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Abstract. In this paper we study the relation between the asymptotic values
of the ratios area/length (F/L) and diameter/length (D/L) of a sequence of
convex sets expanding over the whole hyperbolic plane. It is known (cf. [3]
and [2]) that F/L goes to a value between 0 and 1 depending on the shape
of the contour. Here, first of all it is seen that D/L has limit value between
0 and 1/2 in strong contrast with the euclidean situation in which the lower
bound is 1/π (D/L = 1/π if and only if the convex set has constant width).
Moreover, it is shown that, as the limit of D/L approaches to 1/2, the possible
limit values of F/L reduce. Examples of all possible limits F/L and D/L are
given.

1. Introduction

In hyperbolic geometry, given a point p exterior to a line l there are infinitely
many non secant lines. These lines lie between the two so called parallel lines to
l. When the distance from p to l grows to infinity, the angle between the parallel
lines goes to 0. This fact leads to the ambiguous idea that, in some sense, given a
line l, the probability that a random line meets l is zero. In order to formalize this
idea let us restrict our attention to the interiors of a sequence (Kn) of convex sets
in the hyperbolic plane expanding to fill it. The probability for a random chord of
Kn to meet r inside Kn should go to 0 as n → ∞. It can be proved by using the
Cauchy-Crofton formula, that this probability is 2σn/Ln, where σn is the length
of the chord l ∩ Kn and Ln denotes the length of ∂Kn. Because the length of the
chord σn is less or equal than the diameter Dn of Kn, the study of lim σn/Ln is
related to the knowledge of the asymptotic value of the ratio Dn/Ln where Dn.

The question of whether the asymptotic value of D/L is zero or not already
appeared in [7]. In the present text we will see that there are many possible val-
ues for this limit and we will find them all. More precisely we will prove that
for every e ∈ [0, 1/2] there is a sequence (Kn) of hyperbolic convex sets such
that lim Dn/Ln = e. In fact it will be seen that, for convex sets with respect
to equidistants intersecting infinity with angle θ, this limit can take values only
below (sin θ)/2.

It must be noticed that in the euclidean case the situation is quite different: any
convex set satisfies 1/π ≤ D/L ≤ 1/2. The lower bound is reached only by constant
width sets and the upper bound by the segments.

The paper is organized as follows. In sections 2 and 3 we introduce the basic
concepts and notation. In section 4 we find lower and upper bounds for D/L in the
λ-convex case, concluding that the asymptotic value of D/L for h-convex sequences
is 0. Section 5 is devoted to the construction of examples showing that the preceding
bounds are the best possible. In section 6 we recall the asymptotic behavior of the
quotient F/L being F the area of the convex sets. We introduce, in section 7, the
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metric space of hyperbolic convex sets in order to treat an isoperimetric problem.
Finally, in section 8, we give the relation between the asymptotic values of D/L
and F/L. More precisely, we can state that

lim
n→∞

Fn

Ln
≤

√

1 −
(

2 lim
n→∞

Dn

Ln

)2

.

We wish to thank professor A. Reventós for many helpful conversations during the
preparation of this work.

2. The hyperbolic plane

In this section we introduce the hyperbolic plane as well as some basic facts
that will be used later on. The hyperbolic plane, H2, is the unique complete simply
connected Riemannian manifold of dimension 2 with constant curvature −1. Its
geometry corresponds to the one obtained from the absolute geometry given by the
first four Euclid postulates and the Lobachevsky postulate: through every point P
exterior to a line l pass more than one line not intersecting l. It is useful to have
different models for this geometry, we shall describe their points, lines (geodesics)
and rigid motions:
Half-plane model. It is the half-plane {(x, y) ∈ R2|y > 0} with the metric 1

y2 (dx2 +
dy2). The geodesics are half-circles centered in {y = 0} and vertical half-lines.
The rigid motions are composition of inversions with respect to these circles and
symmetries with respect to these lines. This model is conformal since the metric is
a multiple of the euclidean metric.
Disk model. It is the unit disk with the metric 4

(1−x2−y2)2 (dx2 + dy2). This model
is also conformal. The geodesics are the a diameters of the disk and the arcs of
circumference orthogonal to the border. The rigid motions are homographies of the
complex plane fixing the disk.
Projective model. It is the unit disk with the metric 1

1−r2 ( 1
1−r2 dr2 + r2dθ2) where

(r, θ) are the euclidean polar coordinates centered at the origin. The geodesics are
chords of the disk. This fact makes this model become very useful when studying
questions related to convex sets. The rigid motions are the projectivities fixing the
disk.

