
INTEGRAL GEOMETRY AND GEOMETRIC

INEQUALITIES IN HYPERBOLIC SPACE.

EDUARDO GALLEGO AND GIL SOLANES

Abstract. Using results from integral geometry, we find inequalities
involving mean curvature integrals of convex hypersurfaces in hyperbolic
space. Such inequalities generalize the Minkowski formulas for euclidean
convex sets.

1. Introduction and results

In hyperbolic space the following isoperimetric-like inequality is well-
known (cf.[5])

(1) vol(∂Q) > (n− 1)vol(Q)

for any convex domain Q ⊂ Hn. This shows a strong contrast with euclidean
geometry where these two volumes can not be lineraly compared, since for
instance they are affected differently by homothetical transformations of Q.
Indeed, the isoperimertic inequality in euclidean space is

(2) (vol(∂Q))n ≥ c(vol(Q))n−1

for a constant c. More generally, the Minkowski inequalities for euclidean
convex domains Q take the form

(3) (Wr(Q))
s > c(Ws(Q))

r r > s

where Wi are the so-called Quermassintegrale whose definition is recalled a
few lines below. Again, the exponents correct the different dimensions of
the magnitudes, and again this will not be necessary in hyperbolic space.
Indeed, the aim of this paper is to generalize (1) by finding linear geometric
inequalities for convex domains in hyperbolic space analogue to (3). Before,
let us recall how the Quermassintegrale of an euclidean convex domain are
defined in the frame of integral geometry

Wr(Q) =
(n− r) ·On−1

n ·On−r−1 · vol(G(n− r, n))

∫

G(n−r,n)
voln−r(πV (Q))dV

where πV is the orthogonal projection onto the (n − r)-dimensional linear
subspace V , and dV is the natural (invariant) measure in the Grassmannian
of such subspaces. Here and in the following Oi = vol(Si). Alternatively,
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the Quermassintegrale are, up to constants, the measure of the set of affine
subspaces intersecting the convex body (cf. [8]). Namely,

(4) Wr(Q) =
(n− r) ·Or−1 · · ·O0

n ·On−2 · · ·On−r−1

∫

Lr

χ(L ∩Q)dL

where Lr is the space of r-dimensional affine subspaces L, endowed with its
natural (invariant) measure dL. Here and in the following the function χ
is just given by χ(Q) = 1 whenever Q 6= ∅, and χ(∅) = 0. In case that
∂Q is C2-differentiable, the Quermassintegrale coincide with the total mean
curvatures of the boundary

Wr(Q) = nMr(∂Q) := n

∫

∂Q

σr(x)dx

where σr and dx are respectively the r-th mean curvature and the volume
element of ∂Q.

Therefore, in order to generalize (3), the first point is to clarify the notion
of Quermassintegrale for hyperbolic convex domains. It is easy to see that
the average of the projections onto geodesic subspaces by some origin, de-
pends on the choice of this origin. However, one can take (4) as a definition.
For a (geodesically) convex domain Q ⊂ Hn we define

Wr(Q) :=
(n− r) ·Or−1 · · ·O0

n ·On−2 · · ·On−r−1

∫

Lr

χ(L ∩Q)dL

where Lr is the space of r-dimensional totally geodesic subspaces L ⊂ Hn,
and dL is the natural (invariant) measure on it (cf. [8]). As in the euclidean
case we take W0(Q) = vol(Q), and Wn(Q) = On−1/n. With these defini-
tions, the Quermassintegrale do not coincide with the total mean curvatures,
but they are closely related (cf. [11])

(5) Mr(∂Q) = n

(

Wr+1(Q) +
r

n− r + 1
Wr−1(Q)

)

.

Therefore we are concerned with inequalities between Quermassintegrale,
and also between total mean curvatures. The main results are the following.

Theorem 1.1. For any convex domain Q ⊂ Hn

(6) Wr(Q) >
n− r

n− s
Ws(Q) r > s.

