E. Gallego • A. Reventós • G. Solanes • E. Teufel

Width of convex bodies in spaces of constant curvature

Received: 26 February 2007 / Revised: 11 January 2008

Abstract

We consider the measure of points, the measure of lines and the measure of planes intersecting a given convex body K in a space form. We obtain some integral formulas involving the width of K and the curvature of its boundary ∂K. Also we study the special case of constant width. Moreover we obtain a generalisation of the Heintze-Karcher inequality to space forms.

1. Introduction

In this paper we consider convex bodies in spaces of constant curvature, from the viewpoint of integral geometry.

Let X_{c}^{n} denote the n-dimensional complete and simply connected riemannian space of constant curvature c, i.e. the euclidean space \mathbb{E}^{n} for $c=0$, the sphere \mathbb{S}_{c}^{n} for $c>0$, or the hyperbolic space \mathbb{H}_{c}^{n} for $c<0$. We shall focus our interest in dimensions 2 and 3 , but the ideas here contained can be extended to arbitrary dimensions.

We give the measure, with some weight, of points, lines, planes, and λ-planes intersecting a convex body K in function of its width and the curvature of its boundary ∂K.

With respect to the measure of points in K, in the case of constant width, we obtain for instance

$$
2 V=a_{0}(w) M_{0}+a_{1}(w) M_{1}+a_{2}(w) M_{2},
$$

where V is the volume, a_{i} are functions of the width w of K and M_{i} are the i th integrals of mean curvature of the boundary ∂K, see Theorem 2 . This is a particular

[^0]case of a formula relating the number of critical points of the distance function to the boundary with some integrals of the curvature functions of ∂K, see Theorem 1. Using similar tools, we prove for convex sets in X_{c}^{3} that
$$
V \leq \int_{M} \frac{V\left(\rho_{H}\right)}{A\left(\rho_{H}\right)} d M_{x}
$$
where $V\left(\rho_{H}\right)$ and $A\left(\rho_{H}\right)$ are the volume and area of the sphere of radius $\rho_{H}(x)$, the mean curvature radius of M at x, see Theorem 4. When $c=0$ this is the classical Heintze-Karcher formula
$$
3 V \leq \int_{M} \frac{1}{H} d M_{x}
$$
(see for instance [14]).
With respect to the measure of lines intersecting $K \subset \mathbb{E}^{3}$ we obtain
$$
\int_{\left\{\xi \in \mathscr{L}_{1}: K \cap \xi \neq \emptyset\right\}} v\left(\left.h_{\xi}\right|_{M}\right) d \xi \leq \int_{M}\left(c_{0}(x)+c_{1}(x) w(x)+c_{2}(x) w^{2}(x)\right) d M_{x}
$$
where $c_{i}(x)$ are functions of the mean and Gaussian curvature in $\partial K, \mathscr{L}_{1}$ is the space of lines with measure $d \xi$ and $v\left(\left.h_{\xi}\right|_{M}\right)$ denote the number of critical points of the distance function to lines ξ, see Theorem 5. Equality holds if and only if K has constant width.

With respect to the measure of planes intersecting $K \subset X_{c}^{3}$ we obtain

$$
2 \int_{\left\{\xi \in \mathscr{L}_{2}: K \cap \eta \neq \varnothing\right\}} d \eta=\int_{M}\left(\alpha_{0}(x)+\alpha_{1}(x) H(x)+\alpha_{2}(x) K(x)\right) d M_{x}
$$

where $\alpha_{i}(x)$ are functions of the width $w(x)$ for $x \in \partial K$ and \mathscr{L}_{2} is the space of planes with measure $d \eta$, see Theorem 6. As a consequence of this result, when K is of constant width w, we deduce the well known formula (cf. [18])

$$
2 c V+M_{1}=2 \pi w .
$$

In dimension 2 we obtain a generalisation of Barbier theorem (cf. [2, 8, 12, 24])

$$
\mathrm{sn}_{c}(w) M_{0}=\frac{1}{c}\left(1-\mathrm{cn}_{c}(w)\right) M_{1} .
$$

2. Preliminaries

Definition 1. A domain $K \subset X_{c}^{n}$ with regular boundary $M=\partial K$ is said to be convex (resp. strongly convex) if the normal curvatures in every point of M are non-negative (resp. positive). In the spherical case $c>0$ we assume that K lies in some halfsphere of \mathbb{S}_{c}^{n}.

If $c<0$ we have

Definition 2. A domain $K \subset \mathbb{H}_{c}^{n}$ with regular boundary $M=\partial K$ is said to be h-convex (resp. strongly h-convex) if the normal curvatures in every point of M are greater or equal than $\sqrt{-c}$ (resp. greater than $\sqrt{-c}$).

For instance, balls of radius r in \mathbb{H}_{c}^{n} have curvature equal to $\sqrt{-c} \operatorname{coth}(\sqrt{-c} r)$, thus they are strongly h-convex.

Remark 1. It must be noticed that the notion of convexity given here is equivalent to the usual notion of geodesic convexity. Sometimes h-convex bodies are also called horocyclically convex bodies because in this case the horocycles joining points in K are contained in K.

Remark 2. We can extend the notion of convexity (resp. h-convexity) to non-regular domains. A domain K is said to be convex (resp. h-convex) if every point of the boundary is locally supported by a regular convex (resp. h-convex) hypersurface S leaving K on the convex side of S. These notions are also valid in Hadamard manifolds (see [4]).

Let N denote the inward pointing unit normal field along M. For each $x \in$ M there are exactly two supporting hyperplanes (i.e. complete totally geodesic hypersurfaces in X_{c}^{n}) orthogonal to the normal geodesic $\exp _{x}(t N(x)), t \in \mathbb{R}$, to M through x. Then K lies inside the strip defined by these two supporting hyperplanes.

In euclidean spaces $(c=0)$ the classical width is directly related to the support function. The width of K is a function depending on directions, namely the distance between two parallel support hyperplanes, or the sum of the values of the support function at opposite directions respectively. For $c \neq 0$ there are neither parallelity nor natural support functions. Therefore, our definition of width of K is based on K itself. We will consider the width as a function defined on $M=\partial K$.

In case $c \neq 0$ there are other concepts of width, based on support functions defined after the election of an arbitrary point("origin") (cf. [8, 12, 18]).

All these concepts have their pros and cons. In euclidean spaces $(c=0)$, due to parallelity, these concepts essentially coincide.

Definition 3. The width $w(x)$ of K at $x \in \partial K$ is the smallest positive number r such that the hyperplane through the point $\exp _{x}(r N(x))$ that is orthogonal to the geodesic $\exp _{x}(t N(x))$ is tangent to ∂K.

In this paper we shall deal with convex bodies specially with convex bodies of constant width. The condition $w(x)$ constant is equivalent to the property of double normals (the geodesic $\exp _{x}(t N(x))$ is orthogonal to M in two points); see [6]. Other good references on this subject are [5,9] and [17].

Let $\left\{x ; e_{1}, \ldots, e_{n}\right\}$ be a moving orthonormal frame along M with x belonging to $M, e_{1}, \ldots, e_{n-1}$ tangent to M at x, and $e_{n}=N(x)$ the inward pointing normal to M. Consider $M_{w}=\cup_{x \in M}(\{x\} \times[0, w(x)]) \subset M \times \mathbb{R}$ and let $\left\{y ; f_{1}, \ldots, f_{n}\right\}$ be a moving orthonormal frame on X_{c}^{n} defined over M_{w} by $y:=\exp _{x}\left(\rho e_{n}\right), \rho \in$ $[0, w(x)]$, and f_{1}, \ldots, f_{n} given through geodesic parallel translation of e_{1}, \ldots, e_{n} along the geodesic $\exp _{x}\left(t e_{n}\right), t \in \mathbb{R}$, from x to y. By $\omega_{i}, \omega_{i j}$ and $\sigma_{i}, \sigma_{i j}$ we denote the corresponding connection forms on M and M_{w}.

