\frac{1}{\Delta \sqrt{\delta}}\left(\begin{array}{cc}
r \delta \Delta^{2} & \frac{u}{v} \\
\frac{s N}{v} & l \delta \Delta^{2}
\end{array}\right)
$$

Let us denote by $U=2^{v_{2}(N)} 3^{v_{3}(N)}$. Write $\Delta^{\prime}=\operatorname{gcd}(\Delta, N / U)$ and $\delta^{\prime}=\operatorname{gcd}(\delta, N / U)$; then we obtain

$$
w_{\delta^{\prime} \Delta^{\prime 2}} w=\frac{1}{\frac{\Delta}{\Delta^{\prime}} \sqrt{\delta / \delta^{\prime}}}\left(\begin{array}{cc}
r^{\prime} \frac{\delta}{\delta^{\prime}} \frac{\Delta^{2}}{\Delta^{\prime 2}} & \frac{u^{\prime}}{v(N)} \\
\frac{N t^{\prime}}{v(N)} & v^{\prime} \frac{\delta}{\delta^{\prime}} \frac{\Delta^{2}}{\Delta^{\prime 2}}
\end{array}\right)
$$

Observe that if $v(N)=1$ we already finish and we reobtain proposition 3. This is clear if $\operatorname{gcd}(N, 6)=1$; if not, the matrix $w w_{\delta^{\prime} \Delta^{\prime 2}}$ is the Atkin-Lehner involution at $\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2} \frac{\delta}{\delta^{\prime}} \in \mathbb{N}$.

Now we need only to check that any matrix of the form

$$
\Omega=\frac{1}{\frac{\Delta}{\Delta^{\prime}} \sqrt{\delta / \delta^{\prime}}}\left(\begin{array}{cc}
r^{\prime} \frac{\delta}{\delta^{\prime}}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2} & \frac{u^{\prime}}{v(N)} \tag{1}\\
\frac{N t^{\prime}}{v(N)} & v^{\prime} \frac{\delta}{\delta^{\prime}}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2}
\end{array}\right)
$$

is generated by $S_{v(N)}$ and the Atkin-Lehner involutions at 2 and 3 which are the factors of $\frac{\delta}{\delta^{\prime}}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2}$. To check this observe that $\Omega=\Omega_{2} \Omega_{3}$ with

$$
\begin{align*}
& \Omega_{2}=\frac{1}{2^{v_{2}\left(\frac{\Delta}{\Delta^{\prime}} \sqrt{\delta / \delta^{\prime}}\right)}}\left(\begin{array}{cc}
r^{\prime \prime} 2^{v_{2}\left(\frac{\delta}{\delta^{\prime}}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2}\right)} & \frac{u^{\prime \prime}}{2^{v_{2}(v(N))}} \\
\frac{N t^{\prime \prime}}{2^{v_{2}(v(N))}} & v^{\prime \prime} 2^{v_{2}\left(\frac{\delta}{\delta^{\prime}}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2}\right)}
\end{array}\right) \tag{2}\\
& \Omega_{3}=\frac{1}{3^{v_{3}\left(\frac{\Delta}{\Delta^{\prime}} \sqrt{\left.\delta / \delta^{\prime}\right)}\right.}}\left(\begin{array}{cc}
r^{\prime \prime \prime} 3^{v_{3}\left(\frac{\delta}{\delta^{\prime}}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2}\right)} & \frac{u^{\prime \prime \prime}}{3^{3^{\prime}(v(N))}} \\
\frac{N t^{\prime \prime \prime}}{3^{v_{3}(v(N))}} & v^{\prime \prime \prime} 3^{v_{3}\left(\frac{\delta}{\delta^{\prime}}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2}\right)}
\end{array}\right) .
\end{align*}
$$

We only consider the case for Ω_{2}, the case for the Ω_{3} is similar. We can assume that $2^{v_{2}\left(\frac{\Delta}{\Delta^{\prime}} \sqrt{\delta / \delta^{\prime}}\right)}=1$ substituting Ω_{2} by $w_{2^{v_{2}(N)}} \Omega_{2}$ if necessary. Thus, we are reduced to a matrix of the form $\tilde{\Omega}_{2}=\left(\begin{array}{cc}r^{\prime} & \frac{u^{\prime}}{2^{v_{2}(v(N))}} \\ \frac{N t^{\prime}}{2^{v_{2}(v(N))}} & v^{\prime}\end{array}\right)$. Now for some i we can obtain $S_{2^{v_{2}(v(N))}}^{i} \tilde{\Omega_{2}}=\left(\begin{array}{cc}r^{\prime} & u^{\prime} \\ \frac{N t^{\prime}}{2^{v_{2}(v(N))}} & v^{\prime}\end{array}\right)$; name this matrix by $\overline{\Omega_{2}}$. Then, it is easy to check that $w_{2^{v_{2}(N)}} S_{2^{v_{2}(v(N))}}^{i} w_{2^{v_{2}(N)}} \overline{\Omega_{2}} \in \Gamma_{0}(N)$ for some i.

