Convexity in hyperbolic spaces

Eduardo Gallego

joint work with

A.A. Borisenko, A. Reventós and G. Solanes

Winter, 2000

Introduction: euclidean plane

Given a compact convex domain Ω in the euclidean plane and a random line l, the expected value of the length σ of the chord l ∩ Ω is

$$E(\sigma) = \pi \frac{F}{L}$$

where F and L are the area and perimeter of $\boldsymbol{\Omega}$

• When Ω tends to cover the plane we have that $E(\sigma)$ tends to ∞

• Given a compact convex domain Ω in the hyperbolic plane and a random line l, the expected value of the length σ of the chord $l \cap \Omega$ is again

$$E(\sigma) = \pi \frac{F}{L}$$

where F and L are the area and perimeter of $\boldsymbol{\Omega}$

• When Ω tends to cover the hyperbolic plane we don't have necessarily that $E(\sigma)$ tends to infinity

In each case we consider a rigid motion invariant density for geodesic lines.

Problem: given a sequence Ω_n of compact convex domains expanding over the whole hyperbolic plane, find the possible values of

 $\lim_{n} \frac{area(\Omega_n)}{perimeter(\Omega_n)}.$

Consider the following curves in \mathbb{H}^2 :

- 1. *Geodesics*. They have geodesic curvature equal to 0
- 2. Horocycles. Curves orthogonal to a pencil of parallel lines. They have geodesic curvature ± 1 .
- 3. Equidistants or λ -geodesics. They are curves equidistant to geodesics. They have absolute geodesic curvature $\lambda \in (0, 1)$.

When $\lambda = 0$ we have geodesics, for $\lambda = 1$ horocycles.

Special curves passing through two points P and Q

Definition. Given λ in [0,1], a set Ω in \mathbb{H}^2 is λ -convex when for every $P, Q \in \Omega$ the λ geodesics joining them are contained in Ω .

- 0-convex sets are ordinary convex sets
- 1-convex sets are also called h-convex sets or convex by horocycles

Using Gauss-Bonnet formula and isoperimetric formula $L^2 - 4\pi F - F^2 \ge 0$ it is true (Santaló-Yañez, 1972) that for every sequence Ω_n of *h*-convex sets expanding over the whole hyperbolic plane

 $\lim_{n} \frac{\operatorname{area}(\Omega_n)}{\operatorname{perimeter}(\Omega_n)} = 1$

6

 For convex sets expanding over the whole hyperbolic plane it was proved (Gallego-Reventós, 85) that

$$egin{array}{ll} 0 &\leq & \displaystyle \liminf_n rac{ \operatorname{area}(\Omega_n) }{ \operatorname{perimeter}(\Omega_n) } \ &\leq & \displaystyle \liminf_n rac{ \operatorname{area}(\Omega_n) }{ \operatorname{perimeter}(\Omega_n) } \leq 1 \end{array}$$

and it is possible to find examples of sequences having as limit all the possible values between 0 and 1.

How the boundary bends has influence in the possible limit:

• For λ -convex sets expanding over the whole hyperbolic plane it is true (Gallego-Reventós, 99) that the above limit lies between λ and 1 and it is possible to find examples of sequences having as limit all the possible values between λ and 1.

Introduction: higher dimensions

 For ℍⁿ⁺¹ it was proved (Borisenko-Miquel, 99) for sequences of *h*-convex sets expanding over the whole hyperbolic space that

$$\lim_{n} \frac{\operatorname{vol}(\Omega_n)}{\operatorname{vol}(\partial \Omega_n)} = \frac{1}{n}$$

For ℍⁿ⁺¹ it was proved (Borisenko-Vlasenko, 99) for sequences of λ-convex sets expanding over the whole hyperbolic space that

$$\frac{\lambda}{n} \leq \liminf_{n} \frac{\operatorname{vol}(\Omega_{n})}{\operatorname{vol}(\partial \Omega_{n})} \\ \leq \limsup_{n} \frac{\operatorname{vol}(\Omega_{n})}{\operatorname{vol}(\partial \Omega_{n})} \leq \frac{1}{n}$$

Definitions

Definition. A Hadamard manifold is a simply connected complete riemannian manifold with non-positive sectional curvature K

We shall consider Hadamard manifolds such that K satisfies $-k_2^2 \le K \le -k_1^2 < 0$.

