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Abstract. In n-dimensional euclidean space, the measure of hyperplanes in-
tersecting a convex domain is proportional to the (n − 2)-mean curvature in-
tegral of its boundary. This question was considered by Santaló in hyperbolic
space. In non-euclidean geometry the best analogue of linear subspaces are
not always the totally geodesic hypersurfaces. In some situations horospheres
play the role of euclidean hyperplanes.

In dimensions n = 2 and 3, Santaló proved that the measure of horospheres
intersecting a convex domain is also proportional to the (n−2)-mean curvature
integral of its boundary.

In this paper we show that this analogy does not generalize to higher di-
mensions. We express the measure of horospheres intersecting a convex body
as a linear combination of the mean curvature integrals of its boundary.

1. Introduction

One of the first results in integral geometry is the Cauchy-Crofton formula. It
states that the length � of a piecewise differentiable plane curve Γ is the measure
of the set of lines L intersecting Γ, counted with multiplicity:∫

L∩Γ �=∅
�(L ∩ Γ)dL = 2 �(Γ)

where dL is a measure for lines which is invariant under the group of rigid motions.
When lines L are given by the equation x cos θ+y sin θ = p, this measure is written
as dL = dp ∧ dθ (see Figure 1).

As a consequence, the measure of all lines intersecting a convex domain is the
length of its boundary.

This formula has several generalizations to higher dimensional euclidean spaces
E

n (see [San76]). Firstly, the total measure of hyperplanes L intersecting a convex
domain D with C2-regular boundary is∫

L∩D �=∅
dL = Mn−2(∂D)(1)

where Mn−2 is the integral of the (n− 2)-function of curvature of ∂D (see (4)) and
dL is the invariant measure for hyperplanes.

Secondly, for a hypersurface Σ we have∫
L∩Σ �=∅

voln−2(L ∩ Σ)dL =
OnOn−2

On−1O0
voln−1(Σ)(2)
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Figure 1

where Or denotes the volume of the r-dimensional unit sphere. Notice that in the
plane case vol0(L ∩ Σ) is the number of intersection points �(L ∩ Σ).

Thirdly, for lines L in E
n∫

L∩Σ �=∅
�(L ∩ Σ)dL =

On

O1
voln−1(Σ).(3)

In hyperbolic space H
n formulas (2) and (3) hold without change, but formula

(1) is no longer valid. In fact, it is known (see [San76, p. 310]) that the total
measure of hyperplanes (complete totally geodesic hypersurfaces) intersecting a
convex domain is a linear combination of some curvature integrals and the volume
of the domain. For instance, in H

3 it is the difference of the mean curvature integral
of the boundary and the volume of the domain, M1(∂D) − vol(D).

In some cases the natural analogue for hyperbolic space of the euclidean hy-
perplanes are the horospheres (limit spheres). Note for instance that the intrinsic
geometry of horospheres is euclidean. In [San67] and [San68], Santaló proved that
equality (1) holds in H

2 and in H
3, if one makes horospheres play the role of hy-

perplanes.

In this paper we obtain an expression for the measure of the set of horospheres
intersecting an h-convex domain (convex with respect to horospheres) in H

n. Indeed
the main theorem is more general.

Theorem. If D is a domain in H
n bounded by an embedded C2 hypersurface Σ

then ∫
D∩H �=∅

χ(D ∩ H)dH = 2
[(n−2)/2]∑

k=0

(
n − 2
2k

)
1

2k + 1
Mn−2−2k(Σ)

where χ is the Euler-Poincaré characteristic and dH the isometry invariant measure
for horospheres.

Thus, the measure of horospheres intersecting an h-convex domain is a linear
combination of the mean curvature integrals of its boundary. Therefore we see
that, in the hyperbolic case, formula (1) is only valid for horospheres in dimensions
2 and 3.

In section 2 we review some general notions and fix the notation for the rest
of the paper. Section 3 is devoted to find an invariant measure for horospheres in
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hyperbolic space. Next, we get an analogue of formula (2) for horospheres. Finally,
in section 4 we prove the main theorem, give examples and discuss some related
problems.

2. Preliminaries

Hyperbolic space H
n is the unique n-dimensional simply connected and complete

Riemannian manifold of constant curvature −1. We do not consider any particular
model but sometimes it will be useful to have in mind the half-space model, the
upper half-space {xn > 0} of R

n with the metric (dx2
1 + · · · + dx2

n)/x2
n. In this

model, geodesic lines are euclidean semicircles and straight lines orthogonal to the
boundary.