When ∂Q is C2-differentiable

(7) Mr(∂Q) > c vol(∂Q)

with c = 1 if r > 1, and c = (n− 2)/(n− 1) for r = 1.

The inequalities (6) will be obtained in a very geometric way, and they will
be used to get (7) by means of the relation (5). Note that the mean curvature
integrals are differential geometric invariants with interest outside the field
of integral geometry. For instance they appear in Weyl’s tube formula as
well as in Steiner’s formula. However, in order to get inequalities between
them, we will make strong use of their relation to the Quermassintegrale,
which come from the field of integral geometry. Inequalities of the form (7)
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have also been studied in [2, 3], but only for stronger notions of convexity
(such as convexity with respect to horospheres).
As an application of (6), we prove that the expected volume of a random r-

dimensional totally geodesic slice L∩Q of any given domain Q in hyperbolic
space is bounded above

E[vol(L ∩Q)] ≤
On−1

On−r−1
.

This surprising fact illustrates the importance of the linearity of (6).

2. Inequalities between Quermassintegrale

In this section we prove inequalities of the form (6). The first step is
to get similar inequalities for convex domains in Sn. The totally geodesic
r-dimensional spheres in Sn, which are obtained by intersecting with (r+1)-
dimensional linear subspaces of Rn+1, will be denoted Sr. The space of such
Sr is the Grassmann manifold G(r + 1, n + 1), and has a unique (up to
constants) measure dSr invariant under rotations (cf.[8]).

Proposition 2.1. Let Q be a convex set in Sn. Then, for r ≤ n − 1 and
s ≤ n− r − 1
∫

G(r+1,n+1)
χ(Sr∩Q) dSr ≤

Or+s . . . Or+1

On−r−1 · · ·On−r−s

∫

G(r+s+1,n+1)
χ(Sr+s∩Q) dSr+s

and equality holds only when Q is a hemisphere of Sn.

Proof. Denote G(r + 1, r + s + 1, n + 1) the flag space consisting of pairs
Sr ⊂ Sr+s of geodesic spheres of Sn. It is known (cf.[8]) that

(8) dS(r+s)[r]dSr = dS[r+s]rdSr+s

where dS[r+s]r is the measure on the grassmannian of great r-spheres con-
tained in Sr+s and dS(r+s)[r] is the measure of (r + s)-spheres containing
Sr.
Since Sr ∩Q ⊂ Sr+s ∩Q, we have

vol(G(r + 1, r + s+ 1))

∫

G(r+s+1,n+1)
χ(Sr+s ∩Q) dSr+s =

=

∫

G(r+1,r+s+1,n+1)
χ(Sr+s ∩Q) dS[r+s]rdSr+s ≥

≥

∫

G(r+1,r+s+1,n+1)
χ(Sr ∩Q) dS(r+s)[r]dSr =

= vol(G(s, n+ 1− r))

∫

G(r+1,n+1)
χ(Sr ∩Q) dSr.

¤

To prove the analogues in hyperbolic space we need a proper expression
of the measure of geodesic planes dLr. Fix an origin o ∈ Hn. Now every
r-plane in Hn is determined by the (n − r)-plane through o orthogonal to
Lr, and by the intersection point x = Lr ∩ Ln−r. This way, Lr is identified
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Figure 1. r-planes meeting Q

to the tautological bundle over G(n − r, n), and the invariant measure is
written (cf.[8])

(9) dLr = cosh
r ρ dx dVn−r

where ρ is the distance from x to o, dx is the volume element on Ln−r, and
dVr is the volume element on G(n− r, n) corresponding to Vn−r = ToLn−r.

Proposition 2.2. Let Q be a convex domain in Hn contained in a ball of

radius R. Then, for r ≤ n− 1 and 1 ≤ s ≤ n− r − 1
∫

Lr

χ(Lr∩Q) dLr < tanh
s(R)

Or+s−1 . . . Or

On−r−2 · · ·On−r−s−1

∫

Lr+s

χ(Lr+s∩Q) dLr+s.