Similar argument as above are obtained if we multiply w by w_{m} on the right, i.e. $w w_{m}$ is also some Ω as above obtaining similar conclusion.

Let us see now that the group generated by $S_{v_{2}(v(N))}$ and the Atkin-Lehner involutions at 2, and the group generated by $S_{v_{3}(v(N))}$ and the Atkin-Lehner involution at 3 have the structure predicted in Claim 2 when $\operatorname{gcd}\left(v(N), 2^{3}\right) \leq 2$. We only need to check when $v(N)$ is a power of 2 or 3 by (2). For $v(N)=1$ the matrix (1) is $w_{\frac{\delta}{\delta^{\prime}}}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2}\left(\right.$ we denote $\left.w_{1}:=i d\right)$ (we have in this case a much deeper result, see proposition 3). Take now $v(N)=2$. If $l=\operatorname{gcd}\left(3, \delta / \delta^{\prime}\right)$ let $\Omega=w_{l} \Omega^{\prime}$; the matrix Ω^{\prime} is as (1) but with $\operatorname{gcd}\left(3, \delta / \delta^{\prime}\right)=1$, and $\frac{\delta}{\delta^{\prime}} \frac{\Delta^{2}}{\Delta^{\prime 2}}$ is only a power of 2 . Then $\Omega^{\prime} \in<S_{2}, w_{2^{v_{2}(N)}}>$, let us to precise the group structure. For $v(N)=2$ we have $v_{2}(N)=2$ or 3 , and we have already proved the group structure of Claim [1] in lemmas 7,8 (we have moreover that Claim 2 is true because S_{2} commutes with the Atkin-Lehner involutions $w_{p_{i}^{n_{i}}}$ if $\left(p_{i}, 2\right)=1$, see proposition 5). Assume now $v(N)=3$. If $l=\operatorname{gcd}\left(2, \delta / \delta^{\prime}\right)$ and $\Omega=w_{l} \Omega^{\prime}$ then Ω^{\prime} is as (1) but with $\operatorname{gcd}\left(2, \delta / \delta^{\prime}\right)=1$, and $\frac{\delta}{\delta^{\prime}} \frac{\Delta^{2}}{\Delta^{\prime 2}}$ is only a power of 3 . Then $\Omega^{\prime} \in<S_{3}, w_{3^{v_{3}(N)}}>$, let us to precise the group structure. For $v(N)=3$ we have $v_{3}(N) \geq 2$. Let us begin with $v_{3}(N)=2$, then Ω^{\prime} is of the form

$$
\Omega^{\prime}=\left(\begin{array}{cc}
r^{\prime} & \frac{u^{\prime}}{3} \\
\frac{N t^{\prime}}{3} & v^{\prime}
\end{array}\right)=: a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right)
$$

(from the formulation of Theorem 1 we can consider $\frac{\Delta}{\Delta^{\prime}}=1=\frac{\delta}{\delta^{\prime}}$ because the factors outside 3 does not appear if we multiply for a convenient Atkin-Lehner involution, and for 3 observe that under our condition $\Delta=1$) and we have

$$
\begin{gathered}
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) \in \Gamma_{0}(N) \Leftrightarrow t^{\prime} \equiv u^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) w_{9} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv v^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) S_{3} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime}+u^{\prime} \equiv t^{\prime} \equiv 0(\bmod 3)
\end{gathered}
$$