Definition. A domain Ω with C^2 boundary is a λ -convex domain if normal curvatures with respect the interior normal are greater or equal than λ in every tangent direction of the boundary

Definition. An horosphere is the limit of a geodesic sphere when a point P is fixed and radius goes to ∞ following a geodesic through P.

Definition. A domain Ω is *h*-convex if every point in the boundary has a locally supporting horosphere.

Definitions: remarks

- In the non-regular case we say that a domain Ω is λ -convex if for every point in the boundary there is a regular λ -convex hypersurface locally supporting Ω .
- Every λ -convex domain is ordinary convex.
- For geodesic spheres of radius r:

 $k_1 \operatorname{coth}(k_1 r) \leq k_n \leq k_2 \operatorname{coth}(k_2 r).$ Then for every $\lambda \leq k_1$ spheres are λ -convex.

• If Ω is λ -convex with $\lambda > k_2$ then the inner radius r must be less than

$$\frac{1}{k_2}$$
arctanh $\left(\frac{k_2}{\lambda}\right)$.

There are no λ -convex domains with $\lambda > k_2$ and arbitrary inner radius. λ -convex domains with $\lambda > k_2$ are *h*-convex.

• Horospheres have normal curvature between k_1 and k_2 .

Statement of the problem

Let Ω be a convex compact domain in M a Hadamard manifold with $-k_2^2 \leq K \leq -k_1^2 < 0$.

$$\operatorname{vol}(\Omega) = \int_{\Omega} \eta$$

 $\operatorname{vol}(\partial \Omega) = \int_{\partial \Omega} i_{\mathbf{n}} \eta$

where **n** is the outward normal and η the volume element of M.

This can be written as

$$\operatorname{vol}(\Omega) = \int_{S^n} \int_0^{l(u)} J_u(t) t^n dt dS$$
$$\operatorname{vol}(\partial \Omega) = \int_{S^n} \frac{J_u(l(u))l(u)^n}{\langle \partial_t, \mathbf{n} \rangle} dS$$

Where

- $J_u(t)$ is the jacobian of \exp_O in the point tu for $u \in S^n \simeq (T_O M)^1$
- ∂_t is the radial direction in $\exp_O(l(u)u)$

Statement of the problem

Consider

$$g(u) = \int_0^{l(u)} \frac{J_u(t)t^n}{J_u(l(u))l(u)^n} \mathrm{d}t.$$

As geodesics have no conjugate points, comparing the jacobian of M with jacobians of spaces of constant curvature we have

Lemma. If r and R are the inradius and the circumradius,

 $f(r) \le g(u) \le h(R)$

with $f(r) \rightarrow 1/nk_2$ and $h(R) \rightarrow 1/nk_1$.

Then

$$f(r)\alpha \leq rac{\operatorname{vol}(\Omega)}{\operatorname{vol}(\partial\Omega)} \leq h(R)\alpha$$

where

$$\alpha = \frac{\int_{S^n} J_u(l(u))l(u)^n dS}{\int_{S^n} \frac{J_u(l(u))l(u)^n}{\cos\varphi} dS}$$

Problem. We need a bound $\cos \varphi \ge C(r)$.

Fundamental lemma

Lemma. Let *N* be the boundary of a λ convex domain Ω defined by $t = \rho(\theta)$ with ρ the distance to the interior point *O*. If k_n is the normal curvature in the direction of the gradient of ρ and μ_n the normal curvature of the geodesic sphere of radius $\rho(\theta)$ in the direction *X* (see figure) we have

$$k_n = \mu_n \cos \varphi + \frac{d\varphi}{ds}$$

with s the arc parameter of the integral curves of $Y = \operatorname{grad}(\rho)$.

Remark. This is some kind of Liouville formula.