In the following sections polar coordinates will be useful in the treatment of some
problems. Whatever it is the model we work in, we can parametrize the points of
the hyperbolic plane in the following way. Let O be a point called origin. We
choose in O a direction v ∈ TOH2. For each point P , let r be the length of the
geodesic segment joining O and P , and let θ be the angle between this segment
and v. Now, H2 \ {O} is perfectly parametrized by the coordinates (r, θ). It can be
easily checked out that in these coordinates the metric is written as follows.

g = dr2 + (sinh r)2dθ2.

The volume element will be then sinh rdrdθ and the area and perimeter of a cir-
cumference of radius r in H2 are

L =
∫ 2π

0
sinh rdθ = 2π sinh r, F =

∫ r

0

∫ 2π

0
sinh rdθdr = 2π(cosh r − 1).

We shall need some formulas in hyperbolic trigonometry; proofs can be found in
[5]. Let a, b and c be three sides of a geodesic triangle and let α, β and γ be their
opposite angles. The following identities are then verified:

cosh a = cosh b cosh c − sinh b sinh c cos α,
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sinha

sinα
=

sinh b

sin β
=

sinh c

sin γ
,

sinh a cos β = cosh b sinh c − sinh b cosh c cos α.

The area of such triangle is

F = π − (α + β + γ).

It is said that the area equals the angular defect.
To end this section we will just state some integral geometric formulas used later

on. The isoperimetric inequality

L2 − 4πF − F 2 ≥ 0(1)

gives a relation between perimeter L and area F of an arbitrary compact domain
in H2.

The Cauchy-Crofton theorem expresses the length of a curve in terms of the
measure of lines (counted with its multiplicity) intersecting it. More precisely

2L =
∫

r∩C 6=∅
n(r)dr

where dr is a normalized isometry invariant density of geodesic lines and n(r) the
number of intersecting points of r and the curve C (cf. [6]).

3. Convexity and λ-convexity

In this section we introduce the concept of λ-convexity as well as some basic
known facts about it. For a more detailed introduction see [3].

Definition 3.1. A subset K ⊂ H2 is said to be convex if for every pair of points
in K, the geodesic segment joining them is also in K.

Notice that a set in H2 is convex if and only if in the projective model it looks
like an euclidean convex set.

Definition 3.2. A closed convex set with nonempty interior is called a convex
domain.

From now on all convex sets will be compact convex domains. If K is a convex
set, then ∂K is C2 except from, at most, a countable set of points. Moreover, ∂K
must have finite length, which is called the perimeter L of K, and the area F of K
must be finite too. The diameter is given by D = max{d(p, q) | p, q ∈ ∂K}.

Definition 3.3. A sequence (Kn) of convex sets is said to expand over the whole
hyperbolic plane if Kn ⊂ Kn+1 and ∀p ∈ H2 there is an n such that p ∈ Kn.

As in the euclidean case we have

Lemma 3.1. A compact domain with piecewise C2 boundary is convex if and only
if its geodesic curvature does not change the sign and in the non C2 points the
interior angles are not greater than π.

Given a geodesic line l in the euclidean plane, the set of equidistant points to
l are two parallel lines symmetric with respect to l. In the hyperbolic plane this
is no longer true; the set of equidistant points to l are two smooth curves called
equidistants. If we consider the half-plane model, the equidistant curves to the
hyperbolic line x = 0 are euclidean half-lines passing through (0,0). Indeed any
geodesic arc with center in (0, 0) going from x = 0 to y = mx has the same length
because they are (euclidean) homothetic and every homothety with center in the
axis y = 0 is the composition of two inversions with respect circumferences centered
in y = 0 which are hyperbolic isometries. In fact, if m = tan θ the length of these
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Figure 1

geodesic arcs is equal to log(cot θ/2). In this model (and in the disk model too)
equidistant lines are, in general, arcs of euclidean circles meeting the infinity at two
points. Every equidistant separates the plane in two regions such that only one of
them is convex.

Definition 3.4. A λ-geodesic is an equidistant line meeting the infinity with an
angle θ such that | cos θ| = λ.

0-geodesic lines are geodesics. It must be noticed that λ-geodesics have constant
geodesic curvature ±λ at every point and the distance to equidistant geodesics is
arctanh(λ).

Definition 3.5. An horocycle is a continuous curve orthogonal to a bundle of
parallel lines.

In the half-plane and disk models, horocycles are euclidean circles tangent to the
boundary. It can be easily seen that horocycles have constant geodesic curvature
equal to ±1, so when λ goes to 1 they can be considered a limit case of λ-geodesics.
From now on geodesics and horocycles will be considered as particular cases of
λ-geodesic lines.

