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Abstract. In a Riemann manifold a regular convex domain is
said to be λ-convex if its normal curvature at any point is bigger
or equal than λ. In Hadamard manifolds, the asymptotic behaviour
of the quotient vol(Ω(t))/vol(∂Ω(t)) for a family of λ-convex do-
mains Ω(t) expanding over the whole space has been studied and
general bounds for this quotient are known. The aim of this pa-
per is to study the asymptotic behaviour of the same quotient in
complex hyperbolic space CHn(−4k2), a Hadamard manifold with
constant holomorphic curvature equal to −4k2. First, we give some
specific properties of convex domains in complex hyperbolic space,
CHn(−4k2). Indeed, we prove that λ-convex domains of arbitrary
radius exists if λ ≤ k. Finally, we prove that the general bounds
can be improved for complex hyperbolic space and we give a sharp
upper bound.

1. Introduction

In the Euclidean space, given a family of convex domains expanding
over the whole space, the quotient between the volume and the area
tends to infinity. This behaviour does not hold in hyperbolic plane
H2(−1) where the quotient tends to a value less or equal than 1.

The first result about the asymptotic behaviour of convex domains
in H2(−1) was given in 1972 by Santaló and Yañez ([SY72]) for a family
of h-convex domains (a convex domain is said to be h-convex if for each
pair of points belonging to the convex, the entire segments of the two
horocycles joining them also belong to the convex contains a segment).
If {Ω(t)}t∈R is a family of compact h-convex domains in H2 expanding
over the whole plane then

lim
t→∞

area(Ω(t))

length(∂Ω(t))
= 1.

In hyperbolic space, given a geodesic line the set of equidistant points
to l are two curves called equidistants. These curves have constant
geodesic curvature λ such that 0 < λ < 1. From this it is defined the
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notion of λ-convexity. It is said that a convex domain is λ-convex if
for each pair of points belonging to the convex, the entire segment of
the two curves with constant geodesic curvature λ joining them also
belong to the convex. In H2(−1) it is proved in [GR99] that a convex is
λ-convex if and only if the geodesic curvature of the boundary is bigger
than λ. Roughly speaking λ-convex sets (λ > 0) have the boundary
more curved than convex sets. The concept of λ-convex domain is also
defined for any manifold (cf. definition 3.3).

The result about the behaviour of the quotients was generalized for
families of λ-convex domains in Hn expanding over the whole space (cf.
[GR85], [BM99], [GR99], [BV99]) and for families of λ-convex domains
in any Hadamard manifold (cf. [BGR01]). Recall that a Hadamard
manifold is a simply connected manifold with nonpositive sectional
curvature.

The result obtained in [BGR01] for a family of λ-convex domains
in a Hadamard manifold with sectional curvature K such that −k2

2 ≤
K ≤ −k2

1 is

(1)
λ

(n− 1)k2
2

≤ lim inf
t→∞

vol(Ω(t))

vol(∂Ω(t))
≤ lim sup

t→∞

vol(Ω(t))

vol(∂Ω(t))
≤ 1

(n− 1)k1

,

for 0 ≤ λ ≤ k2.

As Hn is a Hadamard manifold we can apply this result to Hn. We
obtain the same bounds as the ones obtained in the previous results.
Moreover, it is known that in this space the bounds are sharp (cf.
[Sol03]).

The purpose of this paper is to study the λ-convexity in CHn(−4k2)
(see definition 2.1) and to show that the bounds in (1) can be improved
for CHn(−4k2). The obtained result is:

Theorem 1. Let {Ω(t)}t∈R+ be a family of compact λ-convex domains,
λ ≤ k, expanding over the whole space CHn(−4k2), n ≥ 2. Then,

λ

4nk2
≤ lim inf

t→∞

vol(Ω(t))

vol(∂Ω(t))
≤ lim sup

t→∞

vol(Ω(t))

vol(∂Ω(t))
≤ 1

2nk
.

Moreover, the upper bound is sharp.