Bound for $\cos \varphi$

Now, as a consequence of the previous lemma and comparing with the constant curvature case we can prove a bound for $\cos \varphi$.

Proposition. Let Ω be a λ -convex as above and $\lambda < k_2$. • When $d(O, N) \leq \frac{1}{k_2} \operatorname{arctanh}(\frac{\lambda}{k_2})$ we have $\cos \varphi \geq \frac{1}{k_2} \sqrt{\lambda^2 \cosh^2 k_2 s - k_2^2 \sinh^2 k_2 s}.$ where $s = \frac{1}{k_2} \operatorname{arctanh}(\frac{\lambda}{k_2}) - d(O, N).$ • When $d(O, N) \geq \frac{1}{k_2} \operatorname{arctanh}(\frac{\lambda}{k_2})$ we have $\cos \varphi \geq \frac{\lambda}{k_2}.$

The quotient of volumes in the general case

Finally, using the bound for $\cos\varphi$ we obtain

Theorem. Let M be a (n + 1)-dimensional Hadamard manifold with sectional curvature K such that

$$-k_2^2 \le K \le -k_1^2 \qquad k_1, k_2 > 0.$$

Let $\{\Omega(t)\}_{t\in\mathbb{R}^+}$ be a family of λ -convex compact domains expanding over the whole space. Then, if $\lambda \leq k_2$

$$\begin{aligned} \frac{\lambda}{nk_2^2} &\leq \lim_t \inf \frac{vol(\Omega_n)}{vol(\partial\Omega_n)} \\ &\leq \lim_t \sup \frac{vol(\Omega_n)}{vol(\partial\Omega_n)} \leq \frac{1}{nk_1} \end{aligned}$$

When $\lambda \ge k_2$ the limits take values between $1/nk_2$ and $1/nk_1$.

Some examples in \mathbb{H}^{n+1}

Consider a geodesic ball with radius r > 0and center in a fixed point $O \in \mathbb{H}^{n+1}$. Let P_1 and P_2 be two points defining a geodesic segment of length 2R > r such that O is the midpoint. The convex hull of the ball $B_O(r)$ and the points P_1, P_2 will be denoted K(R, r). Let $K_{\epsilon}(R, r)$ be the set of the points at a distance from K(R, r) smaller than ϵ . It is a λ -convex set for $\lambda = \tanh \epsilon$.

Putting $R = \exp(2r)$ it can be shown (Gallego-Reventós-Solanes, 2000) that

$$\lim_{r \to \infty} \frac{\operatorname{vol}(K_r)}{\operatorname{vol}\partial(K_r)} = \frac{\tanh \epsilon}{n} = \frac{\lambda}{n}$$

Note that the value 1/n can be obtained considering a sequence of balls.

16

References

- L. A. Santaló and I. Yañez. Averages for polygons formed by random lines in Euclidean and hyperbolic planes. J. Appl. Probability, 9:140–157, 1972.
- 2. E. Gallego and A. Reventós. Asymptotic behavior of convex sets in the hyperbolic plane. J. Differential Geom., 21(1):63–72, 1985.
- 3. E. Gallego and A. Reventós. Asymptotic behaviour of λ -convex sets in the hyperbolic plane. *Geom. Dedicata*, 76(3):275–289, 1999.
- 4. A. A. Borisenko and V. Miquel. Total curvatures of convex hypersurfaces in hyperbolic space. *Illinois J. Math.*, 43(1):61–78, 1999.
- A. A. Borisenko and D. I. Vlasenko. Asymptotic behavoir of volume of convex sets in hadamard manifolds. *Mat. Fiz. Anal. Geom.*, 6(3/4):223– 233, 1999.
- A. A. Borisenko, E. Gallego and A. Reventós. Relation between area and volume for λ–convex sets in Hadamard manifolds. To appear in *Journal of Diff. Geom. and Applications*, 2000.
- 7. E. Gallego, A. Reventós and G. Solanes. Some examples of the asymptotic behavior of convex sets in Hadamard manifolds. *Preprint*, 2000.