Proof. We can assume the center o of the sphere to be in the interior of Q.
Using the expression (9) for the measure of r-planes,

∫

Lr

χ(Lr ∩Q) dLr =

∫

G(n−r,n)

∫

Vn−r

χ(Lr ∩Q) cosh
r ρ dxdVn−r.

Let us write dx, the volume element of Ln−r, in polar coordinates. Since
Ln−r is isometric to Hn−r,
∫

Lr

χ(Lr∩Q) dLr =

∫

G(n−r,n)

∫

RPn−r−1

∫

R
χ(Lr∩Q) cosh

r ρ| sinhn−r−1 ρ| dρdudVn−r

where du is the volume element of RPn−r−1 corresponding to the initial
vector of the ray going from o to x. The formula (8) gives in this setting
that dudVn−r = dV(n−r)[1]dV1 where dV(n−r)[1] is the measure of the Vn−r

containing V1. Then,
∫

Lr

χ(Lr∩Q) dLr =

∫

RPn−1

∫

G(n−r−1,(V1)⊥)

∫

R
χ(Lr∩Q) cosh

r ρ| sinhn−r−1 ρ| dρdV(n−r)[1]dV1

=

∫

RPn−1

∫

R

(

∫

G(r,(V1)⊥)
χ(Lr ∩Q) dVr

)

coshr ρ| sinhn−r−1 ρ| dρdV1.
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Now, given V1 and ρ (i.e. given x), we projectivize (from x) the hyperplane
Ln−1 orthogonal to V1 in x. The integral between parenthesis is the measure
of the set of geodesic (r− 1)-planes meeting a convex set in Sn−2. Applying
proposition 2.1 this measure is bounded in terms of the measure of (r+s−1)-
planes meeting this convex set in Sn−2. We get

∫

G(r,(V1)⊥)
χ(Lr∩Q) dVr ≤

Or+s−1 . . . Or

On−r−2 · · ·On−r−s−1

∫

G(r+s,(V1)⊥)
χ(Lr+s∩Q) dVr+s.

And the proof is finished since −R ≤ ρ ≤ R, and thus

coshr ρ| sinhn−r−1 ρ| ≤ tanhsR coshr+s ρ| sinhn−r−s−1 ρ|.

¤

In terms of Quermassintegrale, the previous inequality becomes

Wr(Q) < tanh
sR

n− r

n− r − s
Wr+s(Q).

In particular we have the inequality (6).

Corollary 2.3. If Q ⊂ Hn is convex, then

(10) Wr(Q) <
n− r

n− r − s
Wr+s(Q).

In the case r = 0, the inequalities can be improved.

Proposition 2.4. Let Q ⊂ Hn be a convex set contained in a ball B(R)
with radius R. Then

(11)
vol(Q)

Wr(Q)
≤
vol(B(R))

Wr(B(R))

with equality only for Q = B(R).

Proof. Let us compute the volume of Q in polar coordinates from the center
of B(R)

vol(Q) =

∫

Sn−1

∫ l(u)

0
sinhn−1 ρdρdu

where l(u) is the length of the geodesic segment γ(u) starting at the origin
with tangent vector u ∈ Sn−1 and ending at ∂Q. Since all the hyperplanes
orthogonal to γ(u) ∩Q meet Q, we have

Wr(Q) ≥
(n− r) ·Or−1 · · ·O0

n ·On−2 · · ·On−r−1

∫

Sn−1

∫ l(u)

0
coshr ρ sinhn−r−1 ρdρdu

On the other hand it is easy to see that the function

f(R) =
Wr(B(R))

vol(B(R))
=
(n− r) ·Or−1 · · ·O0

n ·On−2 · · ·On−r−1

∫ R

0 cosh
r ρ sinhn−r−1 ρdρ

∫ R

0 sinh
n−1 ρdρ
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is increasing. Thus, since l(u) ≤ R, we have f(l(u)) ≤ f(R) and then