It is well known that the growth of the Jacobi fields in X_{c}^{n} is described by the functions

$$
\operatorname{sn}_{c}(\rho):= \begin{cases}\frac{1}{\sqrt{-c}} \sinh (\sqrt{-c} \rho), & c<0 \\ \rho, & c=0 \\ \frac{1}{\sqrt{c}} \sin (\sqrt{c} \rho), & c>0\end{cases}
$$

and

$$
\operatorname{cn}_{c}(\rho):= \begin{cases}\cosh (\sqrt{-c} \rho), & c<0 \\ 1, & c=0 \\ \cos (\sqrt{c} \rho), & c>0\end{cases}
$$

Note that for these functions $c \operatorname{sn}_{c}^{2}(\rho)+\mathrm{cn}_{c}^{2}(\rho)=1, \operatorname{sn}_{c}^{\prime}(\rho)=\mathrm{cn}_{c}(\rho)$ and $\mathrm{nn}_{c}^{\prime}(\rho)=$ $-c \mathrm{sn}_{c}(\rho)$.

The relation between the connection forms in M and M_{w} considered before is given by

Lemma 1.

$$
\begin{align*}
\sigma_{n} & =d \rho \\
\sigma_{i} & =\mathrm{cn}_{c}(\rho) \pi_{1}^{*} \omega_{i}+\operatorname{sn}_{c}(\rho) \pi_{1}^{*} \omega_{n i} \tag{1}\\
\sigma_{n i} & =-c \operatorname{sn}_{c}(\rho) \pi_{1}^{*} \omega_{i}+\mathrm{cn}_{c}(\rho) \pi_{1}^{*} \omega_{n i}
\end{align*}
$$

where $\pi_{1}: M_{w} \rightarrow M$ is the canonical projection and $1 \leq i \leq n-1$.
Proof. The formulas follow considering variation through geodesics, taking into account the curvature of equidistants $-c \mathrm{sn}_{c}(\rho) / \mathrm{cn}_{c}(\rho)$ and the curvature of distance circles $\mathrm{cn}_{c}(\rho) / \mathrm{sn}_{c}(\rho)$.

Lemma 2.

$$
\begin{align*}
\int \mathrm{sn}_{c}^{2}(\rho) d \rho & =\frac{1}{2 c}\left(\rho-\mathrm{sn}_{c}(\rho) \mathrm{cn}_{c}(\rho)\right) \\
\int \mathrm{cn}_{c}^{2}(\rho) d \rho & =\frac{1}{2}\left(\rho+\operatorname{sn}_{c}(\rho) \mathrm{cn}_{c}(\rho)\right) \tag{2}\\
\int \operatorname{sn}_{c}(\rho) \operatorname{cn}_{c}(\rho) d \rho & =\frac{1}{2} \operatorname{sn}_{c}^{2}(\rho)
\end{align*}
$$

Remark 3. When c tends to 0 , the right-hand side of the first formula becomes $\rho^{3} / 3$.
Let us now consider a height function h, i.e. a submersion $h: X_{c}^{n} \rightarrow \mathbb{R}$ (defined at least locally). Let $p \in M$ be a critical point of the induced height function $\left.h\right|_{M}$ along M, then some level hypersurface S of h is tangent to M at p, and hence $\operatorname{grad} h(p)=\lambda N(p)$. We have

Lemma 3.

$$
\begin{equation*}
\text { hess }\left.h\right|_{M}(p)=\lambda I I_{M}(p)-|\lambda| I I_{S}(p) \tag{3}
\end{equation*}
$$

where $I I_{M}(p)$ is the second fundamental form of M at p with respect to its unit normal $N(p)$, and $I_{S}(p)$ is the second fundamental form of S at p with respect to its unit normal $\operatorname{grad} h(p) /\|\operatorname{grad} h(p)\|$.

Proof. Locally along M around p we write $\left.\operatorname{grad} h\right|_{M}=\operatorname{grad} h-\lambda N$ with an appropriate function λ. Then

$$
\text { hess } \begin{aligned}
\left.h\right|_{M}(p)(X, Y)= & \left.g\left(\left.\nabla_{X} \operatorname{grad} h\right|_{M}, Y\right)\right|_{p} \\
= & \left.g\left(\nabla_{X} \operatorname{grad} h, Y\right)\right|_{p}-\left.d \lambda(X) g(N, Y)\right|_{p} \\
& -\left.\lambda(p) g\left(\nabla_{X} N, Y\right)\right|_{p} \\
= & -|\lambda(p)| \mathrm{II}_{S}(X, Y)+\lambda(p) \mathrm{II}_{M}(X, Y)
\end{aligned}
$$

with $X, Y \in T_{p} M$ and g the first fundamental form of M.
Definition 4. Given a function $\rho>0$ on the boundary $M=\partial K$ of a regular convex body K, the ρ-parallel set of M is the set $F_{\rho}(M)=\left\{\exp _{x}(\rho(x) N(x)): x \in M\right\} \subset$ X_{c}^{n}. The focal set $F(M)$ of M will be the union of the ρ_{i}-parallel sets when ρ_{i} are the principal radii of curvature $(i=1, \ldots, n-1)$.

Remark 4. In the two dimensional case the focal set is the evolute of the boundary. Note also that $F(M)$ is locally smooth and that the normal geodesics going to the interior of K are tangent to $F(M)$.

Definition 5. The winding number wind (S, y) of an oriented hypersurface $S \subset X_{c}^{n}$ with respect to a point $y \in X_{c}^{n} \backslash S$ is the mapping degree of the radial projection via the exponential map of S into the tangent unit-sphere $T_{y}^{1} X_{c}^{n}$: to each point x in S we associate the unit tangent vector in y of the unique geodesic joining y and x.

Equivalently, wind (S, y) equals the algebraic intersection number of S with an arbitrary geodesic ray emanating from y.

3. Measure of points

For every y in X_{c}^{n} we consider the distance function $h_{y}(x):=d(x, y), x \in X_{c}^{n}$. A point $x \in M$ is a critical point of $\left.h_{y}\right|_{M}$ if and only if the normal geodesic $\exp _{x}(t N(x))$ to M at x runs through y. Let $v\left(\left.h_{y}\right|_{M}\right)$ denote the number of critical points of $\left.h_{y}\right|_{M}$. Then

Theorem 1. Let K be a strongly convex set in X_{c}^{3}, if $c \geq 0$, or strongly h-convex set if $c<0$ with regular boundary surface $M=\partial K$. Then

$$
\begin{equation*}
\int_{K} v\left(\left.h_{y}\right|_{M}\right) d y \leq \int_{M}\left(a_{0}(x)+a_{1}(x) H(x)+a_{2}(x) K(x)\right) d M_{x} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{0}(x)= & \left(\rho_{2}-\rho_{1}+\operatorname{sn}_{c}\left(\rho_{2}-\rho_{1}\right) \mathrm{cn}_{c}\left(\rho_{2}+\rho_{1}\right)+\frac{1}{2}\left(w+\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right)\right)(x) \\
a_{1}(x)= & \left(-2\left(\operatorname{sn}_{c}^{2}\left(\rho_{2}\right)-\operatorname{sn}_{c}^{2}\left(\rho_{1}\right)\right)-\operatorname{sn}_{c}^{2}(w)\right)(x) \\
a_{2}(x)= & \left(2 \frac{1}{2 c}\left(\rho_{2}-\rho_{1}-\operatorname{sn}_{c}\left(\rho_{2}-\rho_{1}\right) \mathrm{cn}_{c}\left(\rho_{2}+\rho_{1}\right)\right)\right. \\
& \left.\quad+\frac{1}{2 c}\left(w-\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right)\right)(x)
\end{aligned}
$$

and $H(x)=\frac{1}{2}\left(\kappa_{1}(x)+\kappa_{2}(x)\right)$ is the mean curvature of M at x with respect to $N(x), K(x)=\kappa_{1}(x) \kappa_{2}(x)$ is the Gauss curvature, $\rho_{1}(x)$ and $\rho_{2}(x)$ are the principal curvature radii given by $\kappa_{1}(x)=\mathrm{cn}_{c}\left(\rho_{1}\right) / \mathrm{sn}_{c}\left(\rho_{1}\right)$ and $\kappa_{2}(x)=\mathrm{c}_{c}\left(\rho_{2}\right) / \mathrm{sn}_{c}\left(\rho_{2}\right)$. Equality holds if and only if K has constant width.

