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Introduction: euclidean plane

• Given a compact convex domain Ω in the

euclidean plane and a random line l, the

expected value of the length σ of the

chord l ∩ Ω is

E(σ) = π
F

L

where F and L are the area and perimeter

of Ω

• When Ω tends to cover the plane we have

that E(σ) tends to ∞
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Introduction: hyperbolic plane

• Given a compact convex domain Ω in

the hyperbolic plane and a random line

l, the expected value of the length σ of

the chord l ∩ Ω is again

E(σ) = π
F

L

where F and L are the area and perimeter

of Ω

• When Ω tends to cover the hyperbolic

plane we don’t have necessarily that E(σ)

tends to infinity

In each case we consider a rigid motion in-

variant density for geodesic lines.

Problem: given a sequence Ωn of compact

convex domains expanding over the whole

hyperbolic plane, find the possible values of

lim
n

area(Ωn)

perimeter(Ωn)
.
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Introduction: hyperbolic plane

Consider the following curves in H2:

1. Geodesics. They have geodesic curvature

equal to 0

2. Horocycles. Curves orthogonal to a pen-

cil of parallel lines. They have geodesic

curvature ±1.

3. Equidistants or λ-geodesics. They are

curves equidistant to geodesics. They

have absolute geodesic curvature λ ∈ (0,1).

When λ = 0 we have geodesics, for λ = 1

horocycles.
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Introduction: hyperbolic plane
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Introduction: hyperbolic plane

Definition. Given λ in [0,1], a set Ω in H2

is λ-convex when for every P, Q ∈ Ω the λ-

geodesics joining them are contained in Ω.

• 0-convex sets are ordinary convex sets

• 1-convex sets are also called h-convex sets

or convex by horocycles

Using Gauss-Bonnet formula and isoperimet-

ric formula L2−4πF −F2 ≥ 0 it is true (San-

taló-Yañez, 1972) that for every sequence Ωn

of h-convex sets expanding over the whole

hyperbolic plane

lim
n

area(Ωn)

perimeter(Ωn)
= 1
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Introduction: hyperbolic plane

• For convex sets expanding over the whole

hyperbolic plane it was proved (Gallego-

Reventós, 85) that

0 ≤ lim inf
n

area(Ωn)

perimeter(Ωn)

≤ lim sup
n

area(Ωn)

perimeter(Ωn)
≤ 1

and it is possible to find examples of se-

quences having as limit all the possible

values between 0 and 1.

How the boundary bends has influence in

the possible limit:

• For λ-convex sets expanding over the who-

le hyperbolic plane it is true (Gallego-

Reventós, 99) that the above limit lies

between λ and 1 and it is possible to find

examples of sequences having as limit all

the possible values between λ and 1.
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Introduction: higher dimensions

• For Hn+1 it was proved (Borisenko-Miquel,

99) for sequences of h-convex sets ex-

panding over the whole hyperbolic space

that

lim
n

vol(Ωn)

vol(∂Ωn)
=

1

n

• For Hn+1 it was proved (Borisenko-Vla-

senko, 99) for sequences of λ-convex sets

expanding over the whole hyperbolic space

that

λ

n
≤ lim inf

n

vol(Ωn)

vol(∂Ωn)

≤ lim sup
n

vol(Ωn)

vol(∂Ωn)
≤ 1

n
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Definitions

Definition. A Hadamard manifold is a sim-

ply connected complete riemannian manifold

with non-positive sectional curvature K

We shall consider Hadamard manifolds such

that K satisfies −k2
2 ≤ K ≤ −k2

1 < 0.

Definition. A domain Ω with C2 boundary

is a λ-convex domain if normal curvatures

with respect the interior normal are greater

or equal than λ in every tangent direction of

the boundary

Definition. An horosphere is the limit of

a geodesic sphere when a point P is fixed

and radius goes to ∞ following a geodesic

through P .

Definition. A domain Ω is h-convex if every

point in the boundary has a locally supporting

horosphere.
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Definitions: remarks

• In the non-regular case we say that a do-
main Ω is λ-convex if for every point in
the boundary there is a regular λ-convex
hypersurface locally supporting Ω.

• Every λ-convex domain is ordinary con-
vex.

• For geodesic spheres of radius r:

k1 coth(k1r) ≤ kn ≤ k2 coth(k2r).