$$
\begin{gathered}
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) S_{3}^{2} \in \Gamma_{0}(N) \Leftrightarrow 2 r^{\prime}+u^{\prime} \equiv t^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) S_{3} w_{9} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv q t^{\prime}+v^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) S_{3}^{2} w_{9} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime} \equiv 2 q t^{\prime}+v^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) w_{9} S_{3}^{2} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime}+u^{\prime} \equiv v^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) w_{9} S_{3} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime}+2 u^{\prime} \equiv v^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) w_{9} S_{3}^{2} w_{9} \in \Gamma_{0}(N) \Leftrightarrow u^{\prime} \equiv q t^{\prime}+v^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) S_{3}^{2} w_{9} S_{3}^{2} \in \Gamma_{0}(N) \Leftrightarrow u^{\prime} \equiv 2 q t^{\prime}+v^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) S_{3}^{2} w_{9} S_{3} \in \Gamma_{0}(N) \Leftrightarrow r^{\prime}+u^{\prime} \equiv 2 t^{\prime} q+v^{\prime} \equiv 0(\bmod 3) \\
a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right) S_{3} w_{9} S_{3}^{2} \in \Gamma_{0}(N) \Leftrightarrow 2 r^{\prime}+u^{\prime} \equiv q t^{\prime}+v^{\prime} \equiv 0(\bmod 3)
\end{gathered}
$$

and these are all the possibilities, proving that the group is $\left\{S_{3}, w_{9} \mid S_{3}^{3}=w_{9}^{2}=\right.$ $\left.\left(w_{9} S_{3}\right)^{3}=1\right\}$ of order 12. Observe that S_{3} does not commute with w_{2} (see for example lemma 7).

Suppose now that $v_{3}(N) \geq 3$. We distinguish the cases $v_{3}(N)$ odd and $v_{3}(N)$ even. Suppose $v_{3}(N)$ is even, then $\frac{\delta}{\delta^{\prime}}=1$ and Ω^{\prime} has the following form

$$
\frac{1}{\frac{\Delta}{\Delta^{\prime}}}\left(\begin{array}{cc}
r^{\prime}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2} & \frac{u^{\prime}}{3} \\
\frac{N t^{\prime}}{3} & v^{\prime}\left(\frac{\Delta}{\Delta^{\prime}}\right)^{2}
\end{array}\right)
$$

with $\alpha:=\Delta / \Delta^{\prime}$ dividing $3^{\left[v_{3}(N) / 2\right]-1}$. Since this last matrix has determinant 1 we see that α satisfies $\operatorname{gcd}\left(\alpha, N /\left(3^{2} \alpha^{2}\right)\right)=1$; thus $\alpha=1$ or $\alpha=3^{\left[v_{3}(N) / 2\right]-1}$. Write $a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right)=\left(\begin{array}{cc}r^{\prime} & \frac{u^{\prime}}{3} \\ \frac{N t^{\prime}}{3} & v^{\prime}\end{array}\right)$ when we take $\alpha=1$ and $b\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right)=$ $\left(\begin{array}{cc}r^{\prime}\left(3^{\left[v_{3}(N) / 2\right]-1}\right) & \frac{u^{\prime}}{3^{\left[v_{0}(N) / 2\right]}} \\ \frac{N t^{\prime}}{3^{\left[v_{3}(N) / 2\right]}} & v^{\prime}\left(3^{\left[v_{3}(N) / 2\right]-1}\right)\end{array}\right)$ when $\alpha=3^{\left[v_{3}(N) / 2\right]-1}$. It is easy to check that $b\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right)=w_{3^{v_{3}(N)}} a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right)$ and that the group structure is the predicted in a similar way as the one done above for $v(N)=2$. Suppose now that $v_{3}(N)$ is odd, then $\frac{\delta}{\delta^{\prime}}$ is 1 or 3 and $\frac{\Delta}{\Delta^{\prime}}$ divides $3^{\left[v_{3}(N) / 2\right]-1}$. Now from $\operatorname{det}()=1$ we obtain that the only possibilities are $\frac{\delta}{\delta^{\prime}}=1=\frac{\Delta}{\Delta^{\prime}}$ name the matrices for this case following equation 1 by $a\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right)$, and the other possibility is $\frac{\delta}{\delta^{\prime}}=3$ and $\frac{\Delta}{\Delta^{\prime}}=3^{\left[v_{3}(N) / 2\right]-1}$, write the matrices for this case following equation 1 by $c\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right)$. It is also easy to check that $c\left(r^{\prime}, u^{\prime}, t^{\prime}, v^{\prime}\right)=w_{3^{v_{3}(N)}} a\left(r^{\prime \prime}, u^{\prime \prime}, t^{\prime \prime}, v^{\prime \prime}\right)$, and that the group structure is the predicted.