Proof. We consider the map $\Phi: M_{w} \rightarrow X_{c}^{3}$ defined by $\Phi(x, \rho):=y=$ $\exp _{x}(\rho N(x))$, in order to parametrize all points of K, in general not injectively.

Using the adapted frame $\left\{x ; e_{1}, e_{2}, e_{3}\right\}$ with e_{1} and e_{2} the principal directions of curvature and $e_{3}=N$, Lemma 1 gives

$$
\begin{align*}
\Phi^{*} d y & =\sigma_{1} \wedge \sigma_{2} \wedge \sigma_{3} \\
& =\left(\mathrm{cn}_{c}(\rho)-\kappa_{1} \mathrm{sn}_{c}(\rho)\right)\left(\mathrm{cn}_{c}(\rho)-\kappa_{2} \mathrm{sn}_{c}(\rho)\right) \pi_{1}^{*} \omega_{1} \wedge \pi_{1}^{*} \omega_{2} \wedge d \rho \\
& =p(x, \rho) \pi_{1}^{*} d M \wedge d \rho \tag{5}
\end{align*}
$$

Applying the co-area formula (cf. for instance [11]) to Φ we have

$$
\int_{\Phi\left(M_{w}\right)} \#\left(\Phi^{-1}(y)\right) d y=\int_{M_{w}}\left|\Phi^{*} d y\right|
$$

Because of its construction Φ catches at least each point $y \in K$ exactly $\nu\left(\left.h_{y}\right|_{M}\right)$ times, i.e. $K \subset \Phi\left(M_{w}\right)$ and $\#\left(\Phi^{-1}(y)\right)=v\left(\left.h_{y}\right|_{M}\right)$ for $y \in K$. Therefore the coarea formula gives

$$
\begin{equation*}
\int_{K} v\left(\left.h_{y}\right|_{M}\right) d y \leq \int_{\Phi\left(M_{w}\right)} v\left(\left.h_{y}\right|_{M}\right) d y=\int_{M_{w}}\left|\Phi^{*} d y\right| . \tag{6}
\end{equation*}
$$

Let us compute the right side of this inequality. Observe that the function

$$
p(x, \rho)=\left(\mathrm{cn}_{c}(\rho)-\kappa_{1} \mathrm{sn}_{c}(\rho)\right)\left(\mathrm{cn}_{c}(\rho)-\kappa_{2} \mathrm{sn}_{c}(\rho)\right)
$$

changes sign at the principal curvature radii $\rho_{1}(x)$ and $\rho_{2}(x)$. We may assume, without loss of generality, $0<\kappa_{1} \leq \kappa_{2}$, hence $0<\rho_{2} \leq \rho_{1}$. Lemma 2 shows

$$
\begin{align*}
& \int p(x, \rho) d \rho=\int\left(\mathrm{cn}_{c}^{2}(\rho)-\left(\kappa_{1}+\kappa_{2}\right) \operatorname{sn}_{c}(\rho) \mathrm{cn}_{c}(\rho)+\kappa_{1} \kappa_{2} \mathrm{sn}_{c}^{2}(\rho)\right) d \rho \\
& =\frac{1}{2}\left(\rho+\mathrm{sn}_{c}(\rho) \mathrm{cn}_{c}(\rho)\right)-\frac{\kappa_{1}+\kappa_{2}}{2} \operatorname{sn}_{c}^{2}(\rho)+\frac{\kappa_{1} \kappa_{2}}{2 c}\left(\rho-\mathrm{sn}_{c}(\rho) \mathrm{cn}_{c}(\rho)\right) \tag{7}
\end{align*}
$$

Therefore

$$
\begin{aligned}
\int_{0}^{w(x)}|p| d \rho \leq & \int_{0}^{w(x)} p d \rho-2 \int_{0}^{\rho_{1}} p d \rho+2 \int_{0}^{\rho_{2}} p d \rho \\
= & \rho_{2}+\operatorname{sn}_{c}\left(\rho_{2}\right) \mathrm{cn}_{c}\left(\rho_{2}\right)-\left(\rho_{1}+\mathrm{sn}_{c}\left(\rho_{1}\right) \mathrm{cn}_{c}\left(\rho_{1}\right)\right) \\
& -\left(\kappa_{1}+\kappa_{2}\right)\left(\operatorname{sn}_{c}^{2}\left(\rho_{2}\right)-\mathrm{sn}_{c}^{2}\left(\rho_{1}\right)\right) \\
& +\kappa_{1} \kappa_{2} \frac{1}{c}\left(\rho_{2}-\operatorname{sn}_{c}\left(\rho_{2}\right) \mathrm{cn}_{c}\left(\rho_{2}\right)-\left(\rho_{1}-\operatorname{sn}_{c}\left(\rho_{1}\right) \mathrm{cn}_{c}\left(\rho_{1}\right)\right)\right) \\
& +\frac{1}{2}\left(w+\operatorname{sn}_{c}(w) \mathrm{cn}_{c}(w)\right) \\
& -\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right) \operatorname{sn}_{c}^{2}(w) \\
& +\kappa_{1} \kappa_{2} \frac{1}{2 c}\left(w-\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{w(x)}|p| d \rho \leq & \rho_{2}-\rho_{1}+\mathrm{sn}_{c}\left(\rho_{2}-\rho_{1}\right) \mathrm{cn}_{c}\left(\rho_{2}+\rho_{1}\right) \\
& -\left(\kappa_{1}+\kappa_{2}\right)\left(\mathrm{sn}_{c}^{2}\left(\rho_{2}\right)-\mathrm{sn}_{c}^{2}\left(\rho_{1}\right)\right) \\
& +\kappa_{1} \kappa_{2} \frac{1}{c}\left(\rho_{2}-\rho_{1}-\mathrm{sn}_{c}\left(\rho_{2}-\rho_{1}\right) \mathrm{cn}_{c}\left(\rho_{2}+\rho_{1}\right)\right) \\
& +\frac{1}{2}\left(w+\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right) \\
& -\frac{1}{2}\left(\kappa_{1}+\kappa_{2}\right) \operatorname{sn}_{c}^{2}(w) \\
& +\kappa_{1} \kappa_{2} \frac{1}{2 c}\left(w-\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right)
\end{aligned}
$$

Taking into account the inequality (6) and Fubini theorem, the result follows.
Note that Φ catches exactly (with multiplicity) the points of K if and only if each normal to M is a double normal, i.e. if and only if K has constant width; and in this case the focal points are inside K, hence $0<\rho_{2} \leq \rho_{1}<w$.

Considering the case of constant width we can state the following theorem.
Theorem 2. Let $K \subset X_{c}^{3}$ be convex of constant width w, with regular boundary surface $M=\partial K$. Then

$$
\begin{equation*}
2 V=a_{0}(w) M_{0}+a_{1}(w) M_{1}+a_{2}(w) M_{2}, \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{0}(w)=\frac{1}{2}\left(w+\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right) \\
& a_{1}(w)=-\mathrm{sn}_{c}^{2}(w) \\
& a_{2}(w)=\frac{1}{2 c}\left(w-\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right)
\end{aligned}
$$

and V is the volume of K, M_{0} the area of $M, M_{1}=\int_{M} H d M$ the total mean curvature of M and $M_{2}=\int_{M} K d M$ the total extrinsic Gauss curvature of M.