As λ-geodesics are the unique solutions of the ordinary differential equation of
order two kg = ±λ, given two points there are two and only two λ-geodesics passing
through them. The length of these λ-geodesic segments will be called the λ-geodesic
distance between these points. Similarly, given a direction at a point, there are two
and only two λ-geodesic lines passing through it with the given direction. Later
on, we will need the following result

Proposition 3.1. Given a circle C and p an outer point to C, there are two and
only two tangent λ-geodesics to C passing by p and leaving C in the convex side.

Proof. Let us take a λ-geodesic tangent to C (leaving C in the convex side, cf.
figure 2) . Carrying out a rotation, with respect to the center of C, we can make it
pass through p. With a symmetry with respect to the line joining p and the center
of C, we get the other λ-geodesic.

Definition 3.6. A set K ⊂ H2 is said to be λ-convex if for every pair of points in
K, the two λ-geodesic segments joining them are also in K. When λ = 1, K is said
to be convex with respect to horocycles or h-convex for short.

See [1] for an equivalent definition of h-convexity based on supporting horocycles.
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Figure 2

Definition 3.7. For λ ≤ 1, a λ-lens is the convex domain bounded by two inter-
secting λ-geodesics (see figure 3). For λ > 1, a λ-lens is the convex domain bounded
by two intersecting circles with curvature equal to λ. When the intersection points
are at infinity we talk about ideal λ-lens.

If λ1 ≤ λ2 then every λ2-convex set is λ1-convex. Indeed, the λ1-geodesic seg-
ments joining two points lie between the λ2-geodesic segments joining them. In
particular every λ-convex set is convex.

Lemma 3.2. Let K be a compact convex domain bounded by a piecewise C2 curve.
Then K is λ-convex if and only if its geodesic curvature satisfies kg ≥ λ and in the
angular points the interior angle is less or equal than π.

Proof. Let p ∈ ∂K such that kg(p) < λ. Let (x, y) be geodesic normal coordinates
such that p is given by (0, 0) and ∂/∂x is tangent to ∂K in p. With respect to these
coordinates, in a neighborhood of p, the boundary is the graph of

y =
1
2
kg(p)x2 + o(x2)

and the λ-geodesic curves with direction ∂/∂x are the graph of

y = ±1
2
λx2 + o(x2).

The fact that kg(p) < λ implies that one of these λ-geodesic is locally inside K.
Since a compact domain cannot contain a whole λ-geodesic, we have contradiction
with the λ-convexity of K.

Conversely, if K is not λ-convex there are two points x, y ∈ ∂K such that the
λ-geodesic between them is not contained in K. By lemma 3.1, K is convex so the
geodesic segment r between x and y is in K. Let 0 ≤ µ < λ be the supremum
of all nonnegative numbers such that the µ-geodesic between x and y is contained
in K. If this µ-geodesic touches ∂K in a C2 point we should have kg ≤ µ < λ in
this point, a contradiction. The µ-geodesic cannot touch ∂K in an angular point
and if it touches ∂K in a non-C2 but non angular point we have that the lateral
limits for kg are not greater than µ, a contradiction. This implies, because µ is the
supremum, that the µ geodesic is tangent at x or at y. But then kg ≤ µ < λ at x
or at y, a contradiction.

4. Relation between diameter and perimeter of a convex set

In this section it will be shown that, for a sequence of λ-convex sets expanding
over the whole hyperbolic plane, the asymptotic value of D/L is not greater than
1
2

√
1 − λ2.
We shall need the following lemma , which was proved in [3].
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Figure 3

Lemma 4.1. Given two points in the hyperbolic plane and 0 ≤ λ < 1, if d and l
are, respectively, the geodesic and λ-geodesic distances between the points, then

l =
2√

1 − λ2
arcsinh

(√
1 − λ2 sinh

d

2

)
.(2)

If λ → 1 then l → 2 sinh
(

d
2

)
.

Proposition 4.1. Let (Kn) be a sequence of λ-convex sets expanding over the
whole hyperbolic plane. If Dn are their diameters and Ln their perimeters, then

0 ≤ lim inf
Dn

Ln
≤ lim sup

Dn

Ln
≤ 1

2

√
1 − λ2.(3)

Proof. For each n let pn and qn be points in ∂Kn such that the chord pnqn has
length equal to Dn. Let An be the λ-lens with endpoints pn and qn. Since Kn is
λ-convex, An ⊂ Kn so the perimeter of An is less than Ln. So we get

4√
1 − λ2

arcsinh
(√

1 − λ2 sinh
Dn

2

)
≤ Ln

and

lim
n→∞

Dn

Ln
≤ lim

n→∞

Dn

√
1 − λ2

4 arcsinh(
√

1 − λ2 sinh Dn

2 )
=

1
2

√
1 − λ2.