In geodesic polar coordinates {ρ, θ1, . . . θn−1} the hyperbolic arc element has the
form

ds2 = dρ2 + sinh2 ρ(dθ2
1 + · · · + dθ2

n−1)

and the volume element is

dV = sinhn−1 ρdρ ∧ dOn−1

where dOn−1 is the spherical volume element.

We consider two particular families of hypersurfaces in hyperbolic space. Hyper-
planes are complete totally geodesic hypersurfaces. In the half-space model they
are either euclidean half spheres with center in {xn = 0} or euclidean hyperplanes
orthogonal to {xn = 0}. Horospheres are limit spheres: given a geodesic c(t) and
a fixed point c(t0) = p, consider the hyperbolic sphere with center c(t) passing
through p; when t tends to infinity we obtain a horosphere. They can also be
defined to be hypersurfaces orthogonal to a family of parallel geodesics. In the
half-space model, horospheres are either euclidean spheres tangent to the boundary
or horizontal hyperplanes {xn = c}. With the metric induced by the immersion in
H

n, hyperplanes are isometric to H
n−1 and horospheres are isometric to E

n−1.

We define the notion of convexity recursively: a set D in H
n is said to be convex

if L∩D is a convex set in L for every hyperplane L; in dimension one, convex sets
are connected segments. This definition of convexity is equivalent to the usual one:
every geodesic segment joining two points in D is contained in D.

Similarly, a set D in H
n is h-convex or horociclycally convex if D∩H is a convex

set in H for every horosphere H intersecting D. Since H is isometric to an euclidean
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space, convexity in H is the usual convexity in euclidean spaces. Note that h-convex
sets are convex but the converse is not true.

We call a hypersurface convex (resp. h-convex) if it is the boundary of a con-
vex (resp. h-convex) domain. Spheres of any radius are examples of h-convex
hypersurfaces.

Let Σ be a compact hypersurface of class C2 oriented by a unit normal n. The
second fundamental form hΣ is defined by hΣ(X, Y ) = 〈∇XY,n〉. It is a bilinear
symmetric form and its eigenvalues κ1, . . . , κn−1 are the principal curvatures. The
mean curvature functions σΣ

i (x) are given by

det(I + t hΣ)(x) =
n−1∑
i=0

(
n − 1

i

)
σΣ

i (x)ti.

Define the k-th mean curvature integral Mk to be

Mk(Σ) =
∫

Σ

σΣ
k (x)dx.(4)

Notice that M0 is the volume, and Mn−1 is the integral of the Gauss curvature
K = κ1 . . . κn−1.

We shall need the Gauss-Bonnet formula in n-dimensional euclidean space. Let
Σ be a compact, orientable hypersurface of class C2 in E

n. When n is odd,

Mn−1(Σ) =
1
2
On−1χ(Σ)

where χ is the Euler characteristic. Furthermore (see [Hop27]), in arbitrary dimen-
sion n, when Σ is the boundary of a domain D, we have

Mn−1(∂D) = On−1χ(D).(5)

3. Measure for horospheres

In this section we find a measure for horospheres in H
n invariant under isometries.

The isometry group of H
n admits a bi-invariant measure dK which is usually known

as the kinematic measure of H
n. From now on, only direct rigid motions are

considered. Every rigid motion is determined by giving a point V and a rotation
R around this point. So, dK can be expressed as dK = dV ∧ dR. These and the
subsequent differential forms must be taken up to the sign because we consider all
measures to be positive.

The following result is proved in [San76, p. 323].

Theorem. Let Mq be a fixed q-dimensional compact submanifold in H
n and let

Nr be an r-dimensional compact submanifold moving with kinematic measure dK.
Assume r + q −n ≥ 0 and let volr+q−n(M ∩N) denote the (r + q −n)-dimensional
volume of the intersection. Then we have∫

M∩N �=∅
volr+q−n(M ∩ N)dK =

OnOn−1 . . . O1Or+q−n

OqOr
volq(M)volr(N)(6)

where volq(M) and volr(N) are the volumes of M and N respectively, and Ok

denotes the volume of the k-dimensional euclidean sphere.