Note that the bounds improve the ones given in the general result in
[BGR01]. That is, the complex hyperbolic space CHn(−4k2) has real
dimension 2n and its sectional curvature takes values between −4k ≤
Ksec ≤ −k (cf. next section), so that with the obvious changes in (1)

we get that the lower bound of the quotient volume/area is
λ

4(2n− 1)k2
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which is lesser than the given in theorem 1,
λ

4nk2
, and the upper bound

is
1

(2n− 1)k
which is greater than

1

2nk
.

The result obtained for convexity in CHn(−4k2) is the following:

Theorem 2. In complex hyperbolic space, CHn(−4k2), it can only ex-
ists families of compact convex domains piecewise C2 expanding over
the whole CHn(−4k2) if they are λ-convex with λ ≤ k.

This theorem gives us more information than the general one for
Hadamard manifolds. That is, for any Hadamard manifold with sec-
tional curvature K such that −k2

2 ≤ K ≤ −k2
1 we can assure that

cannot exists families of λ-convex domains expanding over the whole
space with λ > k2 but in CHn(−4k2) this bound is restricted to k1.
This fact is consequence of the properties of the normal curvatures of
the spheres, which takes values in all of its possible range (see corollary
2.4).

2. Preliminaries

Definition 2.1. The complex hyperbolic space is the only (up to holo-
morphic isometries) complete simply connected Kähler manifold of con-
stant holomorphic curvature −4k2. We denote it by CHn(−4k2).

We can see CHn(−4k2) as a subspace of CPn. In Cn+1 we consider
the hermitian product

〈z, w〉 = −z0w0 +
n∑

j=1

zjwj

and the subset

M = {z ∈ Cn+1 : 〈z, z〉 = −k}.

The projection of M in CPn with the induced metric corresponds to
complex hyperbolic space CHn(−4k2).

Then geodesics are projection of complex planes in Cn+1 and the
isometries come from the applications preserving the hermitian metric.

As CHn(−4k2) is a Kähler manifold it has complex structure. We will
denote it by J . Then, holomorphic curvature is defined as the sectional
curvature of the planes generated by a vector v and Jv. In spaces of
constant holomorphic curvature, seccional curvature is expressed as (cf.
[KN69])

g(R(u, v)v, u) = −Khol

4
(1 + 3(g(u, Jv))2).

So, in CHn(−4k2) since holomorphic curvature is −4k2 sectional cur-
vatures are such that −4k2 ≤ K ≤ −k2.
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In the proof of theorem 1 we use an expression for the volume of
compact convex domains. We parametrize a compact convex domain
Ω from the exponential map of the set

A = {(u, t) ∈ S2n−1 × R | 0 < t ≤ l(u)}

where l(u) is the distance between p, a fixed interior point, and ∂Ω in
the direction u.

Then

vol(Ω) =

∫
Ω

τ =

∫
A

exp∗p τ

where τ is the volume element of CHn(−4k2)n.
If

exp∗p τ = J(t, u)t2n−1dtdS2n−1

then J(t, u) is the Jacobian of the exponential map. Using an orthonor-
mal basis and the Jacobi fields along the geodesic given by the direction
u we have

J(t, u) =
sinh2n−1(kt) cosh(kt)

(kt)2n−1
.

Thus, the volume of a compact convex domain Ω:

vol(Ω) =
1

2nk2n

∫
S2n−1

sinh2n(kl(u))dS2n−1,(2)

and the intrinsic volume of ∂Ω is:

vol(∂Ω) =

∫
S2n−1

sinh2n−1(kl(u)) cosh(kl(u))

k2n−1〈∂t, N〉
dS2n−1(3)

where N is the outward unit normal vector of Ω and ∂t the radial field
from p. If we denote by φ the angle between ∂t and N we have that
〈∂t, N〉 = cos φ.

Another fact we use about CHn(−4k2) concerns about principal cur-
vatures of a geodesic sphere. Spheres in CHn(−4k2) are not umbilical
hypersurfaces as in real space forms.