Corollary 4.1. If (Kn) is a sequence of h-convex sets expanding over the whole
hyperbolic plane then

lim
n→∞

Dn

Ln
= 0.

5. A family of examples

In this section we are going to construct sequences of λ-convex sets showing that
inequalities in (3) are the best possible.

Let C be a circumference with radius r centered at a point O. Let s be a geodesic
segment with midpoint O and length 2R (R > r). We call Kλ(R, r) the smallest
λ-convex set containing C and s (see figure 4). Let us describe the boundary of
Kλ(R, r). When r ≥ arctanh(λ) the boundary of Kλ(R, r) is formed by the two
λ-geodesic segments tangent to C leaving C in the convex side union with the arcs
of C between the tangency points. By lemma 3.1, this curve bounds a λ-convex
domain.

We shall see that, for suitable r and R, the quotient D/L can be as close as
possible to any value between 0 and 1

2

√
1 − λ2. Let P be one of the ends of s and

Q be the tangency point with C of one of the λ-geodesic segments starting at P .
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Figure 4

Let d and l be the geodesic and λ-geodesic distances between P and Q. Finally, let
α be the angle POQ and β be the angle OQP .

We present some interesting formulas in the next lemma.

Lemma 5.1. With the notation as above

tan
(π

2
− β

)
=

λ√
coth2 d

2 − λ2
(4)

l =
2√

1 − λ2
arcsinh

√
1 − λ2

2
cosh R − cosh r

cosh r − λ sinh r
.(5)

Proof. The proof of the first formula can be found in [3]. From (4) it follows that

cos β = λ tanh
d

2
(6)

using the first cosine law on the hyperbolic triangle OPQ

cosh R = cosh r cosh d − sinh r sinhd cos β.

Using (6) and isolating cosh d from the last equality we get

cosh d =
cosh R − λ sinh r

cosh r − λ sinh r
(7)

Substituting in (2) and bearing in mind that sinh d
2 =

√
coshd−1

2 we get the equation
we were looking for.

Corollary 5.1. If we take R = e2r or R = aer with a > 0 then

lim
r→∞

l

R
=

1√
1 − λ2

lim
r→∞

α = 0

where, as above, l is the λ-geodesic distance between P and Q and α is the angle
POQ.

Proof. Using the fact that log(x) ∼ arcsinh(x) when x goes to infinity and formula
(5) we have

lim
r→∞

l

R
= lim

r→∞

2
R

√
1 − λ2

log

√
1 − λ2

2
cosh R − cosh r

cosh r − λ sinh r
,
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Figure 5

then

lim
r→∞

l

R
=

1√
1 − λ2

lim
r→∞

log cosh R − cosh r

R
,

and the last limit is 1.
It remains to prove that the angles α tend to 0. By the first cosinus law applied

to the triangle OPQ

cosh d = cosh R cosh r − sinhR sinh r cos α.

Isolating cos α in the last expression and using (7) we easily get that

lim
r→∞

cos α = 1.

Proposition 5.1. For every n, let rn = n, Rn = e2n and Kn = Kλ(Rn, rn), the
λ-convex set described above. If Ln and Dn are the perimeter and the diameter of
Kn then

lim
n→∞

Ln

Dn
=

2√
1 − λ2

.

Moreover, if we take rn = n and Rn = aen with a > 0, then

lim
n→∞

Ln

Dn
=

2√
1 − λ2

+
π

2a
.

Proof. Using corollary 5.1

lim
n→∞

Ln

Dn
= lim

n→∞

4(sinh rn(π
2 − α) + ln)

2Rn
= 2 lim

n→∞

π sinh r

2Rn
+

ln
Rn

.

Then we have found, for every l between 0 and 1
2

√
1 − λ2, a sequence of λ-convex

sets such that lim D
L = l. We summarize this result in the following theorem

Theorem 1. Let 0 ≤ λ ≤ 1, for every l in [0, 1
2

√
1 − λ2] there exists a sequence

(Kn) of λ-convex sets expanding over the whole hyperbolic plane such that

lim
n→∞

Dn

Ln
= l

where Dn and Ln are, respectively, the diameter and the perimeter of Kn.