Corollary 12. Let $N=3^{v_{3}(N)} \prod_{i} p_{i}^{n_{i}}$, with p_{i} different primes such that $\operatorname{gcd}\left(p_{i}, 6\right)=$ 1. Suppose that $v(N)=3$ and $p_{i}^{n_{i}} \equiv 1(\bmod 3)$ for all i. Then Claim 2 is true.

Proof. From the proof of the above theorem 11 for $v(N)=3$ with $v_{3}(N) \geq 2$, lemma 10 , and that the general observation that the Atkin-Lehner involutions commute one with each other we obtain that the direct product decomposition of Claim 2 is true obtaining the result.

Now we shows the corrections to Claim 2 for $v(N)=4$ and $v(N)=8$, about the group structure of the subgroup of $\operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)$ generated for $S_{2^{k}}$ and the Atkin-Lehner involution at prime 2.

Proposition 13. Suppose $v(N)=4$, observe that in this situation $v_{2}(N)=4$, or 5 . Then the group structure of the subgroup $<w_{2^{v_{2}(N)}}, S_{4}>$ of $\operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)$ is given by the relations:
(1) For $v_{2}(N)=4$ we have $S_{4}^{4}=w_{16}^{2}=\left(w_{16} S_{4}\right)^{3}=1$.
(2) For $v_{2}(N)=5$ we have $S_{4}^{4}=w_{32}^{2}=\left(w_{32} S_{4}\right)^{4}=1$.

Proof. It is a straightforward computation. Observe that for $v_{2}(N)=4$ the statement coincides with Claim 2 but not for $v_{2}(N)=5$, where one checks that S_{4} does not commute with $w_{32} S_{4} w_{32}$.

Proposition 14. Suppose $v(N)=8$ and $v_{2}(N)$ even (this is the case (3)(c) in Claim 2). Then the group $<w_{2^{v_{2}(N)}}, S_{8}>\subseteq \operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)$ satisfies the following relations: $S_{8}^{8}=w_{2^{v_{2}(N)}}^{2}=1$, and
(1) for $v_{2}(N)=6$ we have $\left(w_{64} S_{8}\right)^{3}=1$,
(2) for $v_{2}(N) \geq 8$ we do not have the relation $\left(w_{2^{v_{2}(N)}} S_{8}\right)^{3}=1$,
(3) for $v_{2}(N) \geq 10$ we have the relation: S_{8} commutes with $w_{2^{v_{2}(N)}} S_{8} w_{2^{v_{2}(N)}}$,
(4) for $v_{2}(N)=6$ or 8 we do not have the relation: S_{8} commutes with the element $w_{2^{v_{2}(N)}} S_{8} w_{2^{v_{2}(N)}}$.
(5) For $v_{2}(N)=8$ we have the relation: $w_{256} S_{8} w_{256} S_{8} w_{256} S_{8}^{3} w_{256} S_{8}^{3}=1$.

Proof. Straightforward.
Proposition 15. Suppose $v(N)=8$ and $v_{2}(N)$ odd (this is the case (3)(d) in Claim 2). Then the group $<w_{2^{v_{2}(N)}}, S_{8}>\subseteq \operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)$ satisfies the following relations: $S_{8}^{8}=w_{2^{v_{2}(N)}}^{2}=1$, and
(1) for $v_{2}(N)=7\left(w_{128} S_{8}\right)^{4}=1$,
(2) for $v_{2}(N) \geq 9$ we do not have the relation $\left(w_{2^{v_{2}(N)}} S_{8}\right)^{4}=1$,
(3) for $v_{2}(N) \geq 9$ we have the Atkin-Lehner relation: S_{8} commutes with $w_{2^{v_{2}(N)}} S_{8} w_{2^{v_{2}(N)}}$,
(4) for $v_{2}(N)=7$ we do not have that S_{8} commutes with $w_{128} S_{8} w_{128}$.