Then for every λ ≤ k1 spheres are λ-
convex.

• If Ω is λ-convex with λ > k2 then the
inner radius r must be less than

1

k2
arctanh

(
k2

λ

)
.

There are no λ-convex domains with λ >
k2 and arbitrary inner radius. λ-convex
domains with λ > k2 are h-convex.

• Horospheres have normal curvature be-
tween k1 and k2.
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Statement of the problem

Let Ω be a convex compact domain in M a

Hadamard manifold with −k2
2 ≤ K ≤ −k2

1 < 0.

vol(Ω) =
∫
Ω

η

vol(∂Ω) =
∫
∂Ω

inη

where n is the outward normal and η the vol-

ume element of M .

This can be written as

vol(Ω) =
∫
Sn

∫ l(u)

0
Ju(t)t

ndtdS

vol(∂Ω) =
∫
Sn

Ju(l(u))l(u)n

< ∂t,n >
dS

Where

• Ju(t) is the jacobian of expO in the point

tu for u ∈ Sn 	 (TOM)1

• ∂t is the radial direction in expO(l(u)u)
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Statement of the problem

Consider

g(u) =
∫ l(u)

0

Ju(t)tn

Ju(l(u))l(u)n
dt.

As geodesics have no conjugate points, com-

paring the jacobian of M with jacobians of

spaces of constant curvature we have

Lemma. If r and R are the inradius and the

circumradius,

f(r) ≤ g(u) ≤ h(R)

with f(r) → 1/nk2 and h(R) → 1/nk1.

Then

f(r)α ≤ vol(Ω)

vol(∂Ω)
≤ h(R)α

where

α =

∫
Sn Ju(l(u))l(u)ndS∫
Sn

Ju(l(u))l(u)n

cosϕ dS

Problem. We need a bound cosϕ ≥ C(r).
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Fundamental lemma

Lemma. Let N be the boundary of a λ-

convex domain Ω defined by t = ρ(θ) with ρ

the distance to the interior point O. If kn is

the normal curvature in the direction of the

gradient of ρ and µn the normal curvature

of the geodesic sphere of radius ρ(θ) in the

direction X (see figure) we have

kn = µn cosϕ +
dϕ

ds

with s the arc parameter of the integral curves

of Y = grad(ρ).

Remark. This is some kind of Liouville for-

mula.
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Bound for cosϕ

Now, as a consequence of the previous lemma

and comparing with the constant curvature

case we can prove a bound for cosϕ.

Proposition. Let Ω be a λ-convex as above

and λ < k2.

• When d(O, N) ≤ 1
k2

arctanh( λ
k2

) we have

cosϕ ≥ 1

k2

√
λ2 cosh2 k2s − k2

2 sinh2 k2s.

where s = 1
k2

arctanh( λ
k2

) − d(O, N).

• When d(O, N) ≥ 1
k2

arctanh( λ
k2

) we have

cosϕ ≥ λ

k2
.
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The quotient of volumes in the general case

Finally, using the bound for cosϕ we obtain

Theorem. Let M be a (n + 1)-dimensional

Hadamard manifold with sectional curvature

K such that

−k2
2 ≤ K ≤ −k2

1 k1, k2 > 0.

Let {Ω(t)}t∈R+ be a family of λ-convex com-

pact domains expanding over the whole space.

Then, if λ ≤ k2

λ

nk2
2

≤ lim inf
t

vol(Ωn)

vol(∂Ωn)

≤ lim sup
t

vol(Ωn)

vol(∂Ωn)
≤ 1

nk1

When λ ≥ k2 the limits take values between

1/nk2 and 1/nk1.
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Some examples in Hn+1

Consider a geodesic ball with radius r > 0

and center in a fixed point O ∈ Hn+1. Let

P1 and P2 be two points defining a geodesic

segment of length 2R > r such that O is

the midpoint. The convex hull of the ball

BO(r) and the points P1, P2 will be denoted

K(R, r). Let Kε(R, r) be the set of the points

at a distance from K(R, r) smaller than ε. It

is a λ-convex set for λ = tanh ε.

Putting R = exp(2r) it can be shown (Gallego-

Reventós-Solanes, 2000) that

lim
r→∞

vol(Kr)

vol∂(Kr)
=

tanh ε

n
=

λ

n
.

Note that the value 1/n can be obtained con-

sidering a sequence of balls.
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