Note that, as it was said in proposition 4.1, 1
2

√
1 − λ2 is the upper bound for

lim D/L.
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6. Relation between area and perimeter of a convex set

In the euclidean plane, given a sequence (Kn) of convex sets expanding over the
whole plane, if Fn and Ln are the area and the perimeter of Kn then the quotient
Fn/Ln always goes to infinity. Indeed, it can be proved that F/L ≥ ri/2 where ri is
the radius of the greatest circumference contained in K (this easily follows from the
expression F = 1

2

∫
pds where p is the distance to the origin of the circumference

and the support lines of the convex).
In the hyperbolic plane, for any sequence (Kn) of convex sets expanding over

the whole hyperbolic plane, we have that

lim sup
Fn

Ln
≤ 1

where Fn and Ln are the area and the perimeter of Kn. This is a consequence of
the hyperbolic isoperimetric inequality (1). If Kn are supposed to be h-convex and
bounded by piecewise C2 curves it is known that

lim
Fn

Ln
= 1.

In the general case, it was proved in [2] that for every nonnegative l ≤ 1 there
exists a sequence (Kn) of convex sets expanding over the whole hyperbolic plane
such that

lim
n→∞

Fn

Ln
= l

where Fn and Ln are, respectively, the area and the perimeter of Kn.
Let us recall how these examples were constructed. Let Kn be a regular polygon

formed by 3 · 2n−1 isosceles triangles inscribed in a circle of radius Rn. If dn is the
length of the basis of one of this triangles and hn its area, then Fn/Ln = hn/dn. If
αn = 2π/(3 · 2n−1) is the opposite angle to dn then

dn = 2arcsinh
(
sinh Rn · sin

(αn

2

))

and

hn = π −
(

αn + 2arctan
1

tan αn

2 · cosh Rn

)
.

Taking Rn = n we have that lim hn/dn = 0. Taking Rn = log(4/µαn) with µ > 0
we have that

lim
(
tan

αn

2
· cosh Rn

)
= lim

αn

2
2

µαn
=

1
µ

,

hence,

lim hn = π − 2 · arctanµ.

In an analogous way

lim dn = 2 arcsinh
1
µ

.

So we have that

lim
Fn

Ln
=

π − 2 arctan µ

2 arcsinh 1
µ

that takes, depending on the parameter µ, all values between 0 and 1.
It is interesting to calculate lim Dn/Ln being Dn the diameter of these polygons.

lim
Dn

Ln
= lim

2Rn

3 · 2n arcsinh(sinhRn · sin(αn

2 ))
= 0
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Using the sequences constructed in section 5, we can show in an alternative way
that lim F/L can take any value between 0 and 1. Indeed, let Kn = Kλ(Rn, rn)
with rn = n, Rn = e2n and 0 ≤ λ ≤ 1. If Fn and Ln are the area and the perimeter
of Kn then, by the Gauss-Bonnet formula

lim
Fn

Ln
= lim

∫
∂Kn

kg ds + βn

Ln
= lim

∫
∂Kn

kg ds

Ln
=

= lim
λ(Ln − 4αn sinh rn) + coth rn4αn sinh rn

Ln
=

= λ + lim
4αn sinh rn(coth rn − λ)

Dn
lim

Dn

Ln
= λ

where βn are the interior angles in ∂Kn and 2αn is the angle described by one of
the arcs of circle in ∂Kn.

It is interesting to remark that the sequence with lim F/L = 0 is precisely the
sequence with lim D/L = 1/2. This seems not to be casual, D/L goes to 1/2
because the convex sets are “very thin” so it is not surprising that F/L goes to 0.

It seems natural to ask if a sequence of convex sets expanding over the whole
plane with lim D/L = 1/2 must have lim F/L = 0. In the next sections we will
look for bounds 0 ≤ f(l) ≤ g(l) ≤ 1 such that if a sequence has lim D/L = l then

f(l) ≤ lim
Fn

Ln
≤ g(l).(8)

Taking into account the sequences of polygons used above , f(0) must be 0 and
g(0) must be 1.

A first step, in order to find g, is to find a bound for F , the area of a convex set
with fixed perimeter and diameter.

7. Extremal values of the area for a given perimeter and diameter

It is known that, given positive L0, the compact domain with perimeter L0 and
maximum area is a circle. This is a consequence of the hyperbolic isoperimetric in-
equality (1). If we restrict to compact domains with diameter greater or equal than
a given value D0 and fixed perimeter L0 < 2π sinh D0/2, circles are not allowed.
Then we consider the problem of finding which of these domains has maximum
area. As a first step we have

Proposition 7.1. If K is a compact domain with diameter greater or equal than
D0, fixed perimeter L0 and maximum area, then K is convex.

Proof. Indeed, if K is not convex there must exist two boundary points x and y
such that the geodesic segment s joining them is in Kc . Let γ be the piece of ∂K
between x and y. Performing a reflection with respect to s of γ we can construct a
new domain with perimeter L0 and more area than K.