Proof. As in Theorem 1 the proof works through application of the co-area formula to the map Φ, but now taking into account orientations. Let $x \in M$ be a critical point of $\left.h_{y}\right|_{M}$, i.e. $y=\exp _{x}(\rho N(x))$ for some ρ. Then $\operatorname{grad} h_{y}(x)=-N(x)$, and using the value of the curvature of distance circles $\mathrm{cn}_{c}(\rho) / \mathrm{sn}_{c}(\rho)$, the second fundamental form of the level surface at x is equal to $\mathrm{cn}_{c}(\rho) / \mathrm{sn}_{c}(\rho) \cdot I_{M}(x)\left(I_{M}=\right.$ first fundamental form of M). Therefore, according to Lemma 3, the signum of the critical point x of $\left.h_{y}\right|_{M}$ is equal to sign $p(x, \rho)$. The sum of critical points of $\left.h_{y}\right|_{M}$ weighted by their signs is equal to the Euler characteristic $\chi(M)$ of M. But K is convex, hence $\chi(M)=\chi\left(\mathbb{S}^{2}\right)=2$, and therefore on the left-hand side of (8) we get twice the volume of K.

In dimension 2 we have (cf. [15])
Theorem 3. Let K be a strongly convex set in X_{c}^{2}, if $c \geq 0$, or strongly h-convex set if $c<0$ with regular boundary curve $M=\partial K$. Then

$$
\begin{equation*}
\int_{K} \nu\left(\left.h_{y}\right|_{M}\right) d y \leq \int_{M}\left(a_{0}(x)+a_{1}(x) \kappa(x)\right) d M_{x} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{0}(x)=2 \operatorname{sn}_{c}(\rho(x))-\mathrm{sn}_{c}(w(x)), \\
& a_{1}(x)=-2 \frac{1}{c}\left(1-\operatorname{cn}_{c}(\rho(x))\right)+\frac{1}{c}\left(1-\mathrm{cn}_{c}(w(x))\right)
\end{aligned}
$$

and $\rho(x)$ the curvature radius, i.e. $\kappa(x)=\mathrm{c}_{c}(\rho(x)) / \mathrm{sn}_{c}(\rho(x))$.
Equality holds if and only if K has constant width. Moreover, if K has constant width w, then

$$
\begin{equation*}
0=-\mathrm{sn}_{c}(w) M_{0}+\frac{1}{c}\left(1-\mathrm{cn}_{c}(w)\right) M_{1}, \tag{10}
\end{equation*}
$$

where M_{0} is the length of $M, M_{1}=\int_{M} \kappa d M$ the total curvature of M.
Proof. The proof runs as in Theorem 1 and Theorem 2. Now with

$$
\begin{align*}
\Phi^{*} d y & =\sigma_{1} \wedge \sigma_{2}=\left(\mathrm{cn}_{c}(\rho)-\kappa \mathrm{sn}_{c}(\rho)\right) \pi_{1}^{*} \omega_{1} \wedge d \rho \\
& =p(x, \rho) \pi_{1}^{*} d M \wedge d \rho \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
\int p(x, \rho) d \rho=\mathrm{sn}_{c}(\rho)-\kappa(x) \frac{1}{c}\left(1-\mathrm{cn}_{c}(\rho)\right) . \tag{12}
\end{equation*}
$$

Since

$$
\int_{0}^{w(x)}|p| d \rho=\int_{0}^{\rho(x)} p d \rho-\int_{\rho(x)}^{w(x)} p d \rho
$$

we obtain the result.
Finally, in the case of constant width, we use $\chi(M)=\chi\left(\mathbb{S}^{1}\right)=0$.
Remark 5. For $c=0$ the term $\frac{1}{c}\left(1-\mathrm{cn}_{c}(w)\right)$ in formula (10) becomes $w^{2} / 2$ and we have

$$
0=-w M_{0}+\frac{w^{2}}{2} 2 \pi
$$

i.e. $M_{0}=w \pi$ which is the classical Barbier theorem. Hence for $c \neq 0$ formula (10) can be considered as a generalisation of Barbier formula $[2,8]$.

Remark 6. For convex K of constant width, formulas (8), (10) are due to L. A. Santaló [18,17] and W. Blaschke [3], see also remark in Sect. 11 of [5].

There is an alternative description of the left-hand side of (9) in terms of the volume bounded by M and the focal set $F(M)$ of M weighted with some winding numbers.

Proposition 1. Let K be a strongly convex set in $X_{c}^{n}(n=2$ or $n=3)$, if $c \geq 0$, or strongly h-convex set if $c<0$ with regular boundary $M=\partial K$. Then

$$
\begin{equation*}
\int_{K} v\left(h_{y} \mid M\right) d y=2 \int_{K}(1+\operatorname{wind}(F(M), y)) d y \tag{13}
\end{equation*}
$$

where $\operatorname{wind}(F(M), y)$ is the winding number of $F(M)$ with respect to the point y.
Proof. The regular parts of the focal set $F(M)$ (i.e. up to its cusps or folding curves respectively) are oriented through the unit normal vector such that the generating enveloping normals of M locally lie on the normal vector side of $F(M)$. This orientation coincides with the suitably chosen orientation on $M(n=2)$, or on the two copies of $M(n=3)$ parameterizing $F(M)$ respectively.

For every point $y \in X_{c}^{n}$ we consider the number $\nu^{*}(y)$ of normal lines to M through y. The function v^{*} on X_{c}^{n} is locally constant on $X_{c}^{n} \backslash F(M)$, integer-valued and jumps at $F(M)$ with jumps of magnitude ± 2. In detail, following y along a path crossing $F(M)$ into the normal vector side, y wins two hitting normal lines of M. On the other side, the function $2 \operatorname{wind}(F(M), y)$ has exactly the same jump behaviour. Now, for points y far away from K and $F(M)$ (note that K strongly convex and h-convex when $c<0$, in case $c>0$ choose y as the center of the halfsphere
complementary to some halfsphere containing K), we have wind $(F(M), y))=0$ and $\nu^{*}(y)=2$ (normal lines through the points of M where $\left.h_{y}\right|_{M}$ attains its maximum or minimum respectively). Therefore $\nu^{*}(y)=2(1+\operatorname{wind}(F(M), y))$.

Now, the distance spheres with center y are orthogonal to the geodesic lines through y (Gauss lemma). Hence the number $v\left(\left.h_{y}\right|_{M}\right)$ of critical points of the distance function $\left.h_{y}\right|_{M}$ is equal to the number $\nu^{*}(y)$ of normal lines to M through y, i.e. $v\left(\left.h_{y}\right|_{M}\right)=v^{*}(y)$. This proves (13).

Remark 7. For K of constant width all normals are double normals. Hence running around M once implies running through $F(M)$ twice.

In case $c>0$, concerning v^{*} see [1].

Remark 8. In the euclidean case $c=0$ formula (4) can be written

$$
\begin{equation*}
\int_{K} v\left(\left.h_{y}\right|_{M}\right) d y \leq \int_{M}\left(b_{0}(x)+b_{1}(x) H(x)+b_{2}(x) K(x)\right) d M_{x}, \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{0}(x)=w(x) \\
& b_{1}(x)=-w^{2}(x) \\
& b_{2}(x)=\frac{1}{3}\left(\frac{1}{\kappa_{1}(x)}-\frac{1}{\kappa_{2}(x)}\right)^{3}+\frac{1}{3} w^{3}(x)
\end{aligned}
$$

Analogously formula (9) can be written

$$
\begin{equation*}
\int_{K} \nu\left(\left.h_{y}\right|_{M}\right) d y \leq \int_{M}\left(\frac{1}{\kappa(x)}-w(x)+\frac{1}{2} w^{2}(x) \kappa(x)\right) d M_{x} . \tag{15}
\end{equation*}
$$

Specially for convex K with constant width w in the euclidean plane, using Barbier's theorem $L=\pi w$ and $\int_{M} \kappa d M=2 \pi$, (15) gives

$$
\begin{equation*}
\int_{K} \nu\left(\left.h_{y}\right|_{M}\right) d y=\int_{M} \frac{1}{\kappa(x)} d M_{x} . \tag{16}
\end{equation*}
$$

The integral of the curvature radius has been studied in [7].

Remark 9. In the spherical case $c>0$, we can use the map $\Phi: M \times[0, \pi / \sqrt{c}]$ to catch all points of \mathbb{S}_{c}^{n}. Similar to the proofs of (8), (10), this leads just to the classical Gauss-Bonnet formulas.