Proof. Straightforward.
Let us finally write the revisited results concerning Claim 2 that we prove;
Theorem 16. The quotient $\operatorname{Norm}\left(\Gamma_{0}(N)\right) / \Gamma_{0}(N)$ is a product of the following groups:
(1) $\left\{w_{q^{v}(N)}\right\}$ for every prime $q, q \geq 5 q \mid N$.
(2) (a) If $v_{3}(N)=0,\{1\}$
(b) If $v_{3}(N)=1,\left\{w_{3}\right\}$
(c) If $v_{3}(N)=2,\left\{w_{9}, S_{3}\right\}$; satisfying $w_{9}^{2}=S_{3}^{3}=\left(w_{9} S_{3}\right)^{3}=1$ (factor of order 12)
(d) If $v_{3}(N) \geq 3 ;\left\{w_{3^{v_{3}(N)}}, S_{3}\right\}$; where $w_{3^{v_{3}(N)}}^{2}=S_{3}^{3}=1$ and $w_{3^{v_{3}(N)}} S_{3} w_{3^{v_{3}(N)}}$ commute with S_{3} (factor group with 18 elements)
(3) Let be $\lambda=v_{2}(N)$ and $\mu=\min \left(3,\left[\frac{\lambda}{2}\right]\right)$ and denote by $v^{\prime \prime}=2^{\mu}$ the we have:
(a) If $\lambda=0$; \{1\}
(b) If $\lambda=1$; $\left\{w_{2}\right\}$
(c) If $\lambda=2 \mu$ and $2 \leq \lambda \leq 6$; $\left\{w_{2^{v_{2}(N)}}, S_{v^{\prime \prime}}\right\}$ with the relations $w_{2^{v_{2}(N)}}^{2}=$ $S_{v^{\prime \prime}}^{v^{\prime \prime}}=\left(w_{2 v_{2}(N)} S_{v^{\prime \prime}}\right)^{3}=1$, where they have orders 6,24, and 96 for $v=2,4,8$ respectively.
(d) If $\lambda>2 \mu$ and $2 \leq \lambda \leq 7 ;\left\{w_{2^{v_{2}(N)}}, S_{v^{\prime \prime}}\right\} ; w_{2^{v_{2}(N)}}^{2}=S_{v^{\prime \prime}}^{v^{\prime \prime}}=1$. Moreover, $\left(w_{2^{v_{2}(N)}} S_{v^{\prime \prime}}\right)^{4}=1$.
$(\tilde{c}),(\tilde{d})$ If $\lambda \geq 9 ;\left\{w_{2^{v_{2}(N)}}, S_{8}\right\}$ with the relations $w_{2^{v_{2}(N)}}^{2}=S_{8}^{8}=1$ and S_{8} commutes with $w_{2^{v_{2}(N)}} S_{8} w_{2^{v_{2}(N)}}$.
(\hat{c}) If $\lambda=8$; $\left\{w_{2^{v_{2}(N)}}, S_{8}\right\}$ with relations given by $w_{2^{v_{2}(N)}}^{2}=S_{8}^{8}=1$ and $w_{256} S_{8} w_{256} S_{8} w_{256} S_{8}^{3} w_{256} S_{8}^{3}=1$.

Observation 17. One needs to warn that for the situations $v(N)=8$ or $\lambda=5$ possible the relations does not define totally the factor group, but it is a computation more.

Observation 18. The product between the different groups appearing in theorem 16 is easily computable. Effectively, we know that the Atkin-Lehner involutions commute, and $S_{2^{v_{2}(v(N))}}$ commutes with $S_{3^{v_{3}(v(N))}}$. Moreover S_{2} commutes with any element different from Atkin-Lehner involutions involving the prime 2 from lemma 4. Consider $w_{p^{n}}$ an Atkin-Lehner involution for $X_{0}(N)$ with p a prime. One obtains the following results by using the same arguments appearing in the proof of lemma 10;
(1) let p be coprime with 3 and $3 \mid v(N)$. S_{3} commutes with $w_{p^{n}}$ if and only if $p^{n} \equiv 1($ modulo 3$)$. If $p^{n} \equiv-1($ modulo 3$)$ then $w_{p^{n}} S_{3}=S_{3}^{2} w_{p^{n}}$.
(2) Let p be coprime with 2 and $4 \mid v(N) . S_{4}$ commutes with $w_{p^{n}}$ if and only if $p^{n} \equiv 1($ modulo 4$)$. If $p^{n} \equiv-1($ modulo 4$)$ then $w_{p^{n}} S_{4}=S_{4}^{3} w_{p^{n}}$.
(3) Let p be coprime with 2 and $8 \mid v(N)$. Then, $w_{p^{n}} S_{8}=S_{8}^{k} w_{p^{n}}$ if $p^{n} \equiv$ k (modulo 8), in particular S_{8} commutes with $w_{p^{n}}$ if and only if $p^{n} \equiv$ 1 (modulo 8).