Let C be the set of all compact convex domains in the hyperbolic plane. If K ∈ C
we define its hyperbolic parallel convex sets at distance ε as follows

Kε = {p ∈ H2 |d(p,K) ≤ ε}
K−ε = {p ∈ K |d(p, ∂K) ≥ ε}.

In C we define the following distance:

d(K1, K2) = min{ε > 0 | Kε
1 ⊂ K2 and Kε

2 ⊂ K1}
Now, C is a metric space and we consider the induced metric topology. Distance

d is the hyperbolic version of Hausdorff distance for convex sets in the euclidean
plane (cf. for instance [4]). In fact, C can be seen in the projective model as the
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set of euclidean convex domains contained in the unit disk D. If de is the euclidean
distance and Kε

e, K−ε
e denote the euclidean parallel convex sets to K, we can define

de(K1,K2) = inf{ε > 0 | (K1)ε
e ⊂ K2 and (K2)ε

e ⊂ K1}
where K1 and K2 are convex domains contained in D. If K is a convex subset of
D, the ball B(K,d) = {K′ ∈ C | d(K,K ′) ≤ d} contains the ball Be(K, d) = {K ′ ∈
C | de(K,K ′) ≤ ε} where

ε = inf{de(∂K,∂Kd), de(∂K,∂K−d)}
Indeed, if K ′ ∈ Be(K, d) then K ′ ∈ B(K, d) since

K−d ⊂ K−ε
e ⊂ K ′ ⊂ Kε

e ⊂ Kd.

Similarly, every euclidean ball contains a hyperbolic one. Therefore the topologies
defined in C by d and by de are equivalent.

Let B be the ball in C with radius L0 and center the convex set containing only
the origin. We are interested in convex domains belonging to B because every
convex domain with perimeter L0 can be moved to be in B.

We have (cf. [4]) the following

Theorem 2. [Blaschke Selection Theorem] A bounded infinite family of eu-
clidean convex sets has a sequence converging to some convex set.

Corollary 7.1. B is compact.

Proof. In metric spaces a set A is compact if and only if every infinite subset of A
contains an accumulation point. Since the euclidean and hyperbolic topologies are
equivalent we can use theorem 2 to state that any infinite family in B accumulates
to a convex set. Since B is closed we are done.

Proposition 7.2. The diameter, D, perimeter, L, and area, F , functions are con-
tinuous over C, the set of all compact convex domains in the hyperbolic plane with
the Hausdorff topology.

Proof. Let K ∈ C and let Kn be a sequence of convex domains such that d(Kn, K)
tends to 0. By the definition of the distance between two convex sets

K−dn ⊂ Kn ⊂ Kdn

where dn = d(Kn, K). Therefore

D(K) − 2dn = D(K−dn) ≤ D(Kn) ≤ D(Kdn) = D(K) + 2dn

and lim D(Kn) = D(K). For the perimeter, using the hyperbolic Crofton formula
we have

lim L(K±dn) = lim
∫

R

χ{r ∈ R | r ∩ K±dn 6= ∅}dr =

=
∫

R

lim χ{r ∈ R | r ∩ K±dn 6= ∅}dr =

=
∫

R

χ{r ∈ R | r ∩ K 6= ∅}dr = L(K)

where R is the set of lines in H2 and χ is the characteristic function. Therefore
lim L(Kn) = L(K). The continuity for the area follows analogously.

Let S = {K ∈ B | D(K) ≥ D L(K) = L0} = D−1([D0, L0/2]) ∩ L−1(L0) ∩ B.
S is a closed subset of B so it is compact. Then F must have a maximum and a
minimum over S.

Corollary 7.2. In the set of hyperbolic convex domains with diameter bounded
below by D0 and fixed perimeter L0 the area function attains its maximum value.
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Figure 6

This proves the existence question. The uniqueness is discussed in the next
theorem.

Theorem 3. Given D0 and L0 < 2π sinh D0/2, the compact convex domain with
diameter greater or equal than D0 and perimeter L0 that maximizes the area is a
λ-lens with diameter exactly D0.

We need some previous results. Let K be a convex set in B maximizing the
area. Let c1 and c2 be the endpoints of a diameter of K and γ(s) be the curve ∂K
parametrized by the arc.

First we see that C1 points are locally equivalent.

Lemma 7.1. Let p = γ(s) and p′ = γ(s′) be two points different from c1 and c2.
If γ is C1 in p and p′ then there exists a rigid motion that moves a neighborhood
of p in γ onto a neighborhood of p′.