Proposition 2.2 ([Mon85]). The principal curvatures of a geodesic
sphere of radius r in CHn(−4k2) are:

• 2k coth(2kr) with multiplicity 1 and principal direction −JN
(where N is the outward unit normal vector).

• k coth(kr) with multiplicity 2n− 2.

Therefore,

Corollary 2.3. Let z be a point in a geodesic sphere of CHn(−4k2), N
the outward unit normal vector and v a principal direction. Then the
submanifolds generated by the exponential map of {N, v} at the point
z are totally geodesic.
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Proof. Since v is a principal direction we have −∇vN = λv. Then,

〈−J∇vN, N〉 = λ〈v, JN〉.

Moreover, if v 6= −JN then

〈−J∇vN, N〉 = 〈∇v(−JN), N〉 = 0

from the properties of the second fundamental form. So, 〈v, JN〉 = 0,
which is the condition for a pair of vectors to generate a totally real
plane. But, a totally real plane is isomorphic to H2(−k2) and it is
totally geodesic.

If v = −JN then we consider the submanifold generated by {N, JN}
and it is known that it is isomorphic to H2(−4k2) and it is also totally
geodesic. �

From the proposition 2.2 it also follows:

Corollary 2.4. The normal curvature of spheres lies between k coth(kr)
and 2k coth(2kr). Moreover, all the possible values are taken.

3. Convexity on complex hyperbolic space

Definition 3.1. A C2 hypersurface of a Riemann manifold is said to
be regular λ-convex if at every point all the normal curvatures (with
respect the invariant normal unit vector) are greater or equal than
λ ≥ 0.

This definition can be generalized to the non-regular case.

Definition 3.2. A λ-convex hypersurface is a hypersurface such that
for every point p there is a regular λ-convex hypersurface S leaving a
neighborhood of p in the hypersurface in the convex side of S.

Definition 3.3. A domain is said to be (regular) λ-convex if its bound-
ary is a regular λ-convex hypersurface.

From the definition we get that a λ-convex hypersurface is also λ′-
convex for any λ′ ≤ λ.

Remark 3.4. In spaces of constant curvature and in complete simply
connected manifolds with non-positive sectional curvature the notion
of 0-convexity is equivalent to the convexity with respect to geodesics
(cf. [Ale77]).

The notion of λ-convexity gives some relations on how the boundary
bends. Indeed, we have

Proposition 3.5 ([BGR01]). Let M be a (n+1)-dimensional Hadamard
manifold with sectional curvature K such that −k2

2 ≤ K ≤ −k2
1. Let

Ω be a λ-convex domain with C2 boundary, λ < k2 and O an interior
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point of Ω. If ϕ denotes the angle of the normal to ∂Ω and the exterior
radial direction, when d(O, ∂Ω) ≤ (1/k2)arctanh(λ/k2) we have

cos ϕ ≥ 1

k2

√
λ2 cosh2 k2s− k2

2 sinh2 k2s

If d(O, ∂Ω) ≥ (1/k2)arctanh(λ/k2) then

cos ϕ ≥ λ

2k
.

Now we study which values can take λ ≥ 0 for a family of λ-convex
domains in CHn(−4k2) expanding over the whole space. We prove that
λ-convex domains of any inradius (the radius of the biggest inscribed
sphere) with piecewise C2 boundary have λ ≤ k. To get this result
we study the normal curvature at some points of the boundary of the
domain.

Definition 3.6. Given a point p of class C2 in the boundary of a convex
domain Ω, we call inscribed sphere at p the biggest sphere tangent to
∂Ω at p contained in the domain. We call circumscribed sphere at p
the smallest sphere tangent to ∂Ω at p containing the domain.

Lemma 3.7. Let Ω ∈ CHn(−4k2) be a C2 convex domain. If at point
p ∈ ∂Ω there exists an inscribed sphere Si and a circumscribed sphere
Sc tangents to ∂Ω at p, then

Kn,Sc(X) ≤ Kn,Ω(X) ≤ Kn,Si
(X)(4)

for any X ∈ TpM .