Wr(Q) ≥
(n− r) ·Or−1 · · ·O0

n ·On−2 · · ·On−r−1

∫

Sn−1

∫ l(u)

0
coshr ρ sinhn−r−1 ρdρ =

=

∫

Sn−1

f(l(u))

∫ l(u)

0
sinhn−1 ρdρdu ≥

≥

∫

Sn−1

f(R)

∫ l(u)

0
sinhn−1 ρdρdu =

Wr(B(R))

vol(B(R))
vol(Q).

¤

Remark. The previous inequalities run in the only possible direction. Indeed,
an inequality of the form Wr+s(Q) ≤ cWr(Q) can not be true. To see this,
take a convex domain Q contained in a geodesic (n− r − s)-plane. Since Q
is an (n − r − s)-dimensional submanifold, by the Cauchy-Crofton formula
(cf.[8]), Wr+s(Q) is a multiple of its (n − r − s)-dimensional volume, while
the set of r-planes meeting Q has null measure. Thus Wr(Q) = 0, and
Wr+s(Q) > 0.

3. Inequalities for the mean curvature integrals

Now we are ready to find inequalities involving the mean curvature inte-
grals of convex hypersurfaces in Hn. The most interesting case is that of (6)
which we prove next.

Proposition 3.1. If Q ⊂ Hn is convex, and ∂Q is C2-differentiable then,

for r > 1
Mr(∂Q)

vol(∂Q)
> 1,

and the bound is sharp. For r = 1,

M1(∂Q)

vol(∂Q)
>
n− 2

n− 1
.

In other words, the mean value of the higher order mean curvatures of a
convex hyperbolic hypersurface is greater than 1, and the mean value of the
first mean curvature is also bounded below.

Proof. Thanks to equation (5), which relates the mean curvature integrals
to the Quermassintegrale, and thanks to inequality (10), we have

Mr(∂Q)

M0(∂Q)
=
Wr+1(Q) +

r
n−r+1Wr−1(Q)

W1(Q)
>
n− r − 1

n− 1
+

r

n− r + 1

n− r + 1

n− 1
= 1.

To prove the sharpness, consider a ball B(R) of radius R. Then (cf. [8])

Mr(∂B(R)) = On−1 cosh
r R sinhn−1R,

and
Mr(∂B(R))

vol∂B(R)
= cothr R

which is arbitrarily close to 1 for R big enough.
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For r = 1, we use (5) and (10)

M1(∂Q)

M0(∂Q)
=
W2(Q) +

1
n
W0(Q)

W1(Q)
>
W2(Q)

W1(Q)
>
n− 2

n− 1
.

¤

Remark. Although it is not clear if the bound forM1(∂Q)/vol(∂Q) is sharp,
it must be noticed that, at least in H3, the greatest lower bound is smaller
than 1. Indeed, take a plane disk Q ⊂ L2 ⊂ H3 of radius R,

M1(∂Q) = 3

(

W2(Q) +
1

3
W0(Q)

)

= π2 sinhR

vol(∂Q) = 4π(coshR− 1)

then M1(∂Q)/vol(∂Q) goes to π/4 (which is smaller than 1) when R grows.

We can also compare the mean curvature integrals with the volume of the
interior.

Corollary 3.2. The following inequality holds for convex sets in Hn

Mr(∂Q)

vol(Q)
> n− 1

and the bound is sharp.

Proof. The case r = 0 coincides with (1). Note also that it follows immedi-
ately from (10), and we have thus given a new proof of this know inequality.
For r > 1, by applying proposition 3.1 and (1), we get

Mr(∂Q)

vol(Q)
=
Mr(∂Q)

vol(∂Q)
·
vol(∂Q)

vol(Q)
> 1 · (n− 1).