Proof. Let γ(s) = p and γ(s′) = p′. Let ε be small enough to make c1, c2 /∈
γ([s − ε, s + ε]) and c1, c2 /∈ γ([s′ − ε, s′ + ε]). For any t ∈ (s, s + ε] let t′ > s be
the first one with d(γ(s), γ(t)) = d(γ(s′), γ(t′)). Swapping γ([s, t]) and γ([s′, t′]) we
obtain the border of a new domain K′ with the same area as K, the same perimeter
and, perhaps, a greater diameter. The angle between γ′(s) and γ(s)γ(t) is equal to
the angle between γ′(s′) and γ(s′)γ(t′). Indeed, if one of these angles is greater that
the other, in ∂K′ there would be an interior angle greater than π; contradicting
the fact that K ′ must be convex (cf. lemma 3.1)

So, in polar coordinates with center p and direction γ′(s), the curve γ([s−ε, s+ε])
has the same expression as γ([s′ − ε, s′ + ε]), in polar coordinates with center p′ and
direction γ′(s′). If g is the motion that moves p on p′ and γ′(s) on γ′(s′), then g
moves the neighborhood of p onto the neighborhood of p′.

Lemma 7.2. γ is of class C1 except in c1 and c2.

Proof. Since K is convex, ∂K must be C1 except from, at most, in a countable set
of points. Let γ(s) = x 6= c1, c2 be one of these points. Let (sn) be a sequence such
that lim sn = s and xn = γ(sn) are C1 points. Let ε be such that c1, c2 /∈ Un =
γ([sn − ε, sn + ε]) for any n. Un are not geodesic segments so U0 must contain three
non aligned points p1 = γ(s0 + t1), p2 = γ(s0 + t2) and p3 = γ(s0 + t3). Let gn

be the motion that moves U0 onto Un. The group of rigid motions in H2 can be
identified with the set of triangles congruent to p1p2p3. Since

lim gn(γ(s0 + ti)) = lim γ(sn + ti) = γ(s + ti), i = 1, 2,3

the sequence (gn) converges to a motion g and for every |t| < ε

g(γ(s0 + t)) = (lim gn)(γ(s0 + t)) = lim γ(sn + t) = γ(s + t).
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Figure 7

So, g moves a neighborhood of x0 (in γ) onto a neighborhood of x. This contradicts
the fact that, in x, γ is not C1.

Now we can afford the

Proof of theorem 3. Let p = γ(s) and p′ = γ(s′) be two border points of K such
that neither c1 nor c2 are in γ([s, s′]). Let r and r′ be the lines through p and p′,
respectively, orthogonal to γ in these points. Two cases are possible, r intersects r′

or not.
If r and r′ intersect in o, let q = γ(t) be the point in γ([s, s′]) such that d(p, q) =

d(p′, q) (see figure 7). The argument used in the proof of lemma 7.1 implies that the
angles (pq, γ′(s)), (γ′(t), pq), (qp′, γ′(t)) and (γ′(s′), qp′) must be equal. Then the
triangles opq and op′q are isosceles with d(o, p) = d(o, q) = d(o, p′). This argument
could be repeated starting with p and q or with q and p′. Repeating it indefinitely
we get a dense subset Ω ⊂ γ([s, s′]) at a constant distance from o. By continuity of
the distance, γ([s, s′]) must be an arc of circle with center o.

If r and r′ are nonsecant they have a common perpendicular line s. In an analo-
gous way we can see that γ([s, s′]) must be a piece of an equidistant of s (see figure
7). Anyway, the curve between p and p′ is C2 and has constant curvature. Then,

each piece of ∂K/{c1, c2}, must be C2 with constant curvature. Lemma 7.1 implies
that the curvature must be the same in the two pieces.

For every pair (D0, L0) there exists a unique convex set with diameter D0 and
perimeter L0 that maximizes the area and it is a λ-lens. It is important to remark
that the value of this λ is a function on D0 and L0 and that

λ < 1 if 2D0 ≤ L0 < 4 sinh
D0

2

λ ≥ 1 if 4 sinh
D0

2
≤ L0 ≤ 2π sinh

D0

2
.

Notice that in the first case the boundary lines are λ-geodesic segments and in the
second case they are arcs of circumference.

Now we can treat the problem of finding the bounds in formula (8).

8. Upper and lower bounds for lim F/L with respect lim D/L

As usual, let (Kn) be a sequence of convex sets expanding over the whole hyper-
bolic plane. Let Fn, Ln and Dn be, respectively, the area, perimeter and diameter
of Kn. Let us suppose that lim Dn/Ln = l 6= 0. The domain with diameter Dn

and perimeter Ln of maximum area is a λn-lens with area F (Dn, Ln) and interior
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Figure 8

angles βn. In this case

lim
Fn

Ln
≤ lim

F (Dn, Ln)
Ln

= lim
λn · Ln − 2βn

Ln
= lim λn.