4. On the Heintze and Karcher inequality

The Heintze and Karcher inequality states

$$
\int_{S} \frac{1}{H} d A \geq 3 V
$$

where $H>0$ is the mean curvature of a compact embedded surface S in \mathbb{R}^{3} bounding a domain D of volume V. Equality holds if and only if S is a standard sphere, see $[13,14]$.

The expression of the function

$$
p(x, \rho)=\left(\mathrm{cn}_{c}(\rho)-\kappa_{1}(x) \mathrm{sn}_{c}(\rho)\right)\left(\mathrm{cn}_{c}(\rho)-\kappa_{2}(x) \mathrm{sn}_{c}(\rho)\right)
$$

given in the proof of Theorem 1 enables us to obtain a version of the Heintze and Karcher's inequality in X_{c}^{3}.

First recall that the volume and area of the sphere of radius ρ in X_{c}^{3} are given by

$$
\begin{align*}
& V(\rho)=\frac{2 \pi}{c}\left(\rho-\operatorname{sn}_{c}(\rho) \mathrm{cn}_{c}(\rho)\right) \tag{17}\\
& A(\rho)=4 \pi \operatorname{sn}_{c}^{2}(\rho) \tag{18}
\end{align*}
$$

see, for instance, [20], p. 308.
Let K be a strongly convex set in X_{c}^{3}, if $c \geq 0$, or strongly h-convex set if $c<0$. Let $H=H(x)$ de mean curvature at $x \in K$. We define $\rho_{H}=\rho_{H}(x)$, the mean curvature radius at $x \in K$, by the equation

$$
\cot _{c}\left(\rho_{H}\right)=\frac{\mathrm{cn}_{c}\left(\rho_{H}\right)}{\mathrm{sn}_{c}\left(\rho_{H}\right)}=H
$$

Note that ρ_{H} is well defined. In the hyperbolic case $(c<0)$ we have $H>\sqrt{-c}$, since $\kappa_{i}>\sqrt{-c}$, and the equation

$$
\cot _{c}\left(\rho_{H}\right)=\sqrt{-c} \operatorname{coth}\left(\sqrt{-c} \rho_{H}\right)=H
$$

defines ρ_{H} because $\operatorname{coth}(t)$ is a decreasing function with $1<\operatorname{coth}(t)<\infty$ for $t>0$.

In the spherical case $(c>0)$ we have $H>0$, since $\kappa_{i}>0$, and the equation

$$
\cot _{c}\left(\rho_{H}\right)=\sqrt{c} \cot \left(\sqrt{c} \rho_{H}\right)=H
$$

defines ρ_{H} because $\cot (t)$ is a decreasing function with $0<\cot (t)<\infty$ for $0<t<\pi / 2$.

In the Euclidean case $(c=0)$ we have $H>0$, since $\kappa_{i}>0$, and the equation

$$
\cot _{c}\left(\rho_{H}\right)=\frac{1}{\rho_{H}}=H
$$

defines ρ_{H}.

Theorem 4. Let K be a strongly convex set in X_{c}^{3} (strongly h-convex if $c<0$) with regular boundary $M=\partial K$ and volume V. Then

$$
\begin{equation*}
V \leq \int_{M} \frac{V\left(\rho_{H}\right)}{A\left(\rho_{H}\right)} d M_{x} \tag{19}
\end{equation*}
$$

where $V\left(\rho_{H}\right)$ and $A\left(\rho_{H}\right)$ are the volume and area of the sphere of radius $\rho_{H}(x)$, the mean curvature radius of M at x. Equality holds if and only if M is a sphere.

Proof. Consider the principal curvatures $\kappa_{1}(x) \leq \kappa_{2}(x)$, then $\rho_{2}(x) \leq \rho_{1}(x)$. We see that every point in K is covered (at least once) when we follow a distance ρ_{2} the normal inward geodesic given by the the normal vector direction $N(x)$, in each point $x \in M=\partial K$. Indeed, if we consider, for each point $y \in K$, the biggest sphere centered at y and interior to K, which is tangent to M in a certain point $x \in M$, the normal curvatures of this sphere are greater than the curvature of M at x, in particular $\cot _{c} d(x, y) \geq \cot _{c} \rho_{H}$, and hence $d(x, y) \leq \rho_{H}$. This implies that each point $y \in K$ is counted at least once in this parallel body.

Hence we have

$$
V \leq \int_{M} \int_{0}^{\rho_{2}(x)}\left(\mathrm{cn}_{c}(\rho)-\kappa_{1}(x) \mathrm{sn}_{c}(\rho)\right)\left(\mathrm{cn}_{c}(\rho)-\kappa_{2}(x) \mathrm{sn}_{c}(\rho)\right) d \rho d M_{x} .
$$

Using that $a b \leq\left(\frac{a+b}{2}\right)^{2}$ we obtain

$$
\begin{align*}
V & \leq \int_{M}^{\rho_{2}(x)} \int_{0}\left(\mathrm{cn}_{c}(\rho)-H \operatorname{sn}_{c}(\rho)\right)^{2} d \rho d M_{x} \\
& \leq \int_{M} \int_{0}^{\rho_{H}(x)}\left(\mathrm{cn}_{c}(\rho)-H \operatorname{sn}_{c}(\rho)\right)^{2} d \rho d M_{x} . \tag{20}
\end{align*}
$$

But the integral

$$
\int_{0}^{\rho_{H}(x)}\left(\mathrm{cn}_{c}(\rho)-H \operatorname{sn}_{c}(\rho)\right)^{2} d \rho
$$

is a function that depends only on the value of $\rho_{H}(x)$. In order to compute this function note that for the case of the sphere S of radius r we have

$$
V(r)=\int_{S} \int_{0}^{r}\left(\mathrm{cn}_{c}(\rho)-H \operatorname{sn}_{c}(\rho)\right)^{2} d \rho d S_{x}=A(r) \int_{0}^{r}\left(\operatorname{cn}_{c}(\rho)-H \operatorname{sn}_{c}(\rho)\right)^{2} d \rho
$$

Using this equality in Eq. (20) we have

$$
V \leq \int_{M} \frac{V\left(\rho_{H}\right)}{A\left(\rho_{H}\right)} d M_{x}
$$

Finally notice that equality holds if and only if the arithmetic mean is equal to the geometric mean. And this occurs if and only if $\kappa_{1}=\kappa_{2}$.
Remark 10. If $c=0$ the inequality (19) becomes

$$
V \leq \int_{M} \frac{\rho_{H}}{3} d M_{x}
$$

which is the classical Heintze and Karcher formula [10,13].

5. Measure of lines

Let \mathscr{L}_{1} be the homogeneous space of lines in X_{c}^{n}. For each ξ in \mathscr{L}_{1} we define the distance function h_{ξ} on X_{c}^{n} by $h_{\xi}(x)=d(\xi, x), \xi \in \mathscr{L}_{1}$. The level surfaces of h_{ξ} are just the tube surfaces around ξ. A point $x \in M$ is a critical point of $\left.h_{\xi}\right|_{M}$ if and only if the normal geodesic $\exp _{x}(t N(x))$ to M through x hits ξ orthogonally. Let $\nu\left(\left.h_{\xi}\right|_{M}\right)$ denote the number of critical points of $\left.h_{\xi}\right|_{M}$.

Let us consider the euclidean case.
Theorem 5. Let $K \subset \mathbb{E}^{3}$ be a strongly convex set with regular boundary surface $M=\partial K$. Then

$$
\begin{equation*}
\int_{\left\{\xi \in \mathscr{L}_{1}: K \cap \xi \neq \emptyset\right\}} v\left(h_{\xi} \mid M\right) d \xi \leq \int_{M}\left(c_{0}(x)+c_{1}(x) w(x)+c_{2}(x) w^{2}(x)\right) d M_{x} \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{0}(x)=\pi\left(2 \frac{H(x)}{\sqrt{K(x)}}-1\right), \\
& c_{1}(x)=-\pi H(x) \\
& c_{2}(x)=\frac{\pi}{4}\left(H^{2}(x)+K(x)\right) .
\end{aligned}
$$

Equality holds if and only if K has constant width.

