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e Given a compact convex domain €2 in the
euclidean plane and a random line [, the
expected value of the length o of the
chord [ N2 is

F
E(o) = T
where F' and L are the area and perimeter
of Q2

e \When 2 tends to cover the plane we have
that E(o) tends to oo



Introduction: hyperbolic plane

e Given a compact convex domain €2 in
the hyperbolic plane and a random line
[, the expected value of the length o of
the chord [ N 2 is again

E(oc) = 7'('%

where F' and L are the area and perimeter
of 2

e \When (2 tends to cover the hyperbolic
plane we don't have necessarily that E(o)
tends to infinity

In each case we consider a rigid motion in-
variant density for geodesic lines.

Problem: given a sequence 2, of compact
convex domains expanding over the whole
hyperbolic plane, find the possible values of

im area(2n)
n perimeter(2,)




Introduction: hyperbolic plane

Consider the following curves in HZ2:

1. Geodesics. They have geodesic curvature
equal to O

2. Horocycles. Curves orthogonal to a pen-
cil of parallel lines. They have geodesic
curvature £1.

3. Equidistants or A-geodesics. They are
curves equidistant to geodesics. They
have absolute geodesic curvature A € (0, 1).

When A = 0 we have geodesics, for A = 1
horocycles.



Introduction: hyperbolic plane

horocycle

circle

ocycle

equidistant equidistant geodesic

Different curves in the hyperbolic plane

Special curves passing through two points P and Q



Definition. Given ) in [0,1], a set 2 in H?
is A-convex when for every P,Q € 2 the \-
geodesics joining them are contained in 2.

e O-convex sets are ordinary convex sets

e 1-convex sets are also called h-convex sets
or convex by horocycles

Using Gauss-Bonnet formula and isoperimet-
ric formula L2 —4xF — F2 > 0 it is true (San-
talo-Yanez, 1972) that for every sequence Q2
of h-convex sets expanding over the whole
hyperbolic plane

im area(2n)
n perimeter(,)



Introduction: hyperbolic plane

e FOr convex sets expanding over the whole
hyperbolic plane it was proved (Gallego-
Reventds, 85) that

0 < liminf__2realsen)
n  perimeter(2y)
area (<2
< limsup (€2n) <1

n  perimeter(2,) —

and it is possible to find examples of se-
quences having as limit all the possible
values between 0 and 1.

How the boundary bends has influence in
the possible limit:

e For \-convex sets expanding over the who-
le hyperbolic plane it is true (Gallego-
Reventds, 99) that the above limit lies
between X\ and 1 and it is possible to find
examples of sequences having as limit all
the possible values between A and 1.



Introduction: higher dimensions

e For H**1 it was proved (Borisenko-Miquel,
99) for sequences of h-convex sets ex-
panding over the whole hyperbolic space

that
vol(2,) 1

Im = —
n o vol(02n) n

e For H*+1 it was proved (Borisenko-Vla-
senko, 99) for sequences of A\-convex sets
expanding over the whole hyperbolic space

that

A iminf YOlS2n)
n n vol(02n)
1 (€2 1
< limsup vol(S2n) < =
n  vol(02n) ~ n



Definition. A Hadamard manifold is a sim-
ply connected complete riemannian manifold
with non-positive sectional curvature K

We shall consider Hadamard manifolds such
that K satisfies —k3 < K < —k% < 0.

Definition. A domain Q with C? boundary
is a A-convex domain if normal curvatures
with respect the interior normal are greater
or equal than X\ in every tangent direction of
the boundary

Definition. An horosphere is the limit of
a geodesic sphere when a point Pis fixed
and radius goes to oo following a geodesic
through P.

Definition. A domain €2 is h-convex if every
point in the boundary has a locally supporting
horosphere.



In the non-regular case we say that a do-
main 2 is A-convex if for every point in
the boundary there is a regular A-convex
hypersurface locally supporting 2.

Every A-convex domain is ordinary con-
VexX.

For geodesic spheres of radius r:
k1 COth(le‘) < kn < ko COth(kQT).

Then for every A < k1 spheres are M-
convex.

If €2 is A-convex with A > ko then the
inner radius » must be less than
iarctanh (@> :
ko A
There are no A-convex domains with A >
ko> and arbitrary inner radius. A-convex
domains with A > k> are h-convex.

Horospheres have normal curvature be-
tween k1 and ko.
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Let €2 be a convex compact domain in M a
Hadamard manifold with —k3 < K < —k% < 0.

Jo
vol(9) = /aQ inn

where n is the outward normal and n the vol-
ume element of M.

vol(2)

This can be written as

vol(Q) = / ) /Ol(u) Tu (Dt dtdS
vol(9Q) = / Jug(gnl(ﬁ)nds
mn t?n
Where

e J,(t) is the jacobian of expy in the point
tu for u € 8" ~ (ToM)1

e 0; is the radial direction in expo(l(u)u)
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Statement of the problem

Consider

) Ty ()t
g(u) —/O Ju(l(u))l(u)ndt'

As geodesics have no conjugate points, com-
paring the jacobian of M with jacobians of
spaces of constant curvature we have

Lemma. Ifr and R are the inradius and the
circumradius,

f(r) <g(u) <h(R)
with f(r) — 1/nky and h(R) — 1/nk1.

Then

vol(2)
fra < gy < h(R)a

where

 _ Jsn Ju(())I(w)"dS
[RERUD I

COS ¢

Problem. We need a bound cosyp > C(r).
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Fundamental lemmma

Lemma. Let N be the boundary of a A\
convex domain 2 defined by t = p(0) with p
the distance to the interior point O. If k., is
the normal curvature in the direction of the
gradient of p and un, the normal curvature
of the geodesic sphere of radius p(0) in the
direction X (see figure) we have

n:MnCOSSO+d—

with s the arc parameter of the integral curves
of Y = grad(p).

of)

O

Remark. This is some kind of Liouville for-
mula.
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Bound for cosop

Now, as a consequence of the previous lemma
and comparing with the constant curvature
case we can prove a bound for cosp.

Proposition. Let 2 be a A\-convex as above
and A < ko.
e When d(O,N) < k—lzarctanh(k—”\z) we have

1
COSp > k—\/)\z cosh? kos — k:% sinh? kos.
2

where s = k—garctanh(%) —d(O,N).
e When d(O,N) > k—garctanh(k—);) we have

cos p > A
QO_—.
ko
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The quotient of volumes in the general case

Finally, using the bound for cosy we obtain

Theorem. Let M be a (n+ 1)-dimensional
Hadamard manifold with sectional curvature
K such that

—k3 < K < —k? k1, ko > 0.

Let {Q2(¢)},cp+ be a family of A-convex com-
pact domains expanding over the whole space.
Then, if A <k»

A ol(€2
A< liming 2ME20)
nks t  vol(02n)
1(S2 1
< limsup vol($2n) <

- t  vol(02yn) — nky
When A\ > ko the limits take values between
1/nk2 and 1/7?,/%1.
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Hn—l—l

Consider a geodesic ball with radius r > 0O
and center in a fixed point O € H*t1, Let
P; and P> be two points defining a geodesic
segment of length 2R > r such that O is
the midpoint. The convex hull of the ball
Bp(r) and the points Py, P> will be denoted
K(R,r). Let Kc(R,r) be the set of the points
at a distance from K(R,r) smaller than e. It
IS a A-convex set for A = tanhe.

Putting R = exp(2r) it can be shown (Gallego-
Reventds-Solanes, 2000) that

Vol(Ky)  tanhe A

Im :
r—00 volO(Ky) n n
Note that the value 1/n can be obtained con-

sidering a sequence of balls.
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