Notice that we can suppose, for n big enough, λn < 1 and lim λn 6= 1. Indeed, if
lim inf λn ≥ 1 then Ln ≥ 4 sinh Dn/2 for n arbitrarily big. Therefore lim Dn/Ln

must be 0 and in this case all values of lim Fn/Ln between 0 and 1 can be attained
(see section 6).

Using (2)

lim
Ln

Dn
= lim

4√
1 − λ2

nDn

· arcsinh
(√

1 − λ2
n sinh

Dn

2

)

= lim
4√

1 − λ2
n

log(sinh Dn

2 )
Dn

= lim
2√

1 − λ2
n

.

So lim λn exists and its value is
√

1 − (2l)2. We can state

Theorem 4. Let (Kn) be a sequence of convex sets expanding over the whole hy-
perbolic plane. Let Fn, Ln and Dn denote their area, perimeter and diameter. If
lim Dn/Ln = l then

lim
Fn

Ln
≤

√
1 − (2l)2.(9)

Sequences constructed in section 5 show that (9) could not be better. Taking
Kn = Kλ(e2n, n) we know that

lim
(

Fn

Ln

)2

+ lim
(

2Dn

Ln

)2

= λ2 + (1 − λ2) = 1.

The following proposition shows that the only lower bound for the limFn/Ln is
f(l) ≡ 0.

Proposition 8.1. For every 0 ≤ l ≤ 1/2 and every 0 ≤ λ ≤
√

1 − (2l)2 there
exists a sequence of convex sets expanding over the whole hyperbolic plane with
lim Dn/Ln = l and lim Fn/Ln = λ.

Proof. Let Kn be the regular polygon with 3 · 2n−1 sides inscribed in a circle of
radius n. Let K ′

n be the polygon Kn with two isosceles triangles of height k · 2nn
(k > 0) attached in two opposite sides of Kn. Now, let Kλ

n be the domain bounded
by the exterior λ-geodesic segments corresponding to each side of K ′

n (see figure
8). Let Fn, Ln and Dn be the area, perimeter and diameter of Kλ

n respectively.
Let ln be the length of each side of Kn. Let dn be the length of the equal sides in
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Figure 9. Possible values for lim Fn/Ln with respect to lim Dn/Ln

the attached triangles. We denote l′n and d′
n the lengths of the λ-geodesic segments

corresponding to ln and dn respectively. Let γn and δn be the angles between ln
and l′n and between dn and d′

n respectively. Let βn be the half part of the interior
angles in ∂Kn and let τn be the value of the two equal angles in each attached
triangle.

The domains Kλ
n are convex for n big enough. Indeed, βn and τn go to 0 and,

taking (4) into account, γn and δn go to arccos λ < π/2. Therefore, for n big
enough, the interior angles of ∂Kλ

n are not greater than π and the Kλ
n are convex

domains.
Using hyperbolic trigonometry,

ln = 2arcsinh
(
sinh n sin(

π

3 · 2n−1 )
)

∼ 2n log(e/2)

and
dn = arccosh (cosh ln cosh(k2nn)) ∼ k2nn

when n goes to infinity. Using (2) we have

l′n ∼ 2n log(e/2)√
1 − λ2

d′
n ∼ k2nn√

1 − λ2
.

Since Dn − 2k2nn < 2n, Dn ∼ 2k2nn. Therefore

lim
n→∞

Ln

Dn
= lim

n→∞

(3 · 2n−1 − 2)l′n + 4d′
n

2k2nn
=

1√
1 − λ2

(
3 log(e/2)

2k
+ 2

)

which takes, depending on k all the values between 2/
√

1 − λ2 and infinity.
Finally, using the Gauss-Bonnet formula

lim
n→∞

Fn

Ln
= lim

n→∞

λLn +
∑

angles − 2π
Ln

= λ + lim
n→∞

(3 · 2n−1 − n)(π − 2(γn + βn))
Ln

= λ.

Notice that this computations give only the cases 0 < l < 1/2 and λ <
√

1 − (2l)2.
We can use the examples given in section 5 for l = 1/2 and λ =

√
1 − (2l)2 and

those in section 6 for l = 0

So, we have seen that the upper bound g(l) for lim F/L with respect l = lim D/L

is the function
√

1 − (2l)2. This value and all the lower ones are attained for every
l between 0 and 1/2 (see figure 9).
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