When r + q − n = 0, vol0 is the number of intersection points �(M ∩ N). For
instance, when M is a curve Γ of length � and N a compact hypersurface, formula
(6) can be written as∫

Γ∩N �=∅
�(Γ ∩ N)dK =

OnOn−1 . . . O1O0

On−1O1
� voln−1(N).
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Now, let us consider N to be a sphere SR of radius R. The last formula becomes∫
Γ∩SR �=∅

�(Γ ∩ SR) dK =
OnOn−1 . . . O1O0

On−1O1
� On−1 sinhn−1(R).(7)

On the other hand, since dK = dV ∧ dR and rotations around the center V of the
sphere leave SR invariant, we have∫

Γ∩SR �=∅
�(Γ ∩ SR) dK =

= vol(SO(n))
∫

Γ∩SR �=∅
�(Γ ∩ SR) dV

= On−1 . . . O1

∫
Γ∩SR �=∅

�(Γ ∩ SR) dV.

Comparing with (7) we can write∫
Γ∩SR �=∅

�(Γ ∩ SR) dV =
OnO0

O1
� sinhn−1 R.(8)

Spheres are determined by its center V . Then dV is an invariant measure for
spheres of fixed radius in H

n. However, we will consider the normalized measure
dSR = dV/ sinhn−1 R. This normalization is motivated by the formula∫

Γ∩Ln−1 �=∅
�(Γ ∩ Ln−1) dLn−1 =

On O0

O1
�(9)

where Ln−1 are hyperplanes and dLn−1 is its usual invariant measure ([San76,
p. 310]). The measure dSR is such that formula (9) remains valid when we replace
hyperplanes by spheres of fixed radius.

Now fix a point P in H
n and denote by ρ the signed distance from P to a sphere

(the sign of ρ will be negative when P is interior to SR). Every sphere SR not
centered at P is identified with a point in R × Sn−1. We can express dV as

dV = sinhn−1(ρ + R)dρ ∧ dOn−1

where dOn−1 denotes the spherical measure for directions from P to the center V .
Thus the measure for spheres of fixed radius in H

n corresponds to the following
volume element in R × Sn−1:

dSR =
(

sinhn−1(ρ + R)
sinhn−1(R)

)
dρ ∧ dOn−1.

As R goes to infinity the sphere corresponding to an element in R× Sn−1 tends
to a horosphere. Consequently, limR→∞ dSR corresponds to a measure in the space
of horospheres H. This measure is isometry-invariant and is written

dH = e(n−1)ρdρ ∧ dOn−1.

From (8) it follows that ∫
Γ∩H �=∅

�(Γ ∩ H)dH =
On O0

O1
�.

This formula was given in [San67] and [San68] for dimensions two an three respec-
tively.

The same argument, applying formula (6) to a compact manifold M and a sphere
of radius R, leads to a more general result.
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Proposition 3.1. Let Mq be a fixed q-dimensional compact manifold in H
n and

H a moving horosphere, then∫
H∩M �=∅

volq−1(H ∩ M)dH =
OnOq−1

Oq
volq(M)

with dH the invariant measure for horospheres.

4. Horospheres which intersect a given domain

Suppose D is a domain in H
n with boundary Σ of class C2. Given a horosphere

H, the intersection Σ∩H is denoted by C. When H and Σ are in general position,
C is an embedded hypersurface both of H and Σ.

Horospheres have an intrinsic euclidean structure. Using Gauss-Bonnet formula
(5) for D ∩ H as a domain of H we have

χ(D ∩ H) =
1

On−2
Mn−2(C).

Integrating χ(D ∩ H) over the space H of horospheres we get∫
D∩H �=∅

χ(D ∩ H)dH =
1

On−2

∫
D∩H �=∅

Mn−2(C)dH

=
1

On−2

∫
H

∫
C

σC
n−2 dxn−2dH.

(10)

Using the next proposition we shall be able to change the order of integration in
the last integral.

Proposition 4.1. Let Σ be a hypersurface in H
n and H a horosphere intersecting

Σ in a (n−2)-dimensional submanifold C. Denote by dxn−1 and dxn−2 the volume
elements of Σ and C respectively. Given a point x in C, let dOn−1 be the spherical
volume element corresponding to a unit normal of H in x. The angle between Σ
and H will be denoted by θ. Then,

dxn−2 ∧ dH = sin θ dOn−1 ∧ dxn−1.