Proof. We consider the map

$$
\Phi: \cup_{x \in M}\left(T_{x}^{1} M \times[0, w(x)]\right) \rightarrow \mathscr{L}_{1}
$$

defined by $\Phi(x, v, \rho)=\xi$ where ξ is the geodesic through $\exp _{x}(\rho N(x))$ with direction given by the parallel translation of v along the normal geodesic $\exp _{x}(t N(x))$.

Using adapted frames as before, with $x \in M, e_{1}=v$ and $e_{3}=N(x)$, Lemma 1 shows

$$
\begin{align*}
\Phi^{*} d \xi & =\sigma_{12} \wedge \sigma_{13} \wedge \sigma_{2} \wedge \sigma_{3} \\
& =\pi_{1}^{*} \omega_{12} \wedge \pi_{1}^{*} \omega_{31} \wedge\left(\pi_{1}^{*} \omega_{2}+\rho \pi_{1}^{*} \omega_{32}\right) \wedge d \rho \\
& =\left(1-\kappa_{n}\left(e_{2}\right) \rho\right) \kappa_{n}\left(e_{1}\right) \pi_{1}^{*} \omega_{1} \wedge \pi_{1}^{*} \omega_{2} \wedge \pi_{1}^{*} \omega_{12} \wedge d \rho \\
& =p(x, v, \rho) \pi_{1}^{*} d M \wedge d v \wedge d \rho, \tag{22}
\end{align*}
$$

where $\kappa_{n}\left(e_{1}\right), \kappa_{n}\left(e_{2}\right)$ are the normal curvatures of M in the directions e_{1}, e_{2}.
We shall apply the co-area formula to Φ.
Since

$$
p(x, v, \rho)=\kappa_{n}\left(e_{1}\right)-\kappa_{n}\left(e_{2}\right) \kappa_{n}\left(e_{1}\right) \rho,
$$

we have

$$
\int p(x, v, \rho) d \rho=\rho \kappa_{n}\left(e_{1}\right)-\frac{1}{2} \rho^{2} \kappa_{n}\left(e_{2}\right) \kappa_{n}\left(e_{1}\right) .
$$

Therefore

$$
\begin{align*}
\int_{0}^{w}|p| d \rho & \leq-\int_{0}^{w} p d \rho+2 \int_{0}^{1 / \kappa_{n}\left(e_{2}\right)} p d \rho \\
& =\left(\text { equality iff } 1 / \kappa_{n}\left(e_{2}\right) \leq w\right) \\
& =-w \kappa_{n}\left(e_{1}\right)+\frac{1}{2} w^{2} \kappa_{n}\left(e_{2}\right) \kappa_{n}\left(e_{1}\right)+\frac{\kappa_{n}\left(e_{1}\right)}{\kappa_{n}\left(e_{2}\right)} . \tag{23}
\end{align*}
$$

In order to integrate (23) with respect to v, for a fixed x in M we parametrize v by its angle φ with respect to the principal curvature directions. We use Euler's formula

$$
\begin{aligned}
& \kappa_{n}\left(e_{1}\right)=\kappa_{1} \cos ^{2} \varphi+\kappa_{2} \sin ^{2} \varphi \\
& \kappa_{n}\left(e_{2}\right)=\kappa_{1} \sin ^{2} \varphi+\kappa_{2} \cos ^{2} \varphi
\end{aligned}
$$

Hence

$$
\begin{aligned}
\kappa_{n}\left(e_{1}\right) \kappa_{n}\left(e_{2}\right) & =\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) \sin ^{2} \varphi \cos ^{2} \varphi+\kappa_{1} \kappa_{2}\left(\sin ^{4} \varphi+\cos ^{4} \varphi\right), \\
\frac{\kappa_{n}\left(e_{1}\right)}{\kappa_{n}\left(e_{2}\right)} & =\frac{\kappa_{1}+\kappa_{2}}{\kappa_{1} \sin ^{2} \varphi+\kappa_{2} \cos ^{2} \varphi}-1 .
\end{aligned}
$$

Taking into account that $\kappa_{1}^{2}+\kappa_{2}^{2}=4 H^{2}-2 K$ and that

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{2} \varphi \cos ^{2} \varphi d \varphi & =\frac{\pi}{8} \\
\int_{0}^{\pi}\left(\sin ^{4} \varphi+\cos ^{4} \varphi\right) d \varphi & =\frac{6 \pi}{8}, \\
\int_{0}^{\pi} \frac{\kappa_{1}+\kappa_{2}}{\kappa_{1} \sin ^{2} \varphi+\kappa_{2} \cos ^{2} \varphi} d \varphi & =\pi \frac{\kappa_{1}+\kappa_{2}}{\sqrt{\kappa_{1} \kappa_{2}}},
\end{aligned}
$$

integration of (23) over M leads to the right-hand side of (21).
Because of its construction Φ catches at least the lines ξ intersecting K, each exactly $\nu\left(\left.h_{\xi}\right|_{M}\right)$ times. Therefore application of the co-area formula yields (21).
Φ catches exactly the lines ξ intersecting K if and only if each normal to M is a double normal, i.e. if and only if K has constant width; and in this case the focal points are inside K.
Remark 11. Using Cauchy-Crofton's formula (cf. [20]) and taking into account that $2 \leq \nu\left(\left.h_{\xi}\right|_{M}\right)$, the left hand side of (21) verifies

$$
\pi M_{0}=2 \int_{\left\{\xi \in \mathscr{L}_{1}: K \cap \xi \neq \emptyset\right\}} d \xi \leq \int_{\left\{\xi \in \mathscr{L}_{1}: K \cap \xi \neq \emptyset\right\}} v\left(\left.h_{\xi}\right|_{M}\right) d \xi,
$$

where M_{0} is the area of M. The equality is valid if and only if K is a ball.

6. Measure of planes

Let \mathscr{L}_{n-1} be the homogeneous space of hyperplanes in X_{c}^{n}. For each η in \mathscr{L}_{n-1} we define the distance function h_{η} on X_{c}^{n} by $h_{\eta}(x)=d(\eta, x), \eta \in \mathscr{L}_{n-1}$. The level hypersurfaces of h_{η} are just the equidistants to η. A point $x \in M$ is a critical point of $\left.h_{\eta}\right|_{M}$ if and only if the normal geodesic $\exp _{x}(t N(x))$ to M through x hits η orthogonally. Let $v\left(\left.h_{\eta}\right|_{M}\right)$ denote the number of critical points of $\left.h_{\eta}\right|_{M}$. Then

Theorem 6. Let K be a convex set in X_{c}^{3} with regular boundary surface $M=\partial K$. Then

$$
\begin{equation*}
2 \int_{\left\{\xi \in \mathscr{L}_{2}: K \cap \eta \neq \emptyset\right\}} d \eta=\int_{M}\left(\alpha_{0}(x)+\alpha_{1}(x) H(x)+\alpha_{2}(x) K(x)\right) d M_{x} \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha_{0}(x)=c \frac{1}{2}\left(w-\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right)(x), \\
& \alpha_{1}(x)=c \operatorname{sn}_{c}^{2}(w)(x) \\
& \alpha_{2}(x)=\frac{1}{2}\left(w+\operatorname{sn}_{c}(w) \mathrm{cn}_{c}(w)\right)(x) .
\end{aligned}
$$

Proof. We consider the map $\Phi: M_{w} \rightarrow \mathscr{L}_{2}$ defined by $\Phi(x, \rho)=\eta$ where η is the plane through $\exp _{x}(\rho N(x))$ orthogonal to the normal geodesic $\exp _{x}(t N(x))$.