Proof. Let N be unit normal vector to ∂Ω at p. Let {e1, ..., e2n−1 =
−JN} be a basis of principal directions of the inscribed sphere at p.
Note that it is also a basis of principal directions of the circumscribed
sphere at p. That is, the direction −JN is always a principal direction
of a sphere and the directions perpendicular to −JN are all principal
directions (cf. proposition 2.2). So, if two spheres are tangent at a
point then they have the same principal directions (although they do
not have the same principal curvatures).

From corollary 2.3, the exponential map of the vectors {N, ei} at p
are totally geodesic submanifolds. When i = 2n − 1 it is isometric to
H2(−4). In the other cases they are isometric to H2(−1).

As it is known that this lemma is true stated in H2(−k2) instead of
CHn(−4k2) we can assert that it is also valid for planes generated by
a principal direction and normal direction. Since the other directions
are linear combination of principal directions the result follows. �

Then, from the previous lemma and using the properties of the prin-
cipal curvatures of a sphere (see proposition 2.2) we have:
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Proposition 3.8. Let Ω ∈ CHn(−4k2) be a piecewise C2 compact con-
vex domain. If at point p ∈ ∂Ω there exists inscribed and circumscribed
sphere, then the normal curvature satisfies:

coth(R) ≤ Kn,Ω ≤ 2k coth(2kr)

for any direction, with r denoting the radius of the inscribed sphere at
p and R the radius of the circumscribed sphere at p.

This proposition is valid for any direction but for some directions
we can improve the inequalities since we know for which directions the
normal curvature in a sphere takes the maximum and the minimum
value.

Corollary 3.9. Let Ω ∈ CHn(−4k2) be a piecewise C2 compact convex
domain and N the normal vector of ∂Ω. If at a point p ∈ ∂Ω of class
C2 there exists inscribed and circumscribed sphere, then the normal
curvature in the directions X such that {N, X} span a totally real plane
satisfies:

k coth(kR) ≤ Kn,Ω(X) ≤ k coth(kr)

and in the direction −JN it satisfies:

2k coth(2kR) ≤ Kn,Ω(−JN) ≤ 2k coth(2kr)

with r denoting the radius of the inscribed sphere at p and R the radius
of the circumscribed sphere at p.

Now, we can study the λ-convexity of families of convex domains
expanding over the whole CHn(−4k2). In [BGR01] it is proved that
in a Hadamard manifold with sectional curvature K such that −k2

2 ≤
K ≤ −k2

1 it can only exists families of λ-convex domains expanding
over the whole manifold if λ ≤ k2.

The specific geometry of CHn(−4k2) allows us to prove that it can
only exists families of λ-convex domains expanding over the whole space
if λ ≤ k1 = k.

The result obtained for convexity in CHn(−4k2) is the following:

Theorem 2. In complex hyperbolic space, CHn(−4k2), it can only ex-
ists families of compact convex domains piecewise C2 expanding over
the whole CHn(−4k2) if they are λ-convex with λ ≤ k.

Proof. From the definition of λ-convexity, we have that for any convex
domain Ω(t) of the family, for any point p ∈ ∂Ω(t) of class C2 and for
some direction X tangent to ∂Ω(t) at p it is satisfied

(5) λ ≤ Kn, Ω(t)(X) ≤ Kn,Si
(X) = k coth(kr)

where Si is the inscribed sphere of radius r in Ω at point p.
This argument must hold for every convex domain in the family.

Since the radius of the inscribed ball tends to infinity when the convex
domains grow, for a convex big enough, k coth(kr) is close to k and
from the inequalities in (5) it is necessary that λ ≤ k. �
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Remark 3.10. The argument followed to prove the last proposition uses
strongly the properties of CHn(−4k2). That is, we use that for some
direction of the tangent space at every point of a sphere of radius
r, the normal curvature is exactly k coth(kr). In arbitrary Hadamard
manifolds the analogue cannot be assured. Given a Hadamard manifold
with sectional curvature K such that −k2

2 ≤ K ≤ −k2
1 it can only be

assured that the normal curvature Kn of a sphere of radius r is such
that k1 coth(k1r) ≤ Kn ≤ k2 coth(k2r) (cf. [Pet98]).