Proof. Let us replace the horosphere H in the statement of the proposition by a
sphere of radius R. Let dTC = dxn−2 ∧ dRC where dRC is the volume element of
orthogonal transformations in TxC. One can define analogously dTΣ = dxn−1∧dRΣ

for Σ and dTS = dxS ∧ dRS for SR. An important formula on kinematic measure
(see [San76, p. 262]) states that

dTC ∧ dK = sinn−1 θdθ ∧ dTΣ ∧ dTS .(11)

As before, dK = dV ∧ dR where dR measures rotations in H
n around the center V

of the sphere SR. Rotations in TxSR are naturally identified with rotations in H
n

around V fixing the point x. Then dR = dRS ∧ dOn−1 being dOn−1 the measure
for directions from V to x. With this equality, (11) becomes

dTC ∧ dV ∧ dRS ∧ dOn−1 = sinn−1 θdθ ∧ dTΣ ∧ dxS ∧ dRS .

Integrating over rotations in TxSR we can cancel dRS in both sides. Expressing
dxS in polar coordinates centered at V we have

dTC ∧ dV ∧ dOn−1 = sinn−1 θ sinhn−1 R dθ ∧ dTΣ ∧ dOn−1.

Integrating again along the fiber we cancel dOn−1 to obtain

dTC ∧ dV = sinn−1 θ sinhn−1 R dθ ∧ dTΣ.

Also we have

dxn−2 ∧ dRC ∧ dV = sinn−1 θ sinhn−1 R dθ ∧ dxn−1 ∧ dRC ∧ dOn−2.
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Here we have used that dRΣ = dRC∧dOn−2 where dOn−2 corresponds to directions
in Σ normal to C. As before, we integrate to cancel dRC . The spherical volume
element dOn−1 can be written in polar coordinates as dOn−1 = sinn−2 θdθ∧dOn−2.
Therefore

dxn−2 ∧ dV = sin θ sinhn−1 R dOn−1 ∧ dxn−1.

Normalizing and making R go to infinity we get

dxn−2 ∧ dH = sin θ dOn−1 ∧ dxn−1

which is the desired formula.

Now we can change the order of integration in (10):∫
H

∫
C

σC
n−2 dxn−2dH =

∫
Σ

∫
Sn−1

σC
n−2 sin θ dOn−1dxn−2.(12)

We shall write σC
n−2 in terms of the mean curvature functions σΣ

i of Σ.
Given a submanifold M of a riemannian manifold N , the vectorial second fun-

damental form BN
M is the normal part of ∇N , the covariant derivative in N . For

X, Y tangent to M it verifies

∇N
XY = ∇M

X Y + BN
M (X, Y ).(13)

If M is a hypersurface oriented by a unit normal nM , then we put BN
M (X, Y ) =

hN
M (X, Y )nM . The normal curvature in a direction given by a unit vector v is

kN
M (v) = hN

M (v, v). In the following, when the ambient space N is H
n it will be

omitted in the notation.

Lemma 4.1. Let v be a tangent vector in C. Then

kΣ(v) = cos θ kH(v) + sin θ kH
C (v)

where θ is the angle between Σ and H, kΣ(v) (resp. kH(v)) is the normal curvature
of Σ (resp. H) and kH

C (v) is the normal curvature of C as a hypersurface of H.

Proof. From (13), it is easily seen that BH
C = BC − BH . Then

BH
C (X, Y ) = BM (X, Y ) − BH(X, Y ) + ∇M

X Y −∇C
XY.(14)

Let n be the normal of C in H, then n ·nΣ = sin θ and nH ·nΣ = cos θ. We multiply
both sides of (14) by nΣ and the lemma follows.

Horospheres are totally umbilical hypersurfaces with normal curvature equal
to 1, so the matrix expression of hH in a orthonormal basis is equal to the identity
matrix I. Consequently, for tangent vectors in C we have the equality

hH
C =

hΣ

sin θ
− I

tan θ
.

Now we relate σC
n−2, the (n− 2)-symmetric curvature function of C (as a hypersur-

face of H), and the symmetric curvature functions of Σ restricted to the tangent
space of C. We have that σC

n−2 = det(hH
C ), then

σC
n−2 = det

(
hΣ

sin θ
− I

tan θ

)
=

=
n−2∑
i=0

(
n − 2

i

)
(−1)n−2−i cosn−2−i θ

sinn−2 θ
(σΣ

i |C).
(15)

Here σΣ
i |C means the i-symmetric function of the restriction to C of the second

fundamental form hΣ. Using this expression we compute
∫

Sn−1 σC
n−2 sin θdOn−1

in formula (12). The point x in Σ is fixed, then the direction nΣ normal to Σ is
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also fixed. Elements of Sn−1 give directions defining H. Hence, if we use polar
coordinates in Sn−1 centered at nΣ, by virtue of formula (15) we can write

∫
Sn−1

σC
n−2 sin θdOn−1 =

∫
Sn−2

∫ π

0

σC
n−2 sin θ sinn−2 θdθdOn−2

=
∫

Sn−2

∫ π

0

(
n−2∑
i=0

(
n − 2

i

)
(−1)n−2−i cosn−2−i θ

sinn−2 θ
(σΣ

i |C)

)
sin θ sinn−2 θdθdOn−2.