Using frames adapted to the principal curvature directions of M, Lemma 1 shows

$$
\begin{align*}
\Phi^{*} d \eta & =\sigma_{13} \wedge \sigma_{23} \wedge \sigma_{3} \\
& =\left(c \operatorname{sn}_{c}(\rho)+\kappa_{1} \mathrm{cn}_{c}(\rho)\right)\left(c \operatorname{sn}_{c}(\rho)+\kappa_{2} \mathrm{cn}_{c}(\rho)\right) \pi_{1}^{*} \omega_{1} \wedge \pi_{1}^{*} \omega_{2} \wedge d \rho \\
& =p(x, \rho) \pi_{1}^{*} d M \wedge d \rho \tag{25}
\end{align*}
$$

We shall apply the co-area formula to Φ, taking into account orientations. Let $x \in M$ be a critical point of $\left.h_{\eta}\right|_{M}$, i.e. $\Phi(x, \rho)=\eta$ for some ρ, then $\operatorname{grad} h_{\eta}(x)=-N(x)$. Taking into account the curvature of equidistants $-c \mathrm{sn}_{c}(\rho) / \mathrm{cn}_{c}(\rho)$, the second fundamental form of the level surface at x is equal to $c \operatorname{sn}_{c}(\rho) / \mathrm{cn}_{c}(\rho) I_{M}(x)$. Then, according to Lemma 3, the sign of the critical point x of $\left.h_{\eta}\right|_{M}$ is equal to $\operatorname{sign} p(x, \rho)$.

Since

$$
p(x, \rho)=c^{2} \operatorname{sn}_{c}^{2}(\rho)+\left(\kappa_{1}+\kappa_{2}\right) c \operatorname{sn}_{c}(\rho) \mathrm{cn}_{c}(\rho)+\kappa_{1} \kappa_{2} \operatorname{cn}_{c}^{2}(\rho)
$$

using Lemma 2 we have

$$
\begin{align*}
\int p(x, \rho) d \rho= & c \frac{1}{2}\left(\rho-\operatorname{sn}_{c}(\rho) \operatorname{cn}_{c}(\rho)\right) \\
& +\left(\kappa_{1}+\kappa_{2}\right) c \frac{1}{2} \operatorname{sn}_{c}^{2}(\rho)+\kappa_{1} \kappa_{2} \frac{1}{2}\left(\rho+\operatorname{sn}_{c}(\rho) \mathrm{cn}_{c}(\rho)\right) \tag{26}
\end{align*}
$$

Because of its construction Φ catches each plane intersecting K exactly $v\left(\left.h_{\eta}\right|_{M}\right)$ times. The sum of the critical points of $\left.h_{\eta}\right|_{M}$ weighted by their signs is equal to the Euler characteristic $\chi(M)=\chi\left(\mathbb{S}^{2}\right)=2\left(\right.$ note that $\left.\chi(\eta \cap M)=\chi\left(\mathbb{S}^{1}\right)=0\right)$. Therefore application of the co-area formula yields (24).

Remark 12. When K is of constant width w, (24) becomes

$$
\begin{equation*}
2 \int_{\left\{\eta \in \mathscr{L}_{2}: K \cap \eta \neq \emptyset\right\}} d \eta=\beta_{0}(w) M_{0}+\beta_{1}(w) M_{1}+\beta_{2}(w) M_{2}, \tag{27}
\end{equation*}
$$

with

$$
\begin{aligned}
& \beta_{0}(w)=c \frac{1}{2}\left(w-\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right) \\
& \beta_{1}(w)=c \operatorname{sn}_{c}^{2}(w) \\
& \beta_{2}(w)=\frac{1}{2}\left(w+\mathrm{sn}_{c}(w) \mathrm{cn}_{c}(w)\right)
\end{aligned}
$$

Remark 13. The left-hand side of (24) and (27) are just Quermaßintegrale of K, cf. [20,21,23].

Recall the Gauss-Bonnet formula

$$
\begin{equation*}
M_{2}+c M_{0}=4 \pi \tag{28}
\end{equation*}
$$

and the representation of Quermaßintegrale of K,

$$
\int_{\left\{\eta \in \mathscr{L}_{2}: K \cap \eta \neq \varnothing\right\}} d \eta=M_{1}+c V .
$$

(cf. [20]).
Using these formulas and computing (27) $+c(8)$, we get for K of constant width w

$$
\begin{equation*}
4 c V+2 M_{1}=4 \pi w \tag{29}
\end{equation*}
$$

Similarly, computing (27) $-c(8)$, we get for K of constant width w

$$
\begin{equation*}
c \mathrm{sn}_{c}(w) M_{0}+\mathrm{cn}_{c}(w) M_{1}=2 \pi \mathrm{sn}_{c}(w) . \tag{30}
\end{equation*}
$$

The relations (28), (29), and (30) already appeared in [18], and they form a complete system of equalities for convex sets of constant width. Therefore, all other relations involving V, M_{0}, M_{1}, and M_{2} can be obtained from them.

Remark 14. For strongly convex domains K in X_{c}^{2} (strongly h-convex when $c<0$) we can obtain a result similar to Theorem 6. Indeed, taking into account CauchyCrofton's formula (cf. [20]), we get

$$
\begin{equation*}
2 L=\int_{M}\left(\alpha_{0}(x)+\alpha_{1}(x) \kappa(x)\right) d M_{x} \tag{31}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha_{0}(x)=1-\mathrm{cn}_{c}(w(x)) \\
& \alpha_{1}(x)=\operatorname{sn}_{c}(w(x))
\end{aligned}
$$

(cf. [16]). Specially for K with constant width w, (31) is just Barbier's theorem.
For negative values of c, Theorem 6 can be generalized by considering umbilical surfaces instead of planes.

Definition 6. An oriented complete totally umbilical hypersurface of X_{c}^{n} will be called a λ-hyperplane, where λ refers to the (constant) normal curvature (with respect to the orientation). We denote by $\mathscr{L}_{n-1}^{\lambda}$ the set of all λ-hyperplanes of X_{c}^{n}.

For $0 \neq|\lambda|<\sqrt{-c}$ every λ-hyperplane is equidistant from some geodesic hyperplane. For $|\lambda| \geq \sqrt{-c}$ the λ-hyperplanes are metric balls. In the limit case $\lambda= \pm \sqrt{-c}$ one has horospheres. From now on we restrict to the case $|\lambda| \leq \sqrt{-c}$.

Given λ, a point $p \in X_{c}^{n}$, and a vector $v \in T_{p} X_{c}^{n}$ there is a unique λ-hyperplane through p, normal to v and with the orientation according to v. If K is a compact convex set in X_{c}^{n} with regular boundary $M=\partial K$, we consider the map Φ_{λ} : $M \times \mathbb{R} \rightarrow \mathscr{L}_{n-1}^{\lambda}$ sending (x, ρ) to the λ-hyperplane defined by $\exp _{x}(\rho N(x))$ and $-\left(\exp _{x}(t N)\right)_{t=\rho}^{\prime}$.

Definition 7. For a a given $\lambda \in[-\sqrt{-c}, \sqrt{-c}]$, we define the λ-width of K as

$$
\mathrm{w}_{\lambda}(x)=\sup \left\{\rho: \Phi_{\lambda}(x, \rho) \cap K \neq \emptyset\right\} .
$$

Remark 15. It can be seen that $w_{\lambda}(x)=w$ for every $x \in M$ if and only if $w(x)=w$ for every $x \in M$.

It was seen in [22] that $\mathscr{L}_{n-1}^{\lambda}$ is a homogeneous space of the isometry group and admits an invariant measure $d \eta_{\lambda}$.