Examples. In any Riemann manifold geodesic spheres are convex do-
mains. As it is known that in CHn(−4k2) normal curvatures of a
geodesic sphere of radius r satisfy k coth(kr) ≤ Kn ≤ 2k coth(2kr) (cf.
proposition 2.2) they are k coth(kr)-convex domains. If we fix a point
in a sphere and let the radius tends to infinity we get a non-compact
convex domain called horosphere. It is k-convex.

Let CHp(−4k2) be a isometrically embedded complex hyperbolic
space in CHn(−4k2) of dimension less than n and let RHn be a real
hyperbolic space isometrically embedded in CHn(−4k2) . Then the
equidistant hypersurface from a fixed CHp(−4k2), 1 ≤ p < n, or from a
fixed RHn, that is, the set of points which are at a fixed constant dis-
tance from the submanifold are also convex hypersurfaces bounding a
non-compact domain. Its λ-convexity is k tanh(kr). These facts follow
from [Mon85].

It is known that in CHn(−4k2) there not exists totally geodesic hy-
persurfaces. The hypersurfaces which can be considered as the substi-
tute of the totally geodesic hypersurfaces in CHn(−4k2) are the ones
generated by the exponential map of 2n−1 tangents vectors at a point,
that is, bisectors. However, they are not convex hypersurfaces and do
not bound convex domains (cf. [Gol99]). So, we cannot construct any
convex domain with a part of its boundary contained in a bisector.

Given a geodesic we can construct a convex domain from this taking
its tube of radius r > 0.

Definition 3.11. Let (M, g) be a Hadamard manifold and γ a com-
plete geodesic. We define the tube of radius r ≥ 0 about γ as

τ(γ, r) = {x ∈ M : there exists a geodesic ξ of length L(ξ) ≤ r

from x meeting γ orthogonally}.
This definition is equivalent to (cf. [Gra04])

τ(γ, r) =
⋃
y∈γ

{expy(v) : v ∈ (γy)
⊥ and ||v|| ≤ r}

and also to

τ(γ, r) =
⋃
y∈γ

{expy(v) : v ∈ TyM and ||v|| ≤ r}.
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That is, a tube about a geodesic γ can be defined as the set of points
which are at a distance less or equal than r ≥ 0 (the radius of the tube)
of γ or as the union of the balls of radius r with center in γ.

In the next lemma we prove that the tube about a geodesic is convex
in any Hadamard manifold and in the next one we give a way to modify
this to obtain a convex compact hypersurface.

Lemma 3.12. Let (M, g) be a Hadamard manifold. Let γ be a complete
geodesic. Then the tube of radius r about γ is a convex domain.

Proof. To prove that the boundary of the tube of radius r about γ,
τ(γ, r), is a convex hypersurface we study its second fundamental form.
If it is semi-definite at every point then it is convex. Let us parametrize
the boundary of the tube in the following way:

φ : R× R+ × S2n−1 −→ CHn(−4k2)
(r, t, v) 7→ expγ(t)(rv)

where we identify S2n−1 with the normal space at every point of γ(t).
From this parametrization we consider the following fields over τ(γ, r)

N = dφ (∂/∂r)

T = dφ (∂/∂t)

Ti = dφ (∂/∂vi) .

By Gauss lemma, N is normal on every hypersurface {r = constant}.
Using the fact that T and Ti are orthogonal to N and φ-related we

have:

2〈−∇Ti
N, Ti〉 = Ti〈N, Ti〉+ N〈Ti, Ti〉 − Ti〈Ti, N〉 −(6)

−〈Ti, [N, Ti]〉+ 〈N, [Ti, Ti]〉+ 〈Ti, [Ti, N ]〉
= N〈Ti, Ti〉.