For r = 1

M1(∂Q)

vol(Q)
=
n(W2(Q) +

1
n
vol(Q))

vol(Q)
> n

n− 2

n
+ 1 = n− 1.

The bound can be approximated by taking balls of big radius. ¤

In a similar way, we can find estimations for any quotient of mean curva-
ture integrals.

Proposition 3.3. If Q ⊂ Hn is convex then, for r ≥ 0 and 1 < s ≤ n−r−1

Mr+s(∂Q)

Mr(∂Q)
> 1

and the bound is sharp. For s = 1,

Mr+1(∂Q)

Mr(∂Q)
>
n− r − 2

n− r − 1
.
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Proof. Use again the equation (5) and the inequality (10)

(12)
Mr+s(∂Q)

Mr(∂Q)
=
Wr+s+1(Q) +

r+s
n−r−s+1Wr+s−1(Q)

Wr+1(Q) +
r

n−r+1Wr−1(Q)
>

=
n−r−s−1
n−r−s+1Wr+s−1(Q) +

r+s
n−r−s+1Wr+s−1(Q)

Wr+1(Q) +
r

n−r+1
n−r+1
n−r−1Wr+1(Q)

=

=
n− r − 1

n− r − s+ 1

Wr+s−1(Q)

Wr+1(Q)
>

n− r − 1

n− r − s+ 1

n− r − s+ 1

n− r − 1
= 1.

This is sharp since for a sequence of balls the quotientMr+s/Mr approaches
1 as the radius grows to ∞.
For s = 1,

Mr+1(∂Q)

Mr(∂Q)
=

Wr+2(Q) +
r+1
n−r

Wr(Q)

Wr+1(Q) +
r

n−r+1Wr−1(Q)
.

And we finish since

Wr+2(Q)

Wr+1(Q)
>
n− r − 2

n− r − 1

r+1
n−r

Wr(Q)
r

n−r+1Wr−1(Q)
>
r + 1

r
> 1 >

n− r − 2

n− r − 1
.

¤

Remark. Note that the bound for the quotient Mn−1/Mn−2 is 0. Below we
construct convex domains for which this quotient actually takes arbitrarily
small values.

In short, we have found lower bounds for all the quotients Mr+s/Mr.
Except from the case Mn−1/Mn−2, these bounds are strictly positive, and
they are sharp when s > 1.

It is natural to look for upper bounds of such quotients (or equivalently
lower bounds of Mr/Mr+s). However, it is immediate to see that these
quotients are not bounded from above. For instance, for a radius ball R
one has Mr+s/Mr = coth

r R, which is arbitrarily big if R is small enough.
One could also argue noting that in euclidean space there are examples of
arbitrarily small convex sets with arbitrarily big Mr+s/Mr. Since in small

neighborhoods of a point the metrics of Hn and Rn are very similar, there
must be convex bodies in hyperbolic space with big Mr+s/Mr.
However, if we restrict ourselves to convex bodies that are big in some

sense, it is possible to find some upper bounds for Mr+s/Mr.

Proposition 3.4. Let (Qt) be a sequence of convex sets such that vol(∂Qt)
goes to infinity. Then

i) lim
n→∞

Mn−1(∂Qt)

Mn−2(∂Qt)
≤ n− 1

ii) lim
n→∞

Mn−1(∂Qt)

Mn−3(∂Qt)
≤
n− 1

2

Remark. For stronger notions of convexity (such as convexity with respect
to horospheres), the limit values of the quotients Mi(∂Q)/vol(∂Q) and
vol(∂Q)/vol(Q) have been studied (also for general negatively curved man-
ifolds) in [10, 6, 7, 4, 1, 3].
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Proof. We have that

Mn−1(∂Qt)

