# Convexity in hyperbolic spaces 

## Eduardo Gallego

joint work with

A.A. Borisenko, A. Reventós and G. Solanes

Winter, 2000

## Introduction: euclidean plane

- Given a compact convex domain $\Omega$ in the euclidean plane and a random line $l$, the expected value of the length $\sigma$ of the chord $l \cap \Omega$ is

$$
E(\sigma)=\pi \frac{F}{L}
$$

where $F$ and $L$ are the area and perimeter of $\Omega$

- When $\Omega$ tends to cover the plane we have that $E(\sigma)$ tends to $\infty$



## Introduction: hyperbolic plane

- Given a compact convex domain $\Omega$ in the hyperbolic plane and a random line $l$, the expected value of the length $\sigma$ of the chord $l \cap \Omega$ is again

$$
E(\sigma)=\pi \frac{F}{L}
$$

where $F$ and $L$ are the area and perimeter of $\Omega$

- When $\Omega$ tends to cover the hyperbolic plane we don't have necessarily that $E(\sigma)$ tends to infinity

In each case we consider a rigid motion invariant density for geodesic lines.

Problem: given a sequence $\Omega_{n}$ of compact convex domains expanding over the whole hyperbolic plane, find the possible values of

$$
\lim _{n} \frac{\operatorname{area}\left(\Omega_{n}\right)}{\operatorname{perimeter}\left(\Omega_{n}\right)} .
$$

## Introduction: hyperbolic plane

Consider the following curves in $\mathbb{H}^{2}$ :

1. Geodesics. They have geodesic curvature equal to 0
2. Horocycles. Curves orthogonal to a pencil of parallel lines. They have geodesic curvature $\pm 1$.
3. Equidistants or $\lambda$-geodesics. They are curves equidistant to geodesics. They have absolute geodesic curvature $\lambda \in(0,1)$.

When $\lambda=0$ we have geodesics, for $\lambda=1$ horocycles.

## Introduction: hyperbolic plane



Different curves in the hyperbolic plane


## Special curves passing through two points P and Q

## Introduction: hyperbolic plane

Definition. Given $\lambda$ in $[0,1]$, a set $\Omega$ in $\mathbb{H}^{2}$ is $\lambda$-convex when for every $P, Q \in \Omega$ the $\lambda$ geodesics joining them are contained in $\Omega$.

- 0-convex sets are ordinary convex sets
- 1-convex sets are also called $h$-convex sets or convex by horocycles

Using Gauss-Bonnet formula and isoperimetric formula $L^{2}-4 \pi F-F^{2} \geq 0$ it is true (San-taló-Yañez, 1972) that for every sequence $\Omega_{n}$ of $h$-convex sets expanding over the whole hyperbolic plane

$$
\lim _{n} \frac{\operatorname{area}\left(\Omega_{n}\right)}{\operatorname{perimeter}\left(\Omega_{n}\right)}=1
$$

## Introduction: hyperbolic plane

- For convex sets expanding over the whole hyperbolic plane it was proved (GallegoReventós, 85) that

$$
\begin{aligned}
0 & \leq \lim _{n} \inf \frac{\operatorname{area}\left(\Omega_{n}\right)}{\operatorname{perimeter}\left(\Omega_{n}\right)} \\
& \leq \lim _{n} \sup \frac{\operatorname{area}\left(\Omega_{n}\right)}{\operatorname{perimeter}\left(\Omega_{n}\right)} \leq 1
\end{aligned}
$$

and it is possible to find examples of sequences having as limit all the possible values between 0 and 1.

How the boundary bends has influence in the possible limit:

- For $\lambda$-convex sets expanding over the whole hyperbolic plane it is true (GallegoReventós, 99) that the above limit lies between $\lambda$ and 1 and it is possible to find examples of sequences having as limit all the possible values between $\lambda$ and 1 .


## Introduction: higher dimensions

- For $\mathbb{H}^{n+1}$ it was proved (Borisenko-Miquel, 99) for sequences of $h$-convex sets expanding over the whole hyperbolic space that

$$
\lim _{n} \frac{\operatorname{vol}\left(\Omega_{n}\right)}{\operatorname{vol}\left(\partial \Omega_{n}\right)}=\frac{1}{n}
$$

- For $\mathbb{H}^{n+1}$ it was proved (Borisenko-Vlasenko, 99) for sequences of $\lambda$-convex sets expanding over the whole hyperbolic space that

$$
\begin{aligned}
\frac{\lambda}{n} & \leq \liminf _{n} \frac{\operatorname{vol}\left(\Omega_{n}\right)}{\operatorname{vol}\left(\partial \Omega_{n}\right)} \\
& \leq \limsup _{n}^{\operatorname{vol}\left(\Omega_{n}\right)} \frac{1}{\operatorname{vol}\left(\partial \Omega_{n}\right)} \leq \frac{1}{n}
\end{aligned}
$$

## Definitions

Definition. A Hadamard manifold is a simply connected complete riemannian manifold with non-positive sectional curvature $K$

We shall consider Hadamard manifolds such that $K$ satisfies $-k_{2}^{2} \leq K \leq-k_{1}^{2}<0$.