So, to study the sign of 〈−∇Ti
N, Ti〉 we can study the sign of N〈Ti, Ti〉,

which tells us how the norm of Ti change along the normal field.
Since

Ti = dφ(r,t,v)(∂/∂vi) =
∂ expγ(t)(r(v + s∂/∂vi))

∂/∂s

∣∣∣∣
(r,0)

and

T = dφ(r,t,v)(∂/∂t) =
∂ expγ(t+s)(rv))

∂/∂s

∣∣∣∣
(r,0)

,

T and Ti are Jacobi fields. Now, using that in a Hadamard manifold the
norm of Jacobi fields is also non-negative we have that N〈Ti, Ti〉 > 0.

In the same way we have that T is a Jacobi field and N〈T, T 〉 > 0. �

As we are studying examples of convex domains to know better the
asymptotic behaviour of convex domains in complex hyperbolic space
we are interested in having compact convex domains. Perhaps the
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easiest way to obtain a convex domain is intersecting the tube with a
compact convex domain, for instance, a ball. Since the intersection of
two convex domains is a convex domain we obtain a compact convex
domain. We consider that the ball has its center in the geodesic which
defines the tube and its radius is bigger than the radius of the tube.
This domain is also convex in any Hadamard manifold.

Note that in complex hyperbolic space we cannot modify the tube to
obtain a compact convex domain just taking the tube about a geodesic
segment because it should have a part of the boundary contained in a
bisector, and hence it would not be convex.

Anyway, we can modify the tube τ(γ, r) in order to obtain a compact
convex domain in another way. Let γL be a geodesic segment of lenght
L. At each of the endpoints of the segment we attach a ball of radius
r and center the endpoint. We denote the union of these three convex
domains by τL(γ, r). This way to obtain a compact convex domain
from the tube will be useful to calculate explicitly its volume.

Lemma 3.13. Let (M, g) be a Hadamard manifold and γ a complete
geodesic. In the hypothesis of the previous lemma we have that the
modified tube τL(γ, r) defined in the paragraph above is convex.

Proof. The convexity of τL(γ, r) can only fails at the boundary intersec-
tion points between the ball and the tube. In these points the boundary
is not of class C2 so that we have to use the definition 3.2 in order to
prove the convexity. The regular convex hypersurface we consider is
the infinite tube τ(γ, r). From the last lemma this is convex. More-
over, since we have that a tube about a geodesic can also be described
as the union of all balls of radius the radius of the tube and center in
any point of the geodesic which defines the tube, we can assert that all
the points of the ball are inside this tube so, it leaves a neighborhood
of the boundary intersection points we are taking into account in the
convex side. �

4. Asymptotic behaviour

The purpose of this section is to prove the main result for the as-
ymptotic behaviour of λ-convex domains in CHn(−4k2), that is

Theorem 1. Let {Ω(t)}t∈R+ be a family of compact λ-convex domains,
λ ≤ k, expanding over the whole space CHn(−4k2), n ≥ 2. Then,

(7)
λ

4nk2
≤ lim inf

t→∞

vol(Ω(t))

vol(∂Ω(t))
≤ lim sup

t→∞

vol(Ω(t))

vol(∂Ω(t))
≤ 1

2nk
.

Moreover, the upper bound is sharp.

Proof. The upper bound follows just using expressions (2) and (3), that
cos ϕ ≤ 1 (ϕ is the angle between the exterior normal to ∂Ω(t) and the
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radial direction from a fixed point O inside the convex) and that∫
S2n−1

sinh2n(kl(u))dS2n−1 ≤
∫

S2n−1

sinh2n−1(kl(u)) cosh(kl(u))dS2n−1.

Hence,

vol(Ωt)
vol(∂Ωt)

=

1

2nk2n

∫
S2n−1

sinh2n(kl(u))dS2n−1∫
S2n−1

sinh2n−1(kl(u)) cosh(kl(u))

k2n−1 cos ϕ
dS2n−1

≤

∫
S2n−1

sinh2n(kl(u))dS2n−1

2nk

∫
S2n−1

sinh2n−1(kl(u)) cosh(kl(u))dS2n−1

≤ 1

2nk
.