Theorem 7. Let K be an h-convex set in $X_{c}^{3}(c<0)$ with regular boundary surface $M=\partial K$. Then

$$
\int_{\left\{\eta_{\lambda} \in \mathscr{L}_{2}^{\lambda}: K \cap \eta_{\lambda} \neq \varnothing\right\}} d \eta_{\lambda}=\int_{M}\left(\alpha_{0}^{\lambda}(x)+\alpha_{1}^{\lambda}(x) H(x)+\alpha_{2}^{\lambda}(x) K(x)\right) d M_{x}
$$

where

$$
\begin{aligned}
& \alpha_{0}^{\lambda}(x)=\frac{c}{2}\left(w_{\lambda}-\mathrm{sn}_{c}\left(w_{\lambda}\right) \mathrm{cn}_{c}\left(w_{\lambda}\right)\right)+\lambda c \operatorname{sn}_{c}^{2}\left(w_{\lambda}\right)+\frac{\lambda^{2}}{2}\left(w_{\lambda}+\mathrm{sn}_{c}\left(w_{\lambda}\right) \mathrm{cn}_{c}\left(w_{\lambda}\right)\right) \\
& \alpha_{1}^{\lambda}(x)=\left(c-\lambda^{2}\right) \operatorname{sn}_{c}^{2}\left(w_{\lambda}\right)+2 \lambda \operatorname{sn}_{c}\left(w_{\lambda}\right) \mathrm{cn}_{c}\left(w_{\lambda}\right) \\
& \alpha_{2}^{\lambda}(x)=\frac{1}{2}\left(w_{\lambda}+\operatorname{sn}_{c}\left(w_{\lambda}\right) \mathrm{cn}_{c}\left(w_{\lambda}\right)\right)-\lambda \operatorname{sn}_{c}^{2}\left(w_{\lambda}\right)+\frac{\lambda^{2}}{2 c}\left(w_{\lambda}-\operatorname{sn}_{c}\left(w_{\lambda}\right) \mathrm{cn}_{c}\left(w_{\lambda}\right)\right)
\end{aligned}
$$

Proof. The measure $d \eta_{\lambda}$ of λ-hyperplanes is given by (cf. [22])

$$
\Phi_{\lambda}^{*} d \eta_{\lambda}=\left(\sigma_{31}-\lambda \sigma_{1}\right) \wedge\left(\sigma_{32}-\lambda \sigma_{2}\right) \wedge \sigma_{3}
$$

using (1) we get after some manipulations

$$
\begin{aligned}
\Phi_{\lambda}^{*} d \eta_{\lambda}= & \left(\left(c \mathrm{sn}_{c} \rho+\lambda \mathrm{cn}_{c} \rho\right)^{2}+2\left(c \mathrm{sn}_{c} \rho+\lambda \mathrm{cn}_{c} \rho\right)\left(\mathrm{cn}_{c} \rho-\lambda \mathrm{sn}_{c} \rho\right) H(x)\right. \\
& \left.+\left(\mathrm{cn}_{c} \rho-\lambda \operatorname{sn}_{c} \rho\right)^{2} K(x)\right) d M_{x} \wedge d \rho .
\end{aligned}
$$

By integrating with respect to ρ from 0 to w_{λ} we obtain the desired formula.

Remark 16. In particular, taking $\lambda=\sqrt{-c}$ we find that the measure of horospheres intersecting an h-convex body is

$$
\begin{aligned}
\int_{\left\{K \cap \eta_{\lambda} \neq \emptyset\right\}} d \eta_{\lambda}= & \int_{M} \mathrm{sn}_{c} w(x)\left(\mathrm{cn}_{c} w(x)-\sqrt{-c} \mathrm{sn}_{c} w(x)\right) \\
& \times(-c+2 \sqrt{-c} H(x)+K(x)) d M_{x} .
\end{aligned}
$$

On the other hand applying the results of [19] we get
$2 M_{1}=\int_{M} \mathrm{sn}_{c} w(x)\left(\mathrm{cn}_{c} w(x)-\sqrt{-c} \mathrm{Sn}_{c} w(x)\right)(-c+2 \sqrt{-c} H(x)+K(x)) d M_{x}$.

References

[1] Álvarez Paiva, J.C.: Contact topology, taut immersions, and Hilbert's fourth problem. In: Differential and symplectic topology of knots and curves, vol. 190 of Am. Math. Soc. Transl. Ser. 2. Amer. Math. Soc., Providence, RI, pp. 1-21 (1999)
[2] Araújo, P.V.: Barbier's theorem for the sphere and the hyperbolic plane. Enseign. Math. (2) 42(3-4), 295-309 (1996)
[3] Blaschke, W.: Einige Bemerkungen über Kurven und Flächen konstanter Breite. Leipziger Berichte 57, 290-297 (1915)
[4] Borisenko, A.A., Gallego, E., Reventós, A.: Relation between area and volume for λ-convex sets in Hadamard manifolds. Diff. Geom. Appl. 14(3), 267-280 (2001)
[5] Chakerian, G.D., Groemer, H.: Convex bodies of constant width. In: Convexity and its applications. Birkhäuser, Basel, pp. 49-96 (1983)
[6] Dekster, B.V.: Completeness and constant width in spherical and hyperbolic spaces. Acta Math. Hungar. 67(4), 289-300 (1995)
[7] Escudero, C.A., Reventós, C.A.: An interesting property of the evolute. Am. Math. Monthly (to appear)
[8] Fillmore, J.P.: Barbier's theorem in the Lobachevski plane. Proc. Am. Math. Soc. 24, 705-709 (1970)
[9] Heil, E., Martini, H.: Special convex bodies. In: Handbook of convex geometry, vol. A, B. North-Holland, Amsterdam, pp. 347-385 (1993)
[10] Heintze, E., Karcher, H.: A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. École Norm. Sup. (4) 11(4), 451-470 (1978)
[11] Howard, R.: The kinematic formula in Riemannian homogeneous spaces. Mem. Am. Math. Soc. 106(509), vi+69 (1993)
[12] Leichtweiss, K.: Curves of constant width in the non-Euclidean geometry. Abh. Math. Sem. Univ. Hamburg 75, 257-284 (2005)
[13] Montiel, S., Ros, A.: Compact hypersufaces: the Alexandrov theorem for higher order mean curvature. In: A symposium in honour of Manfredo do Carmo, Pitman monographs and surveys in pure and applied mathematics, vol. 52, pp. 279-297 (1991)
[14] Ros, A.: Compact hypersufaces with constant scalar curvature and congruence theorem. J. Diff. Geom. 27, 215-220 (1988)
[15] Santaló, L.A.: Properties of convex figures on a sphere. Math. Notae 4, 11-40 (1944)
[16] Santaló, L.A.: Note on convex curves on the hyperbolic plane. Bull. Am. Math. Soc. 51, 405-412 (1945)
[17] Santaló, L.A.: On the convex bodies of constant width in E_{n}. Portugaliae Math. 5, 195-201 (1946)
[18] Santaló, L.A.: On parallel hypersurfaces in the elliptic and hyperbolic n-dimensional space. Proc. Am. Math. Soc. 1, 325-330 (1950)
[19] Santaló, L.A.: Horospheres and convex bodies in hyperbolic space. Proc. Am. Math. Soc. 19, 390-395 (1968)
[20] Santaló, L.A.: Integral geometry and geometric probability. Addison-Wesley Publishing Co., Reading (1976)
[21] Solanes, G.: Integrals de curvatura i geometria integral a l'espai hiperbòlic. PhD Thesis, Universitat Autònoma de Barcelona (2003)
[22] Solanes, G.: Integral geometry of equidistants in hyperbolic space. Isr. J. Math. 145, 271-284 (2005)
[23] Solanes, G.: Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces (electronic). Trans. Am. Math. Soc. 358(3):1105-1115 (2006)
[24] Teufel, E.: On integral geometry in Riemannian spaces. Abh. Math. Sem. Univ. Hamburg 63, 17-27 (1993)

[^0]: Work partially supported by grant number ACI2003-44 Joint action Catalonia-BadenWürttemberg and by FEDER/MEC grant number MTM2006-04353. The third author was also supported by the program Ramón y Cajal, MEC.
 E. Gallego (\boxtimes) • A. Reventós: Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain. e-mail: egallego@mat.uab.cat; agusti@mat.uab.cat G. Solanes: Departament d'Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, 08007 Barcelona, Spain. e-mail: solanes@ub.edu
 E. Teufel: Fachbereich Mathematik, Universität Stuttgart, 70550 Stuttgart, Germany
 e-mail: eteufel@mathematik.uni-stuttgart.de