Definition. A domain $\Omega$ with $C^{2}$ boundary is a $\lambda$-convex domain if normal curvatures with respect the interior normal are greater or equal than $\lambda$ in every tangent direction of the boundary

Definition. An horosphere is the limit of a geodesic sphere when a point Pis fixed and radius goes to $\infty$ following a geodesic through $P$.

Definition. A domain $\Omega$ is $h$-convex if every point in the boundary has a locally supporting horosphere.

## Definitions: remarks

- In the non-regular case we say that a domain $\Omega$ is $\lambda$-convex if for every point in the boundary there is a regular $\lambda$-convex hypersurface locally supporting $\Omega$.
- Every $\lambda$-convex domain is ordinary convex.
- For geodesic spheres of radius $r$ :
$k_{1} \operatorname{coth}\left(k_{1} r\right) \leq k_{n} \leq k_{2} \operatorname{coth}\left(k_{2} r\right)$.
Then for every $\lambda \leq k_{1}$ spheres are $\lambda$ convex.
- If $\Omega$ is $\lambda$-convex with $\lambda>k_{2}$ then the inner radius $r$ must be less than

$$
\frac{1}{k_{2}} \operatorname{arctanh}\left(\frac{k_{2}}{\lambda}\right) .
$$

There are no $\lambda$-convex domains with $\lambda>$ $k_{2}$ and arbitrary inner radius. $\lambda$-convex domains with $\lambda>k_{2}$ are $h$-convex.

- Horospheres have normal curvature between $k_{1}$ and $k_{2}$.


## Statement of the problem

Let $\Omega$ be a convex compact domain in $M$ a Hadamard manifold with $-k_{2}^{2} \leq K \leq-k_{1}^{2}<0$.

$$
\begin{aligned}
\operatorname{vol}(\Omega) & =\int_{\Omega} \eta \\
\operatorname{vol}(\partial \Omega) & =\int_{\partial \Omega} i_{\mathbf{n}} \eta
\end{aligned}
$$

where $\mathbf{n}$ is the outward normal and $\eta$ the volume element of $M$.

This can be written as

$$
\begin{aligned}
\operatorname{vol}(\Omega) & =\int_{S^{n}} \int_{0}^{l(u)} J_{u}(t) t^{n} d t d S \\
\operatorname{vol}(\partial \Omega) & =\int_{S^{n}} \frac{J_{u}(l(u)) l(u)^{n}}{\left\langle\partial_{t}, \mathbf{n}>\right.} d S
\end{aligned}
$$

Where

- $J_{u}(t)$ is the jacobian of $\exp _{O}$ in the point $t u$ for $u \in S^{n} \simeq\left(T_{O} M\right)^{1}$
- $\partial_{t}$ is the radial direction in $\exp _{O}(l(u) u)$


## Statement of the problem

Consider

$$
g(u)=\int_{0}^{l(u)} \frac{J_{u}(t) t^{n}}{J_{u}(l(u)) l(u)^{n}} \mathrm{~d} t
$$

As geodesics have no conjugate points, comparing the jacobian of $M$ with jacobians of spaces of constant curvature we have

Lemma. If $r$ and $R$ are the inradius and the circumradius,

$$
f(r) \leq g(u) \leq h(R)
$$

with $f(r) \rightarrow 1 / n k_{2}$ and $h(R) \rightarrow 1 / n k_{1}$.

## Then

$$
f(r) \alpha \leq \frac{\operatorname{vol}(\Omega)}{\operatorname{vol}(\partial \Omega)} \leq h(R) \alpha
$$

where

$$
\alpha=\frac{\int_{S^{n}} J_{u}(l(u)) l(u)^{n} d S}{\int_{S^{n}} \frac{J_{u}(l(u)) l(u)^{n}}{\cos \varphi} d S}
$$

Problem. We need a bound $\cos \varphi \geq C(r)$.

## Fundamental Iemma

Lemma. Let $N$ be the boundary of a $\lambda$ convex domain $\Omega$ defined by $t=\rho(\theta)$ with $\rho$ the distance to the interior point $O$. If $k_{n}$ is the normal curvature in the direction of the gradient of $\rho$ and $\mu_{n}$ the normal curvature of the geodesic sphere of radius $\rho(\theta)$ in the direction $X$ (see figure) we have

$$
k_{n}=\mu_{n} \cos \varphi+\frac{d \varphi}{d s}
$$

with $s$ the arc parameter of the integral curves of $Y=\operatorname{grad}(\rho)$.