In order to obtain the lower bound we use that cos ϕ ≥ λ/2k for
a convex big enough (cf. proposition 3.5). From this we obtain the
following inequality:

vol(Ω(t))
vol(∂Ω(t))

=

1

2nk2n

∫
S2n−1

sinh2n(kl(u))dS2n−1∫
S2n−1

sinh2n−1(kl(u)) cosh(kl(u))

k2n−1 cos ϕ
dS2n−1

=

∫
S2n−1

sinh2n−1(kl(u)) cosh(kl(u)) tanh(kl(u))dS2n−1

2nk

∫
S2n−1

sinh2n−1(kl(u)) cosh(kl(u))

cos ϕ
dS2n−1

≥ tanh(kr)

λ

∫
S2n−1

sinh2n−1(l(u)) cosh(l(u))dS2n−1

4nk2

∫
S2n−1

sinh2n−1(l(u)) cosh(l(u))dS2n−1

=
λ

4nk2
tanh(r)

where r is the distance between O (a fixed interior point from which
we parametrize the convex domain) and the boundary of the convex
domain. Then, as tanh(r) tends to 1 when Ω(t) tends to expand over
the whole space we can assert that

lim inf
t→∞

vol(Ω(t))

vol(∂Ω(t))
≥ 1

4kn2
.

In order to show the sharpness of an inequality it is enough to give
an example. Balls are λ-convex domains for every λ ∈ [0, k coth(kr)]
because normal curvatures are bigger or equal than k coth(kr). For a
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family of balls with the same center we have

lim sup
r→∞

vol(Br)

vol(∂Br)
= lim sup

r→∞

sinh2n(kr)πnn!

2nk sinh2n−1(kr) cosh(kr)πnn!

= lim sup
r→∞

tanh(kr)

2nk
=

1

2nk
,

which gives the upper bound given on (7). �

To complete the study of this asymptotic behaviour in complex hy-
perbolic space it remains to decide if the lower bound is sharp. In the
study of the analogous problem in real hyperbolic space it is given an-
other family of convex domains expanding over the whole space which
tends to the lower bound (see [Sol03]). If we try to construct a family
of domains in a similar way we get into trouble because of the richer
trigonometry of complex hyperbolic space. Instead of these examples
we studied the modified tubes described in lemma 3.13. Anyway, they
do not give an example of the lower bound but another example of the
upper bound.

Using the formula for the volume of a tube about a curve σ given in
[GV82],

vol(τL(σ, r)) =
Lvol(S2n−2)

(4k2)n−1

∫ r

0

sinh2n−2(ks)

(
1 +

2n

2n− 1
sinh2(ks)

)
ds,

it can be proved by a simple calculation that
if {τL(γ, r)}L,r is a family of the defined modified tubes (cf. lemma

3.13) then

lim sup
r→∞,L→∞

vol(τL(γ, r))

vol(∂τL(γ, r))
=

1

2nk
,

which is also equal to the value of the upper bound of (7). The result
of the limit of the quotient does not depend on the relation between
the grow of the length of the segment and the radius of the tube.

These examples allows us to assert that the family of convex domains
obtained from the intersection between a tube about a geodesic and a
ball centered at a point of the geodesic gives another example of a
family of convex domains expanding over the whole space which its
quotient tends to the upper bound. That is, we expand the convex
over the whole complex hyperbolic space increasing the length of the
segment and the radius of the ball. The relation between the growing
of the length and the radius does not effect the result. The explicit
calculation of the quotient volume/area is more complicated for these
domains since we should know the volume of a piece of a ball. Anyway,
using a decomposition of the domain into two parts with a part the
tube contained in the domain and using the result obtained in the
other example of modified tubes, we can assert that the value of the
limit of this quotient is also 1/2nk, the upper bound of (7).
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