Mn−2(∂Qt)
=

Wn(Qt) +
n−1

2 Wn−2(Qt)

Wn−1(Qt) +
n−2

3 Wn−3(Qt)

But Wn(Qt) is constant On−1/n. On the other hand Wn−1(Qt), Wn−2(Qt)
and Wn−3(Qt) go to infinity if vol(∂Qt) expands over Hn. Therefore

lim
n→∞

Mn−1(∂Qt)

Mn−2(∂Qt)
=
n− 1

2
lim

n→∞

Wn−2(Qt)

Wn−1(Qt) +
n−2

3 Wn−3(Qt)
≤

≤
n− 1

2
lim

Wn−2(Qt)

Wn−1(Qt)

Bearing in mind that Wn−2/Wn−1 < 2, we have proved i). Analogously one
proves ii).

Mn−1(∂Qt)

Mn−3(∂Qt)
∼
n− 1

2

Wn−2(Qt)

Wn−2(Qt) +
n−3

4 Wn−4(Qt)
≤
n− 1

2
.

¤

The second inequality is sharp. Moreover, these are the only cases where
upper bounds are possible. To see this, consider the following sequence of
convex sets. Given t > 0 consider a geodesic segment of length t and the
set Qε

t consisting of points at a distance smaller than ε from the segment.
Except from the two spherical caps centered at the endpoints, the boundary
of Qε

t has one normal curvature equal to coth ε, and the rest are equal to
tanh ε. The volume of this part of the boundary is On−2t sinh ε cosh

n−2 ε.
Hence, for big t

Mr(∂Q
ε
t) ∼ On−2t

(

n−2
r−1

)

cothr−2 ε+
(

n−2
r

)

cothr ε
(

n−1
r

) sinhn−1 ε cosh ε =

=
tOn−2

n− 1
((r cothr−2 ε+ (n− r − 1) cothr ε) sinhn−2 ε cosh ε.

so that
Mr(∂Q

ε
t)

Ms(∂Qε
t)
∼
r cothr−2 ε+ (n− r − 1) cothr ε

s coths−2 ε+ (n− s− 1) coths ε
.

Now, for r > s and small ε, this quotient takes arbitrarily big values, except
for the cases r = n − 1, s = n − 2 and r = n − 1, s = n − 3. In these cases
the limit can take any value in [0, 1] and [1, (n− 1)/2] respectively.

4. Slice expectation for random geodesic planes

We end by giving an application of the inequalities for Quermassintegrale
to the following problem of geometric probability. Throw randomly (accord-
ing to the invariant measure dLr) a geodesic r-plane Lr of Hn to intersect
a given (not necessarily convex) domain Q ⊂ Hn. Consider the random
variable given by the r-dimensional volume of the intersection of Lr with Q.
We are concerned with the expectation of this random variable

E[vol(Lr ∩Q)] =

∫

Lr
vol(Lr ∩Q) dLr
∫

{Lr∩Q6=∅}
dLr

.
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A surprising fact is that this expectation is bounded.

Proposition 4.1. The expectation for the volume of the intersection of a

random r-plane with a domain Q in Hn is bounded by

E[vol(Lr ∩Q)] < E[vol(Lr ∩B)] <
On−1

On−r−1
.

where B is a ball containing Q.

Proof. Take Q the convex hull of Q. Then

E[vol(Lr ∩Q)] < E[vol(Lr ∩Q)] =
(n− r)On−1O0

nOn−r−1

vol(Q)

Wr(Q)
.

And we finish using the previous inequality. ¤

Remark. If Q ⊂ Q′ are convex domains, it is not clear whether E[vol(Lr ∩
Q)] ≤ E[vol(Lr ∩Q

′)].

In hyperbolic plane it was known that the expectation of a random chord
is below π (cf. [9]). In higher dimensions the previous estimations seem to
be new. As an example, let us mention that the expectation of a random
chord in H3 is below π or that the expected area of a random plane slice is
below 2π.
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