Remark. This is some kind of Liouville formula.

## Bound for $\cos \varphi$

Now, as a consequence of the previous lemma and comparing with the constant curvature case we can prove a bound for $\cos \varphi$.

Proposition. Let $\Omega$ be a $\lambda$-convex as above and $\lambda<k_{2}$.

- When $d(O, N) \leq \frac{1}{k_{2}} \operatorname{arctanh}\left(\frac{\lambda}{k_{2}}\right)$ we have

$$
\cos \varphi \geq \frac{1}{k_{2}} \sqrt{\lambda^{2} \cosh ^{2} k_{2} s-k_{2}^{2} \sinh ^{2} k_{2} s}
$$

where $s=\frac{1}{k_{2}} \operatorname{arctanh}\left(\frac{\lambda}{k_{2}}\right)-d(O, N)$.

- When $d(O, N) \geq \frac{1}{k_{2}} \operatorname{arctanh}\left(\frac{\lambda}{k_{2}}\right)$ we have

$$
\cos \varphi \geq \frac{\lambda}{k_{2}}
$$

## The quotient of volumes in the general case

Finally, using the bound for $\cos \varphi$ we obtain

Theorem. Let $M$ be a $(n+1)$-dimensional Hadamard manifold with sectional curvature K such that

$$
-k_{2}^{2} \leq K \leq-k_{1}^{2} \quad k_{1}, k_{2}>0
$$

Let $\{\Omega(t)\}_{t \in \mathbb{R}^{+}}$be a family of $\lambda$-convex compact domains expanding over the whole space. Then, if $\lambda \leq k_{2}$

$$
\begin{aligned}
\frac{\lambda}{n k_{2}^{2}} & \leq \liminf _{t} \frac{\operatorname{vol}\left(\Omega_{n}\right)}{\operatorname{vol}\left(\partial \Omega_{n}\right)} \\
& \leq \limsup _{t}^{\operatorname{vol}\left(\Omega_{n}\right)} \frac{1}{\operatorname{vol}\left(\partial \Omega_{n}\right)} \leq \frac{1}{n k_{1}}
\end{aligned}
$$

When $\lambda \geq k_{2}$ the limits take values between $1 / n k_{2}$ and $1 / n k_{1}$.

## Some examples in $\mathbb{H}^{n+1}$

Consider a geodesic ball with radius $r>0$ and center in a fixed point $O \in \mathbb{H}^{n+1}$. Let $P_{1}$ and $P_{2}$ be two points defining a geodesic segment of length $2 R>r$ such that $O$ is the midpoint. The convex hull of the ball $B_{O}(r)$ and the points $P_{1}, P_{2}$ will be denoted $K(R, r)$. Let $K_{\epsilon}(R, r)$ be the set of the points at a distance from $K(R, r)$ smaller than $\epsilon$. It is a $\lambda$-convex set for $\lambda=\tanh \epsilon$.


Putting $R=\exp (2 r)$ it can be shown (Gallego-Reventós-Solanes, 2000) that

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{vol}\left(K_{r}\right)}{\operatorname{vol} \partial\left(K_{r}\right)}=\frac{\tanh \epsilon}{n}=\frac{\lambda}{n} .
$$

Note that the value $1 / n$ can be obtained considering a sequence of balls.

## References

1. L. A. Santaló and I. Yañez. Averages for polygons formed by random lines in Euclidean and hyperbolic planes. J. Appl. Probability, 9:140-157, 1972.
2. E. Gallego and A. Reventós. Asymptotic behavior of convex sets in the hyperbolic plane. J. Differential Geom., 21(1):63-72, 1985.
3. E. Gallego and A. Reventós. Asymptotic behaviour of $\lambda$-convex sets in the hyperbolic plane. Geom. Dedicata, 76(3):275-289, 1999.
4. A. A. Borisenko and V. Miquel. Total curvatures of convex hypersurfaces in hyperbolic space. Illinois J. Math., 43(1):61-78, 1999.
5. A. A. Borisenko and D. I. Vlasenko. Asymptotic behavoir of volume of convex sets in hadamard manifolds. Mat. Fiz. Anal. Geom., 6(3/4):223233, 1999.
6. A. A. Borisenko, E. Gallego and A. Reventós. ReIation between area and volume for $\lambda$-convex sets in Hadamard manifolds. To appear in Journal of Diff. Geom. and Applications, 2000.
7. E. Gallego, A. Reventós and G. Solanes. Some examples of the asymptotic behavior of convex sets in Hadamard manifolds. Preprint, 2000.