6. Postcript

The normalizer of $\Gamma_{0}(N)$ in $S L_{2}(\mathbb{R})$ has conjecturally deep interest in group theory for the Monster simple group. Let j be the j-invariant function for elliptic curves, the field $\mathbb{C}(j)$ corresponds to the function field of the compactification of $\mathbb{H} / S L_{2}(\mathbb{Z})$, where \mathbb{H} is the Poincaré semi-half plane, which has genus zero. We usually write this function as a $q\left(=e^{2 \pi i}\right)$-series, $j=q^{-1}+744+196884 q+\ldots$. A q-series is normalized for group theory specialists in this field when the constant term is zero, thus take $J:=j-744=q^{-1}+0+H_{1} q+\ldots$ where the H_{r} are conjecturally related with certain representations for the Monster, called the head representations. Thompson replaces H_{r} with what he calls character values $H_{r}(m)$. This gives another normalized series $T_{m}=q^{-1}+0+H_{1}(m) q+\ldots$. Roughly speaking, the conjecture claims some sort of relation between the function field generated for the normalizer function T_{m} and the generating normalized function for a genus 0 curve arising from a group between $\Gamma_{0}(N)$ and its normalizer in $P S L_{2}(\mathbb{R})$.

Conway and Norton in the paper "Monstrous moonshine" (Bull. London Mat. Soc., 11,(1979),308-339) gives a very nice exposition of the subject from a group theorical point of view. Conway and Norton take the matrices for the normalizer of $\Gamma_{0}(N)$ given by the last theorem in [1] (we observed in this paper that this theorem is wrong, but Conway and Norton use the matrix statement of Atkin-Lehner paper which is from Newmann, which is correct) and express the normalizer of $\Gamma_{0}(N)$ in a better form for the above conjecture. This new formulation of the normalizer is used for obtaining the normalizer of $\Gamma_{0}(N)$ in $P S L_{2}(\mathbb{R})$ by Akbas-Singerman (The
normalizer of $\Gamma_{0}(N)$ in $P S L(2, \mathbb{R})$; Glasgow Math. J. 32 (1990), no.3, 317-327) correcting the Atkin-Lehner statement, and the Conway-Norton matrix formulation for the normalizer is also used to obtain in particular some normalizers for modular subgroups as $\Gamma_{0}(N)+$ some Atkin - Lehner involution: results of Lang (Normalizers of the congruence subgroups of the Hecke groups G_{4} and G_{6} : J. Number Theory 90 (2001), no.1, 31-43; Groups commensurable with the modular group: J. Algebra 274 (2004), no.2, 804-821) and Chua-Lang (Congruence subgroups associated to the monster: Experiment. Math. 13 (2004), no.3, 343-360).

Our approach follows the old Newmann formulation for the normalizer, and the results obtained agree with those obtained by Akbas-Singerman. We only mention that the claimed relation $w_{256} S_{8}^{2} w_{256} S_{8}=S_{8}^{2} w_{256} S_{8} w_{256}$ when $N=256$ at AkbasSingerman result in p. 324 (loc. cit.) is not true, (the others relations at this result in p. 324 are true).

I thank John McKay for drawing these references to my attention.

References

[1] Atkin, A.O.L., Lehner, J.: Hecke operator on $\Gamma_{0}(N)$. Math.Ann.185, 134-160 (1970).
[2] Bars, F.: Determinació de les corbes $X_{0}(N)$ biel.líptiques. Tesina Universitat Autònoma de Barcelona. September 1997. Find a copy at http://mat.uab.es/~francesc/publicac.html
[3] Kenku, M.A.,Momose, F.: Automorphisms groups of the modular curves $X_{0}(N)$. Compositio Math. 65, 51-80, (1988).
[4] Lehner, J., Newman, M.: Weierstrass points of $\Gamma_{0}(N)$. Ann. of Math. 79, 360-368 (1964).
[5] Newman, M.: Structure theorem for modular subgroups. Duke Math. J.22, 25-32 (1955).
[6] Newman, M.: Conjugacy, genus and class numbers. Math.Ann.196m 198-217 (1975).
[7] Ogg, A.P.: Hyperelliptic modular curves. Bull.Soc.math. France 102,449-462 (1974).

Francesc Bars Cortina, Depart. Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra. Catalonia. Spain. E-mail: francesc@mat.uab.cat

[^0]: Date: Revised version: July 16th, 2007.
 Work partially supported by MTM2006-11391. MSC: 20H05(19B37,11G18).
 After the paper were accepted we learned that a similar result was obtained by M. Akbas and D. Singerman in The normalizer of $\Gamma_{0}(N)$ in $P S L(2, \mathbb{R})$ with a different proof. See the postcript.