For a fixed point in Sn−2, when θ varies, C can change but not its tangent space.
Then the value of σΣ

i |C does not depend on θ. Therefore∫
Sn−1

σC
n−2 sin θdOn−1 =

=
n−2∑
i=0

(−1)n−2−i

(
n − 2

i

) ∫
Sn−2

(σΣ
i |C)

(∫ π

0

cosn−2−i θ sin θdθ

)
dOn−2

=
n−2∑
i=0

(−1)n−2−i

(
n − 2

i

)
2ε(n − 1 − i)

n − 1 − i

∫
Sn−2

(σΣ
i |C)dOn−2

where ε(n − 1 − i) equals 0 if n − 1 − i is even and 1 if it is odd. From [Lan80] we
have that ∫

RP n−2
(σΣ

i |C)dOn−2 = vol(RPn−2)σΣ
i .

This is a generalization of the well known formula
∫ π

0
kn(θ)dθ = πσ for the mean

curvature σ of a surface. Using this relation we have that∫
Sn−1

σC
n−2 sin θdθdOn−1 =

= 2
n−2∑
i=0

(−1)n−2−i

(
n − 2

i

)
ε(n − 1 − i)
n − 1 − i

On−2 σΣ
i .

Consequently,∫
D∩H �=∅

χ(D ∩ H)dH =
1

On−2

∫
H

∫
C

σC
n−2 dxn−2dH

= 2
n−2∑
i=0

(−1)n−2−i

(
n − 2

i

)
ε(n − 1 − i)
n − 1 − i

∫
Σ

σΣ
i dxn−2.

Reordering indices we have proved our main theorem.

Theorem. If D is a domain in H
n bounded by an embedded hypersurface Σ then∫

D∩H �=∅
χ(D ∩ H)dH = 2

[(n−2)/2]∑
h=0

(
n − 2
2h

)
1

2h + 1
Mn−2−2h(Σ).(16)
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Remark. According to the parity of n we can write different formulas.
For n = 2m + 1,∫

D∩H �=∅
χ(D ∩ H)dH =

2
n − 1

∑
k odd

(
2m

k

)
Mk(Σ).

For n = 2m,∫
D∩H �=∅

χ(D ∩ H)dH =
2

n − 1

∑
k>2 even

(
2m

k + 1

)
Mk(Σ).

When the domain D is h-convex we have χ(D ∩ H) = 1, therefore we can find
the measure of horospheres intersecting an h-convex set.

Corollary 4.1. The total measure of horospheres intersecting an h-convex hyper-
surface Σ can be expressed as a linear combination of its mean curvature integrals.

For H
2 and H

3, formula (16) becomes∫
D∩H �=∅

χ(D ∩ H)dH = 2M0(Σ) = 2 �(Σ)

and ∫
D∩H �=∅

χ(D ∩ H)dH = 2M1(Σ)

respectively. These formulas were given in [San67] and [San68].

Remark. For a convex domain D in H
n, the expression of the measure of hyper-

planes intersecting D contains the volume of D ([San76, p. 310]). For instance, in
H

3 this measure equals M1(∂D) − vol(D). For an h-convex domain D, we have
shown that the expression of the measure of horospheres intersecting D involves
only curvature integrals of its boundary ∂D. This is also the case of hyperplanes
in euclidean space.

In order to compare the measures of horospheres and hyperplanes, consider a
sphere SR of radius R going to infinity. We have

m(L : L ∩ SR �= ∅) = On−1

∫ R

0

coshn−1 rdr

and

m(H : H ∩ SR �= ∅) ≈ 2n−2

n − 1
vol(SR).

When R tends to infinity m(H : H ∩ SR �= ∅)/m(L : L∩ SR �= ∅) tends to 2n−2, so
these measures are of the same order.

Finally, let us give some possible further developments. Hyperplanes are hyper-
surfaces with vanishing normal curvature in every direction and horospheres have
normal curvature equal to 1. Hypersurfaces with constant normal curvature equal
to some λ between 0 and 1 are called equidistants. It seems an interesting problem
to find the measure of equidistants of a given curvature λ that intersect a domain.
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